|
1 |
|
00:00:19,290 --> 00:00:23,430 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ูู ููุงูุฉ ุงูู
ุญุงุถุฑุฉ ุงูู
ุงุถูุฉ |
|
|
|
2 |
|
00:00:23,430 --> 00:00:27,850 |
|
ุงุจุชุฏุฃูุง ูู section ูุงุญุฏ ุฎู
ุณุฉ ููู ุงู linear first |
|
|
|
3 |
|
00:00:27,850 --> 00:00:32,050 |
|
order differential equation ูุนุฑููุง ุงู ุดูู ุงู first |
|
|
|
4 |
|
00:00:32,050 --> 00:00:35,990 |
|
order linear differential equation ุนูู ุงูุดูู a |
|
|
|
5 |
|
00:00:35,990 --> 00:00:40,310 |
|
node of x ูู ุงู y prime ุฒุงุฆุฏ a one of x ูู ุงู y |
|
|
|
6 |
|
00:00:40,310 --> 00:00:44,610 |
|
ุจุฏู ุณูู ุงู f of x ูุจุนุฏ ุฐูู ุฑุญูุง ูู
ุนุงู
ู y prime |
|
|
|
7 |
|
00:00:44,610 --> 00:00:51,550 |
|
ุฎููุง ุงููุงุญุฏ ุงูุตุญูุญ ูุงุดุชุฑุทูุงุนูุฏ ุชุทุจูู ุงูุญู ููุฐู |
|
|
|
8 |
|
00:00:51,550 --> 00:00:56,570 |
|
ุงูู
ุนุงุฏูุฉ ูุงุฒู
ูููู ุงูู
ุนุงู
ู ูู ูุงุญุฏ ุตุญูุญ ูุฃุตุจุญุช |
|
|
|
9 |
|
00:00:56,570 --> 00:00:59,190 |
|
ุงูุตูุฑุฉ ุงูุฌุฏูุฏุฉ ูู first order differential |
|
|
|
10 |
|
00:00:59,190 --> 00:01:05,670 |
|
equation ุนูู ุตูุบุฉ y prime ุฒุงุฆุฏ P of x Vy ุจุฏู ูุณูู |
|
|
|
11 |
|
00:01:05,670 --> 00:01:11,210 |
|
ู
ูู ุงู Q of x ุญูุซ ุงู P ู ุงู X ุงู P ู ุงู Q ุฏูุง |
|
|
|
12 |
|
00:01:11,210 --> 00:01:16,750 |
|
ุงูู
ุชุตูุฉ ุนูู ูุชุฑุฉ ู
ุงููููุง ุฅู ุงูุญู ูุฐู ุงูู
ุนุงุฏูุฉ ุนูู |
|
|
|
13 |
|
00:01:16,750 --> 00:01:24,770 |
|
ุตูุบุฉ ุงูู Mu of X ูู Y ุจุชุดูู ุชูุงู
ู Mu of X ูู Q of |
|
|
|
14 |
|
00:01:24,770 --> 00:01:30,310 |
|
X ูู DX ุญูุซ ุงูู Mu of X ุงููู ูู ุนุงู
ู ุงูุชูุงู
ู ูู |
|
|
|
15 |
|
00:01:30,310 --> 00:01:37,150 |
|
ุนุจุงุฑุฉ ุนู E ููุณ ุชูุงู
ู P of X DX ูุงุฎุฏูุง ุนูู ุฐูู |
|
|
|
16 |
|
00:01:37,150 --> 00:01:43,460 |
|
ู
ุซุงููู ููุฐุง ุงููู ุจูู ุฃูุฏูุง ูู ุงูู
ุซุงู ุฑูู
3ูุจูู |
|
|
|
17 |
|
00:01:43,460 --> 00:01:46,400 |
|
ุงูู
ุซุงู ุฑูู
ุชูุงุชุฉ ุจูููู solve the differential |
|
|
|
18 |
|
00:01:46,400 --> 00:01:53,080 |
|
equation xy prime ุฒุงุฆุฏ y ูุณูู x sin x ุนูู
ุง ุจุฃู x |
|
|
|
19 |
|
00:01:53,080 --> 00:01:59,180 |
|
ุฏุงุฆู
ุง ู ุฃุจุฏุง ุฃูุจุฑ ู
ู 0 ูุจูู ู
ุซูุง ู
ุดุงู ุงูุญู |
|
|
|
20 |
|
00:01:59,180 --> 00:02:02,760 |
|
ุงูู
ุนุงุฏูุฉ ุงูุชูุงุถููุฉ ุงููู ูุฏุงู
ูุง ูุฐู ุจุฏู ุงูุชุจูุง ุนูู |
|
|
|
21 |
|
00:02:02,760 --> 00:02:08,370 |
|
ุงู standard form ุชุจุนูุงุงููู ุจุฏู ุฃุฎููู ู
ุนุงู
ู y' ูู |
|
|
|
22 |
|
00:02:08,370 --> 00:02:14,270 |
|
main ูุงุญุฏุ ุฅุฐุง ุจุฑูุญ ููุณู
ุงูุทุฑููู ุนูู x ููุฐุง ู
ู
ูู |
|
|
|
23 |
|
00:02:14,270 --> 00:02:18,490 |
|
ูุฃู x greater than zero ููุง ุชุณุงูู zero ุฅุฐุง |
|
|
|
24 |
|
00:02:18,490 --> 00:02:25,930 |
|
ุงูู
ุนุงุฏูุฉ ุงูุนุงุฏูุฉ ูุชุฃุฎุฏ ุงูุตูุบุฉ ุงูุฌุฏูุฏุฉ ูู y' ุฒุงุฆุฏ |
|
|
|
25 |
|
00:02:25,930 --> 00:02:32,130 |
|
ูุงุญุฏ ุนูู x ูู y ูุณุงูู main ูุณุงูู sign xูุจูู ูุงู |
|
|
|
26 |
|
00:02:32,130 --> 00:02:37,390 |
|
ุญุทููุงูุง ุนูู ุตูุบุฉ y prime ุฒู p of x ูู y ุจุฏู ุณุงูู ู |
|
|
|
27 |
|
00:02:37,390 --> 00:02:42,990 |
|
q of x ูุจูู ุจูุงุก ุงูุง ุนููู ุจูุฏุฑ ุงุฌูุจ ุนุงู
ู ุงูุชูุงู
ู |
|
|
|
28 |
|
00:02:42,990 --> 00:02:49,430 |
|
ููุฐู ุงูู
ุนุงุฏูุฉ ูุจุฑูุญ ุจููู ู mu of x ูุณุงูู E of |
|
|
|
29 |
|
00:02:49,430 --> 00:02:57,830 |
|
ุชูุงู
ู ูุงุญุฏ ุนูู x dx ูุจูู E ุฃุตู ุงู ุงู x ูุจูู ุงู x |
|
|
|
30 |
|
00:02:57,830 --> 00:03:03,900 |
|
ุงุชุตููุจูู ุนุงู
ู ุงูุชูุงู
ู ูู X ุฅุฐุง ูู ุฑูุญุช ุณู
ูุช |
|
|
|
31 |
|
00:03:03,900 --> 00:03:12,620 |
|
ุงูู
ุนุงุฏูุฉ ุงูุฃุตููุฉ star ุจููู ูู solution of the |
|
|
|
32 |
|
00:03:12,620 --> 00:03:23,080 |
|
differential equation star isุงููู ูู ุงูู x ูู ุงูู |
|
|
|
33 |
|
00:03:23,080 --> 00:03:30,120 |
|
y ูุณูู ุชูุงู
ู x ูู sign ุงูู x ููู ุจุงููุณุจุฉ ููุฐู ุงูู |
|
|
|
34 |
|
00:03:30,120 --> 00:03:35,320 |
|
x ูุจูู ุถุงูู ุนูููุง ุชูุงู
ู ูุฐู ุชุงุจูุง ููุงู
ู ูุฐู ุงูุฏุงูุฉ |
|
|
|
35 |
|
00:03:35,320 --> 00:03:40,380 |
|
ูุง ุจูุงุช ุชูุงู
ู integration by parts ููุฐู ุฃุฎุฏูุงูุง |
|
|
|
36 |
|
00:03:40,380 --> 00:03:49,180 |
|
ุตูุบุฉ ู
ุญุฏุฏุฉ ููููุง ุจุฑูุญ ูุงุฎุฏ ุงูุฏุงูุฉ ูู
ุดุชูุชูุง ูุจูู |
|
|
|
37 |
|
00:03:49,180 --> 00:03:58,490 |
|
ุจุงุฌู ุจุงุฎุฏุงููู ูู ู
ูู ุงู .. ุงู U ู ูุฐู ุงู D V ุงู U |
|
|
|
38 |
|
00:03:58,490 --> 00:04:04,410 |
|
ุงููู ูู ุนุจุงุฑุฉ ุนู X ู ุงู D V ุงููู ูู ุตูู ุงู X ุจุฑูุญ |
|
|
|
39 |
|
00:04:04,410 --> 00:04:09,270 |
|
ุจูุงุถู ูุฐู ุจูู ุชูุงุถููุง ุจูุงุญุฏ ูุจุฌู ุงู ุจููู ูุฐู |
|
|
|
40 |
|
00:04:09,270 --> 00:04:13,090 |
|
derivatives ููุฐู integrals in general ูุนูู ูุฐู |
|
|
|
41 |
|
00:04:13,090 --> 00:04:17,530 |
|
ุจููู ุนูููุง derivatives ููุฐู ุจุฑูุญ ุจููู ุนูููุง |
|
|
|
42 |
|
00:04:17,530 --> 00:04:19,610 |
|
integrals |
|
|
|
43 |
|
00:04:25,340 --> 00:04:32,500 |
|
ุจุนุฏ ุฐูู ุงุดุชุบู ูู
ุงู ู
ุฑุฉ ูุจูู ู
ุดุชูุฉ ูุฐู ุจู0 ุชูู
ู ูุฐู |
|
|
|
44 |
|
00:04:32,500 --> 00:04:39,920 |
|
ุจูSin X ุจุนุฏูู ุจููู ุงูุฏุงูุฉ ูุฐู ูู ุงูุฏุงูุฉ ูุฐููุงูุฏุงูุฉ |
|
|
|
45 |
|
00:04:39,920 --> 00:04:44,400 |
|
ุงููู ุนูุฏูุง ูุฐู ูู ุงูุฏุงูุฉ ูุฐู ู ุจุฑูุญ ุจุงุณุชุฎุฏู
ูุงุนุฏุฉ |
|
|
|
46 |
|
00:04:44,400 --> 00:04:49,660 |
|
ุงูุฅุดุงุฑุงุช ูุจูู ุจุจุฏุฃ ุจุงูู
ูุฌุจ ุงููู ุจุนุฏู ุณุงูุจ ู
ูุฌุจ |
|
|
|
47 |
|
00:04:49,660 --> 00:04:54,840 |
|
ุณุงูุจ ุฅูู ู
ุง ุดุงุก ุงููู ูุจูู ุจูุงุก ุนูููุง ุฃุตุจุญ ุนูุฏ ุงู X |
|
|
|
48 |
|
00:04:54,840 --> 00:05:02,580 |
|
Y ูุณุงูู ูุงูุต X ูู cosine X ุญุตู ุถุฑุจ ุงูุงุชููู ุฒุงุฆุฏ |
|
|
|
49 |
|
00:05:02,580 --> 00:05:09,780 |
|
sine X ุฒุงุฆุฏ constant Cุฃูุง ุจุฏู y as a function of x |
|
|
|
50 |
|
00:05:09,780 --> 00:05:15,280 |
|
ุฅุฐุง ุจุฑูุญ ุจุฌุณู
ููู ุนูู ู
ููุ ุนูู x ูุจูู ุจูุตูุฑ ุญู |
|
|
|
51 |
|
00:05:15,280 --> 00:05:21,680 |
|
ุงูู
ุนุงุฏูุฉ ุงูุชูุงุถุฑูุฉ ุงูู star ูู y ุชุณุงูู ุณุงูุจ cosine |
|
|
|
52 |
|
00:05:21,680 --> 00:05:28,760 |
|
ุงู x ุฒุงุฆุฏ sine ุงู x ุนูู x ุฒุงุฆุฏ c ุนูู x ูุฐุง ุงู |
|
|
|
53 |
|
00:05:28,760 --> 00:05:33,740 |
|
general solution ูู
ููุ ููู
ุนุงุฏูุฉ ุงูุชูุงุถุฑูุฉ ุงููู ูู |
|
|
|
54 |
|
00:05:33,740 --> 00:05:39,670 |
|
ุงู starูุจูู ุจูุงุก ุนููู ุฃุฎุฏูุง ุนูู ูุฐู ุงูู
ุนุงุฏูุฉ ุซูุงุซุฉ |
|
|
|
55 |
|
00:05:39,670 --> 00:05:43,010 |
|
ุฃู
ุซูุฉ ุฃู ุนูู ุงู first order linear differential |
|
|
|
56 |
|
00:05:43,010 --> 00:05:47,610 |
|
equation ุซูุงุซุฉ ุฃู
ุซูุฉ ู
ุซููู ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ ููุฐุง ูู |
|
|
|
57 |
|
00:05:47,610 --> 00:05:52,750 |
|
ุงูู
ุซุงู ุงูุซุงูุซ ู
ุด ุฏุงุฆู
ุง ุงูู
ุนุงุฏูุฉ ุจู
ุฌุฑุฏ ู
ุง ุฃุทูุน ููุง |
|
|
|
58 |
|
00:05:52,750 --> 00:05:58,390 |
|
ุชููู linear ุฃุญูุงู ุจุฏู ุฃุถุทุฑ ุฃุญูููุง ุฅูู linear first |
|
|
|
59 |
|
00:05:58,390 --> 00:06:03,770 |
|
order differential equationูุนูู ุงูู
ุนุงุฏูุฉ ุจู
ุฌุฑุฏ |
|
|
|
60 |
|
00:06:03,770 --> 00:06:08,410 |
|
ุงููุธุฑ ูุง ุชููู Linear ููู ุจูุฏุฑ ุฃุญูููุง ุฅูู Linear ุฒู |
|
|
|
61 |
|
00:06:08,410 --> 00:06:10,970 |
|
ู
ุง ูู ุงู Homogeneous ุญูููุงูุง ุฅูู Homogeneous ูุงู |
|
|
|
62 |
|
00:06:10,970 --> 00:06:14,630 |
|
Exact ูุงูุช ู
ุงููุงุด Exact ุญูููุงูุง ุฅูู Exact ูุงู |
|
|
|
63 |
|
00:06:14,630 --> 00:06:18,290 |
|
Superb ูุงู ู
ุงููุงุด Superb ูุญูููุงูุง ุฅูู Superb ูุง |
|
|
|
64 |
|
00:06:18,290 --> 00:06:22,850 |
|
Superb ูุนูู ู
ุงุญุฏุด ุฃุญุณู ู
ู ุญุฏ ุทูุจ ุจุฏูุง ููุฌู ูุดูู |
|
|
|
65 |
|
00:06:22,990 --> 00:06:29,010 |
|
ุงูููุน ู
ู ุงูู
ุนุงุฏูุงุช ููุณุช Linear ููู ูู
ูู ุชุญููููุง |
|
|
|
66 |
|
00:06:29,010 --> 00:06:33,830 |
|
ุฅูู Linear ููุฐุง ู
ุง ูุณู
ู ู
ุนุงุฏูุฉ Bernoulli ูุจูู |
|
|
|
67 |
|
00:06:33,830 --> 00:06:38,270 |
|
Bernoulli equation ุจุฏูุง ูุนุทููุง Definition ูุจุนุฏูุง |
|
|
|
68 |
|
00:06:38,270 --> 00:06:44,750 |
|
ูุญู ู
ุนุงุฏูุฉ Bernoulli ูุจูู ุจุงุฌู ุจููู Definition |
|
|
|
69 |
|
00:06:44,750 --> 00:06:48,230 |
|
differential equation |
|
|
|
70 |
|
00:06:50,280 --> 00:06:56,980 |
|
differential equation ุงูู
ุนุงุฏูุฉ ุงูุชูุงุถููุฉ y prime |
|
|
|
71 |
|
00:06:56,980 --> 00:07:05,820 |
|
ุฒุงูุฏ p of x ูู ุงู y ุจุฏู ูุณุงูู ู q of x ูู ู
ูู
ูู |
|
|
|
72 |
|
00:07:05,820 --> 00:07:15,340 |
|
ุงู y to the power n ู ุงู n ูุง ุชุณุงูู zero and ู |
|
|
|
73 |
|
00:07:15,340 --> 00:07:25,200 |
|
ูุฐููุงูู N ูุง ุชุณุงูู ูุงุญุฏ is called ุจูุฑูุญ ูุณู
ููุง |
|
|
|
74 |
|
00:07:25,200 --> 00:07:31,380 |
|
Bernoulli equation Bernoulli |
|
|
|
75 |
|
00:07:31,380 --> 00:07:35,540 |
|
Bernoulli |
|
|
|
76 |
|
00:07:35,540 --> 00:07:39,500 |
|
equation ูุจูู ู
ุนุงุฏูุฉ Bernoulli |
|
|
|
77 |
|
00:07:49,170 --> 00:07:55,790 |
|
ุทูุจ ุงูุขู ุธูุฑุช ุนูุฏูุง ู
ุนุงุฏูุฉ ุฌุฏูุฏุฉ ูุฐู ุงูู
ุนุงุฏูุฉ ููุณุช |
|
|
|
78 |
|
00:07:55,790 --> 00:08:00,470 |
|
linear first order differential equation ุงูุณุจุจ ูู |
|
|
|
79 |
|
00:08:00,470 --> 00:08:04,870 |
|
ุฐูู ุฃููุง ู
ุงููุงุด linear ูู ุทูุนุช ููุทุฑู ุงูุดู
ุงู ุงููู |
|
|
|
80 |
|
00:08:04,870 --> 00:08:09,310 |
|
ุนูุฏูุง ูุจูู ูู ุงู linear first order differential |
|
|
|
81 |
|
00:08:09,310 --> 00:08:13,160 |
|
equation ุงููู ุงุญูุง ุนุงุฑููููุงูู Q of X ูู ูุจูู |
|
|
|
82 |
|
00:08:13,160 --> 00:08:19,560 |
|
ุงูุฌุฏูุฏ ู
ู Y to the power N ูุจูู ุจุณุจุจ ูุฌูุฏ ุงูู Y to |
|
|
|
83 |
|
00:08:19,560 --> 00:08:24,060 |
|
the power N ุจุทูุช ุชุตูุฑ ูุฐู first order differential |
|
|
|
84 |
|
00:08:24,060 --> 00:08:28,960 |
|
equation ุทูุจ ุญุทูู ุดุฑุท ููุง ูุงู ุงูู N ู
ู
ููุน ุชุณุงูู |
|
|
|
85 |
|
00:08:28,960 --> 00:08:34,640 |
|
Zero ููุฐูู ุงูู N ู
ู
ููุน ุชุณุงูู ูุงุญุฏ ุงูุณุคุงู ูู ููุด |
|
|
|
86 |
|
00:08:34,640 --> 00:08:37,260 |
|
ุงูู N ู
ู
ููุน ุชุณุงูู Zero ูุนูู ูู ุชุณุงูู Zero ุฅูุด |
|
|
|
87 |
|
00:08:37,260 --> 00:08:42,440 |
|
ุจูุตูุฑุุจุตูุฑ ูุงุฏู ูุงุญุฏ ูุจุชุงูู ุจุตูุฑ linear ุทุจูุนู ูุนูู |
|
|
|
88 |
|
00:08:42,440 --> 00:08:48,460 |
|
ูุจุชุงูู ุงุญูุง ู
ุงุณูููุงุด ุงุดู ุทูุจุูู ูุงูุช ุงูู N ุจูุงุญุฏ |
|
|
|
89 |
|
00:08:48,460 --> 00:08:53,020 |
|
ูุจุฏู ูุตูุฑ ููุง Y ุฅุฐุง ุจุฌูุจูุง ุนูู ุงูุดุฌุฉ ุงูุชุงููุฉ ู |
|
|
|
90 |
|
00:08:53,020 --> 00:08:57,680 |
|
ุจุงุฎุฏ Y ุนุงู
ู ู
ุดุชุฑู ู ุจุตูุฑ P of X ุฒุงูุฏ ูQ of X ู |
|
|
|
91 |
|
00:08:57,680 --> 00:09:02,360 |
|
ุจุชุณุงูู Zero ูุจุงูุชุงูู ุตุงุฑุช Linear ูุฐูู ุฅุฐุง ู
ุดุงู |
|
|
|
92 |
|
00:09:02,360 --> 00:09:06,740 |
|
ุฃุถู
ู ุฅููุง ู
ุงููุงุด Linear ูุงุฒู
ุงูู N ู
ู
ููุน ุชุณุงูู |
|
|
|
93 |
|
00:09:06,740 --> 00:09:13,000 |
|
Zero ู ุงูู N ู
ู
ููุน ุชุณุงูู ูุงุญุฏ ุชู
ุงู
ุงูุณุคุงู ูู ููู |
|
|
|
94 |
|
00:09:13,000 --> 00:09:19,740 |
|
ูู
ูู ุญู ูุฐู ุงูู
ุนุงุฏูุฉุจููููู ุจููุฏุฑ ูุญููุง ูุงูุชุงูู ุจุฏู |
|
|
|
95 |
|
00:09:19,740 --> 00:09:24,740 |
|
ุฃุญูููุง ุฅูู linear ููู ุจุฏู ุฃุญูููุง ุฅูู linear ูุฐุง ู
ุง |
|
|
|
96 |
|
00:09:24,740 --> 00:09:32,400 |
|
ุณูุดูุฑ ุฅููู ูุจูู ุจุงุฌู ุจูููู ููุง to solve Bernoulli |
|
|
|
97 |
|
00:09:32,400 --> 00:09:38,280 |
|
equation Bernoulli |
|
|
|
98 |
|
00:09:38,280 --> 00:09:41,320 |
|
equation multiply |
|
|
|
99 |
|
00:09:46,660 --> 00:09:54,180 |
|
both sides ููุง ุงูุทุฑููู ูุฐุง ู
ุง ูุณู
ูู ุงู equation |
|
|
|
100 |
|
00:09:54,180 --> 00:10:06,620 |
|
star ูุถุฑุจูุง |
|
|
|
101 |
|
00:10:06,620 --> 00:10:14,660 |
|
ุจูุงู ุฃุณ ูุงูุต into gainุจูุญุตู ุนูู ุจุฏุฃ ุงุถุบุท ูู Y ุชุฏุง |
|
|
|
102 |
|
00:10:14,660 --> 00:10:22,380 |
|
power ุณุงูุจ N ูุจูู ุจูุตูุฑ ุณุงูุจ N ูู ุงู Y prime ุฒุงุฆุฏ |
|
|
|
103 |
|
00:10:22,380 --> 00:10:33,080 |
|
P of X ูู Y ุฃุณ ูุงุญุฏ ุณุงูุจ N ุชู
ุงู
ุจุฏุฃ ุฃุณุงูู ู
ู AQ of |
|
|
|
104 |
|
00:10:33,080 --> 00:10:33,480 |
|
X |
|
|
|
105 |
|
00:10:36,350 --> 00:10:41,670 |
|
ุจุนู
ููุฉ ุงูุถุฑุจ ุงูุจุณูุทุฉ ุงููู ุนู
ูุชู ูุฐู ูุจูู ุทุงุฑุฉ y to |
|
|
|
106 |
|
00:10:41,670 --> 00:10:47,310 |
|
the power n ู
ู ุงูุทุฑู ุงููู
ูู ูู ุงูู
ุนุงุฏูุฉ ู ุฃุตุจุญุช |
|
|
|
107 |
|
00:10:47,310 --> 00:10:51,470 |
|
ุงูู
ุนุงุฏูุฉ ุนูู ุงูุดูู ุงูุฌุฏูุฏ ุงููู ุนูุฏูุง ูู ูุฐู linear |
|
|
|
108 |
|
00:10:51,470 --> 00:10:59,470 |
|
ูุฃ ูุจูู ู
ุด ุฃูุง ุฃุญูููุง ุฅูู linear ุจุฌู ุจูููู pot ุญุท |
|
|
|
109 |
|
00:10:59,470 --> 00:11:07,690 |
|
ููุงูู U ูุณูู Y ุฃุณ ูุงุญุฏ ูุงูุต N ุงุดุชููุง ูุง ุจูุงุช ุจูุตูุฑ |
|
|
|
110 |
|
00:11:07,690 --> 00:11:17,390 |
|
U' ูุงุญุฏ ูุงูุต N ูู ุงู Y ุฃุณ ูุงูุต N ูู ุงู Y' ู
ุธุจูุท |
|
|
|
111 |
|
00:11:17,390 --> 00:11:23,310 |
|
ูููุ ุทูุจ ูููุณ ูู ุฌุณู
ุช ุงูุทุฑููู ุนูู ุงูู
ูุฏุงุฑ ุงููู |
|
|
|
112 |
|
00:11:23,310 --> 00:11:27,970 |
|
ุนูุฏูุง ูุฐุง ุจูุตูุฑ ูุงุญุฏ ุนูู ูุงุญุฏ ูุงูุต N |
|
|
|
113 |
|
00:11:41,030 --> 00:11:46,350 |
|
ุงูุชุฑู
ุงููู ุนูุฏูุง ูุฐุง ูู ุงูู
ุนุงุฏูุฉุฃุฐุง ุจูุฏุฑ ุฃุญูู |
|
|
|
114 |
|
00:11:46,350 --> 00:11:51,170 |
|
ุงูู
ุนุงุฏูุฉ ุชุจุนุชู ุฅูู ุงูุดูู ุงูุชุงูู ูุจูู ุงูู
ุนุงุฏูุฉ |
|
|
|
115 |
|
00:11:51,170 --> 00:11:57,970 |
|
ุณุชุตุจุญ ุนูู ุงูุดูู ุงูุชุงูู ูุจูู ุจุงุฌู ุจููู ุงูู
ุนุงุฏูุฉ |
|
|
|
116 |
|
00:11:57,970 --> 00:12:05,130 |
|
ุจุฏูุง ุชุตูุฑ ูุงุญุฏ ุนูู ูุงุญุฏ ูุงูุต N ูู ุงู U prime ุฒุงุฆุฏ |
|
|
|
117 |
|
00:12:05,130 --> 00:12:15,040 |
|
P of X ูู ุงู U ุจุฏูุง ุชุณุงูู Q of Xูุฐุง ู
ุชุบูุฑ ููุง ุฑูู
ุ |
|
|
|
118 |
|
00:12:15,040 --> 00:12:22,880 |
|
ุฑูู
ูุฃู ูู ุงููS7 ุงููY1-N ุฅุฐุง ุจุฏู ุฃุถุบุท ูู ูุฐุง ุงูุฑูู
|
|
|
|
119 |
|
00:12:22,880 --> 00:12:29,980 |
|
ูุจูู ุจูุตูุฑ ุงูู
ุนุงุฏูุฉ U prime ุฒุงุฆุฏ ูุงุญุฏ ูุงูุต N ูู P |
|
|
|
120 |
|
00:12:29,980 --> 00:12:38,400 |
|
of X ูู U ูุณุงูู ูุงุญุฏ ูุงูุต N ูู Q of X ุฅุฐุง ูุฐุง ุจููุช |
|
|
|
121 |
|
00:12:38,400 --> 00:12:44,160 |
|
ุฑูู
ููุฐุง ุฑูู
ูุง ูุบูุฑ ู
ู ุดูู ุงูู
ุนุงุฏูุฉ ุงูุณุคุงู ูู |
|
|
|
122 |
|
00:12:44,160 --> 00:12:50,820 |
|
ุงูู
ุนุงุฏูุฉ ุฏู ุดู ุฃุตุจุญ ุดูููุง linear ู
ุธุจูุท ูู y prime |
|
|
|
123 |
|
00:12:50,820 --> 00:12:57,100 |
|
function ูู x ูู ุงู y ุงู y ุฃุฌุงุจุชูุง ู u ูุณูู ู q of |
|
|
|
124 |
|
00:12:57,100 --> 00:13:06,720 |
|
x ููุท ูุบูุฑ ูุจูู ูุฐู linear first order |
|
|
|
125 |
|
00:13:06,720 --> 00:13:08,860 |
|
differential |
|
|
|
126 |
|
00:13:09,820 --> 00:13:23,700 |
|
equation that can be solved as before ูุจูู ูุฐู |
|
|
|
127 |
|
00:13:23,700 --> 00:13:28,820 |
|
ุจุฑูุญ ุจุญููุง ุฒู ู
ุง ููุช ุจุญู ุงู linear ุงููู ูู ูุจู |
|
|
|
128 |
|
00:13:28,820 --> 00:13:35,360 |
|
ูููู ูุงุถุญุฉ ุงุธู ูุฐู ุทูุจ ูุจุฏุฃ ูุนุทู ุงู
ุซูุฉ ุนูู ุงู |
|
|
|
129 |
|
00:13:35,360 --> 00:13:38,920 |
|
Bernoulli equation ูุจูู example one |
|
|
|
130 |
|
00:13:51,100 --> 00:13:59,880 |
|
Solve the differential equation ุงูู
ุนุงุฏูุฉ ุงูุชูุงุถููุฉ |
|
|
|
131 |
|
00:13:59,880 --> 00:14:05,140 |
|
Y'-2Sin |
|
|
|
132 |
|
00:14:05,140 --> 00:14:20,280 |
|
X ูู ูุฐุง ูู Y ุณูููู ูุงูุต 2Sin XY ุฃุณ ุซูุงุซุฉ ุนูู |
|
|
|
133 |
|
00:14:20,280 --> 00:14:21,460 |
|
ุงุชููู |
|
|
|
134 |
|
00:14:52,430 --> 00:14:56,350 |
|
ูุนูุฏ ุฅูู ุฃุณุฆูุฉ ูุจู ุฃู ูุนูุฏ ุฅูู ุฃุณุฆูุฉ ุณุฃุนูุฏ ุฅูู |
|
|
|
135 |
|
00:14:56,350 --> 00:15:00,470 |
|
ุงูุชุนุฑูู ุฌุงูู ุจูุฑูููู ููุดู ูู ู
ุนุงุฏูุฉ ุจุงูุดูู ูุฐุง |
|
|
|
136 |
|
00:15:00,470 --> 00:15:05,290 |
|
ุงุณุชุจุนุช ุฃู ุงูุงู ุชุณุงูู ุฒูุฑู ูุงุณุชุจุนุช ุฃู ุงูุงู ุชุณุงูู |
|
|
|
137 |
|
00:15:05,290 --> 00:15:10,770 |
|
ูุงุญุฏ ููู ูู ุฌููุช ุงูุงู ูุงุฒู
ูููู ุนุฏุฏ ุตุญูุญ ู
ูุฌู ูู
|
|
|
|
138 |
|
00:15:10,770 --> 00:15:16,410 |
|
ุฃููู ุฐูููุฏ ูููู ุงูุงู ุนุฏุฏ ู
ูุฌุจ ููุฏ ูููู ุนุฏุฏ ุณุงูุจ |
|
|
|
139 |
|
00:15:16,410 --> 00:15:21,050 |
|
ููุฏ ูููู ูุซุฑู ู
ูุฌุจ ููุฏ ูููู ูุซุฑู ุณุงูุจ ูู |
|
|
|
140 |
|
00:15:21,050 --> 00:15:25,450 |
|
ุงูุงุญุชู
ุงูุงุช ูุงุฑุฏุฉ ูุนูู ููุณ ุจุงูุถุฑูุฑุฉ ุงู ูููู ุนุฏุฏุง |
|
|
|
141 |
|
00:15:25,450 --> 00:15:30,650 |
|
ุตุญูุญุง ููุฐุง ู
ุซุงู ุจูู ุงุฏููุง ุนูู ุงู ุงูุฃุณ ุชุจุน ุงููุงู |
|
|
|
142 |
|
00:15:30,650 --> 00:15:36,790 |
|
ููุงู ููุณ ุนุฏุฏุง ุตุญูุญุงุทุจ ุงูุทุฑู ุงูุดู
ุงู ุฌุงูุฒ ุนูู ุดูู ุงู |
|
|
|
143 |
|
00:15:36,790 --> 00:15:41,930 |
|
linear ุงูุทุฑู ุงููู
ูู ูุฃ ูุฅู Y ุฃุณ 3 ุนูู 2 ูุฐู ุฅูู |
|
|
|
144 |
|
00:15:41,930 --> 00:15:45,530 |
|
ุงููู ุฌุฏูุฏุฉ ูู ุงูู
ุซูุฉ ุงููู ุฎูุชูู ุงูู
ุซูุฉ ู
ุงููุงุด |
|
|
|
145 |
|
00:15:45,530 --> 00:15:51,230 |
|
linear ูุฐูู ุจุชุฑูุญ ุฃุญูููุง ุฅูู linear ุซู
ุฃุญููุง |
|
|
|
146 |
|
00:15:51,230 --> 00:15:55,290 |
|
ุจุทุฑููุฉ main ุงู linear first order differential |
|
|
|
147 |
|
00:15:55,290 --> 00:16:00,620 |
|
equation ูุจูู ุดู ูุนู
ู ูุง ุจูุงุชุุจูุฐูุจ ูุถุฑุจ ูู Y |
|
|
|
148 |
|
00:16:00,620 --> 00:16:07,380 |
|
ู
ุฑููุนุฉ ููุฐุง ุงูุฃุณุจูุน ุจุฅุดุงุฑุฉ ุณุงูุจ ูุจูู ุณุงู
ูู ูู
ุนุงุฏูุฉ |
|
|
|
149 |
|
00:16:07,380 --> 00:16:12,360 |
|
ูุฐู ุงูู main ุงูุชู ูู star ูุจูู ุจุงุฌู ุจููู ููุง |
|
|
|
150 |
|
00:16:12,360 --> 00:16:17,600 |
|
multiply equation |
|
|
|
151 |
|
00:16:17,600 --> 00:16:28,030 |
|
star byูุงู ุฃุณ ุณุงูุจ ุชูุงุชุฉ ุนูู ุงุชููู together ูุญุตู |
|
|
|
152 |
|
00:16:28,030 --> 00:16:36,410 |
|
ุนูู ูุงู ุฃุณ ุณุงูุจ ุชูุงุชุฉ ุนูู ุงุชููู ูู ุงูู y' ูุงูุต |
|
|
|
153 |
|
00:16:36,410 --> 00:16:45,450 |
|
ุงุชููู sin x ูุงู ุฃุณ ุนูุฏู ูุงู ุฃุณ ูุงุญุฏ ููุงู ุฃุณ ุณุงูุจ |
|
|
|
154 |
|
00:16:45,450 --> 00:17:01,910 |
|
ูุงุญุฏ ููุต ุจูุธู ูุงู ุฃุณ ุณุงูุจ ูุตุจุฏู ุฃุนู
ู |
|
|
|
155 |
|
00:17:01,910 --> 00:17:07,270 |
|
ุชุนููุถุฉ ูู ุงูู
ุซูุฉ ูุฐู ุงูุชุนููุถุฉ ุจุชุญูููุง ุฅูู linear |
|
|
|
156 |
|
00:17:07,270 --> 00:17:11,770 |
|
first order differential equation ุดู ูุฐู ุงูุชุนููุถุฉ |
|
|
|
157 |
|
00:17:11,770 --> 00:17:18,820 |
|
ุจุฑูุญ ุจููู ูู potุนู ุทุฑูู ุงููุตูู ูู U ูุณุงูู Y ุฃุณุงูุจ |
|
|
|
158 |
|
00:17:18,820 --> 00:17:29,920 |
|
ูุต Y ุฃุณุงูุจ ูุต ูุจูู ูุดุชุงู |
|
|
|
159 |
|
00:17:29,920 --> 00:17:38,840 |
|
ูุจูู ุงูู U' ูุณุงูู ุณุงูุจ ูุต Y ุฃุณุงูุจ ุชูุงุชุฉ ุนูู ุงุชููู |
|
|
|
160 |
|
00:17:38,840 --> 00:17:44,960 |
|
ูู ู
ูุ ูู ุงูู Y' ููุง ู
ุงุนูุฏูุด ุงูุตุงุฑูุจูู ุจุฑูุญ ุจุถุฑุจ |
|
|
|
161 |
|
00:17:44,960 --> 00:17:50,840 |
|
ููู ูู ู
ููุ ูู ุณุงูุจ ุงุชููู ูู ุถุฑุจุช ูู ุณุงูุจ ุงุชููู |
|
|
|
162 |
|
00:17:50,840 --> 00:17:57,580 |
|
ุจุตูุฑ ุณุงูุจ ุงุชููู U prime ูุณุงูู Y ุงูุณุงูุจ ุชูุงุชุฉ ุนูู |
|
|
|
163 |
|
00:17:57,580 --> 00:18:02,500 |
|
ุงุชููู ูู ุงู Y prime ุงูุงู ุงูุทุฑู ุงููู
ูู ูู ุงูุชุนููุถุฉ |
|
|
|
164 |
|
00:18:02,500 --> 00:18:08,250 |
|
ูู ูุฐุง ุงู term ู
ุธุจูุทุุฃุฐุง ุจูุฏุฑ ุฃุดูู ููุชู ุจุฏู ุณุงูู |
|
|
|
165 |
|
00:18:08,250 --> 00:18:15,550 |
|
ุจุงุชููู U' ูุจูู ูุฐุง ุจุงูุตูุฑุฉ ุณุงูู ุจุงุชููู U' ุณุงูู |
|
|
|
166 |
|
00:18:15,550 --> 00:18:23,660 |
|
ุจุงุชููู ูู ุตูู ุงู X ูุฐู ู
ูู ูุง ุจูุงุชุุงูู U ูุจูู |
|
|
|
167 |
|
00:18:23,660 --> 00:18:30,480 |
|
ุจุดูููุง ู ุจุญุท ุจุฏุงููุง U ูุณุงูู ุณุงูุจ ุงุชููู ูู Sine X |
|
|
|
168 |
|
00:18:30,480 --> 00:18:36,000 |
|
ุดู ุฑุฃูู ุงุฌุณู
ุงูู
ุนุงุฏูุฉ ูููุง ุนูู ุณุงูุจ ุงุชููู ุงุฐุง ูู |
|
|
|
169 |
|
00:18:36,000 --> 00:18:42,880 |
|
ุฌุณู
ูุง ุนูู ุณุงูุจ ุงุชููู ุชุตุจุญ ุงูู
ุนุงุฏูุฉ U Prime ูุงูุธ |
|
|
|
170 |
|
00:18:42,880 --> 00:18:52,880 |
|
ุฒุงุฆุฏ Sine X ูู ุงูู U ุจุฏู ูุณุงูู ูู Sine Xููุฐู ุนุจุงุฑุฉ |
|
|
|
171 |
|
00:18:52,880 --> 00:19:02,060 |
|
ุนู first order linear differential |
|
|
|
172 |
|
00:19:02,060 --> 00:19:03,920 |
|
equation |
|
|
|
173 |
|
00:19:06,230 --> 00:19:11,110 |
|
ูุจูู ุจุงูุนู
ููุฉ ุงููู ุนู
ูุช ูุฐู ุงุณุชุทุงุนุช ุชุญููู ุงูู
ุนุงุฏูุฉ |
|
|
|
174 |
|
00:19:11,110 --> 00:19:14,990 |
|
ูุฐู ุงููู ูู non-linear differential equation ุฅูู |
|
|
|
175 |
|
00:19:14,990 --> 00:19:20,170 |
|
first order linear differential equation ุฅุฐุง ุจุฏูุง |
|
|
|
176 |
|
00:19:20,170 --> 00:19:26,470 |
|
ูุญููุง ุฒู ู
ุง ููุง ุจูุญู ู
ู ูุจู ูุจูู ุจุฏุฑูุญ ุฃุฌูุจ ุนุงู
ู |
|
|
|
177 |
|
00:19:26,470 --> 00:19:33,430 |
|
ุงูุชูู
ู ููุฐู ุงูู
ุนุงุฏูุฉูุจูู ุงูู Mu of X ุจูุณุงูู E ุฃุณ |
|
|
|
178 |
|
00:19:33,430 --> 00:19:43,230 |
|
ุชูุงู
ู ูุฏุงุด Sine X ูู DX ูุฏุงุด ุชูุงู
ู ุงูู Sine ุฃุจุนุฏุ |
|
|
|
179 |
|
00:19:43,230 --> 00:19:52,230 |
|
ุณุงูุจ Cos ูุจูู E ุฃุณ ุณุงูุจ Cos X |
|
|
|
180 |
|
00:19:56,980 --> 00:20:02,540 |
|
ูุจูู ูุฐุง ุนุงู
ู ุงูุชูุงู
ู ุจูุงุก ุนููู ุจูุฏุฑ ุฃุฌูุจ ุงูุญู |
|
|
|
181 |
|
00:20:02,540 --> 00:20:08,200 |
|
ุงููู ูู you ูุจูู ููุง ูุฐุง ุจูุงุช ู
ุดุงู ู
ูุฒูุง ุนู ุงููู |
|
|
|
182 |
|
00:20:08,200 --> 00:20:15,480 |
|
ููู ุณู
ููุง ููู
ุนุงุฏูุฉ double star ูุจุฌู ุจูููู ููุง that |
|
|
|
183 |
|
00:20:15,480 --> 00:20:27,590 |
|
solution of thatdifferential equation double star |
|
|
|
184 |
|
00:20:27,590 --> 00:20:37,760 |
|
is ุงูู U ุชุฒุงููุฉุจุดูู ุงู U ู ุจุญุท ูู
ุฉ ุงู ุจููู ูู ุงู E |
|
|
|
185 |
|
00:20:37,760 --> 00:20:48,080 |
|
ุงูุญุงู ุชุจุนูุง E ุฃุซ ูุงูุต Cos X ูู ุงู U ูุณุงูู ุชูุงู
ู E |
|
|
|
186 |
|
00:20:48,080 --> 00:20:55,580 |
|
ุฃุซ ูุงูุต Cos X ูู ุงู Q of X ุงููู ูู Sin X ููู |
|
|
|
187 |
|
00:20:55,580 --> 00:21:02,770 |
|
ุจุงููุณุจุฉ ุฅูู DXูุจูู ุจุตูุฑุฉ ุฃู E ุฃุณุงูุจ Cos X ูู ุงูู U |
|
|
|
188 |
|
00:21:02,770 --> 00:21:10,550 |
|
ูุณุงูู ุจุฏูุง ููู
ู ูุฐู ุงูุฏุงูุฉ ูุจูู ุงูู
ุตุนุจ ุงูู
ุซุงู ู
ููุ |
|
|
|
189 |
|
00:21:10,550 --> 00:21:18,490 |
|
ุงูู E ุฃุณุงูุจ ุฃู ุงูู Sineุ ุงูู Sineุ |
|
|
|
190 |
|
00:21:18,490 --> 00:21:25,680 |
|
ุงูุฃุณ ุชุจุน ุงูู X ู ูุง ุงูุฏุงูุฉ ุงููู ุจุฑุงุู
ูู ุงููู ูุถุญู |
|
|
|
191 |
|
00:21:25,680 --> 00:21:30,400 |
|
ู
ุด ุทุจูุนู ุงูุงุต ุงูุงุต ุงุญูุง ุจููู ุงูู ู ุงู six ุฏุงูู
ุง |
|
|
|
192 |
|
00:21:30,400 --> 00:21:34,900 |
|
ู
ูููุด ุงูู ุงุต ูุงูุต ูุตุงุฑู ูุงูุต ุงุฐุง ุจุฏู ุงุดูู ูู ุงูุงุต |
|
|
|
193 |
|
00:21:34,900 --> 00:21:38,640 |
|
ูุฐุง ู ุงุญุท ุจุฏูู ู ุงุชุบูุฑ ุฌุฏูุฏ ู ุงุดูู ุงูุฏููุง ู ุงู |
|
|
|
194 |
|
00:21:38,640 --> 00:21:45,980 |
|
ุจุฏูุง ุชูุฌูุฅุฐุงู ูุฐู ูู ุฌูุช ููุช ุญุทู ูู ู
ุซูุง T ุชุณุงูู |
|
|
|
195 |
|
00:21:45,980 --> 00:21:53,440 |
|
ูุงูุต cosine X ูุจูู ุงู DT ุชูุงุถู cosine ุจุณุงูุจ sin X |
|
|
|
196 |
|
00:21:53,440 --> 00:22:00,000 |
|
DX ุฅุฐุงู ุจูุฏุฑ ุฃุดูู ูุฐุง ูู ููุช ู ุจุฏูุง ู
ูู DT ูุจูู |
|
|
|
197 |
|
00:22:00,000 --> 00:22:10,750 |
|
ุชูุงู
ู ู E ุฃุณ T DTูุจูู ุจูุตูุฑ E Os ูุงูุต Cos X ูู ุงูู |
|
|
|
198 |
|
00:22:10,750 --> 00:22:19,270 |
|
U ุจE Os T ุฒุงุฆุฏ Constant C ูุนูู ูุฐุง ู
ุนูุงู ุงู ุงู E |
|
|
|
199 |
|
00:22:19,270 --> 00:22:26,530 |
|
Os ูุงูุต Cos X ูู ุงูู U ุจุฏู ูุณุงูู E Os ุจุฏู ูุดูู ุงู |
|
|
|
200 |
|
00:22:26,530 --> 00:22:34,120 |
|
T ููุฑุฌุนูุง ุฅูู ุฃุตูุฉ ูุงูุต Cos X ุฒุงุฆุฏ Constant Cุฃูุง |
|
|
|
201 |
|
00:22:34,120 --> 00:22:37,320 |
|
ุฃุฑูุฏ ุฃู ุฃุดูุฏ ุฃู ูุฌุจ ุฃู ูููู ุงูู U ููุญุฏูุง ูุจูู |
|
|
|
202 |
|
00:22:37,320 --> 00:22:44,700 |
|
ุจุงุฏุฑุจ ุงูุทุฑููู ูู E ุฃุณ ู
ูุฌุฉ ุจููุตูู X ูุจูู ุจูุงุก ุนูู |
|
|
|
203 |
|
00:22:44,700 --> 00:22:53,470 |
|
ุงูู U ุฏู ุณูู 1 ุฒุงุฆุฏ C ูู E ุฃุณ ููุตูู Xุจุฑุฌุน ู
ุฑุฉ |
|
|
|
204 |
|
00:22:53,470 --> 00:23:01,350 |
|
ุชุงููุฉ ุงูุง ุงู U ุญุงุทุทูุง ูุฏูุดุ Y ุฃุณ ูุงูุต ูุต ูุจูู ุจุตูุฑ |
|
|
|
205 |
|
00:23:01,350 --> 00:23:10,110 |
|
ุนูุฏูุง ููุง ู
ูู
Y ุฃุณ ูุงูุต ูุต ูุณูู ูุงุญุฏ ุฒุงุฆุฏ C ูู E |
|
|
|
206 |
|
00:23:10,110 --> 00:23:15,310 |
|
ุฃุณ Cos X ููุดููุจ |
|
|
|
207 |
|
00:23:15,310 --> 00:23:24,840 |
|
ูุฐููุนูู 1 ุนูู y ุฃูุต ููุต ุจูููู 1 ุฒุงุฆุฏ c ูู e ุฃูุต |
|
|
|
208 |
|
00:23:24,840 --> 00:23:32,100 |
|
cos x ู
ุด ูุงุฌูุจุ ูุจูู ูู ูุงุฌูุจูุง ุงูู
ุซู ุจุตูุฑ y ุฃูุต |
|
|
|
209 |
|
00:23:32,100 --> 00:23:43,120 |
|
ููุต ูุณูู 1 ุนูู 1 ุฒุงุฆุฏ c ูู e ุฃูุต cos x ุฎูุต ุงูุญูุ |
|
|
|
210 |
|
00:23:44,810 --> 00:23:50,750 |
|
ุจูุฏุฑ ุฃุฌูุจ Y ุดู ูุนู
ูุ ุฑุจุน ุงูุทุฑููู ูุจูู ูู ุฑุจุนูุง |
|
|
|
211 |
|
00:23:50,750 --> 00:23:55,890 |
|
ุงูุทุฑููู ุจูุญุตู ุนูู ุงูุญู ุงููู ูู Y ู
ุฑุจุน ุงููุงุญุฏ ุจูุงุญุฏ |
|
|
|
212 |
|
00:23:55,890 --> 00:24:05,210 |
|
ูุงุญุฏ ุฒุงุฆุฏ C ูู E ุฃุณ Cos X ููู ุชุฑุจูุน ูุจูู ูุฐุง ูู ุญู |
|
|
|
213 |
|
00:24:05,210 --> 00:24:10,730 |
|
ุงู differential equation ุงูุฃุตููุฉ ุญุฏุง ูููู
ุจุชุญุจ |
|
|
|
214 |
|
00:24:10,730 --> 00:24:16,770 |
|
ุชุณุฃู ุฃู ููุทุฉ ููุงุุฃู ุฎุทูุฉ ุฃู ููุทุฉ ู
ุงููู
ุชูุงุด ุชุญุจ |
|
|
|
215 |
|
00:24:16,770 --> 00:24:22,310 |
|
ุชุณุฃู ุฃู ุณุคุงู ูู ุงูู
ูุถูุน ุนูุฏู
ุง ูุฌูุจ ุงูู
ููุงุตุฉ ุงู ูู |
|
|
|
216 |
|
00:24:22,310 --> 00:24:34,010 |
|
ุนุฑูุช ุชุณุฃูุ differential equation y' ูุงูุต ูุงุญุฏ ุนูู |
|
|
|
217 |
|
00:24:34,010 --> 00:24:43,980 |
|
x ุฒุงุฆุฏ ูุงุญุฏ ูู ุงู Y ูู ูู ุงู Yุจุชุณุงูู X ุฒู ุงููุงุญุฏ |
|
|
|
218 |
|
00:24:43,980 --> 00:24:57,460 |
|
ูู Y ูุงูู X greater than Zero ุจุงุฌู |
|
|
|
219 |
|
00:24:57,460 --> 00:25:04,300 |
|
ุจุชุทูุน ูู ู
ุซูุชู ูุฐู ููุณุช Linear ูุณุจุจููุงูุณุจุจ ุงูุฃูู |
|
|
|
220 |
|
00:25:04,300 --> 00:25:09,000 |
|
ุนูุฏู Y ูู ุงููุงุญูุฉ ุงูุชุงููุฉ ูุงูุณุจุจ ุงูุซุงูู ูู ุนูุฏู |
|
|
|
221 |
|
00:25:09,000 --> 00:25:15,160 |
|
ููุง ุงู Y ุฅุฐุง ุดุบูุชู ุฃุญุงูู ุฃุญูู ุงูู
ุนุงุฏูุฉ ูุฐู ุฅูู |
|
|
|
222 |
|
00:25:15,160 --> 00:25:20,480 |
|
linear ู
ุดุงู ุฃูุฏุฑ ุฃุญููุง ู ุฃุญุตู ุนูู ุญู ูุฐู ุงูู
ุซูุฉ |
|
|
|
223 |
|
00:25:20,480 --> 00:25:26,040 |
|
ุจูููููุง ุชู
ุงู
ูุฐู ุงูู
ุนุงุฏูุฉ ุจุฏู ุฃุณู
ููุง ุงุณุชุนุงุฑ ูุจูู |
|
|
|
224 |
|
00:25:26,040 --> 00:25:34,970 |
|
ูุฐู ุจุฏู ุฃุณู
ููุง ุงููู ุนูุฏูุง ุงุณุชุนุงุฑ ุทูุจู
ุดุงู ููู ุจุฏู |
|
|
|
225 |
|
00:25:34,970 --> 00:25:40,770 |
|
ุงููู ูู ูุฐู ุฌุงูุฒุฉ ุตุญ ู ุงููู ุงูุด ุฑุฃูููุง ุงุถุฑุจ ููู ูู |
|
|
|
226 |
|
00:25:40,770 --> 00:25:46,890 |
|
y ุฃุณุงูู ุจูุงุญุฏ ุนุดุงู ุงุชุฎูุต ู
ู y ุงููู ุนูู ุงููู
ูู ุจุฏู |
|
|
|
227 |
|
00:25:46,890 --> 00:25:52,870 |
|
ุจูููู ููุง multiply ุงู solution ุจุงูุฃูู solution |
|
|
|
228 |
|
00:25:52,870 --> 00:25:57,350 |
|
multiply |
|
|
|
229 |
|
00:25:57,350 --> 00:26:01,250 |
|
both |
|
|
|
230 |
|
00:26:01,250 --> 00:26:02,030 |
|
sides |
|
|
|
231 |
|
00:26:04,680 --> 00:26:16,720 |
|
of equation star by y ุงูุณูุจ ูุงุญุฏ we get ุจุตูุฑ ุนูุฏ |
|
|
|
232 |
|
00:26:16,720 --> 00:26:26,860 |
|
ููุง y ุงูุณูุจ ูุงุญุฏ y prime ูุงูุต ูุงุญุฏ ุนูู x ุฒุงุฆุฏ ูุงุญุฏ |
|
|
|
233 |
|
00:26:26,860 --> 00:26:32,520 |
|
ูู ูู ุงู y ูุณุงูู x ุฒุงุฆุฏ ูุงุญุฏ |
|
|
|
234 |
|
00:26:35,780 --> 00:26:42,220 |
|
ูุจูู ูุชุจูุง ุงูู
ุนุงุฏูุฉ ุจุดูู ุฌุฏูุฏ ููู ูุฐู ุดูููุง ู
ุด ุฒู |
|
|
|
235 |
|
00:26:42,220 --> 00:26:47,040 |
|
ู
ูู ู
ุด ุฒู ุงูุณุคุงู ุงููู ูุจูู ููุด ุงูู ุนูุฏู ููุง ููู |
|
|
|
236 |
|
00:26:47,040 --> 00:26:53,020 |
|
ูุงู ู
ุงุนูุฏูุด ูุงู to the power ุงู ูุงู ููู ู
ุด ููู ุจุฏู |
|
|
|
237 |
|
00:26:53,020 --> 00:26:59,660 |
|
ุชุญูู ูุงูู ุฅูู ู
ูู ุฅูููููุง ูุนูู ุงูุดูู ุงููู ูููุงู |
|
|
|
238 |
|
00:26:59,660 --> 00:27:05,820 |
|
ูุจุฑูููู ูุจู ูููู ููุณ ูุฑุขูุง ูุฒู ู
ู ุงูุณู
ุงูุฉ ููู ูู |
|
|
|
239 |
|
00:27:05,820 --> 00:27:09,720 |
|
ุงู general form ูุนูู ู
ู
ูู ุฃูุงูู ุญุงูุฉ ู ุงููู ุชูุชูู |
|
|
|
240 |
|
00:27:09,720 --> 00:27:15,060 |
|
ุงูุดูู ููู ุชุจูู ูุฐูู ุจูุฑูููู ุฅุฐุง ุฃูุง ู
ุดููุชู ู
ุน ู
ูู |
|
|
|
241 |
|
00:27:15,060 --> 00:27:20,720 |
|
ููุงุ ู
ุน ููู ุงููุงู ููุถู ุฃุฑูุญ ุฃูููู ููุง ุจุงููุงู
ุด ุฃูุนุฏ |
|
|
|
242 |
|
00:27:25,640 --> 00:27:32,100 |
|
ูุจูู ุงูู U' ุจูุงุญุฏ ุนูู Y ูู ุงูู Y' ูุนูู Y ุฃุณุงูุจ |
|
|
|
243 |
|
00:27:32,100 --> 00:27:37,400 |
|
ูุงุญุฏ ูู ุงูู Y' ูู ูุฐู ูุนูู ูุง ุจูุงุช ูู
ุง ูุดุชุงู ูุงุฒู
|
|
|
|
244 |
|
00:27:37,400 --> 00:27:42,300 |
|
ุชุทูุน ุงูู
ูุฏุงุฑ ูุฐุง ุฃู ู
ูุฏุงุฑ ู
ุถุฑูุจ ููู ุฑูุงู
ููู ุนุฏุฏ |
|
|
|
245 |
|
00:27:42,300 --> 00:27:51,000 |
|
ุชู
ุงู
ุฃุฐุง ูุฐู ุจุงูุชุจ ุจุฏุงููุง U' ูุงูุต ูุงุญุฏ ุนูู X ุฒุงุฆุฏ |
|
|
|
246 |
|
00:27:51,000 --> 00:27:57,740 |
|
ูุงุญุฏ ูู ุงูู U ุจุฏู ุณุงูู X ุฒุงุฆุฏ ูุงุญุฏ ุงูุด ุฑุงูู ูุตูุช |
|
|
|
247 |
|
00:27:57,740 --> 00:28:02,540 |
|
Linearุ ูุจูู ุงููู ูุงูุช non-linear ููู ุณุจุจู ุงููู |
|
|
|
248 |
|
00:28:02,540 --> 00:28:10,500 |
|
ูุฏุฑูุง ูุญูููุง ุฅูู Linearุ ูุจูู ูุฐู ููุง Linear first |
|
|
|
249 |
|
00:28:10,500 --> 00:28:12,480 |
|
order |
|
|
|
250 |
|
00:28:16,380 --> 00:28:22,800 |
|
ู
ุดุงู ููู ุจุฏู ุฃุฑูุญ ุนุฌูุจ ุนุงู
ู ุงูุชูุงู
ู ูู
ูู as a |
|
|
|
251 |
|
00:28:22,800 --> 00:28:29,140 |
|
function of X ูุจูู E ุฃุต ูุงูุต ุชูุงู
ู ูุงุญุฏ ุนูู X ุฒุงุฆุฏ |
|
|
|
252 |
|
00:28:29,140 --> 00:28:39,020 |
|
ูุงุญุฏ DX ุฃู ุฅู ุดุฆุชู
ูููููุง E ุฃุต ูุงูุต ู X ุฒุงุฆุฏ ูุงุญุฏ |
|
|
|
253 |
|
00:28:39,530 --> 00:28:47,910 |
|
ูุนูู ูุฐู E ุฃุณ ู X ูุงูุต ูุงุญุฏ ุฃุณ ูุงูุต ูุงุญุฏ ูุนูู X |
|
|
|
254 |
|
00:28:47,910 --> 00:28:53,770 |
|
ูุงูุต ูุงุญุฏ ุฃุณ ูุงูุต ูุงุญุฏ ุฃู ูุงุญุฏ ุนูู X ูุงูุต ูุงุญุฏ |
|
|
|
255 |
|
00:28:53,770 --> 00:28:59,950 |
|
ูุจูู ูุฐุง ุงูุขู ุนุงู
ู ุงูุชูุงู
ู ูุจูู ุจูุงุก ุนููู ุญู |
|
|
|
256 |
|
00:28:59,950 --> 00:29:05,270 |
|
ุงูู
ุนุงุฏูุฉ ูุฐู ุงููู ูู double star ุณู
ููุง ููุง ุจูุงุชุญู |
|
|
|
257 |
|
00:29:05,270 --> 00:29:10,550 |
|
ุงูู
ุนุงุฏูุฉ double star ุณูููู ุนูู ุงูุดูู ุงูุชุงูู ูุจูู |
|
|
|
258 |
|
00:29:10,550 --> 00:29:28,050 |
|
ููุง solution of |
|
|
|
259 |
|
00:29:28,050 --> 00:29:39,990 |
|
the differentialEquation W star S A |
|
|
|
260 |
|
00:29:39,990 --> 00:29:48,490 |
|
ูู Mu ูู ูุงุญุฏ ุนุงูู X ุฒุงุฆุฏ ูุงุญุฏ ูู ุงูู U ุจุฏู ูุณูู |
|
|
|
261 |
|
00:29:48,490 --> 00:29:56,090 |
|
ุชูุงู
ู ูุงุญุฏ ุนุงูู X ุฒุงุฆุฏ ูุงุญุฏ ูู ุงูู Q ูุฏุงุด ุงูู Q ูู |
|
|
|
262 |
|
00:29:56,090 --> 00:30:05,540 |
|
Xุฒุงุฆุฏ ูุงุญุฏ ููู ุจุงููุณุจุฉ ุงูู DX ุทูุจ ูุฐุง ุจุฏู ูุณูู |
|
|
|
263 |
|
00:30:05,540 --> 00:30:13,640 |
|
ุชูุงู
ู ู DX ูุงููู ุจุฏู ูุณูู X ุฒุงุฆุฏ ูููุณุชุงู C ุฅุฐู ุงูู |
|
|
|
264 |
|
00:30:13,640 --> 00:30:23,080 |
|
U ูุง ุจูุงุชู ูุณูู X ุฒุงุฆุฏ ูุงุญุฏ X ุฒุงุฆุฏ ูููุณุชุงู Cุจุฑุฌุน |
|
|
|
265 |
|
00:30:23,080 --> 00:30:29,120 |
|
ูู
ูุ ูู U ุงู U ุงููู ุนูุฏู ูุฏูุ ูุฅู ุงู Y ุฅุฐุง ุจุฏู |
|
|
|
266 |
|
00:30:29,120 --> 00:30:35,780 |
|
ุฃุดูู ุงู U ูุฐู ู ุฃูุชุจ ุจุฏููุง ู
ูุ ูุฅู ุงู Y ูุจูู ุจุงุฌู |
|
|
|
267 |
|
00:30:35,780 --> 00:30:43,720 |
|
ููุง ูุฅู ุงู Y ุจุฏู ูุณุงูู X ุฒุงุฆุฏ ูุงุญุฏ ูู X ุฒุงุฆุฏ ููุต |
|
|
|
268 |
|
00:30:43,720 --> 00:30:49,760 |
|
ุชู C ูุฐุง ูุง ูุฒุงู ุญู ุถู
ูู ุฃูุง ู
ุงุฌุจุชุด ุงู Y ุฌุจุช ูู |
|
|
|
269 |
|
00:30:49,760 --> 00:30:56,430 |
|
ูุบุงุฑุชู
ุง ุงู Yุจูุฏุฑ ุฃุฌูุจ ูู ุงู Y ูุจูู ุจุฑูุน ุงุชููู ูุฃุณ |
|
|
|
270 |
|
00:30:56,430 --> 00:31:03,450 |
|
ููุนุฏุฏ E ูุจูู ุจูุงุก ุนููู ูุฐุง ุจุฏู ูุนุทููู ุงูู solution |
|
|
|
271 |
|
00:31:03,450 --> 00:31:13,210 |
|
ุฃู ุจูุฏุฑ ุฃููู ูู ููุง ุฏูุฑู the solution of the |
|
|
|
272 |
|
00:31:13,850 --> 00:31:23,150 |
|
Differential equation ุฃุณุทุงุฑ ุงูุฃุตููุฉ is Y ุชุณุงูู E |
|
|
|
273 |
|
00:31:23,150 --> 00:31:31,490 |
|
ุฃุณ X ุฒุงุฆุฏ ูุงุญุฏ ูู X ุฒุงุฆุฏ constant C ูุนูู ุฑูุนุช |
|
|
|
274 |
|
00:31:31,490 --> 00:31:38,870 |
|
ุงูุทุฑููู ูุฃุณ ููุนุฏุฏ D ูุจุงูุชุงูู ุญุตููุง ุนูู ูุฐุง ุงูุญููุญุฏ |
|
|
|
275 |
|
00:31:38,870 --> 00:31:47,310 |
|
ููุง stop ูู ุนูุฏูุง ู
ุฌู
ูุนุฉ ู
ู ุงูู
ุณุงุฆู exercises ูุงุญุฏ |
|
|
|
276 |
|
00:31:47,310 --> 00:31:57,770 |
|
ุฎู
ุณุฉ ุงูู
ุณุงุฆู ุงูุชุงููุฉ ูุงุญุฏ ุงุชููู ุชูุงุชุฉ ุฎู
ุณุฉ ุณุชุฉ |
|
|
|
277 |
|
00:31:57,770 --> 00:32:12,610 |
|
ุณุจุนุฉุนุดุฑุฉ ุงุญุฏุงุด ุฎู
ุณุชุงุด ุณุชุงุด ุชู
ุงูุชุงุด ุชุณุนุชุงุด ูุงุญุฏ |
|
|
|
278 |
|
00:32:12,610 --> 00:32:18,150 |
|
ูุนุดุฑูู ุงุชููู ูุนุดุฑูู ุชูุงุชุฉ ูุนุดุฑูู |
|
|
|
279 |
|
00:32:37,860 --> 00:32:44,940 |
|
ุทูุจุ ุญุฏ ุจุชุญุจ ุชุณุฃู ุฃู ุณุคุงู ููุง ูุง ุจูุงุชุ ุฎูุงุตุ ุงููุฉ |
|
|
|
280 |
|
00:32:44,940 --> 00:32:52,420 |
|
ูู ุงูุดุ |
|
|
|
281 |
|
00:32:52,420 --> 00:32:58,620 |
|
ู
ู
ููุน ุงูุณูู Zeroุ ู
ู
ููุน ุงูุณูู ูุงุญุฏูุฐุง ูู
ู ุชุจูู ุฌูุด |
|
|
|
282 |
|
00:32:58,620 --> 00:33:06,180 |
|
ูู
ู ุชุจูู ูุงุฏู ููุง ูุงุญุฏ ูุญุงููุงุตุญ ูุฅู ู
ุง ุตุฑุชุด ูุตุฑ Y |
|
|
|
283 |
|
00:33:06,180 --> 00:33:11,560 |
|
ูู ุงููny ุฅุฐุง ุงุฎุชูู ุงูุดูู ุงูุนุงู
ุงููู ุนูุฏูุง ู
ุธุจูุท |
|
|
|
284 |
|
00:33:11,560 --> 00:33:16,080 |
|
ูุจูู ู
ู ููุง ุตุฑุชู ูู ุณูู ูุงุญุฏ ูุงููู ุบูุฑู ู
ุงุนูุฏูุด |
|
|
|
285 |
|
00:33:16,080 --> 00:33:20,320 |
|
ู
ุดููุฉ ูู ูุฐู ุงูุนุงูู
ูููุณ ุงู ุงููุฑุช ููุงูุช ุงูุช ููุช |
|
|
|
286 |
|
00:33:20,320 --> 00:33:25,340 |
|
ููุงู
ู ูุฐุง ุฎููู ุงูุณุคุงู ูุฐุง ุฎูู ุงูู
ุณุฃูุฉ ูููุง ููุดุ |
|
|
|
287 |
|
00:33:25,340 --> 00:33:29,060 |
|
ุงูู ุตุฑุช ุงูู
ุฎุงูู ุนูู ุงููู
ูู ูุตุฑุช ุงูู
ุฎุงูู ุนูู ุงูุดู
ุงู |
|
|
|
288 |
|
00:33:29,060 --> 00:33:34,740 |
|
ููู ุจุงููุฉ ุงูู
ุนุงุฏูุฉ ูู ู
ุนุงุฏูุฉ Bernoulliุทูุจ ุญุฏุง ูููู
|
|
|
|
289 |
|
00:33:34,740 --> 00:33:38,700 |
|
ุจุชุณุฃู ุงู ุณุคุงู ุจุงููุณุจุฉ ููุฐุง ุงู section ุงููู ูู |
|
|
|
290 |
|
00:33:38,700 --> 00:33:43,560 |
|
linear first order differential equation ุทูุจ ุญุฏุง |
|
|
|
291 |
|
00:33:43,560 --> 00:33:48,740 |
|
ูููู
ุจุชุณุฃู ุงู ุณุคุงู ุจุงููุณุจุฉ ููุฎู
ุณุฉ sections ุงููู |
|
|
|
292 |
|
00:33:48,740 --> 00:33:58,260 |
|
ุฏุฑุณูุงูู
ุงูู ุฎู
ุณุฉ sections ู
ู ูุฐุง ุงูุดุจุทุฑ ุงูุฑุฃ |
|
|
|
293 |
|
00:33:58,260 --> 00:34:05,770 |
|
ุงูุงู
ุชุญุงู ูุตู ุงูู ู
ู ุดูุฑ ุจุงูู ููุงู
ุชุญุงูzero point ุงู |
|
|
|
294 |
|
00:34:05,770 --> 00:34:12,990 |
|
ุงู ูุงูููู
ูู ูููุฒููููู
ู
ูุนุฏ ูุงู
ุชุญุงู ุงู ุงู ูููุฒู ูู |
|
|
|
295 |
|
00:34:12,990 --> 00:34:18,050 |
|
ุงูุฌุฏูู ุฑุณู
ูุง ูุงู ูุงู ุดุจู ุนูุฏ ุงูุทูุงุจ ู ุดุจู ุนูุฏ |
|
|
|
296 |
|
00:34:18,050 --> 00:34:22,170 |
|
ุงูุทูุจุงุช ุงุฐุง ุงูุนุฏุฏ ูุจูุฑ ูุงุฒู
ููุฒูููููุง ููุฏู ุงูุฌุฏูู |
|
|
|
297 |
|
00:34:22,170 --> 00:34:26,870 |
|
ูุงูุช ู
ุงุชูู
ูุด ุนูู ุฑูุญู ู
ุด discussion ูุจุบู ุงูู ุชุฑูุญ |
|
|
|
298 |
|
00:34:26,870 --> 00:34:31,050 |
|
ุชุญูู ู ุชุฌู ุชุณุฃูู ุญุชู ุงูุงู ููุง ูุงุญุฏุฉ ุงุฌุช ููููุง |
|
|
|
299 |
|
00:34:31,050 --> 00:34:38,010 |
|
ุชุณุฃูู ุณุคุงููุฐุง ุฅู
ุง ุงููู
ููููุง ุนูู
ุงุก ู ูุงูู
ูู ุชู
ุงู
ุง |
|
|
|
300 |
|
00:34:38,010 --> 00:34:47,150 |
|
ูููู ูุง ุฃุธู ุฐูู ุฃู ุงููู
ููููุง ุณุงูุฉ ู ุชุจูู ุจุงูู ูุฐุง |
|
|
|
301 |
|
00:34:47,150 --> 00:34:50,910 |
|
ุจููุนูุณ ุณูุจุง ุนููู ุจุนุฏ ููู ู ุงูุง ููุชู ู
ู ุงูู ููู
|
|
|
|
302 |
|
00:34:50,910 --> 00:34:56,190 |
|
ุฏุฎูุช ุงูู
ุญุงุถุฑุฉ ุจุชุฑูุญ ุชุฌุฑู ุงูู
ุญุงุถุฑุฉ ุชุงุฎุฏููุง ู
ุจุงุดุฑุฉ ู |
|
|
|
303 |
|
00:34:56,190 --> 00:35:00,050 |
|
ุชุญูู ุงูุฃุณุฆูุฉ ุงููู ุนูููุง ู ุงููู ุจูุตุจุญ ุงู ู
ูุฌูุฏูู ู |
|
|
|
304 |
|
00:35:00,050 --> 00:35:07,670 |
|
ุงุนุทูุชู ุณุงุนุงุช ู
ูุชุจูุฉูุจูู ุจุนุฏ ุฐูุจู ุนูู ุฌูุจู ูุฐูุจ |
|
|
|
305 |
|
00:35:07,670 --> 00:35:13,970 |
|
ูุฎูุฑูุงุฒููุง ูู ููุณ ุงู chapter ููู ูู ู
ุณุงุฆู ุงููู |
|
|
|
306 |
|
00:35:13,970 --> 00:35:19,950 |
|
ุนูุฏู second order differential equation ุจุฏู ุฃูุฒููุง |
|
|
|
307 |
|
00:35:19,950 --> 00:35:24,290 |
|
ุฅูู first order differential equation ููู
ูู ุชุทูุน |
|
|
|
308 |
|
00:35:24,290 --> 00:35:29,610 |
|
separable ููู
ูู ุชุทูุน homogeneous ููู
ูู ุชุทูุน exact |
|
|
|
309 |
|
00:35:29,610 --> 00:35:34,270 |
|
ููู
ูู ุชุทูุน linear ููู
ูู ุชุทูุน Bernoulli ููุญูููุง ุฅูู |
|
|
|
310 |
|
00:35:34,270 --> 00:35:39,750 |
|
linear ูุจูู ูู ุงูุงุญุชู
ุงูุงุช ูุงุฑุฏุฉูุฐุง ุงูููุงู
ุงููู ูู |
|
|
|
311 |
|
00:35:39,750 --> 00:35:45,110 |
|
ุณููุดู ูุงุญุฏ ุงุญุฏุงุด ูุจูู ู
ู ูุงุญุฏ ุฎู
ุณุฉ ุจุฏูุง ูููุฒ ูู
ูู |
|
|
|
312 |
|
00:35:45,110 --> 00:35:50,410 |
|
ุงูู ูุงุญุฏ ุงุญุฏุงุด ูุจูู ูุชูุฌู ุงูุงู ุงูู ุณููุดู ูุงุญุฏ |
|
|
|
313 |
|
00:35:50,410 --> 00:36:00,110 |
|
ุงุญุฏุงุด ู
ุจุงุดุฑุฉ ุงุฐุง ุณููุดู ูุงุญุฏ ุงุญุฏุงุด ุจูููู two |
|
|
|
314 |
|
00:36:00,110 --> 00:36:06,390 |
|
special two special types |
|
|
|
315 |
|
00:36:09,820 --> 00:36:15,680 |
|
of second order |
|
|
|
316 |
|
00:36:15,680 --> 00:36:19,000 |
|
differential |
|
|
|
317 |
|
00:36:19,000 --> 00:36:22,560 |
|
equations |
|
|
|
318 |
|
00:36:22,560 --> 00:36:25,620 |
|
ุดูููุง |
|
|
|
319 |
|
00:36:25,620 --> 00:36:31,980 |
|
ูุนุทููุง definition a |
|
|
|
320 |
|
00:36:31,980 --> 00:36:35,920 |
|
second order |
|
|
|
321 |
|
00:36:39,130 --> 00:36:51,250 |
|
Differential equation is an equation inููุฑุง ูู |
|
|
|
322 |
|
00:36:51,250 --> 00:37:05,570 |
|
ุงูุดูู ุงูุชุงูู F of F T ู X ู DX ุนูู DT ู Dยฒ X ุนูู |
|
|
|
323 |
|
00:37:05,570 --> 00:37:16,620 |
|
DTยฒ ุจุฏู ุณุงูู ู
ูุ ุจุฏู ุณุงูู Zero ูุฑุฌุน ู
ุฑุฉ ุชุงููุฉุฃูุง |
|
|
|
324 |
|
00:37:16,620 --> 00:37:20,560 |
|
ุนูุฏู ู
ุนุงุฏูุฉ ู
ู ุงูุฑุชุจุฉ ุงูุซุงููุฉ ูุจุชูุฒู ุฑุชุจุชูุง ุฅูู |
|
|
|
325 |
|
00:37:20,560 --> 00:37:26,360 |
|
ุงูุฑุชุจุฉ ุงูุฃููู ูู
ู ุซู
ุฃุฑูุญ ุฃุญู ูุฐู ุงูู
ุนุงุฏูุฉ ูุฌุงู ูู |
|
|
|
326 |
|
00:37:26,360 --> 00:37:31,260 |
|
two special types ููุนูู ู
ู ุงูุฃููุงุน ุงูุฎุงุตุฉ ู second |
|
|
|
327 |
|
00:37:31,260 --> 00:37:34,420 |
|
order differential equation ูุนูู second order |
|
|
|
328 |
|
00:37:34,420 --> 00:37:41,140 |
|
ูุซูุฑุฉ ุฌุฏุง ุฃูุง ุจุฏู ุฃุฎุฏ ุจุณ ููุนูู ูุงูุจุงูู ุจูุฎููู ููู
ุง |
|
|
|
329 |
|
00:37:41,140 --> 00:37:44,950 |
|
ุจุนุฏุจููู ุงูู second order differential equation ูู |
|
|
|
330 |
|
00:37:44,950 --> 00:37:50,250 |
|
ุนุจุงุฑุฉ ุนู ู
ุนุงุฏูุฉ ูู ุงูุดูู ุงูุชุงูู ูู function ุชุญุชูู |
|
|
|
331 |
|
00:37:50,250 --> 00:37:55,450 |
|
ุนูู ุงูู
ุชุบูุฑ T ูุงูู
ุชุบูุฑ X ูู
ุดุชูุฉ X ุจุงููุณุจุฉ ุฅูู T |
|
|
|
332 |
|
00:37:55,450 --> 00:38:01,890 |
|
ูุงูู
ุดุชูุฉ ุงูุซุงููุฉ X ุจุงููุณุจุฉ ุฅูู T ููู ูุฐุง ุจุฏู ูุณุงูู |
|
|
|
333 |
|
00:38:01,890 --> 00:38:06,860 |
|
ู
ููุ ุจุฏู ูุณุงูู Zeroูุนูู ุฃูุง ุนูุฏู ุฏุงูุฉ ูุฐู ุงูุฏุงูุฉ |
|
|
|
334 |
|
00:38:06,860 --> 00:38:12,100 |
|
ุชุญุชูู ุนูู ุงูู
ุชุบูุฑ ุงูู
ุณุชูู X ุงู independent |
|
|
|
335 |
|
00:38:12,100 --> 00:38:16,260 |
|
variable ูุงูู
ุชุบูุฑ ุงูุชุงุจุน ุงููู ูู dependent |
|
|
|
336 |
|
00:38:16,260 --> 00:38:22,020 |
|
variable X ูู
ุดุชูุฉ ุงู X ุจุงููุณุจุฉ ุฅูู T ูุงูู
ุดุชูุฉ |
|
|
|
337 |
|
00:38:22,020 --> 00:38:26,080 |
|
ุงูุซุงููุฉ ุจุงููุณุจุฉ ุฅูู X ุจุงููุณุจุฉ ุฅูู Tููู ุงูู
ุดุชูุฉ |
|
|
|
338 |
|
00:38:26,080 --> 00:38:31,540 |
|
ุงูุชุงููุฉ ู
ูุฌูุฏุฉ ูุจูู ู
ู ููุง ุณู
ููุง second order |
|
|
|
339 |
|
00:38:31,540 --> 00:38:35,660 |
|
differential equation ูุณู ู
ุง ุงุชููู
ูุงุด ูู ุงู two |
|
|
|
340 |
|
00:38:35,660 --> 00:38:41,480 |
|
types ูุณู ุงุญูุง ุงุนุทููุง ุตูุฑุฉ ุนุงู
ุฉ ู second order |
|
|
|
341 |
|
00:38:41,480 --> 00:38:45,820 |
|
differential equation ุจุฏู ูุฌู ูุฃูู ููุน ู
ู ูุฐู |
|
|
|
342 |
|
00:38:45,820 --> 00:38:52,090 |
|
ุงูุฃููุงุน ุงููู ุจูุณู
ููุง equations withx missing ูุนูู |
|
|
|
343 |
|
00:38:52,090 --> 00:38:57,490 |
|
ู
ุนุงุฏูุฉ ุงูู
ุชุบูุฑุฉ ุงูุชู ุชุจูู ุงููู y ู
ุด ู
ูุฌูุฏ ู
ูููุฏ ู
ู |
|
|
|
344 |
|
00:38:57,490 --> 00:39:02,790 |
|
ุงูู
ุนุงุฏูุฉ ููู ุจุฏูุง ูุญู ูุฐุง ุงูููุน ู
ู ุงูู
ุนุงุฏูุงุช you |
|
|
|
345 |
|
00:39:02,790 --> 00:39:07,810 |
|
can ุจุงูุฏุฑุฌุฉ ูุฃูู ููุน ู
ู ูุฐู ุงูู
ุนุงุฏูุงุช ุงููู ูู |
|
|
|
346 |
|
00:39:07,810 --> 00:39:15,210 |
|
differential equations ุงูู
ุนุงุฏูุงุช ุงูุชูุงุถููุฉ with |
|
|
|
347 |
|
00:39:15,210 --> 00:39:19,330 |
|
the dependent |
|
|
|
348 |
|
00:39:22,130 --> 00:39:28,090 |
|
with a dependent variable X |
|
|
|
349 |
|
00:39:28,090 --> 00:39:36,950 |
|
missing ูุจูู ุงูู SLX ู
ูููุฏุฉIt is an equation in |
|
|
|
350 |
|
00:39:36,950 --> 00:39:45,630 |
|
the form ูุจูู It is an equation in the form ูู |
|
|
|
351 |
|
00:39:45,630 --> 00:39:54,790 |
|
ุนุจุงุฑุฉ ุนู ู
ุนุงุฏูุฉ ุนูู ุงูุดูู ุงูุชุงูู G ูT ูDX ุนูู DT |
|
|
|
352 |
|
00:39:54,790 --> 00:40:02,910 |
|
ูDยฒX ุนูู DTยฒ ููู ุจุฏู ูุณุงูู Zero ูุจุฏู ูุณู
ู ูุฐู |
|
|
|
353 |
|
00:40:02,910 --> 00:40:05,090 |
|
ุงูู
ุนุงุฏูุฉ ุฑูู
ูุงุญุฏ |
|
|
|
354 |
|
00:40:07,670 --> 00:40:12,010 |
|
ูุจูู ุงูู
ุนุงุฏูุฉ ุงููู ููู ูุง ุจูุงุช ูู ููุณ ุงูู
ุนุงุฏูุฉ |
|
|
|
355 |
|
00:40:12,010 --> 00:40:17,450 |
|
ุงูุชุญุช ุจุณ ุงู X ูุฐุง ู
ุงูู ูุง ูุธูุฑ ูู ุงูู
ุนุงุฏูุฉ ุจุชุธูุฑ |
|
|
|
356 |
|
00:40:17,450 --> 00:40:23,410 |
|
ู
ููุ ุจุณ ู
ุดุชูุชู ุงูุฃููู ูุงูุซุงููุฉ ููู ูู ุจุณูุงู
ุชู ุจุธูุฑ |
|
|
|
357 |
|
00:40:23,410 --> 00:40:26,750 |
|
ููุด ูุนูู ู
ุด ู
ูุฌูุฏ ุญุฏ ู
ุง ูุดูู ุงูู
ุนุงุฏูุฉ ุจูููู ู
ุงููุด |
|
|
|
358 |
|
00:40:26,750 --> 00:40:32,940 |
|
ูููุง Xููู ุจุฏู ุงุญู ูุฐู ุงูู
ุนุงุฏูุฉ ูุจูู ุจุงุฌู ุจูููู to |
|
|
|
359 |
|
00:40:32,940 --> 00:40:41,620 |
|
solve the differential equation one ุดู ุจุฏู ุงุนู
ู |
|
|
|
360 |
|
00:40:41,620 --> 00:40:53,330 |
|
put ุญุทูู V ุชุณุงูู DX ุนูู DT ุชู
ุงู
ูุจูู ูุฐุง ูุนุทููุง ุงู |
|
|
|
361 |
|
00:40:53,330 --> 00:41:05,710 |
|
ุงูู dv ุนูู dt ูู dยฒx ุนูู dtยฒ ูุจูู ููุง ุณุฉ equation |
|
|
|
362 |
|
00:41:05,710 --> 00:41:17,510 |
|
one becomes ุชุตุจุญ ุนูู ุงูุดูู ุงูุชุงูู g ofT ู
ูุฌูุฏุฉ ู V |
|
|
|
363 |
|
00:41:17,510 --> 00:41:25,230 |
|
ู
ูุฌูุฏุฉ ู DV ุนูู DT ูุจุฏู ูุณูู 0 ุงูุด ุฑุฃูู ูู ูุฐู |
|
|
|
364 |
|
00:41:25,230 --> 00:41:34,210 |
|
second ููุง first first order ูุจูู ูุฐู first order |
|
|
|
365 |
|
00:41:34,210 --> 00:41:47,670 |
|
differential equation that canbe solved as before |
|
|
|
366 |
|
00:41:47,670 --> 00:41:53,730 |
|
ูุจูู ุจุฑูุญ ุงูุญููุง ุฒู ู
ุง ููุง ูุญู ู
ู ูุจู ุงููู ูู ุงู |
|
|
|
367 |
|
00:41:53,730 --> 00:41:56,570 |
|
first order ุฏู ุงูุญููุฉ ุงููู ูู
ูู ุชุทูุน exactly ูู
ูู |
|
|
|
368 |
|
00:41:56,570 --> 00:42:00,950 |
|
linear ูู
ูู homogeneous ูู
ูู separable ูู ุงูุฃู
ูุฑ |
|
|
|
369 |
|
00:42:00,950 --> 00:42:05,490 |
|
ุงููู ู
ุฑุช ุนูููุง ุจุตูุฑ ูุงุฑุฏุฉ ุนูุฏูุง ูุจูู ูุฐู ุงููู ูู |
|
|
|
370 |
|
00:42:05,490 --> 00:42:12,450 |
|
ุงูููุทุฉ ุงูุฃููู ุจูุฌู ููููุทุฉ ุงูุซุงููุฉ ูุจูู ูู
ุฑ ุงุชููู |
|
|
|
371 |
|
00:42:12,870 --> 00:42:18,710 |
|
ุจุฏูุง ููุฌู ุงูู differential equations with the |
|
|
|
372 |
|
00:42:18,710 --> 00:42:26,370 |
|
independent variable with the independent |
|
|
|
373 |
|
00:42:26,370 --> 00:42:29,830 |
|
variable |
|
|
|
374 |
|
00:42:29,830 --> 00:42:37,310 |
|
T |
|
|
|
375 |
|
00:42:37,310 --> 00:42:37,830 |
|
missing |
|
|
|
376 |
|
00:42:41,050 --> 00:42:48,990 |
|
ูุจูู ุงูู T ูุฏ ุชููู ู
ูููุฏุฉ ูุจูู ูู ูุฐู ุงูุญุงูุฉ ุชุตุจุญ |
|
|
|
377 |
|
00:42:48,990 --> 00:42:51,350 |
|
ุงูู
ุนุงุฏูุฉ ููุดูู ุงูุชุงูู |
|
|
|
378 |
|
00:43:18,630 --> 00:43:24,950 |
|
ูุจูู ูู ูุฐู ุงูุญุงูุฉ ุงูู
ุนุงุฏูุฉ ุงูู
ุชุบูุฑ ุงูู
ุณุชูู ูู |
|
|
|
379 |
|
00:43:24,950 --> 00:43:30,550 |
|
ุงูุบุงุฆุจุงููุฉ ุดู ูุนู
ู ูุจูู ูุฐู ุงูุณู
ูุงูุฉ ุงููู ูู |
|
|
|
380 |
|
00:43:30,550 --> 00:43:38,950 |
|
ุงูู
ุนุงุฏูุฉ ุฑูู
ูุงุญุฏ ูุจูู ุจุฌู ุจููู two solve equation |
|
|
|
381 |
|
00:43:38,950 --> 00:43:49,250 |
|
one pot ุญุทููู V ุจุฏู ูุณูู DX ุนูู DT ุชู
ุงู
ูุนูู ุฒู |
|
|
|
382 |
|
00:43:49,250 --> 00:43:55,030 |
|
ุงููู ูุจูุจุณ ูู ุฎูุงู ุดููู ุดู ุงูุฎูุงู ูุจูู ูุฐุง ุจุฏู |
|
|
|
383 |
|
00:43:55,030 --> 00:44:03,390 |
|
ุงุนุทูู ุงูู DV ุนูู DT ุงูุด ุจุฏู ูุณุงููุ ุจุฏู ูุณุงูู ู
ุง |
|
|
|
384 |
|
00:44:03,390 --> 00:44:09,010 |
|
ูุฃุชู ูุนูู ุจุฏูุง ูุดุชู ูู
ุงู ู
ุฑุฉ ุจุฏูุด ุงุฌูุจ ูู ุจุฏู ุงููู |
|
|
|
385 |
|
00:44:09,010 --> 00:44:18,560 |
|
Dยฒ X ุนูู DTยฒ ู
ุนูุงุชู ุจุฏู ุงุดุชู ุจุงููุณุจุฉ ูู
ูุุงูู T |
|
|
|
386 |
|
00:44:18,560 --> 00:44:28,980 |
|
ูุจูู ุจุงุฌู ุจููู ูู DV ุนูู DT ุชู
ุงู
ุงููู ุจูุฏุฑ ุงููู ูู |
|
|
|
387 |
|
00:44:28,980 --> 00:44:39,820 |
|
ุนุจุงุฑุฉ ุนู DV ุนูู DX ูู DX ุนูู DT ู
ุธุจูุท ุทูุจ ุงู DX |
|
|
|
388 |
|
00:44:39,820 --> 00:44:48,300 |
|
ุนูู DT ุงูุง ุงุด ูุงุชุจูุงV ูุจูู ูุฐู ุจุฏูุง ุณุงูู V ูู ุงููD |
|
|
|
389 |
|
00:44:48,300 --> 00:44:55,780 |
|
V ุนูู DX ูุฃูุดุ ูุฃู T ู
ุด ู
ูุฌูุฏุฉ ูุจูู ุจุฏู ุฃุญูููุง |
|
|
|
390 |
|
00:44:55,780 --> 00:45:02,580 |
|
ุจุฏูุงูุฉ V ู X ููุฃู X ูู ุงูู
ุชุบูุฑ ุงูู
ุณุชูู ู V ูู |
|
|
|
391 |
|
00:45:02,580 --> 00:45:08,180 |
|
ุงูู
ุชุบูุฑ ุงูุชุงุจุน T ู
ูุงุด ูุฌูุฏ ูู ูุฐู ุงูุญุงูุฉ ูุจูู ุจุงุฌู |
|
|
|
392 |
|
00:45:08,180 --> 00:45:15,760 |
|
ุจููู ุงูุณุงุนุฉEquation one becomes ุชุตุจุญ ุนูู ุงูุดูู |
|
|
|
393 |
|
00:45:15,760 --> 00:45:22,040 |
|
ุงูุชุงูู H X ู
ูุฌูุฏุฉ ูุฐู ุญุทูุช ุจุฏุงููุง V ูุฐู ุญุทูุช |
|
|
|
394 |
|
00:45:22,040 --> 00:45:29,240 |
|
ุจุฏุงููุง V ูู ุงู D V ุนูู DXููุฃู X ููุง ูู ุงูู
ุชุบูุฑ |
|
|
|
395 |
|
00:45:29,240 --> 00:45:35,540 |
|
ุงูู
ุณุชูู ูV ูู ุงูู
ุชุบูุฑ ุงูุชุงุจุน ููุฐู ูููุง ุจุฏูุง ุชุณุงูู |
|
|
|
396 |
|
00:45:35,540 --> 00:45:44,200 |
|
ู
ููุ ุจุฏูุง ุชุณุงูู Zero ูุจูู ูุฐู This is a first |
|
|
|
397 |
|
00:45:44,200 --> 00:45:58,690 |
|
order differential equation thatcan be solved as |
|
|
|
398 |
|
00:45:58,690 --> 00:46:06,290 |
|
beforeูุนูู ูุฐู ุงูู
ุนุงุฏูุฉ ู
ู
ูู ุชุทูุน exact ูู
ู
ูู ุชุทูุน |
|
|
|
399 |
|
00:46:06,290 --> 00:46:10,190 |
|
linear ูู
ู
ูู ุชุทูุน homogeneous ูู
ู
ูู ุชุทูุน separable |
|
|
|
400 |
|
00:46:10,190 --> 00:46:15,010 |
|
ุงู ู
ู
ูู ุชุทูุน ุชููู homogeneous ุงู ุชููู linear ุงู |
|
|
|
401 |
|
00:46:15,010 --> 00:46:19,170 |
|
ุชููู exact ุงู ุชููู separable ูุจูู ุงู ูุงุญุฏุฉ ูููู
|
|
|
|
402 |
|
00:46:19,170 --> 00:46:23,010 |
|
ุจูููู ุงุชุนูู
ูุง ุงูุญู ูู ุงูุฎู
ุณุฉ sections ุงูู
ุงุถูุฉ |
|
|
|
403 |
|
00:46:23,010 --> 00:46:27,330 |
|
ุจูุฑูุญ ุงูุญููุง ูู
ุง ููุง ุจูุญู ูู ุงูุฎู
ุณุฉ sections |
|
|
|
404 |
|
00:46:27,330 --> 00:46:34,180 |
|
ุงูู
ุงุถูุฉุจููุช ุงูุขู ู
ุฌู
ูุนุฉ ู
ู ุงูุฃู
ุซูุฉ ุนูู ูุฐุง ุงู |
|
|
|
405 |
|
00:46:34,180 --> 00:46:38,880 |
|
section ููู
ุฑุฉ ุงููุงุฏู
ุฉ ุฅู ุดุงุก ุงููู ุชุจุงุฑู ูุชุนุงูู |
|
|
|
|