abdullah's picture
Add files using upload-large-folder tool
db9b795 verified
raw
history blame
43.3 kB
1
00:00:19,290 --> 00:00:23,430
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ููŠ ู†ู‡ุงูŠุฉ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู…ุงุถูŠุฉ
2
00:00:23,430 --> 00:00:27,850
ุงุจุชุฏุฃู†ุง ููŠ section ูˆุงุญุฏ ุฎู…ุณุฉ ูˆู‡ูˆ ุงู„ linear first
3
00:00:27,850 --> 00:00:32,050
order differential equation ูˆุนุฑูู†ุง ุงู† ุดูƒู„ ุงู„ first
4
00:00:32,050 --> 00:00:35,990
order linear differential equation ุนู„ู‰ ุงู„ุดูƒู„ a
5
00:00:35,990 --> 00:00:40,310
node of x ููŠ ุงู„ y prime ุฒุงุฆุฏ a one of x ููŠ ุงู„ y
6
00:00:40,310 --> 00:00:44,610
ุจุฏู„ ุณูˆู‰ ุงู„ f of x ูˆุจุนุฏ ุฐู„ูƒ ุฑุญู†ุง ู„ู…ุนุงู…ู„ y prime
7
00:00:44,610 --> 00:00:51,550
ุฎู„ู†ุง ุงู„ูˆุงุญุฏ ุงู„ุตุญูŠุญ ูˆุงุดุชุฑุทู†ุงุนู†ุฏ ุชุทุจูŠู‚ ุงู„ุญู„ ู„ู‡ุฐู‡
8
00:00:51,550 --> 00:00:56,570
ุงู„ู…ุนุงุฏู„ุฉ ู„ุงุฒู… ูŠูƒูˆู† ุงู„ู…ุนุงู…ู„ ู‡ูˆ ูˆุงุญุฏ ุตุญูŠุญ ูุฃุตุจุญุช
9
00:00:56,570 --> 00:00:59,190
ุงู„ุตูˆุฑุฉ ุงู„ุฌุฏูŠุฏุฉ ู„ู„ first order differential
10
00:00:59,190 --> 00:01:05,670
equation ุนู„ู‰ ุตูŠุบุฉ y prime ุฒุงุฆุฏ P of x Vy ุจุฏู‡ ูŠุณูˆู‰
11
00:01:05,670 --> 00:01:11,210
ู…ูŠู† ุงู„ Q of x ุญูŠุซ ุงู„ P ูˆ ุงู„ X ุงู„ P ูˆ ุงู„ Q ุฏูˆุง
12
00:01:11,210 --> 00:01:16,750
ุงู„ู…ุชุตู„ุฉ ุนู„ู‰ ูุชุฑุฉ ู…ุงูˆู‚ู„ู†ุง ุฅู† ุงู„ุญู„ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ุนู„ู‰
13
00:01:16,750 --> 00:01:24,770
ุตูŠุบุฉ ุงู„ู€ Mu of X ููŠ Y ุจุชุดูˆูŠ ุชูƒุงู…ู„ Mu of X ููŠ Q of
14
00:01:24,770 --> 00:01:30,310
X ููŠ DX ุญูŠุซ ุงู„ู€ Mu of X ุงู„ู„ูŠ ู‡ูˆ ุนุงู…ู„ ุงู„ุชูƒุงู…ู„ ู‡ูˆ
15
00:01:30,310 --> 00:01:37,150
ุนุจุงุฑุฉ ุนู† E ููุณ ุชูƒุงู…ู„ P of X DX ูˆุงุฎุฏู†ุง ุนู„ู‰ ุฐู„ูƒ
16
00:01:37,150 --> 00:01:43,460
ู…ุซุงู„ูŠู† ูˆู‡ุฐุง ุงู„ู„ูŠ ุจูŠู† ุฃูŠุฏู†ุง ู‡ูˆ ุงู„ู…ุซุงู„ ุฑู‚ู… 3ูŠุจู‚ู‰
17
00:01:43,460 --> 00:01:46,400
ุงู„ู…ุซุงู„ ุฑู‚ู… ุชู„ุงุชุฉ ุจูŠู‚ูˆู„ solve the differential
18
00:01:46,400 --> 00:01:53,080
equation xy prime ุฒุงุฆุฏ y ูˆุณูˆู‰ x sin x ุนู„ู…ุง ุจุฃู† x
19
00:01:53,080 --> 00:01:59,180
ุฏุงุฆู…ุง ูˆ ุฃุจุฏุง ุฃูƒุจุฑ ู…ู† 0 ูŠุจู‚ู‰ ู…ุซู„ุง ู…ุดุงู† ุงู†ุญู„
20
00:01:59,180 --> 00:02:02,760
ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ ุงู„ู„ูŠ ู‚ุฏุงู…ู†ุง ู‡ุฐู‡ ุจุฏูŠ ุงูƒุชุจู‡ุง ุนู„ู‰
21
00:02:02,760 --> 00:02:08,370
ุงู„ standard form ุชุจุนู‡ุงุงู„ู„ูŠ ุจุฏูŠ ุฃุฎู„ู‘ูŠ ู…ุนุงู…ู„ y' ู‡ูˆ
22
00:02:08,370 --> 00:02:14,270
main ูˆุงุญุฏุŒ ุฅุฐุง ุจุฑูˆุญ ู†ู‚ุณู… ุงู„ุทุฑููŠู† ุนู„ู‰ x ูˆู‡ุฐุง ู…ู…ูƒู†
23
00:02:14,270 --> 00:02:18,490
ู„ุฃู† x greater than zero ูˆู„ุง ุชุณุงูˆูŠ zero ุฅุฐุง
24
00:02:18,490 --> 00:02:25,930
ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุนุงุฏูŠุฉ ู‡ุชุฃุฎุฏ ุงู„ุตูŠุบุฉ ุงู„ุฌุฏูŠุฏุฉ ู‡ูŠ y' ุฒุงุฆุฏ
25
00:02:25,930 --> 00:02:32,130
ูˆุงุญุฏ ุนู„ู‰ x ููŠ y ูŠุณุงูˆูŠ main ูŠุณุงูˆูŠ sign xูŠุจู‚ู‰ ู‡ุงูŠ
26
00:02:32,130 --> 00:02:37,390
ุญุทูŠู†ุงู‡ุง ุนู„ู‰ ุตูŠุบุฉ y prime ุฒูŠ p of x ููŠ y ุจุฏู‡ ุณุงูˆูŠ ู„
27
00:02:37,390 --> 00:02:42,990
q of x ูŠุจู‚ู‰ ุจู†ุงุก ุงู†ุง ุนู„ูŠู‡ ุจู‚ุฏุฑ ุงุฌูŠุจ ุนุงู…ู„ ุงู„ุชูƒุงู…ู„
28
00:02:42,990 --> 00:02:49,430
ู„ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ูุจุฑูˆุญ ุจู‚ูˆู„ ู„ mu of x ูŠุณุงูˆูŠ E of
29
00:02:49,430 --> 00:02:57,830
ุชูƒุงู…ู„ ูˆุงุญุฏ ุนู„ู‰ x dx ูŠุจู‚ู‰ E ุฃุตู„ ุงู† ุงู„ x ูŠุจู‚ู‰ ุงู„ x
30
00:02:57,830 --> 00:03:03,900
ุงุชุตู„ูŠุจู‚ู‰ ุนุงู…ู„ ุงู„ุชูƒุงู…ู„ ู‡ูˆ X ุฅุฐุง ู„ูˆ ุฑูˆุญุช ุณู…ูŠุช
31
00:03:03,900 --> 00:03:12,620
ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃุตู„ูŠุฉ star ุจู‚ูˆู„ ู„ู‡ solution of the
32
00:03:12,620 --> 00:03:23,080
differential equation star isุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ x ููŠ ุงู„ู€
33
00:03:23,080 --> 00:03:30,120
y ูŠุณูˆู‰ ุชูƒุงู…ู„ x ููŠ sign ุงู„ู€ x ูƒู„ู‡ ุจุงู„ู†ุณุจุฉ ู„ู‡ุฐู‡ ุงู„ู€
34
00:03:30,120 --> 00:03:35,320
x ูŠุจู‚ู‰ ุถุงูŠู„ ุนู„ูŠู†ุง ุชูƒุงู…ู„ ู‡ุฐู‡ ุชุงุจู†ุง ู†ูƒุงู…ู„ ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ
35
00:03:35,320 --> 00:03:40,380
ูŠุง ุจู†ุงุช ุชูƒุงู…ู„ integration by parts ูˆู‡ุฐู‡ ุฃุฎุฏู†ุงู‡ุง
36
00:03:40,380 --> 00:03:49,180
ุตูŠุบุฉ ู…ุญุฏุฏุฉ ูˆู‚ู„ู†ุง ุจุฑูˆุญ ู†ุงุฎุฏ ุงู„ุฏุงู„ุฉ ูˆู…ุดุชู‚ุชู‡ุง ูŠุจู‚ู‰
37
00:03:49,180 --> 00:03:58,490
ุจุงุฌูŠ ุจุงุฎุฏุงู„ู„ูŠ ู‡ูˆ ู…ูŠู† ุงู„ .. ุงู„ U ูˆ ู‡ุฐู‡ ุงู„ D V ุงู„ U
38
00:03:58,490 --> 00:04:04,410
ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† X ูˆ ุงู„ D V ุงู„ู„ูŠ ู‡ูŠ ุตูŠู† ุงู„ X ุจุฑูˆุญ
39
00:04:04,410 --> 00:04:09,270
ุจูุงุถู„ ู‡ุฐู‡ ุจู‚ู‰ ุชูุงุถู„ู‡ุง ุจูˆุงุญุฏ ูˆุจุฌูŠ ุงูˆ ุจู‚ูˆู„ ู‡ุฐู‡
40
00:04:09,270 --> 00:04:13,090
derivatives ูˆู‡ุฐู‡ integrals in general ูŠุนู†ูŠ ู‡ุฐู‡
41
00:04:13,090 --> 00:04:17,530
ุจู‚ูˆู„ ุนู„ูŠู‡ุง derivatives ูˆู‡ุฐู‡ ุจุฑูˆุญ ุจู‚ูˆู„ ุนู„ูŠู‡ุง
42
00:04:17,530 --> 00:04:19,610
integrals
43
00:04:25,340 --> 00:04:32,500
ุจุนุฏ ุฐู„ูƒ ุงุดุชุบู„ ูƒู…ุงู† ู…ุฑุฉ ูŠุจู‚ู‰ ู…ุดุชู‚ุฉ ู‡ุฐู‡ ุจู€0 ุชูƒู…ู„ ู‡ุฐู‡
44
00:04:32,500 --> 00:04:39,920
ุจู€Sin X ุจุนุฏูŠู† ุจู‚ูˆู„ ุงู„ุฏุงู„ุฉ ู‡ุฐู‡ ููŠ ุงู„ุฏุงู„ุฉ ู‡ุฐู‡ูˆุงู„ุฏุงู„ุฉ
45
00:04:39,920 --> 00:04:44,400
ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ููŠ ุงู„ุฏุงู„ุฉ ู‡ุฐู‡ ูˆ ุจุฑูˆุญ ุจุงุณุชุฎุฏู… ู‚ุงุนุฏุฉ
46
00:04:44,400 --> 00:04:49,660
ุงู„ุฅุดุงุฑุงุช ูŠุจู‚ู‰ ุจุจุฏุฃ ุจุงู„ู…ูˆุฌุจ ุงู„ู„ูŠ ุจุนุฏู‡ ุณุงู„ุจ ู…ูˆุฌุจ
47
00:04:49,660 --> 00:04:54,840
ุณุงู„ุจ ุฅู„ู‰ ู…ุง ุดุงุก ุงู„ู„ู‡ ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ุง ุฃุตุจุญ ุนู†ุฏ ุงู„ X
48
00:04:54,840 --> 00:05:02,580
Y ูŠุณุงูˆูŠ ู†ุงู‚ุต X ููŠ cosine X ุญุตู„ ุถุฑุจ ุงู„ุงุชู†ูŠู† ุฒุงุฆุฏ
49
00:05:02,580 --> 00:05:09,780
sine X ุฒุงุฆุฏ constant Cุฃู†ุง ุจุฏูŠ y as a function of x
50
00:05:09,780 --> 00:05:15,280
ุฅุฐุง ุจุฑูˆุญ ุจุฌุณู… ูƒู„ู‡ ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ x ูŠุจู‚ู‰ ุจูŠุตูŠุฑ ุญู„
51
00:05:15,280 --> 00:05:21,680
ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถุฑูŠุฉ ุงู„ู‰ star ู‡ูˆ y ุชุณุงูˆูŠ ุณุงู„ุจ cosine
52
00:05:21,680 --> 00:05:28,760
ุงู„ x ุฒุงุฆุฏ sine ุงู„ x ุนู„ู‰ x ุฒุงุฆุฏ c ุนู„ู‰ x ู‡ุฐุง ุงู„
53
00:05:28,760 --> 00:05:33,740
general solution ู„ู…ูŠู†ุŸ ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถุฑูŠุฉ ุงู„ู„ู‰ ู‡ูŠ
54
00:05:33,740 --> 00:05:39,670
ุงู„ starูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุฃุฎุฏู†ุง ุนู„ู‰ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ุซู„ุงุซุฉ
55
00:05:39,670 --> 00:05:43,010
ุฃู…ุซู„ุฉ ุฃูˆ ุนู„ู‰ ุงู„ first order linear differential
56
00:05:43,010 --> 00:05:47,610
equation ุซู„ุงุซุฉ ุฃู…ุซู„ุฉ ู…ุซู„ูŠู† ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ูˆู‡ุฐุง ู‡ูˆ
57
00:05:47,610 --> 00:05:52,750
ุงู„ู…ุซุงู„ ุงู„ุซุงู„ุซ ู…ุด ุฏุงุฆู…ุง ุงู„ู…ุนุงุฏู„ุฉ ุจู…ุฌุฑุฏ ู…ุง ุฃุทู„ุน ู„ู‡ุง
58
00:05:52,750 --> 00:05:58,390
ุชูƒูˆู† linear ุฃุญูŠุงู† ุจุฏูŠ ุฃุถุทุฑ ุฃุญูˆู„ู‡ุง ุฅู„ู‰ linear first
59
00:05:58,390 --> 00:06:03,770
order differential equationูŠุนู†ูŠ ุงู„ู…ุนุงุฏู„ุฉ ุจู…ุฌุฑุฏ
60
00:06:03,770 --> 00:06:08,410
ุงู„ู†ุธุฑ ู„ุง ุชูƒูˆู† Linear ู„ูƒู† ุจู‚ุฏุฑ ุฃุญูˆู„ู‡ุง ุฅู„ู‰ Linear ุฒูŠ
61
00:06:08,410 --> 00:06:10,970
ู…ุง ููŠ ุงู„ Homogeneous ุญูˆู„ู†ุงู‡ุง ุฅู„ู‰ Homogeneous ูˆุงู„
62
00:06:10,970 --> 00:06:14,630
Exact ูƒุงู†ุช ู…ุงู‡ูŠุงุด Exact ุญูˆู„ู†ุงู‡ุง ุฅู„ู‰ Exact ูˆุงู„
63
00:06:14,630 --> 00:06:18,290
Superb ูƒุงู† ู…ุงู‡ูŠุงุด Superb ูˆุญูˆู„ู†ุงู‡ุง ุฅู„ู‰ Superb ู„ุง
64
00:06:18,290 --> 00:06:22,850
Superb ูŠุนู†ูŠ ู…ุงุญุฏุด ุฃุญุณู† ู…ู† ุญุฏ ุทูŠุจ ุจุฏู†ุง ู†ูŠุฌูŠ ู†ุดูˆู
65
00:06:22,990 --> 00:06:29,010
ุงู„ู†ูˆุน ู…ู† ุงู„ู…ุนุงุฏู„ุงุช ู„ูŠุณุช Linear ู„ูƒู† ูŠู…ูƒู† ุชุญูˆูŠู„ู‡ุง
66
00:06:29,010 --> 00:06:33,830
ุฅู„ู‰ Linear ูˆู‡ุฐุง ู…ุง ูŠุณู…ู‰ ู…ุนุงุฏู„ุฉ Bernoulli ูŠุจู‚ู‰
67
00:06:33,830 --> 00:06:38,270
Bernoulli equation ุจุฏู†ุง ู†ุนุทูŠู‡ุง Definition ูˆุจุนุฏู‡ุง
68
00:06:38,270 --> 00:06:44,750
ู†ุญู„ ู…ุนุงุฏู„ุฉ Bernoulli ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ Definition
69
00:06:44,750 --> 00:06:48,230
differential equation
70
00:06:50,280 --> 00:06:56,980
differential equation ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ y prime
71
00:06:56,980 --> 00:07:05,820
ุฒุงูŠุฏ p of x ููŠ ุงู„ y ุจุฏูˆ ูŠุณุงูˆูŠ ู„ q of x ููŠ ู…ูŠู… ููŠ
72
00:07:05,820 --> 00:07:15,340
ุงู„ y to the power n ูˆ ุงู„ n ู„ุง ุชุณุงูˆูŠ zero and ูˆ
73
00:07:15,340 --> 00:07:25,200
ูƒุฐู„ูƒุงู„ู€ N ู„ุง ุชุณุงูˆูŠ ูˆุงุญุฏ is called ุจู†ุฑูˆุญ ู†ุณู…ูŠู‡ุง
74
00:07:25,200 --> 00:07:31,380
Bernoulli equation Bernoulli
75
00:07:31,380 --> 00:07:35,540
Bernoulli
76
00:07:35,540 --> 00:07:39,500
equation ูŠุจู‚ู‰ ู…ุนุงุฏู„ุฉ Bernoulli
77
00:07:49,170 --> 00:07:55,790
ุทูŠุจ ุงู„ุขู† ุธู‡ุฑุช ุนู†ุฏู†ุง ู…ุนุงุฏู„ุฉ ุฌุฏูŠุฏุฉ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ู„ูŠุณุช
78
00:07:55,790 --> 00:08:00,470
linear first order differential equation ุงู„ุณุจุจ ููŠ
79
00:08:00,470 --> 00:08:04,870
ุฐู„ูƒ ุฃู†ู‡ุง ู…ุงู‡ูŠุงุด linear ู„ูˆ ุทู„ุนุช ู„ู„ุทุฑู ุงู„ุดู…ุงู„ ุงู„ู„ู‰
80
00:08:04,870 --> 00:08:09,310
ุนู†ุฏู†ุง ูŠุจู‚ู‰ ู‡ูˆ ุงู„ linear first order differential
81
00:08:09,310 --> 00:08:13,160
equation ุงู„ู„ู‰ ุงุญู†ุง ุนุงุฑููŠู†ู‡ุงู„ู€ Q of X ู‡ูŠ ูŠุจู‚ู‰
82
00:08:13,160 --> 00:08:19,560
ุงู„ุฌุฏูŠุฏ ู…ู† Y to the power N ูŠุจู‚ู‰ ุจุณุจุจ ูˆุฌูˆุฏ ุงู„ู€ Y to
83
00:08:19,560 --> 00:08:24,060
the power N ุจุทู„ุช ุชุตูŠุฑ ู‡ุฐู‡ first order differential
84
00:08:24,060 --> 00:08:28,960
equation ุทูŠุจ ุญุทู„ูŠ ุดุฑุท ู‡ู†ุง ู‚ุงู„ ุงู„ู€ N ู…ู…ู†ูˆุน ุชุณุงูˆูŠ
85
00:08:28,960 --> 00:08:34,640
Zero ูˆูƒุฐู„ูƒ ุงู„ู€ N ู…ู…ู†ูˆุน ุชุณุงูˆูŠ ูˆุงุญุฏ ุงู„ุณุคุงู„ ู‡ูˆ ู„ูŠุด
86
00:08:34,640 --> 00:08:37,260
ุงู„ู€ N ู…ู…ู†ูˆุน ุชุณุงูˆูŠ Zero ูŠุนู†ูŠ ู„ูˆ ุชุณุงูˆูŠ Zero ุฅูŠุด
87
00:08:37,260 --> 00:08:42,440
ุจูŠุตูŠุฑุŸุจุตูŠุฑ ู‡ุงุฏูŠ ูˆุงุญุฏ ูˆุจุชุงู„ูŠ ุจุตูŠุฑ linear ุทุจูŠุนูŠ ูŠุนู†ูŠ
88
00:08:42,440 --> 00:08:48,460
ูˆุจุชุงู„ูŠ ุงุญู†ุง ู…ุงุณูˆูˆู†ุงุด ุงุดูŠ ุทูŠุจุŸู„ูˆ ูƒุงู†ุช ุงู„ู€ N ุจูˆุงุญุฏ
89
00:08:48,460 --> 00:08:53,020
ูŠุจุฏูˆ ูŠุตูŠุฑ ู‡ู†ุง Y ุฅุฐุง ุจุฌูŠุจู‡ุง ุนู„ู‰ ุงู„ุดุฌุฉ ุงู„ุชุงู†ูŠุฉ ูˆ
90
00:08:53,020 --> 00:08:57,680
ุจุงุฎุฏ Y ุนุงู…ู„ ู…ุดุชุฑูƒ ูˆ ุจุตูŠุฑ P of X ุฒุงูŠุฏ ู„Q of X ูˆ
91
00:08:57,680 --> 00:09:02,360
ุจุชุณุงูˆูŠ Zero ูˆุจุงู„ุชุงู„ูŠ ุตุงุฑุช Linear ูƒุฐู„ูƒ ุฅุฐุง ู…ุดุงู†
92
00:09:02,360 --> 00:09:06,740
ุฃุถู…ู† ุฅู†ู‡ุง ู…ุงู‡ูŠุงุด Linear ู„ุงุฒู… ุงู„ู€ N ู…ู…ู†ูˆุน ุชุณุงูˆูŠ
93
00:09:06,740 --> 00:09:13,000
Zero ูˆ ุงู„ู€ N ู…ู…ู†ูˆุน ุชุณุงูˆูŠ ูˆุงุญุฏ ุชู…ุงู… ุงู„ุณุคุงู„ ู‡ูˆ ูƒูŠู
94
00:09:13,000 --> 00:09:19,740
ูŠู…ูƒู† ุญู„ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉุจู†ู‚ูˆู„ูƒ ุจู†ู‚ุฏุฑ ู†ุญู„ู‡ุง ูƒุงู„ุชุงู„ูŠ ุจุฏูŠ
95
00:09:19,740 --> 00:09:24,740
ุฃุญูˆู„ู‡ุง ุฅู„ู‰ linear ูƒูŠู ุจุฏูŠ ุฃุญูˆู„ู‡ุง ุฅู„ู‰ linear ู‡ุฐุง ู…ุง
96
00:09:24,740 --> 00:09:32,400
ุณู†ุดูŠุฑ ุฅู„ูŠู‡ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ู‡ู†ุง to solve Bernoulli
97
00:09:32,400 --> 00:09:38,280
equation Bernoulli
98
00:09:38,280 --> 00:09:41,320
equation multiply
99
00:09:46,660 --> 00:09:54,180
both sides ูƒู„ุง ุงู„ุทุฑููŠู† ู‡ุฐุง ู…ุง ู†ุณู…ูŠู‡ ุงู„ equation
100
00:09:54,180 --> 00:10:06,620
star ู†ุถุฑุจู‡ุง
101
00:10:06,620 --> 00:10:14,660
ุจูˆุงูŠ ุฃุณ ู†ุงู‚ุต into gainุจู†ุญุตู„ ุนู„ู‰ ุจุฏุฃ ุงุถุบุท ููŠ Y ุชุฏุง
102
00:10:14,660 --> 00:10:22,380
power ุณุงู„ุจ N ูŠุจู‚ู‰ ุจูŠุตูŠุฑ ุณุงู„ุจ N ููŠ ุงู„ Y prime ุฒุงุฆุฏ
103
00:10:22,380 --> 00:10:33,080
P of X ููŠ Y ุฃุณ ูˆุงุญุฏ ุณุงู„ุจ N ุชู…ุงู… ุจุฏุฃ ุฃุณุงูˆูŠ ู…ู† AQ of
104
00:10:33,080 --> 00:10:33,480
X
105
00:10:36,350 --> 00:10:41,670
ุจุนู…ู„ูŠุฉ ุงู„ุถุฑุจ ุงู„ุจุณูŠุทุฉ ุงู„ู„ูŠ ุนู…ู„ุชู‡ ู‡ุฐู‡ ูŠุจู‚ู‰ ุทุงุฑุฉ y to
106
00:10:41,670 --> 00:10:47,310
the power n ู…ู† ุงู„ุทุฑู ุงู„ูŠู…ูŠู† ููŠ ุงู„ู…ุนุงุฏู„ุฉ ูˆ ุฃุตุจุญุช
107
00:10:47,310 --> 00:10:51,470
ุงู„ู…ุนุงุฏู„ุฉ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุฌุฏูŠุฏ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู„ ู‡ุฐู‡ linear
108
00:10:51,470 --> 00:10:59,470
ู„ุฃ ูŠุจู‚ู‰ ู…ุด ุฃู†ุง ุฃุญูˆู„ู‡ุง ุฅู„ู‰ linear ุจุฌูŠ ุจู‚ูˆู„ู‡ pot ุญุท
109
00:10:59,470 --> 00:11:07,690
ู„ูŠุงู„ู€ U ูŠุณูˆูŠ Y ุฃุณ ูˆุงุญุฏ ู†ุงู‚ุต N ุงุดุชู‚ูˆุง ูŠุง ุจู†ุงุช ุจูŠุตูŠุฑ
110
00:11:07,690 --> 00:11:17,390
U' ูˆุงุญุฏ ู†ุงู‚ุต N ููŠ ุงู„ Y ุฃุณ ู†ุงู‚ุต N ููŠ ุงู„ Y' ู…ุธุจูˆุท
111
00:11:17,390 --> 00:11:23,310
ู‡ูŠูƒุŸ ุทูŠุจ ูƒูˆูŠุณ ู„ูˆ ุฌุณู…ุช ุงู„ุทุฑููŠู† ุนู„ู‰ ุงู„ู…ู‚ุฏุงุฑ ุงู„ู„ูŠ
112
00:11:23,310 --> 00:11:27,970
ุนู†ุฏู†ุง ู‡ุฐุง ุจูŠุตูŠุฑ ูˆุงุญุฏ ุนู„ู‰ ูˆุงุญุฏ ู†ุงู‚ุต N
113
00:11:41,030 --> 00:11:46,350
ุงู„ุชุฑู… ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ููŠ ุงู„ู…ุนุงุฏู„ุฉุฃุฐุง ุจู‚ุฏุฑ ุฃุญูˆู„
114
00:11:46,350 --> 00:11:51,170
ุงู„ู…ุนุงุฏู„ุฉ ุชุจุนุชูŠ ุฅู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ูŠุจู‚ู‰ ุงู„ู…ุนุงุฏู„ุฉ
115
00:11:51,170 --> 00:11:57,970
ุณุชุตุจุญ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ ุงู„ู…ุนุงุฏู„ุฉ
116
00:11:57,970 --> 00:12:05,130
ุจุฏู‡ุง ุชุตูŠุฑ ูˆุงุญุฏ ุนู„ู‰ ูˆุงุญุฏ ู†ุงู‚ุต N ููŠ ุงู„ U prime ุฒุงุฆุฏ
117
00:12:05,130 --> 00:12:15,040
P of X ููŠ ุงู„ U ุจุฏู‡ุง ุชุณุงูˆูŠ Q of Xู‡ุฐุง ู…ุชุบูŠุฑ ูˆู„ุง ุฑู‚ู…ุŸ
118
00:12:15,040 --> 00:12:22,880
ุฑู‚ู… ู„ุฃู† ู‡ูˆ ุงู„ู€S7 ุงู„ู€Y1-N ุฅุฐุง ุจุฏูŠ ุฃุถุบุท ููŠ ู‡ุฐุง ุงู„ุฑู‚ู…
119
00:12:22,880 --> 00:12:29,980
ูŠุจู‚ู‰ ุจูŠุตูŠุฑ ุงู„ู…ุนุงุฏู„ุฉ U prime ุฒุงุฆุฏ ูˆุงุญุฏ ู†ุงู‚ุต N ููŠ P
120
00:12:29,980 --> 00:12:38,400
of X ููŠ U ูŠุณุงูˆูŠ ูˆุงุญุฏ ู†ุงู‚ุต N ููŠ Q of X ุฅุฐุง ู‡ุฐุง ุจู†ูŠุช
121
00:12:38,400 --> 00:12:44,160
ุฑู‚ู… ูˆู‡ุฐุง ุฑู‚ู…ู„ุง ูŠุบูŠุฑ ู…ู† ุดูƒู„ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุณุคุงู„ ู‡ูˆ
122
00:12:44,160 --> 00:12:50,820
ุงู„ู…ุนุงุฏู„ุฉ ุฏูŠ ุดูˆ ุฃุตุจุญ ุดูƒู„ู‡ุง linear ู…ุธุจูˆุท ู‡ูŠ y prime
123
00:12:50,820 --> 00:12:57,100
function ููŠ x ููŠ ุงู„ y ุงู„ y ุฃุฌุงุจุชู‡ุง ู„ u ูŠุณูˆู‰ ู„ q of
124
00:12:57,100 --> 00:13:06,720
x ูู‚ุท ู„ุบูŠุฑ ูŠุจู‚ู‰ ู‡ุฐู‡ linear first order
125
00:13:06,720 --> 00:13:08,860
differential
126
00:13:09,820 --> 00:13:23,700
equation that can be solved as before ูŠุจู‚ู‰ ู‡ุฐู‡
127
00:13:23,700 --> 00:13:28,820
ุจุฑูˆุญ ุจุญู„ู‡ุง ุฒูŠ ู…ุง ูƒู†ุช ุจุญู„ ุงู„ linear ุงู„ู„ูŠ ู‡ูˆ ู‚ุจู„
128
00:13:28,820 --> 00:13:35,360
ู‚ู„ูŠู„ ูˆุงุถุญุฉ ุงุธู† ู‡ุฐู‡ ุทูŠุจ ู†ุจุฏุฃ ู†ุนุทูŠ ุงู…ุซู„ุฉ ุนู„ู‰ ุงู„
129
00:13:35,360 --> 00:13:38,920
Bernoulli equation ูŠุจู‚ู‰ example one
130
00:13:51,100 --> 00:13:59,880
Solve the differential equation ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ
131
00:13:59,880 --> 00:14:05,140
Y'-2Sin
132
00:14:05,140 --> 00:14:20,280
X ูƒู„ ู‡ุฐุง ููŠ Y ุณูŠูƒูˆู† ู†ุงู‚ุต 2Sin XY ุฃุณ ุซู„ุงุซุฉ ุนู„ู‰
133
00:14:20,280 --> 00:14:21,460
ุงุชู†ูŠู†
134
00:14:52,430 --> 00:14:56,350
ู†ุนูˆุฏ ุฅู„ู‰ ุฃุณุฆู„ุฉ ู‚ุจู„ ุฃู† ู†ุนูˆุฏ ุฅู„ู‰ ุฃุณุฆู„ุฉ ุณุฃุนูˆุฏ ุฅู„ู‰
135
00:14:56,350 --> 00:15:00,470
ุงู„ุชุนุฑูŠู ุฌุงู„ูŠ ุจูŠุฑู†ูˆู„ูŠ ูƒูˆุดู† ู‡ูŠ ู…ุนุงุฏู„ุฉ ุจุงู„ุดูƒู„ ู‡ุฐุง
136
00:15:00,470 --> 00:15:05,290
ุงุณุชุจุนุช ุฃู† ุงู„ุงู† ุชุณุงูˆูŠ ุฒูŠุฑูˆ ูˆุงุณุชุจุนุช ุฃู† ุงู„ุงู† ุชุณุงูˆูŠ
137
00:15:05,290 --> 00:15:10,770
ูˆุงุญุฏ ู„ูƒู† ู‡ู„ ุฌูˆู„ุช ุงู„ุงู† ู„ุงุฒู… ูŠูƒูˆู† ุนุฏุฏ ุตุญูŠุญ ู…ูˆุฌู‡ ู„ู…
138
00:15:10,770 --> 00:15:16,410
ุฃู‚ูˆู„ ุฐู„ูƒู‚ุฏ ูŠูƒูˆู† ุงู„ุงู† ุนุฏุฏ ู…ูˆุฌุจ ูˆู‚ุฏ ูŠูƒูˆู† ุนุฏุฏ ุณุงู„ุจ
139
00:15:16,410 --> 00:15:21,050
ูˆู‚ุฏ ูŠูƒูˆู† ูƒุซุฑูŠ ู…ูˆุฌุจ ูˆู‚ุฏ ูŠูƒูˆู† ูƒุซุฑูŠ ุณุงู„ุจ ูƒู„
140
00:15:21,050 --> 00:15:25,450
ุงู„ุงุญุชู…ุงู„ุงุช ูˆุงุฑุฏุฉ ูŠุนู†ูŠ ู„ูŠุณ ุจุงู„ุถุฑูˆุฑุฉ ุงู† ูŠูƒูˆู† ุนุฏุฏุง
141
00:15:25,450 --> 00:15:30,650
ุตุญูŠุญุง ูˆู‡ุฐุง ู…ุซุงู„ ุจูŠู† ุงุฏูŠู†ุง ุนู„ู‰ ุงู† ุงู„ุฃุณ ุชุจุน ุงู„ูˆุงูŠ
142
00:15:30,650 --> 00:15:36,790
ู‡ู†ุงูƒ ู„ูŠุณ ุนุฏุฏุง ุตุญูŠุญุงุทุจ ุงู„ุทุฑู ุงู„ุดู…ุงู„ ุฌุงู‡ุฒ ุนู„ู‰ ุดูƒู„ ุงู„
143
00:15:36,790 --> 00:15:41,930
linear ุงู„ุทุฑู ุงู„ูŠู…ูŠู† ู„ุฃ ู„ุฅู† Y ุฃุณ 3 ุนู„ู‰ 2 ู‡ุฐูŠ ุฅูŠู‡
144
00:15:41,930 --> 00:15:45,530
ุงู„ู„ูŠ ุฌุฏูŠุฏุฉ ููŠ ุงู„ู…ุซู„ุฉ ุงู„ู„ูŠ ุฎู„ุชู†ูŠ ุงู„ู…ุซู„ุฉ ู…ุงู‡ูŠุงุด
145
00:15:45,530 --> 00:15:51,230
linear ู„ุฐู„ูƒ ุจุชุฑูˆุญ ุฃุญูˆู„ู‡ุง ุฅู„ู‰ linear ุซู… ุฃุญู„ู‡ุง
146
00:15:51,230 --> 00:15:55,290
ุจุทุฑูŠู‚ุฉ main ุงู„ linear first order differential
147
00:15:55,290 --> 00:16:00,620
equation ูŠุจู‚ู‰ ุดูˆ ู†ุนู…ู„ ูŠุง ุจู†ุงุชุŸุจู†ุฐู‡ุจ ู†ุถุฑุจ ููŠ Y
148
00:16:00,620 --> 00:16:07,380
ู…ุฑููˆุนุฉ ู„ู‡ุฐุง ุงู„ุฃุณุจูˆุน ุจุฅุดุงุฑุฉ ุณุงู„ุจ ูŠุจู‚ู‰ ุณุงู…ูŠู‡ ู„ู…ุนุงุฏู„ุฉ
149
00:16:07,380 --> 00:16:12,360
ู‡ุฐู‡ ุงู„ู€ main ุงู„ุชูŠ ู‡ูŠ star ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ ู‡ู†ุง
150
00:16:12,360 --> 00:16:17,600
multiply equation
151
00:16:17,600 --> 00:16:28,030
star byูˆุงูŠ ุฃุณ ุณุงู„ุจ ุชู„ุงุชุฉ ุนู„ู‰ ุงุชู†ูŠู† together ู†ุญุตู„
152
00:16:28,030 --> 00:16:36,410
ุนู„ู‰ ูˆุงูŠ ุฃุณ ุณุงู„ุจ ุชู„ุงุชุฉ ุนู„ู‰ ุงุชู†ูŠู† ููŠ ุงู„ู€ y' ู†ุงู‚ุต
153
00:16:36,410 --> 00:16:45,450
ุงุชู†ูŠู† sin x ูˆุงูŠ ุฃุณ ุนู†ุฏูƒ ูˆุงูŠ ุฃุณ ูˆุงุญุฏ ูˆูˆุงูŠ ุฃุณ ุณุงู„ุจ
154
00:16:45,450 --> 00:17:01,910
ูˆุงุญุฏ ูˆู†ุต ุจูŠุธู„ ูˆุงูŠ ุฃุณ ุณุงู„ุจ ู†ุตุจุฏูŠ ุฃุนู…ู„
155
00:17:01,910 --> 00:17:07,270
ุชุนูˆูŠุถุฉ ููŠ ุงู„ู…ุซู„ุฉ ู‡ุฐู‡ ุงู„ุชุนูˆูŠุถุฉ ุจุชุญูˆู„ู‡ุง ุฅู„ู‰ linear
156
00:17:07,270 --> 00:17:11,770
first order differential equation ุดูˆ ู‡ุฐู‡ ุงู„ุชุนูˆูŠุถุฉ
157
00:17:11,770 --> 00:17:18,820
ุจุฑูˆุญ ุจู‚ูˆู„ ู„ู‡ potุนู† ุทุฑูŠู‚ ุงู„ูˆุตูˆู„ ู„ู€ U ูŠุณุงูˆูŠ Y ุฃุณุงู„ุจ
158
00:17:18,820 --> 00:17:29,920
ู†ุต Y ุฃุณุงู„ุจ ู†ุต ูŠุจู‚ู‰ ู†ุดุชุงู‚
159
00:17:29,920 --> 00:17:38,840
ูŠุจู‚ู‰ ุงู„ู€ U' ูŠุณุงูˆูŠ ุณุงู„ุจ ู†ุต Y ุฃุณุงู„ุจ ุชู„ุงุชุฉ ุนู„ู‰ ุงุชู†ูŠู†
160
00:17:38,840 --> 00:17:44,960
ููŠ ู…ู†ุŸ ููŠ ุงู„ู€ Y' ู‡ู†ุง ู…ุงุนู†ุฏูŠุด ุงู†ุตุงุฑูŠุจู‚ู‰ ุจุฑูˆุญ ุจุถุฑุจ
161
00:17:44,960 --> 00:17:50,840
ูƒู„ู‡ ููŠ ู…ูŠู†ุŸ ููŠ ุณุงู„ุจ ุงุชู†ูŠู† ู„ูˆ ุถุฑุจุช ููŠ ุณุงู„ุจ ุงุชู†ูŠู†
162
00:17:50,840 --> 00:17:57,580
ุจุตูŠุฑ ุณุงู„ุจ ุงุชู†ูŠู† U prime ูŠุณุงูˆูŠ Y ุงู„ุณุงู„ุจ ุชู„ุงุชุฉ ุนู„ู‰
163
00:17:57,580 --> 00:18:02,500
ุงุชู†ูŠู† ููŠ ุงู„ Y prime ุงู„ุงู† ุงู„ุทุฑู ุงู„ูŠู…ูŠู† ููŠ ุงู„ุชุนูˆูŠุถุฉ
164
00:18:02,500 --> 00:18:08,250
ู‡ูˆ ู‡ุฐุง ุงู„ term ู…ุธุจูˆุทุŸุฃุฐุง ุจู‚ุฏุฑ ุฃุดูŠู„ ูˆู‚ุชู‡ ุจุฏู„ ุณุงู„ูŠ
165
00:18:08,250 --> 00:18:15,550
ุจุงุชู†ูŠู† U' ูŠุจู‚ู‰ ู‡ุฐุง ุจุงู„ุตูŠุฑุฉ ุณุงู„ูŠ ุจุงุชู†ูŠู† U' ุณุงู„ูŠ
166
00:18:15,550 --> 00:18:23,660
ุจุงุชู†ูŠู† ููŠ ุตูŠู† ุงู„ X ู‡ุฐู‡ ู…ูŠู† ูŠุง ุจู†ุงุชุŸุงู„ู€ U ูŠุจู‚ู‰
167
00:18:23,660 --> 00:18:30,480
ุจุดูŠู„ู‡ุง ูˆ ุจุญุท ุจุฏุงู„ู‡ุง U ูŠุณุงูˆูŠ ุณุงู„ุจ ุงุชู†ูŠู† ููŠ Sine X
168
00:18:30,480 --> 00:18:36,000
ุดูˆ ุฑุฃูŠูƒ ุงุฌุณู… ุงู„ู…ุนุงุฏู„ุฉ ูƒู„ู‡ุง ุนู„ู‰ ุณุงู„ุจ ุงุชู†ูŠู† ุงุฐุง ู„ูˆ
169
00:18:36,000 --> 00:18:42,880
ุฌุณู…ู†ุง ุนู„ู‰ ุณุงู„ุจ ุงุชู†ูŠู† ุชุตุจุญ ุงู„ู…ุนุงุฏู„ุฉ U Prime ู†ุงู‚ุธ
170
00:18:42,880 --> 00:18:52,880
ุฒุงุฆุฏ Sine X ููŠ ุงู„ู€ U ุจุฏู‡ ูŠุณุงูˆูŠ ู„ู‡ Sine Xูˆู‡ุฐู‡ ุนุจุงุฑุฉ
171
00:18:52,880 --> 00:19:02,060
ุนู† first order linear differential
172
00:19:02,060 --> 00:19:03,920
equation
173
00:19:06,230 --> 00:19:11,110
ูŠุจู‚ู‰ ุจุงู„ุนู…ู„ูŠุฉ ุงู„ู„ูŠ ุนู…ู„ุช ู‡ุฐู‡ ุงุณุชุทุงุนุช ุชุญูˆูŠู„ ุงู„ู…ุนุงุฏู„ุฉ
174
00:19:11,110 --> 00:19:14,990
ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ non-linear differential equation ุฅู„ู‰
175
00:19:14,990 --> 00:19:20,170
first order linear differential equation ุฅุฐุง ุจุฏู†ุง
176
00:19:20,170 --> 00:19:26,470
ู†ุญู„ู‡ุง ุฒูŠ ู…ุง ูƒู†ุง ุจู†ุญู„ ู…ู† ู‚ุจู„ ูŠุจู‚ู‰ ุจุฏุฑูˆุญ ุฃุฌูŠุจ ุนุงู…ู„
177
00:19:26,470 --> 00:19:33,430
ุงู„ุชูƒู…ู„ ู„ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉูŠุจู‚ู‰ ุงู„ู€ Mu of X ุจูŠุณุงูˆูŠ E ุฃุณ
178
00:19:33,430 --> 00:19:43,230
ุชูƒุงู…ู„ ู‚ุฏุงุด Sine X ููŠ DX ู‚ุฏุงุด ุชูƒุงู…ู„ ุงู„ู€ Sine ุฃุจุนุฏุŸ
179
00:19:43,230 --> 00:19:52,230
ุณุงู„ุจ Cos ูŠุจู‚ู‰ E ุฃุณ ุณุงู„ุจ Cos X
180
00:19:56,980 --> 00:20:02,540
ูŠุจู‚ู‰ ู‡ุฐุง ุนุงู…ู„ ุงู„ุชูƒุงู…ู„ ุจู†ุงุก ุนู„ูŠู‡ ุจู‚ุฏุฑ ุฃุฌูŠุจ ุงู„ุญู„
181
00:20:02,540 --> 00:20:08,200
ุงู„ู„ูŠ ู‡ูˆ you ูŠุจู‚ู‰ ู‡ู†ุง ู‡ุฐุง ุจู†ุงุช ู…ุดุงู† ู…ูŠุฒู‡ุง ุนู† ุงู„ู„ูŠ
182
00:20:08,200 --> 00:20:15,480
ููˆู‚ ุณู…ูŠู‡ุง ู„ู„ู…ุนุงุฏู„ุฉ double star ูุจุฌูŠ ุจู‚ูˆู„ู‡ ู‡ู†ุง that
183
00:20:15,480 --> 00:20:27,590
solution of thatdifferential equation double star
184
00:20:27,590 --> 00:20:37,760
is ุงู„ู€ U ุชุฒุงูˆูŠุฉุจุดูŠู„ ุงู„ U ูˆ ุจุญุท ู‚ู…ุฉ ุงูˆ ุจู‚ูˆู„ ู„ู‡ ุงู„ E
185
00:20:37,760 --> 00:20:48,080
ุงู„ุญุงู„ ุชุจุนู‡ุง E ุฃุซ ู†ุงู‚ุต Cos X ููŠ ุงู„ U ูŠุณุงูˆูŠ ุชูƒุงู…ู„ E
186
00:20:48,080 --> 00:20:55,580
ุฃุซ ู†ุงู‚ุต Cos X ููŠ ุงู„ Q of X ุงู„ู„ูŠ ู‡ูŠ Sin X ูƒู„ู‡
187
00:20:55,580 --> 00:21:02,770
ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ DXูŠุจู‚ู‰ ุจุตูŠุฑุฉ ุฃู† E ุฃุณุงู„ุจ Cos X ููŠ ุงู„ู€ U
188
00:21:02,770 --> 00:21:10,550
ูŠุณุงูˆูŠ ุจุฏู†ุง ู†ูƒู…ู„ ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ ูŠุจู‚ู‰ ุงู„ู…ุตุนุจ ุงู„ู…ุซุงู„ ู…ูŠู†ุŸ
189
00:21:10,550 --> 00:21:18,490
ุงู„ู€ E ุฃุณุงู„ุจ ุฃูˆ ุงู„ู€ SineุŸ ุงู„ู€ SineุŸ
190
00:21:18,490 --> 00:21:25,680
ุงู„ุฃุณ ุชุจุน ุงู„ู€ X ูˆ ู„ุง ุงู„ุฏุงู„ุฉ ุงู„ู„ูŠ ุจุฑุงุŸู…ูŠู† ุงู„ู„ูŠ ูˆุถุญู‡
191
00:21:25,680 --> 00:21:30,400
ู…ุด ุทุจูŠุนูŠ ุงู„ุงุต ุงู„ุงุต ุงุญู†ุง ุจู‚ูˆู„ ุงูŠู‡ ูˆ ุงู„ six ุฏุงูŠู…ุง
192
00:21:30,400 --> 00:21:34,900
ู…ู‚ูˆู„ุด ุงูŠู‡ ุงุต ู†ุงู‚ุต ู‚ุตุงุฑู‰ ู†ุงู‚ุต ุงุฐุง ุจุฏูŠ ุงุดูŠู„ ูƒู„ ุงู„ุงุต
193
00:21:34,900 --> 00:21:38,640
ู‡ุฐุง ูˆ ุงุญุท ุจุฏู„ู‡ ูˆ ุงุชุบูŠุฑ ุฌุฏูŠุฏ ูˆ ุงุดูˆู ุงู„ุฏู†ูŠุง ูˆ ุงู†
194
00:21:38,640 --> 00:21:45,980
ุจุฏู‡ุง ุชูˆุฌู‡ุฅุฐุงู‹ ู‡ุฐู‡ ู„ูˆ ุฌูŠุช ู‚ู„ุช ุญุทูŠ ู„ูŠ ู…ุซู„ุง T ุชุณุงูˆูŠ
195
00:21:45,980 --> 00:21:53,440
ู†ุงู‚ุต cosine X ูŠุจู‚ู‰ ุงู„ DT ุชูุงุถู„ cosine ุจุณุงู„ุจ sin X
196
00:21:53,440 --> 00:22:00,000
DX ุฅุฐุงู‹ ุจู‚ุฏุฑ ุฃุดูŠู„ ู‡ุฐุง ูƒู„ ูˆู‚ุช ูˆ ุจุฏู„ุง ู…ู†ู‡ DT ูŠุจู‚ู‰
197
00:22:00,000 --> 00:22:10,750
ุชูƒุงู…ู„ ู„ E ุฃุณ T DTูŠุจู‚ู‰ ุจูŠุตูŠุฑ E Os ู†ุงู‚ุต Cos X ููŠ ุงู„ู€
198
00:22:10,750 --> 00:22:19,270
U ุจE Os T ุฒุงุฆุฏ Constant C ูŠุนู†ูŠ ู‡ุฐุง ู…ุนู†ุงู‡ ุงู† ุงู„ E
199
00:22:19,270 --> 00:22:26,530
Os ู†ุงู‚ุต Cos X ููŠ ุงู„ู€ U ุจุฏู‡ ูŠุณุงูˆูŠ E Os ุจุฏู‡ ูŠุดูŠู„ ุงู„
200
00:22:26,530 --> 00:22:34,120
T ูˆูŠุฑุฌุนู‡ุง ุฅู„ู‰ ุฃุตู„ุฉ ู†ุงู‚ุต Cos X ุฒุงุฆุฏ Constant Cุฃู†ุง
201
00:22:34,120 --> 00:22:37,320
ุฃุฑูŠุฏ ุฃู† ุฃุดู‡ุฏ ุฃู† ูŠุฌุจ ุฃู† ูŠูƒูˆู† ุงู„ู€ U ู„ูˆุญุฏู‡ุง ูŠุจู‚ู‰
202
00:22:37,320 --> 00:22:44,700
ุจุงุฏุฑุจ ุงู„ุทุฑููŠู† ููŠ E ุฃุณ ู…ูˆุฌุฉ ุจูƒูˆุตูŠู† X ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ู‰
203
00:22:44,700 --> 00:22:53,470
ุงู„ู€ U ุฏู‡ ุณูˆู‰ 1 ุฒุงุฆุฏ C ููŠ E ุฃุณ ูƒูˆุตูŠู† Xุจุฑุฌุน ู…ุฑุฉ
204
00:22:53,470 --> 00:23:01,350
ุชุงู†ูŠุฉ ุงู†ุง ุงู„ U ุญุงุทุทู‡ุง ูƒุฏู‡ุดุŸ Y ุฃุณ ู†ุงู‚ุต ู†ุต ูŠุจู‚ู‰ ุจุตูŠุฑ
205
00:23:01,350 --> 00:23:10,110
ุนู†ุฏู†ุง ู‡ู†ุง ู…ูŠู… Y ุฃุณ ู†ุงู‚ุต ู†ุต ูŠุณูˆู‰ ูˆุงุญุฏ ุฒุงุฆุฏ C ููŠ E
206
00:23:10,110 --> 00:23:15,310
ุฃุณ Cos X ู‡ู†ุดูƒู„ุจ
207
00:23:15,310 --> 00:23:24,840
ู‡ุฐู‡ูŠุนู†ูŠ 1 ุนู„ู‰ y ุฃูุต ู†ูุต ุจูŠูƒูˆู† 1 ุฒุงุฆุฏ c ููŠ e ุฃูุต
208
00:23:24,840 --> 00:23:32,100
cos x ู…ุด ู‡ุงุฌู„ุจุŸ ูŠุจู‚ู‰ ู„ูˆ ู‡ุงุฌู„ุจู†ุง ุงู„ู…ุซู„ ุจุตูŠุฑ y ุฃูุต
209
00:23:32,100 --> 00:23:43,120
ู†ูุต ูŠุณูˆู‰ 1 ุนู„ู‰ 1 ุฒุงุฆุฏ c ููŠ e ุฃูุต cos x ุฎู„ุต ุงู„ุญู„ุŸ
210
00:23:44,810 --> 00:23:50,750
ุจู‚ุฏุฑ ุฃุฌูŠุจ Y ุดูˆ ู†ุนู…ู„ุŸ ุฑุจุน ุงู„ุทุฑููŠู† ูŠุจู‚ู‰ ู„ูˆ ุฑุจุนู†ุง
211
00:23:50,750 --> 00:23:55,890
ุงู„ุทุฑููŠู† ุจู†ุญุตู„ ุนู„ู‰ ุงู„ุญู„ ุงู„ู„ูŠ ู‡ูˆ Y ู…ุฑุจุน ุงู„ูˆุงุญุฏ ุจูˆุงุญุฏ
212
00:23:55,890 --> 00:24:05,210
ูˆุงุญุฏ ุฒุงุฆุฏ C ููŠ E ุฃุณ Cos X ู„ูƒู„ ุชุฑุจูŠุน ูŠุจู‚ู‰ ู‡ุฐุง ู‡ูˆ ุญู„
213
00:24:05,210 --> 00:24:10,730
ุงู„ differential equation ุงู„ุฃุตู„ูŠุฉ ุญุฏุง ููŠูƒู… ุจุชุญุจ
214
00:24:10,730 --> 00:24:16,770
ุชุณุฃู„ ุฃูŠ ู†ู‚ุทุฉ ู‡ู†ุงุŸุฃูŠ ุฎุทูˆุฉ ุฃูˆ ู†ู‚ุทุฉ ู…ุงูู‡ู…ุชู‡ุงุด ุชุญุจ
215
00:24:16,770 --> 00:24:22,310
ุชุณุฃู„ ุฃูŠ ุณุคุงู„ ููŠ ุงู„ู…ูˆุถูˆุน ุนู†ุฏู…ุง ู†ุฌูŠุจ ุงู„ู…ู†ูˆุงุตุฉ ุงู‡ ููŠ
216
00:24:22,310 --> 00:24:34,010
ุนุฑูุช ุชุณุฃู„ุŸ differential equation y' ู†ุงู‚ุต ูˆุงุญุฏ ุนู„ู‰
217
00:24:34,010 --> 00:24:43,980
x ุฒุงุฆุฏ ูˆุงุญุฏ ููŠ ุงู„ Y ููŠ ู„ู† ุงู„ YุจุชุณุงูˆูŠ X ุฒูŠ ุงู„ูˆุงุญุฏ
218
00:24:43,980 --> 00:24:57,460
ููŠ Y ูˆุงู„ู€ X greater than Zero ุจุงุฌูŠ
219
00:24:57,460 --> 00:25:04,300
ุจุชุทู„ุน ููŠ ู…ุซู„ุชูŠ ู‡ุฐู‡ ู„ูŠุณุช Linear ู„ุณุจุจูŠู†ุงู„ุณุจุจ ุงู„ุฃูˆู„
220
00:25:04,300 --> 00:25:09,000
ุนู†ุฏูŠ Y ููŠ ุงู„ู†ุงุญูŠุฉ ุงู„ุชุงู†ูŠุฉ ูˆุงู„ุณุจุจ ุงู„ุซุงู†ูŠ ููŠ ุนู†ุฏูŠ
221
00:25:09,000 --> 00:25:15,160
ู‡ู†ุง ุงู„ Y ุฅุฐุง ุดุบู„ุชูŠ ุฃุญุงูˆู„ ุฃุญูˆู„ ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ุฅู„ู‰
222
00:25:15,160 --> 00:25:20,480
linear ู…ุดุงู† ุฃู‚ุฏุฑ ุฃุญู„ู‡ุง ูˆ ุฃุญุตู„ ุนู„ู‰ ุญู„ ู‡ุฐู‡ ุงู„ู…ุซู„ุฉ
223
00:25:20,480 --> 00:25:26,040
ุจูŠู‚ูˆู„ูˆุง ุชู…ุงู… ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ุจุฏูŠ ุฃุณู…ูŠู‡ุง ุงุณุชุนุงุฑ ูŠุจู‚ู‰
224
00:25:26,040 --> 00:25:34,970
ู‡ุฐู‡ ุจุฏูŠ ุฃุณู…ูŠู‡ุง ุงู„ู„ูŠ ุนู†ุฏู†ุง ุงุณุชุนุงุฑ ุทูŠุจู…ุดุงู† ู‡ูŠูƒ ุจุฏูŠ
225
00:25:34,970 --> 00:25:40,770
ุงู‚ูˆู„ ู„ู‡ ู‡ุฐู‡ ุฌุงู‡ุฒุฉ ุตุญ ูˆ ุงู„ู„ู‡ ุงูŠุด ุฑุฃูŠูƒูˆุง ุงุถุฑุจ ูƒู„ู‡ ููŠ
226
00:25:40,770 --> 00:25:46,890
y ุฃุณุงู„ูŠ ุจูˆุงุญุฏ ุนุดุงู† ุงุชุฎู„ุต ู…ู† y ุงู„ู„ูŠ ุนู„ู‰ ุงู„ูŠู…ูŠู† ุจุฏูŠ
227
00:25:46,890 --> 00:25:52,870
ุจู‚ูˆู„ู‡ ู‡ู†ุง multiply ุงูˆ solution ุจุงู„ุฃูˆู„ solution
228
00:25:52,870 --> 00:25:57,350
multiply
229
00:25:57,350 --> 00:26:01,250
both
230
00:26:01,250 --> 00:26:02,030
sides
231
00:26:04,680 --> 00:26:16,720
of equation star by y ุงู„ุณู„ุจ ูˆุงุญุฏ we get ุจุตูŠุฑ ุนู†ุฏ
232
00:26:16,720 --> 00:26:26,860
ู‡ู†ุง y ุงู„ุณู„ุจ ูˆุงุญุฏ y prime ู†ุงู‚ุต ูˆุงุญุฏ ุนู„ู‰ x ุฒุงุฆุฏ ูˆุงุญุฏ
233
00:26:26,860 --> 00:26:32,520
ููŠ ู„ู† ุงู„ y ูŠุณุงูˆูŠ x ุฒุงุฆุฏ ูˆุงุญุฏ
234
00:26:35,780 --> 00:26:42,220
ูŠุจู‚ู‰ ูƒุชุจู†ุง ุงู„ู…ุนุงุฏู„ุฉ ุจุดูƒู„ ุฌุฏูŠุฏ ู„ูƒู† ู‡ุฐู‡ ุดูƒู„ู‡ุง ู…ุด ุฒูŠ
235
00:26:42,220 --> 00:26:47,040
ู…ูŠู† ู…ุด ุฒูŠ ุงู„ุณุคุงู„ ุงู„ู„ูŠ ู‚ุจู„ู‡ ู„ูŠุด ุงู†ู‡ ุนู†ุฏูŠ ู‡ู†ุง ู„ูŠู†
236
00:26:47,040 --> 00:26:53,020
ูˆุงูŠ ู…ุงุนู†ุฏูŠุด ูˆุงูŠ to the power ุงู† ูˆุงูŠ ู„ูŠู† ู…ุด ู„ูŠู† ุจุฏูƒ
237
00:26:53,020 --> 00:26:59,660
ุชุญูˆู„ ู‡ุงู„ูŠ ุฅู„ู‰ ู…ูŠู† ุฅู„ู‰ู„ูŠู†ุง ูŠุนู†ูŠ ุงู„ุดูƒู„ ุงู„ู„ูŠ ู‚ู„ู†ุงู‡
238
00:26:59,660 --> 00:27:05,820
ู„ุจุฑู†ูˆู„ูŠ ู‚ุจู„ ู‚ู„ูŠู„ ู„ูŠุณ ู‚ุฑุขู†ุง ู†ุฒู„ ู…ู† ุงู„ุณู…ุงูˆุฉ ู„ูƒู† ู‡ูˆ
239
00:27:05,820 --> 00:27:09,720
ุงู„ general form ูŠุนู†ูŠ ู…ู…ูƒู† ุฃู„ุงู‚ูŠ ุญุงู„ุฉ ูˆ ุงู„ู„ู‡ ุชู†ุชู‡ูŠ
240
00:27:09,720 --> 00:27:15,060
ุงู„ุดูƒู„ ู„ูƒู† ุชุจู‚ู‰ ูƒุฐู„ูƒ ุจูŠุฑู†ูˆู„ูŠ ุฅุฐุง ุฃู†ุง ู…ุดูƒู„ุชูŠ ู…ุน ู…ูŠู†
241
00:27:15,060 --> 00:27:20,720
ู‡ู†ุงุŸ ู…ุน ู„ูŠู† ุงู„ูˆุงูŠ ูŠูุถู„ ุฃุฑูˆุญ ุฃู‚ูˆู„ู‡ ู‡ู†ุง ุจุงู„ู‡ุงู…ุด ุฃู‚ุนุฏ
242
00:27:25,640 --> 00:27:32,100
ูŠุจู‚ู‰ ุงู„ู€ U' ุจูˆุงุญุฏ ุนู„ู‰ Y ููŠ ุงู„ู€ Y' ูŠุนู†ูŠ Y ุฃุณุงู„ุจ
243
00:27:32,100 --> 00:27:37,400
ูˆุงุญุฏ ููŠ ุงู„ู€ Y' ู‡ูŠ ู‡ุฐู‡ ูŠุนู†ูŠ ูŠุง ุจู†ุงุช ู„ู…ุง ู†ุดุชุงู‚ ู„ุงุฒู…
244
00:27:37,400 --> 00:27:42,300
ุชุทู„ุน ุงู„ู…ู‚ุฏุงุฑ ู‡ุฐุง ุฃูˆ ู…ู‚ุฏุงุฑ ู…ุถุฑูˆุจ ููŠู‡ ุฑู‚ุงู… ููŠู‡ ุนุฏุฏ
245
00:27:42,300 --> 00:27:51,000
ุชู…ุงู…ุฃุฐุง ู‡ุฐู‡ ุจุงูƒุชุจ ุจุฏุงู„ู‡ุง U' ู†ุงู‚ุต ูˆุงุญุฏ ุนู„ู‰ X ุฒุงุฆุฏ
246
00:27:51,000 --> 00:27:57,740
ูˆุงุญุฏ ููŠ ุงู„ู€ U ุจุฏู‡ ุณุงูˆู„ X ุฒุงุฆุฏ ูˆุงุญุฏ ุงูŠุด ุฑุงูŠูƒ ูˆุตู„ุช
247
00:27:57,740 --> 00:28:02,540
LinearุŸ ูŠุจู‚ู‰ ุงู„ู„ูŠ ูƒุงู†ุช non-linear ู„ูŠู‡ ุณุจุจู‡ ุงู„ู„ูŠ
248
00:28:02,540 --> 00:28:10,500
ู‚ุฏุฑู†ุง ู†ุญูˆู„ู‡ุง ุฅู„ู‰ LinearุŸ ูŠุจู‚ู‰ ู‡ุฐู‡ ู‡ู†ุง Linear first
249
00:28:10,500 --> 00:28:12,480
order
250
00:28:16,380 --> 00:28:22,800
ู…ุดุงู† ู‡ูŠูƒ ุจุฏู‡ ุฃุฑูˆุญ ุนุฌูŠุจ ุนุงู…ู„ ุงู„ุชูƒุงู…ู„ ู„ู…ูŠูˆ as a
251
00:28:22,800 --> 00:28:29,140
function of X ูŠุจู‚ู‰ E ุฃุต ู†ุงู‚ุต ุชูƒุงู…ู„ ูˆุงุญุฏ ุนู„ู‰ X ุฒุงุฆุฏ
252
00:28:29,140 --> 00:28:39,020
ูˆุงุญุฏ DX ุฃูˆ ุฅู† ุดุฆุชู… ูู‚ูˆู„ูˆุง E ุฃุต ู†ุงู‚ุต ู„ X ุฒุงุฆุฏ ูˆุงุญุฏ
253
00:28:39,530 --> 00:28:47,910
ูŠุนู†ูŠ ู‡ุฐู‡ E ุฃุณ ู„ X ู†ุงู‚ุต ูˆุงุญุฏ ุฃุณ ู†ุงู‚ุต ูˆุงุญุฏ ูŠุนู†ูŠ X
254
00:28:47,910 --> 00:28:53,770
ู†ุงู‚ุต ูˆุงุญุฏ ุฃุณ ู†ุงู‚ุต ูˆุงุญุฏ ุฃูˆ ูˆุงุญุฏ ุนู„ู‰ X ู†ุงู‚ุต ูˆุงุญุฏ
255
00:28:53,770 --> 00:28:59,950
ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุขู† ุนุงู…ู„ ุงู„ุชูƒุงู…ู„ ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุญู„
256
00:28:59,950 --> 00:29:05,270
ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ double star ุณู…ูˆู‡ุง ู„ูŠุง ุจู†ุงุชุญู„
257
00:29:05,270 --> 00:29:10,550
ุงู„ู…ุนุงุฏู„ุฉ double star ุณูŠูƒูˆู† ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ูŠุจู‚ู‰
258
00:29:10,550 --> 00:29:28,050
ู‡ู†ุง solution of
259
00:29:28,050 --> 00:29:39,990
the differentialEquation W star S A
260
00:29:39,990 --> 00:29:48,490
ู„ู€ Mu ู‡ูˆ ูˆุงุญุฏ ุนุงู„ู‰ X ุฒุงุฆุฏ ูˆุงุญุฏ ููŠ ุงู„ู€ U ุจุฏู‡ ูŠุณูˆูŠ
261
00:29:48,490 --> 00:29:56,090
ุชูƒุงู…ู„ ูˆุงุญุฏ ุนุงู„ู‰ X ุฒุงุฆุฏ ูˆุงุญุฏ ููŠ ุงู„ู€ Q ู‚ุฏุงุด ุงู„ู€ Q ู‡ูˆ
262
00:29:56,090 --> 00:30:05,540
Xุฒุงุฆุฏ ูˆุงุญุฏ ูƒู„ู‡ ุจุงู„ู†ุณุจุฉ ุงู„ู‰ DX ุทูŠุจ ู‡ุฐุง ุจุฏู‡ ูŠุณูˆูŠ
263
00:30:05,540 --> 00:30:13,640
ุชูƒุงู…ู„ ู„ DX ูˆุงู„ู„ูŠ ุจุฏู‡ ูŠุณูˆูŠ X ุฒุงุฆุฏ ูƒูˆู†ุณุชุงู† C ุฅุฐู† ุงู„ู€
264
00:30:13,640 --> 00:30:23,080
U ูŠุง ุจู†ุงุชูŠ ูŠุณูˆูŠ X ุฒุงุฆุฏ ูˆุงุญุฏ X ุฒุงุฆุฏ ูƒูˆู†ุณุชุงู† Cุจุฑุฌุน
265
00:30:23,080 --> 00:30:29,120
ู„ู…ู†ุŸ ู„ู„ U ุงู„ U ุงู„ู„ูŠ ุนู†ุฏูŠ ูƒุฏู‡ุŸ ู„ุฅู† ุงู„ Y ุฅุฐุง ุจุฏูŠ
266
00:30:29,120 --> 00:30:35,780
ุฃุดูŠู„ ุงู„ U ู‡ุฐู‡ ูˆ ุฃูƒุชุจ ุจุฏู„ู‡ุง ู…ู†ุŸ ู„ุฅู† ุงู„ Y ูŠุจู‚ู‰ ุจุงุฌูŠ
267
00:30:35,780 --> 00:30:43,720
ู‡ู†ุง ู„ุฅู† ุงู„ Y ุจุฏูŠ ูŠุณุงูˆูŠ X ุฒุงุฆุฏ ูˆุงุญุฏ ููŠ X ุฒุงุฆุฏ ูƒู†ุต
268
00:30:43,720 --> 00:30:49,760
ุชู† C ู‡ุฐุง ู„ุง ูŠุฒุงู„ ุญู„ ุถู…ู†ูŠ ุฃู†ุง ู…ุงุฌุจุชุด ุงู„ Y ุฌุจุช ู„ู‡
269
00:30:49,760 --> 00:30:56,430
ู„ุบุงุฑุชู…ุง ุงู„ Yุจู‚ุฏุฑ ุฃุฌูŠุจ ู„ู‡ ุงู„ Y ูŠุจู‚ู‰ ุจุฑูุน ุงุชู†ูŠู† ูƒุฃุณ
270
00:30:56,430 --> 00:31:03,450
ู„ู„ุนุฏุฏ E ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ู‡ุฐุง ุจุฏูŠ ูŠุนุทูŠู†ูŠ ุงู†ู‡ solution
271
00:31:03,450 --> 00:31:13,210
ุฃูˆ ุจู‚ุฏุฑ ุฃู‚ูˆู„ ู„ู‡ ู‡ู†ุง ุฏูˆุฑูŠ the solution of the
272
00:31:13,850 --> 00:31:23,150
Differential equation ุฃุณุทุงุฑ ุงู„ุฃุตู„ูŠุฉ is Y ุชุณุงูˆูŠ E
273
00:31:23,150 --> 00:31:31,490
ุฃุณ X ุฒุงุฆุฏ ูˆุงุญุฏ ููŠ X ุฒุงุฆุฏ constant C ูŠุนู†ูŠ ุฑูุนุช
274
00:31:31,490 --> 00:31:38,870
ุงู„ุทุฑููŠู† ูƒุฃุณ ู„ู„ุนุฏุฏ D ูˆุจุงู„ุชุงู„ูŠ ุญุตู„ู†ุง ุนู„ู‰ ู‡ุฐุง ุงู„ุญู„ู„ุญุฏ
275
00:31:38,870 --> 00:31:47,310
ู‡ู†ุง stop ููŠ ุนู†ุฏู†ุง ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ู…ุณุงุฆู„ exercises ูˆุงุญุฏ
276
00:31:47,310 --> 00:31:57,770
ุฎู…ุณุฉ ุงู„ู…ุณุงุฆู„ ุงู„ุชุงู„ูŠุฉ ูˆุงุญุฏ ุงุชู†ูŠู† ุชู„ุงุชุฉ ุฎู…ุณุฉ ุณุชุฉ
277
00:31:57,770 --> 00:32:12,610
ุณุจุนุฉุนุดุฑุฉ ุงุญุฏุงุด ุฎู…ุณุชุงุด ุณุชุงุด ุชู…ุงู†ุชุงุด ุชุณุนุชุงุด ูˆุงุญุฏ
278
00:32:12,610 --> 00:32:18,150
ูˆุนุดุฑูŠู† ุงุชู†ูŠู† ูˆุนุดุฑูŠู† ุชู„ุงุชุฉ ูˆุนุดุฑูŠู†
279
00:32:37,860 --> 00:32:44,940
ุทูŠุจุŒ ุญุฏ ุจุชุญุจ ุชุณุฃู„ ุฃูŠ ุณุคุงู„ ู‡ู†ุง ูŠุง ุจู†ุงุชุŸ ุฎู„ุงุตุŸ ุงูŠูˆุฉ
280
00:32:44,940 --> 00:32:52,420
ู„ูˆ ุงูŠุดุŸ
281
00:32:52,420 --> 00:32:58,620
ู…ู…ู†ูˆุน ุงู„ุณูˆู‰ ZeroุŒ ู…ู…ู†ูˆุน ุงู„ุณูˆู‰ ูˆุงุญุฏู‡ุฐุง ู„ู…ู† ุชุจู‚ู‰ ุฌูŠุด
282
00:32:58,620 --> 00:33:06,180
ู„ู…ู† ุชุจู‚ู‰ ู‡ุงุฏู‰ ู‡ู†ุง ูˆุงุญุฏ ู„ุญุงู„ู‡ุงุตุญ ูุฅู† ู…ุง ุตุฑุชุด ูŠุตุฑ Y
283
00:33:06,180 --> 00:33:11,560
ููŠ ุงู„ู€ny ุฅุฐุง ุงุฎุชู„ู ุงู„ุดูƒู„ ุงู„ุนุงู… ุงู„ู„ูŠ ุนู†ุฏู†ุง ู…ุธุจูˆุท
284
00:33:11,560 --> 00:33:16,080
ูŠุจู‚ู‰ ู…ู† ู‡ู†ุง ุตุฑุชูƒ ู„ูˆ ุณูˆู‰ ูˆุงุญุฏ ูˆุงู„ู„ู‡ ุบูŠุฑู‡ ู…ุงุนู†ุฏูŠุด
285
00:33:16,080 --> 00:33:20,320
ู…ุดูƒู„ุฉ ููŠ ู‡ุฐู‡ ุงู„ุนุงู„ู… ูƒูˆูŠุณ ุงู† ุงููƒุฑุช ูˆู‚ุงู„ุช ุงู†ุช ู‚ู„ุช
286
00:33:20,320 --> 00:33:25,340
ูƒู„ุงู…ู‡ ู‡ุฐุง ุฎู„ูู‡ ุงู„ุณุคุงู„ ู‡ุฐุง ุฎู„ู ุงู„ู…ุณุฃู„ุฉ ูƒู„ู‡ุง ู„ูŠุดุŸ
287
00:33:25,340 --> 00:33:29,060
ุงู†ู‡ ุตุฑุช ุงู„ู…ุฎุงู„ู ุนู„ู‰ ุงู„ูŠู…ูŠู† ูˆุตุฑุช ุงู„ู…ุฎุงู„ู ุนู„ู‰ ุงู„ุดู…ุงู„
288
00:33:29,060 --> 00:33:34,740
ู„ูƒู† ุจุงู‚ูŠุฉ ุงู„ู…ุนุงุฏู„ุฉ ู‡ูŠ ู…ุนุงุฏู„ุฉ BernoulliุทูŠุจ ุญุฏุง ููŠูƒู…
289
00:33:34,740 --> 00:33:38,700
ุจุชุณุฃู„ ุงูŠ ุณุคุงู„ ุจุงู„ู†ุณุจุฉ ู„ู‡ุฐุง ุงู„ section ุงู„ู„ูŠ ู‡ูˆ
290
00:33:38,700 --> 00:33:43,560
linear first order differential equation ุทูŠุจ ุญุฏุง
291
00:33:43,560 --> 00:33:48,740
ููŠูƒู… ุจุชุณุฃู„ ุงูŠ ุณุคุงู„ ุจุงู„ู†ุณุจุฉ ู„ู„ุฎู…ุณุฉ sections ุงู„ู„ูŠ
292
00:33:48,740 --> 00:33:58,260
ุฏุฑุณู†ุงู‡ู… ุงูˆู„ ุฎู…ุณุฉ sections ู…ู† ู‡ุฐุง ุงู„ุดุจุทุฑ ุงู‚ุฑุฃ
293
00:33:58,260 --> 00:34:05,770
ุงู„ุงู…ุชุญุงู† ูˆุตู„ ุงู‚ู„ ู…ู† ุดู‡ุฑ ุจุงู‚ูŠ ู„ู„ุงู…ุชุญุงู†zero point ุงู‡
294
00:34:05,770 --> 00:34:12,990
ุงู‡ ู‡ุงู„ูŠูˆู…ูŠู† ู‡ูŠู†ุฒู„ูˆู„ูƒู… ู…ูˆุนุฏ ู„ุงู…ุชุญุงู† ุงู‡ ุงู‡ ู‡ูŠู†ุฒู„ ููŠ
295
00:34:12,990 --> 00:34:18,050
ุงู„ุฌุฏูˆู„ ุฑุณู…ูŠุง ู„ุงู† ู‡ุงูŠ ุดุจู‡ ุนู†ุฏ ุงู„ุทู„ุงุจ ูˆ ุดุจู‡ ุนู†ุฏ
296
00:34:18,050 --> 00:34:22,170
ุงู„ุทู„ุจุงุช ุงุฐุง ุงู„ุนุฏุฏ ูƒุจูŠุฑ ู„ุงุฒู… ูŠู†ุฒู„ูˆู„ูƒูˆุง ูŠู‡ุฏู ุงู„ุฌุฏูˆู„
297
00:34:22,170 --> 00:34:26,870
ูุงู†ุช ู…ุงุชู†ู…ูŠุด ุนู„ู‰ ุฑูˆุญูƒ ู…ุด discussion ูŠุจุบู‰ ุงู†ูƒ ุชุฑูˆุญ
298
00:34:26,870 --> 00:34:31,050
ุชุญู„ูŠ ูˆ ุชุฌูŠ ุชุณุฃู„ูŠ ุญุชู‰ ุงู„ุงู† ูˆู„ุง ูˆุงุญุฏุฉ ุงุฌุช ููŠูƒูˆุง
299
00:34:31,050 --> 00:34:38,010
ุชุณุฃู„ูŠ ุณุคุงู„ู‡ุฐุง ุฅู…ุง ุงู†ูƒู… ูƒู„ูƒูˆุง ุนู„ู…ุงุก ูˆ ูุงู‡ู…ูŠู† ุชู…ุงู…ุง
300
00:34:38,010 --> 00:34:47,150
ู„ูƒู†ูŠ ู„ุง ุฃุธู† ุฐู„ูƒ ุฃูˆ ุงู†ูƒู… ูƒู„ูƒูˆุง ุณุงู„ุฉ ูˆ ุชุจู‚ู‰ ุจุงู„ูƒ ู‡ุฐุง
301
00:34:47,150 --> 00:34:50,910
ุจูŠู†ุนูƒุณ ุณู„ุจุง ุนู„ูŠูƒ ุจุนุฏ ู‡ูŠูƒ ูˆ ุงู†ุง ู‚ู„ุชูƒ ู…ู† ุงูˆู„ ูŠูˆู…
302
00:34:50,910 --> 00:34:56,190
ุฏุฎู„ุช ุงู„ู…ุญุงุถุฑุฉ ุจุชุฑูˆุญ ุชุฌุฑูŠ ุงู„ู…ุญุงุถุฑุฉ ุชุงุฎุฏูŠู‡ุง ู…ุจุงุดุฑุฉ ูˆ
303
00:34:56,190 --> 00:35:00,050
ุชุญู„ูŠ ุงู„ุฃุณุฆู„ุฉ ุงู„ู„ูŠ ุนู„ูŠู‡ุง ูˆ ุงู„ู„ูŠ ุจูŠุตุจุญ ุงู† ู…ูˆุฌูˆุฏูŠู† ูˆ
304
00:35:00,050 --> 00:35:07,670
ุงุนุทูŠุชูƒ ุณุงุนุงุช ู…ูƒุชุจูŠุฉูŠุจู‚ู‰ ุจุนุฏ ุฐู†ุจูƒ ุนู„ู‰ ุฌู†ุจูƒ ู„ุฐู†ุจ
305
00:35:07,670 --> 00:35:13,970
ู„ุฎูŠุฑู„ุงุฒู„ู†ุง ููŠ ู†ูุณ ุงู„ chapter ู„ูƒู† ููŠ ู…ุณุงุฆู„ ุงู„ู„ูŠ
306
00:35:13,970 --> 00:35:19,950
ุนู†ุฏูŠ second order differential equation ุจุฏูŠ ุฃู†ุฒู„ู‡ุง
307
00:35:19,950 --> 00:35:24,290
ุฅู„ู‰ first order differential equation ูˆูŠู…ูƒู† ุชุทู„ุน
308
00:35:24,290 --> 00:35:29,610
separable ูˆูŠู…ูƒู† ุชุทู„ุน homogeneous ูˆูŠู…ูƒู† ุชุทู„ุน exact
309
00:35:29,610 --> 00:35:34,270
ูˆูŠู…ูƒู† ุชุทู„ุน linear ูˆูŠู…ูƒู† ุชุทู„ุน Bernoulli ูˆู†ุญูˆู„ู‡ุง ุฅู„ู‰
310
00:35:34,270 --> 00:35:39,750
linear ูŠุจู‚ู‰ ูƒู„ ุงู„ุงุญุชู…ุงู„ุงุช ูˆุงุฑุฏุฉู‡ุฐุง ุงู„ูƒู„ุงู… ุงู„ู„ูŠ ู‡ูˆ
311
00:35:39,750 --> 00:35:45,110
ุณูŠูƒุดู† ูˆุงุญุฏ ุงุญุฏุงุด ูŠุจู‚ู‰ ู…ู† ูˆุงุญุฏ ุฎู…ุณุฉ ุจุฏู†ุง ู†ู‚ูุฒ ู„ู…ูŠู†
312
00:35:45,110 --> 00:35:50,410
ุงู„ู‰ ูˆุงุญุฏ ุงุญุฏุงุด ูŠุจู‚ู‰ ู†ุชูˆุฌู‡ ุงู„ุงู† ุงู„ู‰ ุณูŠูƒุดู† ูˆุงุญุฏ
313
00:35:50,410 --> 00:36:00,110
ุงุญุฏุงุด ู…ุจุงุดุฑุฉ ุงุฐุง ุณูŠูƒุดู† ูˆุงุญุฏ ุงุญุฏุงุด ุจูŠู‚ูˆู„ two
314
00:36:00,110 --> 00:36:06,390
special two special types
315
00:36:09,820 --> 00:36:15,680
of second order
316
00:36:15,680 --> 00:36:19,000
differential
317
00:36:19,000 --> 00:36:22,560
equations
318
00:36:22,560 --> 00:36:25,620
ุดูƒู„ู†ุง
319
00:36:25,620 --> 00:36:31,980
ู†ุนุทูŠู‡ุง definition a
320
00:36:31,980 --> 00:36:35,920
second order
321
00:36:39,130 --> 00:36:51,250
Differential equation is an equation inููˆุฑุง ููŠ
322
00:36:51,250 --> 00:37:05,570
ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ F of F T ูˆ X ูˆ DX ุนู„ู‰ DT ูˆ Dยฒ X ุนู„ู‰
323
00:37:05,570 --> 00:37:16,620
DTยฒ ุจุฏู‡ ุณุงูˆูŠ ู…ู†ุŸ ุจุฏู‡ ุณุงูˆูŠ Zero ู†ุฑุฌุน ู…ุฑุฉ ุชุงู†ูŠุฉุฃู†ุง
324
00:37:16,620 --> 00:37:20,560
ุนู†ุฏูŠ ู…ุนุงุฏู„ุฉ ู…ู† ุงู„ุฑุชุจุฉ ุงู„ุซุงู†ูŠุฉ ูˆุจุชู†ุฒู„ ุฑุชุจุชู‡ุง ุฅู„ู‰
325
00:37:20,560 --> 00:37:26,360
ุงู„ุฑุชุจุฉ ุงู„ุฃูˆู„ู‰ ูˆู…ู† ุซู… ุฃุฑูˆุญ ุฃุญู„ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ูุฌุงู„ ู„ูŠ
326
00:37:26,360 --> 00:37:31,260
two special types ู†ูˆุนูŠู† ู…ู† ุงู„ุฃู†ูˆุงุน ุงู„ุฎุงุตุฉ ู„ second
327
00:37:31,260 --> 00:37:34,420
order differential equation ูŠุนู†ูŠ second order
328
00:37:34,420 --> 00:37:41,140
ูƒุซูŠุฑุฉ ุฌุฏุง ุฃู†ุง ุจุฏูŠ ุฃุฎุฏ ุจุณ ู†ูˆุนูŠู† ูˆุงู„ุจุงู‚ูŠ ุจู†ุฎู„ูŠู‡ ููŠู…ุง
329
00:37:41,140 --> 00:37:44,950
ุจุนุฏุจู‚ูˆู„ ุงู„ู€ second order differential equation ู‡ูŠ
330
00:37:44,950 --> 00:37:50,250
ุนุจุงุฑุฉ ุนู† ู…ุนุงุฏู„ุฉ ููŠ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ู‡ูŠ function ุชุญุชูˆูŠ
331
00:37:50,250 --> 00:37:55,450
ุนู„ู‰ ุงู„ู…ุชุบูŠุฑ T ูˆุงู„ู…ุชุบูŠุฑ X ูˆู…ุดุชู‚ุฉ X ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ T
332
00:37:55,450 --> 00:38:01,890
ูˆุงู„ู…ุดุชู‚ุฉ ุงู„ุซุงู†ูŠุฉ X ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ T ูˆูƒู„ ู‡ุฐุง ุจุฏู‡ ูŠุณุงูˆูŠ
333
00:38:01,890 --> 00:38:06,860
ู…ูŠู†ุŸ ุจุฏู‡ ูŠุณุงูˆูŠ ZeroูŠุนู†ูŠ ุฃู†ุง ุนู†ุฏูŠ ุฏุงู„ุฉ ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ
334
00:38:06,860 --> 00:38:12,100
ุชุญุชูˆูŠ ุนู„ู‰ ุงู„ู…ุชุบูŠุฑ ุงู„ู…ุณุชู‚ู„ X ุงู„ independent
335
00:38:12,100 --> 00:38:16,260
variable ูˆุงู„ู…ุชุบูŠุฑ ุงู„ุชุงุจุน ุงู„ู„ูŠ ู‡ูˆ dependent
336
00:38:16,260 --> 00:38:22,020
variable X ูˆู…ุดุชู‚ุฉ ุงู„ X ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ T ูˆุงู„ู…ุดุชู‚ุฉ
337
00:38:22,020 --> 00:38:26,080
ุงู„ุซุงู†ูŠุฉ ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ X ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ Tูƒูˆู† ุงู„ู…ุดุชู‚ุฉ
338
00:38:26,080 --> 00:38:31,540
ุงู„ุชุงู†ูŠุฉ ู…ูˆุฌูˆุฏุฉ ูŠุจู‚ู‰ ู…ู† ู‡ู†ุง ุณู…ู†ู‡ุง second order
339
00:38:31,540 --> 00:38:35,660
differential equation ู„ุณู‡ ู…ุง ุงุชูƒู„ู…ู†ุงุด ููŠ ุงู„ two
340
00:38:35,660 --> 00:38:41,480
types ู„ุณู‡ ุงุญู†ุง ุงุนุทูŠู†ุง ุตูˆุฑุฉ ุนุงู…ุฉ ู„ second order
341
00:38:41,480 --> 00:38:45,820
differential equation ุจุฏู‡ ูŠุฌูŠ ู„ุฃูˆู„ ู†ูˆุน ู…ู† ู‡ุฐู‡
342
00:38:45,820 --> 00:38:52,090
ุงู„ุฃู†ูˆุงุน ุงู„ู„ูŠ ุจู†ุณู…ูŠู‡ุง equations withx missing ูŠุนู†ูŠ
343
00:38:52,090 --> 00:38:57,490
ู…ุนุงุฏู„ุฉ ุงู„ู…ุชุบูŠุฑุฉ ุงู„ุชูŠ ุชุจู‚ู‰ ุงู„ู‡ูˆ y ู…ุด ู…ูˆุฌูˆุฏ ู…ูู‚ูˆุฏ ู…ู†
344
00:38:57,490 --> 00:39:02,790
ุงู„ู…ุนุงุฏู„ุฉ ูƒูŠู ุจุฏู†ุง ู†ุญู„ ู‡ุฐุง ุงู„ู†ูˆุน ู…ู† ุงู„ู…ุนุงุฏู„ุงุช you
345
00:39:02,790 --> 00:39:07,810
can ุจุงู„ุฏุฑุฌุฉ ู„ุฃูˆู„ ู†ูˆุน ู…ู† ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุงุช ุงู„ู„ูŠ ู‡ูˆ
346
00:39:07,810 --> 00:39:15,210
differential equations ุงู„ู…ุนุงุฏู„ุงุช ุงู„ุชูุงุถู„ูŠุฉ with
347
00:39:15,210 --> 00:39:19,330
the dependent
348
00:39:22,130 --> 00:39:28,090
with a dependent variable X
349
00:39:28,090 --> 00:39:36,950
missing ูŠุจู‚ู‰ ุงู„ู€ SLX ู…ูู‚ูˆุฏุฉIt is an equation in
350
00:39:36,950 --> 00:39:45,630
the form ูŠุจู‚ู‰ It is an equation in the form ู‡ูŠ
351
00:39:45,630 --> 00:39:54,790
ุนุจุงุฑุฉ ุนู† ู…ุนุงุฏู„ุฉ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ G ูˆT ูˆDX ุนู„ู‰ DT
352
00:39:54,790 --> 00:40:02,910
ูˆDยฒX ุนู„ู‰ DTยฒ ูƒู„ู‡ ุจุฏู‡ ูŠุณุงูˆูŠ Zero ูˆุจุฏู‡ ูŠุณู…ูŠ ู‡ุฐู‡
353
00:40:02,910 --> 00:40:05,090
ุงู„ู…ุนุงุฏู„ุฉ ุฑู‚ู… ูˆุงุญุฏ
354
00:40:07,670 --> 00:40:12,010
ูŠุจู‚ู‰ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ููˆู‚ ูŠุง ุจู†ุงุช ู‡ูŠ ู†ูุณ ุงู„ู…ุนุงุฏู„ุฉ
355
00:40:12,010 --> 00:40:17,450
ุงู„ุชุญุช ุจุณ ุงู„ X ู‡ุฐุง ู…ุงู„ู‡ ู„ุง ูŠุธู‡ุฑ ููŠ ุงู„ู…ุนุงุฏู„ุฉ ุจุชุธู‡ุฑ
356
00:40:17,450 --> 00:40:23,410
ู…ูŠู†ุŸ ุจุณ ู…ุดุชู‚ุชู‡ ุงู„ุฃูˆู„ู‰ ูˆุงู„ุซุงู†ูŠุฉ ู„ูƒู† ู‡ูˆ ุจุณู„ุงู…ุชู‡ ุจุธู‡ุฑ
357
00:40:23,410 --> 00:40:26,750
ู„ูŠุด ูŠุนู†ูŠ ู…ุด ู…ูˆุฌูˆุฏ ุญุฏ ู…ุง ูŠุดูˆู ุงู„ู…ุนุงุฏู„ุฉ ุจูŠู‚ูˆู„ ู…ุงููŠุด
358
00:40:26,750 --> 00:40:32,940
ููŠู‡ุง XูƒูŠู ุจุฏูŠ ุงุญู„ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ to
359
00:40:32,940 --> 00:40:41,620
solve the differential equation one ุดูˆ ุจุฏูŠ ุงุนู…ู„
360
00:40:41,620 --> 00:40:53,330
put ุญุทู„ูŠ V ุชุณุงูˆูŠ DX ุนู„ู‰ DT ุชู…ุงู…ูŠุจู‚ู‰ ู‡ุฐุง ูŠุนุทูŠู†ุง ุงู†
361
00:40:53,330 --> 00:41:05,710
ุงู„ู€ dv ุนู„ู‰ dt ู‡ูˆ dยฒx ุนู„ู‰ dtยฒ ูŠุจู‚ู‰ ู‡ู†ุง ุณุฉ equation
362
00:41:05,710 --> 00:41:17,510
one becomes ุชุตุจุญ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ g ofT ู…ูˆุฌูˆุฏุฉ ูˆ V
363
00:41:17,510 --> 00:41:25,230
ู…ูˆุฌูˆุฏุฉ ูˆ DV ุนู„ู‰ DT ูŠุจุฏูˆ ูŠุณูˆู‰ 0 ุงูŠุด ุฑุฃูŠูƒ ููŠ ู‡ุฐู‡
364
00:41:25,230 --> 00:41:34,210
second ูˆู„ุง first first order ูŠุจู‚ู‰ ู‡ุฐู‡ first order
365
00:41:34,210 --> 00:41:47,670
differential equation that canbe solved as before
366
00:41:47,670 --> 00:41:53,730
ูŠุจู‚ู‰ ุจุฑูˆุญ ุงู†ุญู„ู‡ุง ุฒูŠ ู…ุง ูƒู†ุง ู†ุญู„ ู…ู† ู‚ุจู„ ุงู„ู„ูŠ ู‡ูˆ ุงู„
367
00:41:53,730 --> 00:41:56,570
first order ุฏู‡ ุงู„ุญู„ู‚ุฉ ุงู„ู„ูŠ ูŠู…ูƒู† ุชุทู„ุน exactly ูŠู…ูƒู†
368
00:41:56,570 --> 00:42:00,950
linear ูŠู…ูƒู† homogeneous ูŠู…ูƒู† separable ูƒู„ ุงู„ุฃู…ูˆุฑ
369
00:42:00,950 --> 00:42:05,490
ุงู„ู„ูŠ ู…ุฑุช ุนู„ูŠู†ุง ุจุตูŠุฑ ูˆุงุฑุฏุฉ ุนู†ุฏู†ุง ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ
370
00:42:05,490 --> 00:42:12,450
ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ุจู†ุฌูŠ ู„ู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ ูŠุจู‚ู‰ ู†ู…ุฑ ุงุชู†ูŠู†
371
00:42:12,870 --> 00:42:18,710
ุจุฏู†ุง ู†ูŠุฌูŠ ุงู„ู‰ differential equations with the
372
00:42:18,710 --> 00:42:26,370
independent variable with the independent
373
00:42:26,370 --> 00:42:29,830
variable
374
00:42:29,830 --> 00:42:37,310
T
375
00:42:37,310 --> 00:42:37,830
missing
376
00:42:41,050 --> 00:42:48,990
ูŠุจู‚ู‰ ุงู„ู€ T ู‚ุฏ ุชูƒูˆู† ู…ูู‚ูˆุฏุฉ ูŠุจู‚ู‰ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุชุตุจุญ
377
00:42:48,990 --> 00:42:51,350
ุงู„ู…ุนุงุฏู„ุฉ ู„ู„ุดูƒู„ ุงู„ุชุงู„ูŠ
378
00:43:18,630 --> 00:43:24,950
ูŠุจู‚ู‰ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู…ุชุบูŠุฑ ุงู„ู…ุณุชู‚ู„ ู‡ูˆ
379
00:43:24,950 --> 00:43:30,550
ุงู„ุบุงุฆุจุงูŠูˆุฉ ุดูˆ ู†ุนู…ู„ ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ุณู…ู‡ุงู„ุฉ ุงู„ู„ูŠ ู‡ูŠ
380
00:43:30,550 --> 00:43:38,950
ุงู„ู…ุนุงุฏู„ุฉ ุฑู‚ู… ูˆุงุญุฏ ูŠุจู‚ู‰ ุจุฌูŠ ุจู‚ูˆู„ two solve equation
381
00:43:38,950 --> 00:43:49,250
one pot ุญุทูŠู„ูŠ V ุจุฏู‡ ูŠุณูˆู‰ DX ุนู„ู‰ DT ุชู…ุงู… ูŠุนู†ูŠ ุฒูŠ
382
00:43:49,250 --> 00:43:55,030
ุงู„ู„ูŠ ู‚ุจู„ุจุณ ููŠ ุฎู„ุงู ุดูˆูŠู‡ ุดูˆ ุงู„ุฎู„ุงู ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏูŠ
383
00:43:55,030 --> 00:44:03,390
ุงุนุทูŠูƒ ุงู†ู‡ DV ุนู„ู‰ DT ุงูŠุด ุจุฏู‡ ูŠุณุงูˆูŠุŸ ุจุฏู‡ ูŠุณุงูˆูŠ ู…ุง
384
00:44:03,390 --> 00:44:09,010
ูŠุฃุชูŠ ูŠุนู†ูŠ ุจุฏู†ุง ู†ุดุชู‚ ูƒู…ุงู† ู…ุฑุฉ ุจุฏูŠุด ุงุฌูŠุจ ู‡ูƒ ุจุฏูŠ ุงู‚ูˆู„
385
00:44:09,010 --> 00:44:18,560
Dยฒ X ุนู„ู‰ DTยฒ ู…ุนู†ุงุชู‡ ุจุฏูŠ ุงุดุชู‚ ุจุงู„ู†ุณุจุฉ ู„ู…ู†ุŸุงู„ู‰ T
386
00:44:18,560 --> 00:44:28,980
ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ ู‡ูŠ DV ุนู„ู‰ DT ุชู…ุงู… ุงู„ู„ูŠ ุจู‚ุฏุฑ ุงู‚ูˆู„ ู‡ูŠ
387
00:44:28,980 --> 00:44:39,820
ุนุจุงุฑุฉ ุนู† DV ุนู„ู‰ DX ููŠ DX ุนู„ู‰ DT ู…ุธุจูˆุท ุทูŠุจ ุงู„ DX
388
00:44:39,820 --> 00:44:48,300
ุนู„ู‰ DT ุงู†ุง ุงุด ูƒุงุชุจู‡ุงV ูŠุจู‚ู‰ ู‡ุฐู‡ ุจุฏู‡ุง ุณุงูˆูŠ V ููŠ ุงู„ู€D
389
00:44:48,300 --> 00:44:55,780
V ุนู„ู‰ DX ู„ุฃูŠุดุŸ ู„ุฃู† T ู…ุด ู…ูˆุฌูˆุฏุฉ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุญูˆู„ู‡ุง
390
00:44:55,780 --> 00:45:02,580
ุจุฏู„ุงู„ุฉ V ูˆ X ูˆูƒุฃู† X ู‡ูŠ ุงู„ู…ุชุบูŠุฑ ุงู„ู…ุณุชู‚ู„ ูˆ V ู‡ูˆ
391
00:45:02,580 --> 00:45:08,180
ุงู„ู…ุชุบูŠุฑ ุงู„ุชุงุจุน T ู…ู„ุงุด ูˆุฌูˆุฏ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ูŠุจู‚ู‰ ุจุงุฌูŠ
392
00:45:08,180 --> 00:45:15,760
ุจู‚ูˆู„ ุงู„ุณุงุนุฉEquation one becomes ุชุตุจุญ ุนู„ู‰ ุงู„ุดูƒู„
393
00:45:15,760 --> 00:45:22,040
ุงู„ุชุงู„ูŠ H X ู…ูˆุฌูˆุฏุฉ ู‡ุฐู‡ ุญุทูŠุช ุจุฏุงู„ู‡ุง V ู‡ุฐู‡ ุญุทูŠุช
394
00:45:22,040 --> 00:45:29,240
ุจุฏุงู„ู‡ุง V ููŠ ุงู„ D V ุนู„ู‰ DXูˆูƒุฃู† X ู‡ู†ุง ู‡ูˆ ุงู„ู…ุชุบูŠุฑ
395
00:45:29,240 --> 00:45:35,540
ุงู„ู…ุณุชู‚ู„ ูˆV ู‡ูˆ ุงู„ู…ุชุบูŠุฑ ุงู„ุชุงุจุน ูˆู‡ุฐู‡ ูƒู„ู‡ุง ุจุฏู‡ุง ุชุณุงูˆูŠ
396
00:45:35,540 --> 00:45:44,200
ู…ูŠู†ุŸ ุจุฏู‡ุง ุชุณุงูˆูŠ Zero ูŠุจู‚ู‰ ู‡ุฐู‡ This is a first
397
00:45:44,200 --> 00:45:58,690
order differential equation thatcan be solved as
398
00:45:58,690 --> 00:46:06,290
beforeูŠุนู†ูŠ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ู…ู…ูƒู† ุชุทู„ุน exact ูˆู…ู…ูƒู† ุชุทู„ุน
399
00:46:06,290 --> 00:46:10,190
linear ูˆู…ู…ูƒู† ุชุทู„ุน homogeneous ูˆู…ู…ูƒู† ุชุทู„ุน separable
400
00:46:10,190 --> 00:46:15,010
ุงูˆ ู…ู…ูƒู† ุชุทู„ุน ุชูˆู„ู„ homogeneous ุงูˆ ุชูˆู„ู„ linear ุงูˆ
401
00:46:15,010 --> 00:46:19,170
ุชูˆู„ู„ exact ุงูˆ ุชูˆู„ู„ separable ูŠุจู‚ู‰ ุงูŠ ูˆุงุญุฏุฉ ููŠู‡ู…
402
00:46:19,170 --> 00:46:23,010
ุจูŠูƒูˆู† ุงุชุนู„ู…ู†ุง ุงู„ุญู„ ููŠ ุงู„ุฎู…ุณุฉ sections ุงู„ู…ุงุถูŠุฉ
403
00:46:23,010 --> 00:46:27,330
ุจู†ุฑูˆุญ ุงู†ุญู„ู‡ุง ูƒู…ุง ูƒู†ุง ุจู†ุญู„ ููŠ ุงู„ุฎู…ุณุฉ sections
404
00:46:27,330 --> 00:46:34,180
ุงู„ู…ุงุถูŠุฉุจู‚ูŠุช ุงู„ุขู† ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ุฃู…ุซู„ุฉ ุนู„ู‰ ู‡ุฐุง ุงู„
405
00:46:34,180 --> 00:46:38,880
section ู„ู„ู…ุฑุฉ ุงู„ู‚ุงุฏู…ุฉ ุฅู† ุดุงุก ุงู„ู„ู‡ ุชุจุงุฑูƒ ูˆุชุนุงู„ู‰