|
1 |
|
00:00:20,890 --> 00:00:25,630 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ุนูุฏ ุนูู ุจุฏุก ุงูู
ุฑุฉ ุงููู ูุงุชุช |
|
|
|
2 |
|
00:00:25,630 --> 00:00:29,790 |
|
ุจุฏุฃูุง ุจุงู linear transformation ู ุจุนุฏ ุฐูู ุฃุฎุฏูุง |
|
|
|
3 |
|
00:00:29,790 --> 00:00:34,910 |
|
ุนุฏุฉ ุชู
ุซูู ุนูููุง ุซู
ุฃุฎุฏูุง ุจุนุถ ุงููุธุฑูุงุช ุฃุซุจุชูุง ุฃู ุงู |
|
|
|
4 |
|
00:00:34,910 --> 00:00:39,010 |
|
kernel linear transformation is a subspace ู |
|
|
|
5 |
|
00:00:39,010 --> 00:00:43,330 |
|
ุฃุซุจุชูุง ุฃู ุงู range ูู linear transformation is a |
|
|
|
6 |
|
00:00:43,330 --> 00:00:49,020 |
|
subspace ู ุฃุฎุฏูุง ุนูู ุฐูู ุงูู
ุซุงู ุงูุฃููุทุจุนุง ุงุนุทููุง |
|
|
|
7 |
|
00:00:49,020 --> 00:00:54,920 |
|
function ู
ุนุฑูุฉ ุจุงูุดูู ุงูุชุงูู T of A ุจุชุณูู A ุฒุงุฆุฏ A |
|
|
|
8 |
|
00:00:54,920 --> 00:01:00,840 |
|
Transpose ุชู
ุงู
ุ ู ููููุง ูุงุชููุง ุงู range ุชุจุน ู
ู ุงู |
|
|
|
9 |
|
00:01:00,840 --> 00:01:05,380 |
|
T ุงู kernel ุทุจุนุง ูุฌุฏูุงู ุงูู
ุฑุฉ ุงููู ูุงุชุช ู ููููุง |
|
|
|
10 |
|
00:01:05,380 --> 00:01:10,820 |
|
the set of all skew symmetric matrices ูุฐุง ุงุฎุฑ ู
ุง |
|
|
|
11 |
|
00:01:10,820 --> 00:01:15,280 |
|
ุงุฎุฏูุงู ุงูู
ุญุงุถุฑุฉ ุงูู
ุงุถูุฉ ุชู
ุงู
ุ ุฅุฐุง ูููู ุฌูุจ ููู
ู |
|
|
|
12 |
|
00:01:15,280 --> 00:01:19,750 |
|
ุญุฏูุซูุงู ุจุฏูุง ููุฌุฏ ู
ู ุงู R of T |
|
|
|
13 |
|
00:01:24,660 --> 00:01:31,440 |
|
ุงููู ูู ุนุจุงุฑุฉ ุนู ู
ููุ ูู ุงูุนูุงุตุฑ Y ุงู ุงุญูุง ูุงูุช T |
|
|
|
14 |
|
00:01:31,440 --> 00:01:40,880 |
|
ู
ู ูู ุงูุนูุงุตุฑ ุงูุด ุจุฌููุง ูููู ูู T ู
ู A ุงูู ุงู T |
|
|
|
15 |
|
00:01:40,880 --> 00:01:45,660 |
|
ูุงูุช ู
ู ููู ุงูู ููู ู
ู ู
ุตู
ู
ุฉ M22 ุงูู M22 ู
ุด ูููุ |
|
|
|
16 |
|
00:01:45,660 --> 00:01:54,760 |
|
ู
ู M22 ูู M22ุจูู ุจุงุฌู ุจููู ูู ุงูู
ุตูุงุช ุจู ุงููู |
|
|
|
17 |
|
00:01:54,760 --> 00:02:04,580 |
|
ู
ูุฌูุฏุฉ ูู ุงู M22 such that ุงู B ุชุณุงูู T of A for |
|
|
|
18 |
|
00:02:04,580 --> 00:02:09,200 |
|
some A |
|
|
|
19 |
|
00:02:09,200 --> 00:02:16,080 |
|
ุงููู ู
ูุฌูุฏุฉ ูู ุงู M22 ู
ุด ุดูุช ุนุงุฑู ุงู rangeุูุจูู ูู |
|
|
|
20 |
|
00:02:16,080 --> 00:02:21,260 |
|
ุงูู
ุตูููุงุช ุงููู ู
ูุฌูุฏุฉ ูู ู
ุฌู
ูุนุฉ ุงูู
ุตูููุงุช M22 |
|
|
|
21 |
|
00:02:21,260 --> 00:02:27,120 |
|
ูุงููู ุตูุฑุชูุง ุชููู main T of A ุจุญูุซ ุงููA some |
|
|
|
22 |
|
00:02:27,120 --> 00:02:32,980 |
|
element ู
ูุฌูุฏ ูู M22 ูุจูู ูุฐุง ุงูุชุนุฑูู ุงูุนุงู
ูู
ููุ |
|
|
|
23 |
|
00:02:32,980 --> 00:02:37,200 |
|
ูู range ุชุจุนุชู ุจุฏูุง ููุฌู ูุทุจู ูุฐุง ุงูุชุนุฑูู ู ูุดูู |
|
|
|
24 |
|
00:02:37,200 --> 00:02:42,000 |
|
ุจุฏู ูุตููู ุฅูู ููููุจูู ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู ูู |
|
|
|
25 |
|
00:02:42,000 --> 00:02:48,420 |
|
ุงูู
ุตูุงุช B ุงููู ู
ูุฌูุฏุฉ ูู ุงู M22 such that ุงู ุงู B |
|
|
|
26 |
|
00:02:48,420 --> 00:02:55,380 |
|
ุชุณุงูู T of A ุญุณุจ ุงูุชุนุฑูู ูููุง ููู ุงููู ูู A ุฒุงุฆุฏ A |
|
|
|
27 |
|
00:02:55,380 --> 00:03:02,720 |
|
transpose for some A ุงููู ู
ูุฌูุฏุฉ ูู ุงู M22 |
|
|
|
28 |
|
00:03:04,900 --> 00:03:10,560 |
|
ุทูุจ ุจุฏู ุฃุนุฑู ู
ูู ูู ุงู B ูุฐู ุทูุจ |
|
|
|
29 |
|
00:03:10,560 --> 00:03:15,800 |
|
ุฅูุด ุฑุงูู ูู ุฃุฎุฏุช transpose ููุทุฑููู ูุจูู ูุฐู ุจุฏุฃุช |
|
|
|
30 |
|
00:03:15,800 --> 00:03:21,200 |
|
ุณุงูู ูู ุงูู
ุตูููุงุช B ุงููู ู
ูุฌูุฏุฉ ูู ุงู M22 such |
|
|
|
31 |
|
00:03:21,200 --> 00:03:28,420 |
|
that B transpose ุจุฏู ูุณุงูู A ุฒุงุฆุฏ A transpose ููู |
|
|
|
32 |
|
00:03:28,420 --> 00:03:34,320 |
|
ุงู transpose ูุจูู for some A ุงููู ู
ูุฌูุฏุฉ ูู ุงู B22 |
|
|
|
33 |
|
00:03:34,980 --> 00:03:39,520 |
|
ูุจูู ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู ูู ุงูู
ุตููุงุช ุจูู ุงููู |
|
|
|
34 |
|
00:03:39,520 --> 00:03:46,400 |
|
ู
ูุฌูุฏุฉ ูู ุงู M22 such that ุงู BT ุชุณุงูู ูุชุฑุงูุณุจูุฒ |
|
|
|
35 |
|
00:03:46,400 --> 00:03:50,900 |
|
ุจุชุฌู ุชุฑุงูุณุจูุฒ ุนูู ุงูุฃููู ุฒุงุฆุฏ ุชุฑุงูุณุจูุฒ ุนูู ู
ูุ ุนูู |
|
|
|
36 |
|
00:03:50,900 --> 00:03:57,060 |
|
ุงูุชุงููุฉ ูุจูู ุงู A transpose ุฒุงุฆุฏูุฐู a ุชุฑุงูุณุจูุฒ |
|
|
|
37 |
|
00:03:57,060 --> 00:04:01,560 |
|
ุชุฑุงูุณุจูุฒ ุงููู ูู ุนุจุงุฑุฉ ุนู ู
ูู ุงู a itself ูุจูู ุงู |
|
|
|
38 |
|
00:04:01,560 --> 00:04:07,940 |
|
a itself ุทูุจ ูุฐู ุงู a ุฒู a ุชุฑุงูุณุจูุฒ ู
ุด ูู ูุฐู ุงููู |
|
|
|
39 |
|
00:04:07,940 --> 00:04:14,050 |
|
ููููุจูู ูุฃูู ุจู ุชุฑุงูุณููุณ ุจุฏู ุชุณูู ู
ู ุจู ูุจูู |
|
|
|
40 |
|
00:04:14,050 --> 00:04:19,130 |
|
ู
ุนูุงุชู ูู ู
ุฌู
ูุนุฉ ุงู symmetric matrices ูุจูู ุงู |
|
|
|
41 |
|
00:04:19,130 --> 00:04:24,250 |
|
kernel ูู ุงู skew ุงู symmetric matrices ู ุงู range |
|
|
|
42 |
|
00:04:24,250 --> 00:04:29,610 |
|
ูู ุงู symmetric matrices ูุจูู for some a ุงููู |
|
|
|
43 |
|
00:04:29,610 --> 00:04:37,240 |
|
ู
ูุฌูุฏุฉ ูู b22 ูุจูู ูุฐุง ุจุฏู ูุณูู the setof all |
|
|
|
44 |
|
00:04:37,240 --> 00:04:41,740 |
|
symmetric |
|
|
|
45 |
|
00:04:41,740 --> 00:04:53,260 |
|
matrices in M22 ูุจูู ู
ุฌู
ูุนุฉ ุงูู symmetric matrices |
|
|
|
46 |
|
00:04:53,260 --> 00:04:58,460 |
|
ูู M22 ุงูุชูููุง ู
ู ุงูู
ุซุงู ุงูุฃูู ุจุฏูุง ูุฑูุญ ุงูุขู |
|
|
|
47 |
|
00:04:58,460 --> 00:05:03,140 |
|
ููู
ุซุงู ุงูุซุงูู ูุจูู ุจุงูุฏุงุฌู example 2 |
|
|
|
48 |
|
00:05:07,440 --> 00:05:19,080 |
|
ุงูู
ุซุงู ุงูุซุงูู ุจูููู let ุงู a ุจู an m ูู n matrix |
|
|
|
49 |
|
00:05:19,080 --> 00:05:23,040 |
|
define |
|
|
|
50 |
|
00:05:23,040 --> 00:05:32,300 |
|
ุนุฑูููุง ุงูู mapping define |
|
|
|
51 |
|
00:05:32,300 --> 00:05:33,280 |
|
ุงูู mapping |
|
|
|
52 |
|
00:05:36,620 --> 00:05:46,920 |
|
ู
ู RN ุฅูู RM by T |
|
|
|
53 |
|
00:05:46,920 --> 00:05:57,420 |
|
of X ุจุฏู ูุณุงูู ุงููู ูู ุงู AX where ุงู X ุงููู ูู ุงู |
|
|
|
54 |
|
00:05:57,420 --> 00:06:05,400 |
|
call matrix X1 X2 ูุงูุถู ู
ุงุดููู ูุบุงูุฉ ุงู XN |
|
|
|
55 |
|
00:06:07,700 --> 00:06:20,100 |
|
is a calm vector ุงูู
ุทููุจ |
|
|
|
56 |
|
00:06:20,100 --> 00:06:31,360 |
|
ูู
ุฑุฃ a show that ุจูููู ุงู ุงู T is a linear |
|
|
|
57 |
|
00:06:31,360 --> 00:06:45,120 |
|
transformation ูู
ุฑุฃ ุจููFind ุงูู kernel ููู T ูู
ุฑุฉ |
|
|
|
58 |
|
00:06:45,120 --> 00:06:50,620 |
|
C Find |
|
|
|
59 |
|
00:06:50,620 --> 00:06:54,240 |
|
the |
|
|
|
60 |
|
00:06:54,240 --> 00:07:06,000 |
|
range of T ุงููู ูู R of T ูู
ุฑุฉ |
|
|
|
61 |
|
00:07:06,000 --> 00:07:15,580 |
|
Dshow that ุงู |
|
|
|
62 |
|
00:07:15,580 --> 00:07:23,860 |
|
ุงูู T of X ุจุฏู ูุณุงูู ุงู A X ู |
|
|
|
63 |
|
00:07:23,860 --> 00:07:35,620 |
|
ุงููู define a linear transformation from R |
|
|
|
64 |
|
00:07:35,620 --> 00:07:36,200 |
|
N |
|
|
|
65 |
|
00:08:01,390 --> 00:08:10,350 |
|
RM ุณุคุงู ู
ุฑุฉ ุชุงููุฉุจูููู ุงูุชุฑุถ ุงู T ู
ู Rn ุฅูู Rm |
|
|
|
66 |
|
00:08:10,350 --> 00:08:16,350 |
|
ุนุฑููุงูุง ุงููุช ุงู A ุจ M by N matrix ูุจูู ุงุฎุฏูุง ู
ุตููุฉ |
|
|
|
67 |
|
00:08:16,350 --> 00:08:22,490 |
|
ูุธุงู
ูุง M ูู N define a mapping ุนุฑููุง function ู
ู |
|
|
|
68 |
|
00:08:22,490 --> 00:08:27,970 |
|
ุงู vector space Rn ุฅูู ุงู vector space Rm by T of |
|
|
|
69 |
|
00:08:27,970 --> 00:08:33,970 |
|
capital X ุจุฏู ูุณุงูู Ax ุงูุดูู ููุง ูุนูู ุญุงุตู ุถุฑุจ |
|
|
|
70 |
|
00:08:34,480 --> 00:08:39,860 |
|
ุงูู
ุตููุฉ ุงููู ูุถุงู
ูุง M ูู N ูู ุงูู
ุตููุฉ ุงูุนู
ูุฏูุฉ |
|
|
|
71 |
|
00:08:39,860 --> 00:08:45,060 |
|
ุงููู ูู X ู
ู ุงูู
ุตููุฉ ุงูุนู
ูุฏูุฉ ู
ุตููุฉ ู
ูููุฉ ู
ู N ู
ู |
|
|
|
72 |
|
00:08:45,060 --> 00:08:50,340 |
|
ุงูุตููู ูุนู
ูุฏ ูุงุญุฏ ูุจูู ููุง ููููุง ุงู X ุฏู is a |
|
|
|
73 |
|
00:08:50,340 --> 00:08:55,080 |
|
column vector ูุจูู ู
ุชุฌู ุนู
ูุฏู ูุนูู ู
ุตููุฉ ู
ูููุฉ ู
ู |
|
|
|
74 |
|
00:08:55,080 --> 00:09:00,230 |
|
ุนู
ูุฏ ูุงุญุฏ ููููุง ู
ุฌู
ูุนุฉ ู
ู ุงูุตูููุจูุงุก ุนูู ูุฐุง |
|
|
|
75 |
|
00:09:00,230 --> 00:09:03,790 |
|
ุงูุชุนุฑูู ุจุฏู ุฃุซุจุช ุฃู T ูู linear transformation |
|
|
|
76 |
|
00:09:03,790 --> 00:09:08,270 |
|
ูุนูู ุฅูุด ุจุฏู ุฃุญููุ ุงูุดุฑุทูู ุชุจุนุงุช ุงู linear |
|
|
|
77 |
|
00:09:08,270 --> 00:09:12,530 |
|
transformation ุฃู
ุฑ ุชุงูู ุจุฏู ุฃุฌูุจูุง ูู kernel ุจุฏู |
|
|
|
78 |
|
00:09:12,530 --> 00:09:16,770 |
|
ุฃุนุฑู ูุฏุงุด ุงูุฃู
ุฑ ุงูุชุงูู ุจุฏู ุฃุนุฑู ูุฏุงุด ุงู range ุชุจุน |
|
|
|
79 |
|
00:09:16,770 --> 00:09:22,260 |
|
T ุงููู ุจุฌู ูุฑุจุฒูู R of T ุชูุงุชุฉุจุชุจูู Any Linear |
|
|
|
80 |
|
00:09:22,260 --> 00:09:29,000 |
|
Transformation ู
ู ุงูู RN ุฅูู ุงู RM ู
ู ุงู RN ุฅูู ุงู |
|
|
|
81 |
|
00:09:29,000 --> 00:09:34,100 |
|
RM ูู ุนูู ุงูุดูู ุงููู ุนูุฏูุง ุฏุงุฆู
ุง ุงู ุจุฏุง T of X ุจุฏู |
|
|
|
82 |
|
00:09:34,100 --> 00:09:40,700 |
|
ุณูู ุญุตู ุถุฑุจ ุงูู
ุตููุฉ A ูู ุงูู
ุตููุฉ ุงูุนู
ูุฏูุฉ X ูุจูู |
|
|
|
83 |
|
00:09:40,700 --> 00:09:44,820 |
|
ุนูุฏูุง ุฃุฑุจุนุฉ ู
ุทุงููุจ ุจุฏูุง ูุจุฏุฃ ูุญุณุจ ูู ู
ุทููุจ ู
ู ูุฐู |
|
|
|
84 |
|
00:09:44,820 --> 00:09:51,110 |
|
ุงูู
ุทุงููุจ ุงูุฃุฑุจุนุฉุจูุฌู ููู
ุทููุจ ุงูุฃูู ุงููู ูู ุจุฏู |
|
|
|
85 |
|
00:09:51,110 --> 00:09:56,430 |
|
ุฃุซุจุช ุฃู T ุนุจุงุฑุฉ ุนู Linear Transformation |
|
|
|
86 |
|
00:10:05,420 --> 00:10:08,340 |
|
ูุจูู ุจุฏู ุงุซุจุช ุงูู ุดูุก ุงู ูุงุฏ ุงูู T Linear |
|
|
|
87 |
|
00:10:08,340 --> 00:10:12,340 |
|
Transformation ูุจูู ุจุฏู ุงุฎุฏ element ู
ู ุงู set of |
|
|
|
88 |
|
00:10:12,340 --> 00:10:15,980 |
|
real numbers ุงูู scalar ูุนูู ู element ู
ู ุงู |
|
|
|
89 |
|
00:10:15,980 --> 00:10:21,680 |
|
vector ุงููู ูู main RN ู ุงุดูู ุญุตู ุถุฑุจู ู
ุนุงู ููู |
|
|
|
90 |
|
00:10:21,680 --> 00:10:29,040 |
|
ุจุฏู ููุฏููู ูุจูู ุจุงุฌู ุจููู ููุง Fุงูู C ู
ูุฌูุฏุฉ ูู ุงูู |
|
|
|
91 |
|
00:10:29,040 --> 00:10:39,260 |
|
R and ุนูู ุณุจูู ุงูู
ุซุงู ุงูู X ู
ูุฌูุฏุฉ ูู ุงูู RNุงูู X |
|
|
|
92 |
|
00:10:39,260 --> 00:10:48,280 |
|
ูุฐุง ุจูุฏุฑ ุงูุชุจู ุนูู ุดูู X1 ู X2 ู ูุบุงูุฉ XN ุงู ุจูุฏุฑ |
|
|
|
93 |
|
00:10:48,280 --> 00:10:56,000 |
|
ุงูุชุจู ุนูู ุดูู ู
ุตูููุฉ ุนู
ูุฏูุฉ X1 X2 ูุบุงูุฉ XN ุจุงูุดูู |
|
|
|
94 |
|
00:10:56,000 --> 00:11:05,790 |
|
ุงููู ุนูุฏูุง ููุงุทูุจ ุงูุง ุจุฏู ุงุฎุฏ T of CX ุจุฏู ุงุญุงูู |
|
|
|
95 |
|
00:11:05,790 --> 00:11:13,010 |
|
ุงุซุจุช ุงู ูุฐุง ุจุฏู ูุณูู C ูู T of X ุจุฑุฌุน ููุชุนุฑูู ุงููู |
|
|
|
96 |
|
00:11:13,010 --> 00:11:17,850 |
|
ุงูุง ูุงููู ูุจูู ุทุจูุง ููุฐุง ุงูุชุนุฑูู ูุฐุง ุจุฏู ูุณูู |
|
|
|
97 |
|
00:11:17,850 --> 00:11:26,600 |
|
ุงูู
ุตููุฉ A ูู C of Xูุฃู C ูุฐุง scalar ุฅุฐุง ุจูุฏุฑ ุฃุทูุนู |
|
|
|
98 |
|
00:11:26,600 --> 00:11:32,980 |
|
ุจุฑุง ุงู T ุฃู ุจูุฏุฑ ุฃุทูุนู ุจุฑุง ุญุตู ุถุฑุจ ุงูู
ุตูููู ูุจูู |
|
|
|
99 |
|
00:11:32,980 --> 00:11:39,290 |
|
ูุฐุง C ูู ุงู AX ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุงูุจูู ูุฐุง |
|
|
|
100 |
|
00:11:39,290 --> 00:11:44,390 |
|
ุงูููุงู
ุจุฏู ูุณุงูู C ุงู AX ุนุจุงุฑุฉ ุนู ู
ูู ุญุณุจ ุงู |
|
|
|
101 |
|
00:11:44,390 --> 00:11:50,290 |
|
definition ุงููู ุนูุฏูู T of X ูุจูู C ูู T of X |
|
|
|
102 |
|
00:11:54,650 --> 00:11:59,950 |
|
ูุจูู T of X ูุจูู ุจูุงุก ุนููู ุฃุตุจุญ T ูู C of X ูุณุงูู |
|
|
|
103 |
|
00:11:59,950 --> 00:12:03,910 |
|
C ูู T of X ุฅุฐุง ุงูุชุญูู ุงู condition ุงูุฃูู ุฃู |
|
|
|
104 |
|
00:12:03,910 --> 00:12:08,090 |
|
ุงูุฎุงุตูุฉ ุงูุฃููู ู
ู ุฎุงุตุฉ Linear Transformation ูุจูู |
|
|
|
105 |
|
00:12:08,090 --> 00:12:12,350 |
|
ูุฐู ู
ู ูุฐู ุงูุฎุงุตูุฉ ุงูุฃููู ุจุฏุฃุฌู ููุฎุงุตูุฉ ุงูุซุงููุฉ |
|
|
|
106 |
|
00:12:12,350 --> 00:12:17,630 |
|
ุจุฏุฃ ุฃุฎุฏ two vectors ูุจูู ุจุฏุฃุฌู ุฃูููู let X ูY |
|
|
|
107 |
|
00:12:17,630 --> 00:12:23,830 |
|
ู
ูุฌูุฏุฉ ูู ุงู vector space RN |
|
|
|
108 |
|
00:12:25,570 --> 00:12:32,460 |
|
ุจุชุงุฎุฏ T of X ุฒุงุฆุฏ Y ูุณุงููุจูุงุก ุนูู ุงูู definition |
|
|
|
109 |
|
00:12:32,460 --> 00:12:37,080 |
|
ุชุงุจุนูุงูุง ูุฐุง ุจูููู ุงูู
ุตูููุฉ a ูู ุงู vector x ุฒุงุฆุฏ |
|
|
|
110 |
|
00:12:37,080 --> 00:12:45,220 |
|
y ูุจูู a ูู ุงู vector x ุฒุงุฆุฏ y ูุฐุง ุญุณุจ ุฎูุงุต ุนู
ููุฉ |
|
|
|
111 |
|
00:12:45,220 --> 00:12:52,720 |
|
ุงูุชูุฒูุน ุนูู ุงูู
ุตูููุงุช ูุจูู ูุฐุง ุจูููู ax ุฒุงุฆุฏ ay |
|
|
|
112 |
|
00:12:52,720 --> 00:13:00,820 |
|
ูุฐุง ุชุนุฑูู ู
ู ุงู T of x ููุฐุง ุชุนุฑูู ุงู T of yูุจูู |
|
|
|
113 |
|
00:13:00,820 --> 00:13:05,420 |
|
ุชุญูู ุงู condition ุงูุซุงูู ููุง ูุง ูุจูู ุจูุงุก ุนููู so |
|
|
|
114 |
|
00:13:05,420 --> 00:13:12,940 |
|
T is a linear transformationุฅุฐุง ุงูุชูููุง ู
ู ุงูู
ุทููุจ |
|
|
|
115 |
|
00:13:12,940 --> 00:13:17,780 |
|
ุงูุฃูู ุงููู ูู ูู
ุฑุง A ูู
ุฑุง B ูุงู ูุงุชู ุงู kernel |
|
|
|
116 |
|
00:13:17,780 --> 00:13:24,300 |
|
ุงูุชู ุจุงุฌู ุจูููู ุงู kernel ุงูุชู ุญุณุจ ุงู definition |
|
|
|
117 |
|
00:13:24,300 --> 00:13:30,020 |
|
ูู ู
ููุ ูู ูู ุงู X ุงููู ู
ูุฌูุฏุฉ ูู ุงู vector space |
|
|
|
118 |
|
00:13:30,020 --> 00:13:37,820 |
|
RN ุจุญูุซ ุฃู T of X ุจุฏู ุชุณุงูู 100 ุงู 0ุ 0 ุชุจุน ู
ููุ |
|
|
|
119 |
|
00:13:39,260 --> 00:13:45,800 |
|
ุชุจุน RM ู
ุด ููู ุนุฑููุง ุงู kernel ูู ุงู vectors ุงููู |
|
|
|
120 |
|
00:13:45,800 --> 00:13:49,240 |
|
ูู ุงู vector space ุงูุฃูู ู ุงููู ุตูุฑุชูู
ุจูููู ุงู |
|
|
|
121 |
|
00:13:49,240 --> 00:13:54,920 |
|
zero ุชุจุน ุงู vector space ุงูุซุงูู ุชู
ุงู
ูุจูู ููุง ูู |
|
|
|
122 |
|
00:13:54,920 --> 00:13:59,940 |
|
ุงู X ุงููู ู
ูุฌูุฏุฉ ูู RN ุจุญูุซ ุงู T of X ุจุฏู ูุณุงูู |
|
|
|
123 |
|
00:13:59,940 --> 00:14:05,510 |
|
zeroูุจูู ูุฐุง ุจุฏู ูุณุงูู ูู ุงู X ุงููู ู
ูุฌูุฏุฉ ูู RN |
|
|
|
124 |
|
00:14:05,510 --> 00:14:09,730 |
|
such that |
|
|
|
125 |
|
00:14:09,730 --> 00:14:15,570 |
|
ุงู T of X ุญุณุจ ุงู definition ู
ูู ุงู A X ุจุฏู ูุณุงูู |
|
|
|
126 |
|
00:14:15,570 --> 00:14:19,570 |
|
Zero ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุง ูุจูู ูุฐุง ุงูุด ู
ุนูุงู ูุง |
|
|
|
127 |
|
00:14:19,570 --> 00:14:29,800 |
|
ุจูุงุช ูู ุงู Xูู ุงููู ู
ูุฌูุฏุฉ ูู RN ูุนูู call vectors |
|
|
|
128 |
|
00:14:29,800 --> 00:14:34,740 |
|
ู
ุง ููู
ุจุญูุซ ุงู X ูุณุงูู Zero ูุนูู ูุฐุง ุจูุนุทููุง ู
ูู |
|
|
|
129 |
|
00:14:34,740 --> 00:14:41,020 |
|
ู
ุฌู
ูุนุฉ ุงูุญููู ุงู homogenous system ู
ุธุจูุท ูุจูู ูุฐุง |
|
|
|
130 |
|
00:14:41,020 --> 00:14:52,500 |
|
ู
ุนูุงู ุงููู ูู the set of all solutions of the |
|
|
|
131 |
|
00:14:54,210 --> 00:15:04,170 |
|
ููู
ูุฌูููุง ุณูุณุชู
ุงููู ax ุจุฏู ูุณุงูู ู
ู ุฒุฑุน ุดู ุดูููู
|
|
|
|
132 |
|
00:15:04,170 --> 00:15:09,510 |
|
ุงุด ู
ุง ูููู ูููู ูุจูู ู
ูู
ูุนุฉ ูู ุงูุญููู ููููู
ูุฌูููุง |
|
|
|
133 |
|
00:15:09,510 --> 00:15:15,170 |
|
ุณูุณุชู
ุงูู
ุญููู ุงูููู
ูุฌูููุง ุณูุณุชู
ุฃู
ุง ุญู ูุงุญุฏ ูู |
|
|
|
134 |
|
00:15:15,170 --> 00:15:20,370 |
|
ุงูุญู ุงูุตูุฑู ุฃู ุนุฏุฏ ูุงููุงุฆู ู
ู ุงูุญููู ููุฐุง ุงูุนุฏุฏ |
|
|
|
135 |
|
00:15:20,370 --> 00:15:24,550 |
|
ุงูููุงุฆู ูุฌุชู
ุน ุนุงูู
ูุง ุนูู ุงูุญู ุงูุตูุฑู ููุณู ุทูุจ ู
ุง |
|
|
|
136 |
|
00:15:24,550 --> 00:15:29,470 |
|
ุนูููุง ูุจูู ุญุณุจูุง ูู ููุฑูู ูุจูู ููุฑูู ุชุจุน ูุฐู ุงู |
|
|
|
137 |
|
00:15:29,470 --> 00:15:35,710 |
|
function ูู ูู ุงูุญููู ูู homogenous system X ุจุฏู |
|
|
|
138 |
|
00:15:35,710 --> 00:15:42,480 |
|
ูุณุงูู ู
ุงูุ ุจุฏู ูุณุงูู Zero ุทูุจ ูู
ุฑู ุงู Cูู
ุฑุง ุณูุฌุง |
|
|
|
139 |
|
00:15:42,480 --> 00:15:46,460 |
|
ุงููู ูุชู ุงู range ุชุจุน ุงู T ุจุงุฌู ุจููู ูู ุงู range |
|
|
|
140 |
|
00:15:46,460 --> 00:15:55,530 |
|
ุชุจุน ุงู T ูู ู
ููุูู ุงูุนูุงุตุฑ ุงููู ู
ูุฌูุฏุฉ ูู ุงูู RM |
|
|
|
141 |
|
00:15:55,530 --> 00:16:02,990 |
|
ูุจูู ูู ุงู vectors Y ุงููู ู
ูุฌูุฏุฉ ูู ุงูู RM ุจุญูุซ ุงู |
|
|
|
142 |
|
00:16:02,990 --> 00:16:12,250 |
|
ุงูู Y ูุฐู ุจุฏูุง ุชุณุงูู T of X for some X ุงููู ู
ูุฌูุฏุฉ |
|
|
|
143 |
|
00:16:12,250 --> 00:16:19,660 |
|
ูู ุงูู RN ู
ุด ููู ุชุนุฑูู ุงู rangeู
ุธุจูุท ูู ุงูุนูุงุตุฑ |
|
|
|
144 |
|
00:16:19,660 --> 00:16:27,220 |
|
ุงููู ู
ูุฌูุฏุฉ ูู ุงู domain RM ู ุงููู ุฅููุง ุฃุตู ูู ุงู |
|
|
|
145 |
|
00:16:27,220 --> 00:16:33,980 |
|
domain RM ุทูุจ ุชู
ุงู
ุชู
ุงู
ูุจูู ูุฐู ุจุฏู ุฃุนูุฏ ุตูุงุบุชูุง |
|
|
|
146 |
|
00:16:33,980 --> 00:16:40,080 |
|
ู
ุฑุฉ ุชุงููุฉ ูุจููู ูู ุงู Y ุงููู ู
ูุฌูุฏุฉ ูู RM such |
|
|
|
147 |
|
00:16:40,080 --> 00:16:44,680 |
|
that ุงู Y ุจุฏู ูุณุงูู T of X ุญุณุจ ุงู definition ุจุฏู |
|
|
|
148 |
|
00:16:44,680 --> 00:16:55,850 |
|
ูุณุงูู ู
ููุุงูู AX ูู |
|
|
|
149 |
|
00:16:55,850 --> 00:17:03,470 |
|
ููู
ู for some X |
|
|
|
150 |
|
00:17:03,470 --> 00:17:10,830 |
|
ุงููู ู
ูุฌูุฏุฉ ูู ุงูู RNุฅุฐุงู ูู ุงู Y ุงููู ู
ูุฌูุฏุฉ ูู |
|
|
|
151 |
|
00:17:10,830 --> 00:17:16,610 |
|
ุงู RM ุจุญูุซ ุงู Y ุนูู ุงูุดูู A of X for some X ุงููู |
|
|
|
152 |
|
00:17:16,610 --> 00:17:23,220 |
|
ู
ูุฌูุฏุฉ ูู ุงู RN ูุนูู ุฅูุด ูุตุฏุง ููููุูุจูู ูู ุงูููู
|
|
|
|
153 |
|
00:17:23,220 --> 00:17:28,840 |
|
ุงููู ูู Y ุจุญูุซ ุงูู non homogeneous system has a |
|
|
|
154 |
|
00:17:28,840 --> 00:17:35,440 |
|
solution ู
ุงููุชุด ุญููู ูุฐุง ุงู system ูุฃ ูุจูู ุจุงุฌู |
|
|
|
155 |
|
00:17:35,440 --> 00:17:43,740 |
|
ุจููู ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู the set of all elements |
|
|
|
156 |
|
00:17:45,790 --> 00:17:58,650 |
|
Y ุงูู
ูุฌูุฏุฉ ูู ุงูู RM such that ุจุญูุซ ุงู ุงู system |
|
|
|
157 |
|
00:17:58,650 --> 00:18:05,290 |
|
X ูุณุงูู Y has a solution |
|
|
|
158 |
|
00:18:12,620 --> 00:18:17,080 |
|
ูุนูู ุงูู
ูุตูุฏ ุจูุฐุง ุงูุญู ุงูู Y's ู ูุง ุงูู X's |
|
|
|
159 |
|
00:18:17,080 --> 00:18:23,820 |
|
ุงูุฅุฌุงุจุฉ ุงูู Y's ูุฃู ูุฐุง ุงูู non homogeneous system |
|
|
|
160 |
|
00:18:23,820 --> 00:18:27,720 |
|
ูุฏ ูููู ูู ุญู ู ูุฏ ูุง ูููู ูู ุญู ู
ุด ููู ุฏู ุงููู |
|
|
|
161 |
|
00:18:27,720 --> 00:18:31,320 |
|
ุฃุฎุฏูุงู ูุจูู ุงู ุงูู non homogeneous system ู
ู
ูู |
|
|
|
162 |
|
00:18:31,320 --> 00:18:36,320 |
|
ูููู ู
ุงููุด ุญููู ู ู
ู
ูู ูููู ุญู ูุญูุฏ ู ู
ู
ูู ูููู |
|
|
|
163 |
|
00:18:36,320 --> 00:18:41,770 |
|
ุนุฏุฏ ูุง ููุงุฆู ู
ู ุงูุญููููุฐุง ู
ุง ุชููููุ ูู ุงูุนูุงุตุฑ Y |
|
|
|
164 |
|
00:18:41,770 --> 00:18:45,670 |
|
ุจุญูุซ ุงู system ูุฐุง ูู ุญููู ูุจูู ูู ู
ุงูููุด ุญููู |
|
|
|
165 |
|
00:18:45,670 --> 00:18:51,910 |
|
ู
ุงููู
ู
ุณุชุจุนุฏุฉ ูููุง ูุจูู ุณูุงุก ูุงู ุญู ูุงุญุฏ ุฃู ุนุฏุฏ |
|
|
|
166 |
|
00:18:51,910 --> 00:18:55,510 |
|
ูููุงุฆู ู
ู ุงูุญููู ุนูู ูู ุงูุฃู
ุฑูู ุงูุฃู
ุฑ ุงูุฌูุงุจู ูุฃู |
|
|
|
167 |
|
00:18:55,510 --> 00:19:02,630 |
|
ูุฐุง ู
ุงูู ุฌูุงุจ ุตุญูุญ ุฅุฐุง ุทูุน ุงููุฑุฌ ู
ุง ุจูู A ูB ุงู B |
|
|
|
168 |
|
00:19:02,630 --> 00:19:10,830 |
|
ูุง ุชุฑู ุตุจุตุช ู
ู RN ู ูุง RMู
ู ู
ููุ ู
ู RN ูุฐุง ุงู |
|
|
|
169 |
|
00:19:10,830 --> 00:19:16,530 |
|
kernel ุทูุจ ุงู range subset ู
ู ู
ููุ ู
ู RM ูุฃู ุงู |
|
|
|
170 |
|
00:19:16,530 --> 00:19:22,110 |
|
range ุงูู
ุฏู ุงูุตูุฑ ุชุจุนุช ุงูุนูุงุตุฑ ูุจูู ูู ุงูุญููุฉ ูู |
|
|
|
171 |
|
00:19:22,110 --> 00:19:25,910 |
|
ุงู solutions ุชุจุน ุงู homogeneous system ุงู solution |
|
|
|
172 |
|
00:19:25,910 --> 00:19:30,750 |
|
ูุนูู ููู
X ูุงู X ููููุง ููู ู
ูุฌูุฏุฉุจุงููุณุจุฉ ููู RM |
|
|
|
173 |
|
00:19:30,750 --> 00:19:34,810 |
|
ูุจูู ูุฐุง ูุชูู ูููู
ูุง ุชู
ุงู
ุง ุงูู range ููููุง ูู ุฌุฒุก |
|
|
|
174 |
|
00:19:34,810 --> 00:19:38,490 |
|
ู
ู ุงูู RM ูุฐูู ููููุง ุงูู range ูู ุงูุนูุงุตุฑ ุงููู |
|
|
|
175 |
|
00:19:38,490 --> 00:19:43,690 |
|
ู
ูุฌูุฏุฉ ูู RM ูุจูู ูู ุงูุนูุงุตุฑ ุงููู ู
ูุฌูุฏุฉ ูู RM |
|
|
|
176 |
|
00:19:43,690 --> 00:19:48,330 |
|
ุจุญูุซ ุงูู non homogeneous system ูุฐุง ูู solution |
|
|
|
177 |
|
00:19:48,330 --> 00:19:55,480 |
|
ูุจูู ุงูุชูููุง ู
ู ุงูููุทุฉ C ุจุฏูุง ูุฑูุญ ููููุทุฉ ุฏูุงูููุทุฉ |
|
|
|
178 |
|
00:19:55,480 --> 00:20:00,140 |
|
ุฏู ุจูููููู ุงุซุจุชูู ุงู ุงู T of X ุณูู X defined a |
|
|
|
179 |
|
00:20:00,140 --> 00:20:03,720 |
|
Linear Transformation ูุนูู Linear Transformation |
|
|
|
180 |
|
00:20:03,720 --> 00:20:08,540 |
|
ู
ู ุงู RN ููRM ุฏุงุฆู
ุง ู ุฃุจุฏุง ุชุงุฎุฏ ุงูุดูู ุงููู ุนูุฏูุง |
|
|
|
181 |
|
00:20:08,540 --> 00:20:14,240 |
|
ูุฐุง ุจูููู ูููุณ ุงุฐุง ุจุฏูุง ูุจุฏุฃ ุงูุญู ูุชุงูู ุจุฏู ุงุฌู |
|
|
|
182 |
|
00:20:14,240 --> 00:20:19,760 |
|
ุนูู
ูู ุนูู ุงู RN ู ุงุฑูุญ ุงุฎุฏ ุงู basis ุชุจุนู ู ูุชููู
|
|
|
|
183 |
|
00:20:19,760 --> 00:20:26,220 |
|
ุนููู ุจุนุฏ ููููุจูู ููุง ุจุฌู ุจููู ูู let E1 ูุจูู ูุณุงูู |
|
|
|
184 |
|
00:20:26,220 --> 00:20:36,640 |
|
1 ู 0 ู 0 ู ูุบุงูุฉ 0 ู E2 ูุณุงูู 0 ู 1 ู 0 ูุบุงูุฉ 0 ู |
|
|
|
185 |
|
00:20:36,640 --> 00:20:43,880 |
|
ูุธู ู
ุงุดููู ูุบุงูุฉ ู
ุง ูุตู ุงูู EN 001 |
|
|
|
186 |
|
00:20:43,880 --> 00:20:50,500 |
|
ุจุงูุดูู ุงููู ุนูุฏูุง ููุงูุจูู ุฎุฏุช ูุฏูู ู
ูู ูุฏูู ุงู |
|
|
|
187 |
|
00:20:50,500 --> 00:20:56,880 |
|
bases ุชุจุนุงุช ู
ูู ุชุจุนุงุช ุงูุนูุงุตุฑ ุงู bases ุชุจุนุงุช ุงู RN |
|
|
|
188 |
|
00:20:56,880 --> 00:21:09,740 |
|
ูุจูู ูุฏูู ุงูุนูุงุตุฑ ูุช ุจู the standard bases |
|
|
|
189 |
|
00:21:09,740 --> 00:21:13,780 |
|
for RN |
|
|
|
190 |
|
00:21:15,360 --> 00:21:31,020 |
|
ูุจูู ุฏูู ุนูุงุตุฑ ุงู standard basis ูู
ูุ ูู RN ูููุณ |
|
|
|
191 |
|
00:21:31,020 --> 00:21:42,660 |
|
ุจุฏุง ุฃูุชุฑุถ ุจุฑุถู suppose that ุงูุชุฑุถ ุงู ุงู T of E1 |
|
|
|
192 |
|
00:21:42,660 --> 00:21:54,590 |
|
ุจุฏู ูุณูู E1ู T of E2 ูู A2 ูุงูุธุฑ ูุบุงูุฉ T of EN ูู |
|
|
|
193 |
|
00:21:54,590 --> 00:21:59,330 |
|
AN ุฎูููู |
|
|
|
194 |
|
00:21:59,330 --> 00:22:04,890 |
|
ุฃุณุฃููู
ุงูุณุคุงู ุงูุชุงูู ุงู A1 ู ุงู A2 ู ุงู A3 ู ุงู AN |
|
|
|
195 |
|
00:22:04,890 --> 00:22:11,540 |
|
ุดู
ูุฏููุูุนูู answer real number ูุงููู vector ูุนูู |
|
|
|
196 |
|
00:22:11,540 --> 00:22:18,600 |
|
ู
ุตูููุฉ ูุงููู ุงูู ุดู a1 ูุฐุงุ vector ููุดุ ูุฃู T of |
|
|
|
197 |
|
00:22:18,600 --> 00:22:24,540 |
|
E1 E1 ู
ูุฌูุฏ ูู ุงู R in ุตูุฑุฉ ูููุ ูู ุงู R M ูุจูู |
|
|
|
198 |
|
00:22:24,540 --> 00:22:28,360 |
|
ูุฐุง vector ู ุงู vector ุนูููุง ุดูู ู
ุตูููุฉ ุนู
ูุฏูุฉ |
|
|
|
199 |
|
00:22:28,360 --> 00:22:35,620 |
|
ูููุง M ู
ู ุงูุตููู ู ุนู
ูุฏ ูุงุญุฏ ูุจูู ููุง where |
|
|
|
200 |
|
00:22:38,960 --> 00:22:52,300 |
|
ุญูุซ ุงู A1 ู ุงู A2 ู ูุบุงูุฉ ุงู AM RM ูู one matrices |
|
|
|
201 |
|
00:22:52,300 --> 00:22:59,260 |
|
ูุนูู ููู ู
ูุฌูุฏ ูู ูุงุญุฏ ูููู
ุูู ุงู R M ูุนูู ูุฃูู |
|
|
|
202 |
|
00:22:59,260 --> 00:23:05,500 |
|
ุงูุด A1 ู A2 ู
ุฌุตุฏู ุงู A1 ุจุฏู ูุณุงูู X1 ู X2 ูุบุงูุฉ X |
|
|
|
203 |
|
00:23:05,500 --> 00:23:11,640 |
|
M ุชู
ุงู
ูุนูู ู
ูุฌูุฏ ูู ุงู R M ุชู
ุงู
ุงูุชู
ุงู
ุทูุจ ูููุณ |
|
|
|
204 |
|
00:23:11,640 --> 00:23:17,420 |
|
ุงุญูุง ุนุงูุฒุง ุงูุงู ููู ANA ู
ุด ุณุงู
ุน ููู ุญุทุช ููุง AN ู
ุด |
|
|
|
205 |
|
00:23:17,420 --> 00:23:24,320 |
|
Mู
ูู ูุงุญุฏ ูู
ุงุฐุง ุงูู
ูุฌูุฏุฉ ูู ุงูุงุฑ ุงู
ูู element |
|
|
|
206 |
|
00:23:24,320 --> 00:23:30,000 |
|
ู
ููู ู
ู ุงู
ู
ู ุงูุนูุงุตุฑ ุจุฏู ู
ุง ูู ุงูุฑูู
ุงูุฃูู ูุงุตู |
|
|
|
207 |
|
00:23:30,000 --> 00:23:34,060 |
|
ุงูุฑูู
ุงููู ูุชุจุชู ุนูู ุดูู ุนู
ูุฏ ู
ููู ู
ู ุงู
ู
ู ุงูุตููู |
|
|
|
208 |
|
00:23:34,060 --> 00:23:43,060 |
|
ู ุนู
ูุฏ ูุงุญุฏ ููุท ูุจูู ุงููู ุงู ูู ุงูุงู ุงู ูููู
ุงุฑ ุงู
|
|
|
|
209 |
|
00:23:43,060 --> 00:23:44,800 |
|
ูู one matrices |
|
|
|
210 |
|
00:23:50,880 --> 00:23:57,880 |
|
belongs to RM ูุจูู ูููุง ู
ูุฌูุฏุฉ ูู ุงูู RM ุจุงูุดูู |
|
|
|
211 |
|
00:23:57,880 --> 00:24:04,180 |
|
ุงููู ุนูุฏูุง ููุงุฃูุด ุจูููู ุจูููู ูุฐู ุงู T ุงููู ุฃูุช |
|
|
|
212 |
|
00:24:04,180 --> 00:24:09,300 |
|
ุฃุฎุฏุชูุง ู
ู ุงู RN ูู RM ุจุฏู ุฃุซุจุช ุฅูู ุฏุงูู
ุง ู ุฃุจุฏุง |
|
|
|
213 |
|
00:24:09,300 --> 00:24:12,440 |
|
ุจูุฏุฑ ุฃูุชุจูุง ุนูู ู
ูู ุนูู ุงูุดูู ุงููู ุนูุฏูุง ูุฐุง |
|
|
|
214 |
|
00:24:12,440 --> 00:24:18,120 |
|
ูู
ูููู ุฃู ุฃุฑูุญ ุฃุฎุฏ element X ู
ูุฌูุฏ ูู RN ู ุฃุดูู ุดู |
|
|
|
215 |
|
00:24:18,120 --> 00:24:23,600 |
|
ุจุฏู ุฃุณุงูู ุฃูุง ุฅุฐุง ูู ุฌูุช ููุช ุฎุฏูู ุงู X ุงููู ูู ุจุฏู |
|
|
|
216 |
|
00:24:23,600 --> 00:24:31,340 |
|
ุฃุณุงูู ู
ู X1 ู X2 ู ูุบุงูุฉ XMุงูุฅูุณุงู ู
ูุฌูุฏ ูู ูู |
|
|
|
217 |
|
00:24:31,340 --> 00:24:38,430 |
|
ู
ูุงูุจุงูู RN ูุนูู T ุจููุฏุฑ ูุคุซุฑ ุนููู ุญุชู ุฃููู T of X |
|
|
|
218 |
|
00:24:38,430 --> 00:24:44,210 |
|
ุจุฏู ุฃุซุจุช ุฃูู ุจุฏู ูุณูู main X ุทูุจ ูุฐุง ู
ุด ูุณูู |
|
|
|
219 |
|
00:24:44,210 --> 00:24:52,030 |
|
ู
ุฌู
ูุนุฉ ู
ู ุงู vector X 1 ู 0 ู 0 ูุบุงูุฉ ุงูู 0 ุฒุงุฆุฏ 0 |
|
|
|
220 |
|
00:24:52,030 --> 00:24:59,490 |
|
ู X 2 ู 0 ู 0 ุฒุงุฆุฏ ู ุชุจูู ู
ุงุดูุฉ ูุบุงูุฉ ู
ุง ุชูุตู ุฅูู |
|
|
|
221 |
|
00:24:59,490 --> 00:25:07,910 |
|
0ู 0 ู XN ููุง ูุฃูุจูู ูุฐุง ุงูุนูุตุฑ ูุชุจุชู ุนูู ุดูู |
|
|
|
222 |
|
00:25:07,910 --> 00:25:13,970 |
|
ู
ุฌู
ูุนุฉ ู
ู ู
ููุ ู
ู ุงูุนูุงุตุฑ ูุจูู ูู ุฌูุช ุงุฎุฏุช x1 ุนุงู
ู |
|
|
|
223 |
|
00:25:13,970 --> 00:25:24,070 |
|
ู
ุดุชุฑู ุจูุธู ูุฏูุ 100 ุฒูุฏ x2 0 ู 1 ู 0 ู 0 ุฒูุฏ ุงู |
|
|
|
224 |
|
00:25:24,070 --> 00:25:32,910 |
|
ุจูุธู ู
ุงุดููู xn 0 ู 0 ู 1 ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุงูุจูู |
|
|
|
225 |
|
00:25:32,910 --> 00:25:38,350 |
|
ูุงุญุฏ ูููุฌูููุง ู
ููุ ุงูุฌูุฒ ูุนูููุง ุงูุขู ุฃุฏุฑูุชูุง ู
ุง ูู |
|
|
|
226 |
|
00:25:38,350 --> 00:25:43,410 |
|
ุงูุณุฑ ุงููู ุฎูุงูู ุฃุจุฏุฃ ุจู
ูู ุจุงููุฑุถูุฉ ุงููู ุนูุฏูุง ูุฐู |
|
|
|
227 |
|
00:25:43,410 --> 00:25:50,630 |
|
ุชู
ุงู
ุ ูุจูู ูุฐู ูุฅูู ุฅูู ูุง ุดุจูุงุชุ ูุฅูู X1E1 ููุฐู |
|
|
|
228 |
|
00:25:50,630 --> 00:26:00,820 |
|
X2E2 ูุถูุช ู
ุงุดู ุฅูู ุบุงูุฉ XNEN ูุฐุง ู
ููุุงูู X ูุจูู |
|
|
|
229 |
|
00:26:00,820 --> 00:26:06,600 |
|
ุงูู X ุงููู ุนูุฏู ูุฐุง ูุชุจุชู ุนูู ุดูู linear |
|
|
|
230 |
|
00:26:06,600 --> 00:26:12,100 |
|
combination ู
ู ุนูุงุตุฑ ุงู bases ุชู
ุงู
ุงูุงู T linear |
|
|
|
231 |
|
00:26:12,100 --> 00:26:17,560 |
|
transformation ุจุฏู ุฃุฎูููุง ุชุฃุซุฑ ุนูู ู
ููุุนูู X ูุจูู |
|
|
|
232 |
|
00:26:17,560 --> 00:26:22,800 |
|
ุจุงูุฏุงุฌู ูุงุฎุฏูู T of X ุงููู ุฃูุง ุจุฏูุฑ ุนูููุง ูุจูู |
|
|
|
233 |
|
00:26:22,800 --> 00:26:28,780 |
|
ุจุชุซูู T ููู
ูุฏุงุฑ ูุฐุง ููู ููุธุฑุง ูุฃููุง T Linear |
|
|
|
234 |
|
00:26:28,780 --> 00:26:36,600 |
|
Transformation ูุจูู ุจุชุตูุฑ T of X1 E1 ุฒุงุฆุฏ T of X2 |
|
|
|
235 |
|
00:26:36,600 --> 00:26:46,120 |
|
E2 ุฒุงุฆุฏ ุฒุงุฆุฏT of X N E N ููุด ุงูููุงู
ูุฐุง since ูุฃู |
|
|
|
236 |
|
00:26:46,120 --> 00:26:54,420 |
|
T is a linear transformation ุทูุจ ู
ู ุฎูุงุตุฉ ุงู |
|
|
|
237 |
|
00:26:54,420 --> 00:26:59,240 |
|
linear transformation ุงูุฃู ุงู E1 vector ุทุจ ู ุงู X1 |
|
|
|
238 |
|
00:26:59,240 --> 00:27:14,240 |
|
vector ููุง scalarุฃูู ุฎุงุตูุฉ ูุจูู ููุง X1 ูู T of E1 |
|
|
|
239 |
|
00:27:14,240 --> 00:27:25,130 |
|
ุฒุงุฆุฏ X2 ูู T of E2 ุฒุงุฆุฏ ุฒุงุฆุฏ XN ูู T of ENูุจูู ูุฐุง |
|
|
|
240 |
|
00:27:25,130 --> 00:27:33,850 |
|
ุงูููุงู
ุจุฏู ูุณุงูู X1A1 ุฒู ุงู X2A2 ุฒู ุงู XNAN ุญุณุจ ู
ุง |
|
|
|
241 |
|
00:27:33,850 --> 00:27:39,110 |
|
ููุฑุถ ููู ุตุญูุญ ููุง ูุฃุ ุทูุจ ูููููุง ุงู ุงูุงุช ู
ุงููู
|
|
|
|
242 |
|
00:27:39,110 --> 00:27:46,790 |
|
ูุฏููุ ู
ุตูููุงุช ูุจูู ูุฏูู ู
ุงูู ู
ุตูููุงุช ุทูุจ ุณุคุงู ุฃููุณ |
|
|
|
243 |
|
00:27:46,790 --> 00:27:55,080 |
|
ูุฐุง ูู ุญุงุตู ุงูุถุฑุจ AXุุตุญ ููุง ูุฃุ ูุฃู ูุฐู ุงููA |
|
|
|
244 |
|
00:27:55,080 --> 00:28:00,860 |
|
ู
ุตููุงุช ุงููู ุนูุฏูุง ูุฐู ุชู
ุงู
ุ ูุฃูู ุงูุดุ ูุฃู ุงููE1 |
|
|
|
245 |
|
00:28:00,860 --> 00:28:04,740 |
|
ู
ุตููุฉ ุนู
ูุฏ ุงููA2 ู
ุตููุฉ ุนู
ูุฏ ุงููA3 ู
ุงุตููุฉ ุนู
ูุฏ |
|
|
|
246 |
|
00:28:04,740 --> 00:28:05,160 |
|
ุงููA4 ู
ุงุตููุฉ ุนู
ูุฏ ุงููA5 ู
ุงุตููุฉ ุนู
ูุฏ ุงููA6 ู
ุงุตููุฉ |
|
|
|
247 |
|
00:28:05,160 --> 00:28:05,180 |
|
ุนู
ูุฏ ุงููA7 ู
ุงุตููุฉ ุนู
ูุฏ ุงููA8 ู
ุงุตููุฉ ุนู
ูุฏ ุงููA9 |
|
|
|
248 |
|
00:28:05,180 --> 00:28:06,220 |
|
ู
ุงุตููุฉ ุนู
ูุฏ ุงููA9 ู
ุงุตููุฉ ุนู
ูุฏ ุงููA9 ู
ุงุตููุฉ ุนู
ูุฏ |
|
|
|
249 |
|
00:28:06,220 --> 00:28:06,480 |
|
ุงููA9 ู
ุงุตููุฉ ุนู
ูุฏ ุงููA9 ู
ุงุตููุฉ ุนู
ูุฏ ุงููA9 ู
ุงุตููุฉ |
|
|
|
250 |
|
00:28:06,480 --> 00:28:09,080 |
|
ุนู
ูุฏ ุงููA9 ู
ุงุตููุฉ ุนู
ูุฏ ุงููA9 ู
ุงุตููุฉ ุนู
ูุฏ ุงููA9 |
|
|
|
251 |
|
00:28:09,080 --> 00:28:17,640 |
|
ู
ุงุตููุฉ ุนู
ูุฏ ุงููA9ู
ุธุจูุท ูุจูู ูุฐุง ุงู ax where ุญูุซ ุงู |
|
|
|
252 |
|
00:28:17,640 --> 00:28:25,440 |
|
a ูู ุงูู
ุตุญููุฉ ูุนู
ูุฏู a1 ู a2 ู ูุบุงูุฉ an ุจุงูุดูู |
|
|
|
253 |
|
00:28:25,440 --> 00:28:31,230 |
|
ุงููู ุนูุฏูุงูุนูู ูู ูุงุญุฏ ู
ู A1 ู A2 ู AN ูู ุนู
ูุฏ |
|
|
|
254 |
|
00:28:31,230 --> 00:28:37,530 |
|
ูู
ูุ ููู
ุตููุฉ A ูุจูู ู
ู ุงูุฃููุง ุณุงุนุฏุง ุฃู linear |
|
|
|
255 |
|
00:28:37,530 --> 00:28:41,930 |
|
transformation ู
ู ุงู RN ุฅูู ุงู RM ุชููู ุฏุงุฆู
ุง ู |
|
|
|
256 |
|
00:28:41,930 --> 00:28:48,150 |
|
ุฃุจุฏุง ุนูู ุงูุดูู T of X ุจูุณุงูู 100 ูุณุงูู AX ู ููุฐุง |
|
|
|
257 |
|
00:28:48,150 --> 00:28:54,340 |
|
ุญุฏ ูููู
ุจุชุญุจ ุชุณุฃู ุฃู ุณุคุงู ููุงุุทูุจ ุงูุชูููุง ู
ู |
|
|
|
258 |
|
00:28:54,340 --> 00:28:59,160 |
|
ุงูู
ุซุงู ุงูุซุงูู ุจุฏูุง ูุฑูุญ ููู
ุซุงู ุงูุซุงูุซ |
|
|
|
259 |
|
00:29:31,620 --> 00:29:39,580 |
|
Example 3 ุจูููู |
|
|
|
260 |
|
00:29:39,580 --> 00:29:52,620 |
|
LED T ู
ู R3 ูุบุงูุฉ R3 ุจู A linear transformation |
|
|
|
261 |
|
00:29:52,620 --> 00:30:05,450 |
|
defined by ู
ุนุฑูุฉ ุนูู ุงูุดูู ุงูุชุงูููู ofX ูู ุนุจุงุฑุฉ |
|
|
|
262 |
|
00:30:05,450 --> 00:30:16,090 |
|
ุนู TR X1 ู X2 ู X3 ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุง ุจุฏู ูุณุงูู |
|
|
|
263 |
|
00:30:16,090 --> 00:30:25,630 |
|
ุญุตู ุถุฑุจ 101 112213 |
|
|
|
264 |
|
00:30:25,630 --> 00:30:36,400 |
|
ูู X1 X2 X3ุงูุดูู ุงููู ุนูุฏูุง ูุฐุง ุงูู
ุทููุจ ุงูุฃูู ูู
ุฑ |
|
|
|
265 |
|
00:30:36,400 --> 00:30:49,960 |
|
ุงูู find ุงู kernel ุงูุชู and ุงู dimension ูู kernel |
|
|
|
266 |
|
00:30:49,960 --> 00:31:01,420 |
|
ุงูุชู ูู
ุฑ ุจูู find a bases |
|
|
|
267 |
|
00:31:07,180 --> 00:31:20,940 |
|
Find a basis for R of T and ุงูู dimension ููู R of |
|
|
|
268 |
|
00:31:20,940 --> 00:31:24,660 |
|
T ูู
ุฑู |
|
|
|
269 |
|
00:31:24,660 --> 00:31:37,560 |
|
C Find T of ูุงุญุฏ ู ุงุชููู ู ุชูุงุชุฉ ูู
ุฑู Dis the |
|
|
|
270 |
|
00:31:37,560 --> 00:31:44,220 |
|
element |
|
|
|
271 |
|
00:31:44,220 --> 00:31:53,860 |
|
ุงุชููู ูุฎู
ุณุฉ ูุณุจุนุฉ ู
ูุฌูุฏ ูู ุงู R of T ุงู
ูุงุ |
|
|
|
272 |
|
00:32:14,190 --> 00:32:19,150 |
|
ุณุคุงู ู
ุฑุฉ ุชุงููุฉุทุจุนุง ุฒู ู
ุง ุงูุช ุดุงูููู ู
ู ุณุคุงู ุฅูู |
|
|
|
273 |
|
00:32:19,150 --> 00:32:25,570 |
|
ุณุคุงู ุจุชุฎุชูู ุงูููุฑุฉ ุดููุฉ ุจูููู ุงูุชุฑุถ T ู
ู R3 ุฅูู R3 |
|
|
|
274 |
|
00:32:25,570 --> 00:32:31,130 |
|
ุจูู Linear Transformation ูุงุถุญ ู
ู RN ุฅูู RM ุงูุด |
|
|
|
275 |
|
00:32:31,130 --> 00:32:35,970 |
|
ุงุชูุงุฌูุง ุงููุตููู ุฏุงูู
ุง ู
ู T of X ุจุฏูู ุณูู ู
ูุ ุจุฏูู |
|
|
|
276 |
|
00:32:35,970 --> 00:32:40,310 |
|
ุณูู X ู
ู ุงูู
ุซุงู ุงููู ุฌุงุจูู ูุนูู ูุฃูู ุณุคุงููุง ูุฐุง ูู |
|
|
|
277 |
|
00:32:40,310 --> 00:32:45,150 |
|
ุชุทุจูู ุนู
ูู ุนูู ู
ูุ ุนูู ุงูู
ุซุงู ุงููู ุฌุงุจููุ ู
ุธุจูุทุ |
|
|
|
278 |
|
00:32:45,410 --> 00:32:49,930 |
|
ูุจูู ูุฃู ุงุญูุง ุจูุงุทู ุฃู ู
ุซุงู ุนุฏุฏู ุชุทุจูู ุนูู ุงูู
ุซุงู |
|
|
|
279 |
|
00:32:49,930 --> 00:32:55,350 |
|
ุงููุธุฑู ุงููู ุฌุงุจูู ูุจูู ู
ุนุฑูุฉ ูุงูุชุงูู T of X ุงูู X |
|
|
|
280 |
|
00:32:55,350 --> 00:32:59,390 |
|
ูู ุงููู ู
ูุฌูุฏ ูู R3 ูุนูู T of X ูุงุญุฏ ู X ุงุชููู ู X |
|
|
|
281 |
|
00:32:59,390 --> 00:33:04,230 |
|
ุชูุงุชุฉ ุจุชูุชุจูู
ุนูู ุดูู ุนู
ูุฏ ูุจูู ูููู T of X ูุงุญุฏ X |
|
|
|
282 |
|
00:33:04,230 --> 00:33:10,470 |
|
ุงุชููู X ุชูุงุชุฉ ุจุฏู ูุณุงูู ุญุงุตู ุถุฑุจ ุงูู
ุตููุฉ A ุฃุฎุฏูุงูุง |
|
|
|
283 |
|
00:33:10,470 --> 00:33:14,430 |
|
ุจุงูุดูู ูุฐุง ูู X ุงููู ูู X ูุงุญุฏ ู X ุงุชููู ู X ุชูุงุชุฉ |
|
|
|
284 |
|
00:33:14,640 --> 00:33:17,780 |
|
ูุจูู ูุฐู ุงูู Linear Transformation ุงููู ุนูุฏูุง |
|
|
|
285 |
|
00:33:17,780 --> 00:33:21,580 |
|
ู
ุทููุจ ู
ู ูุฐู ุงูู Linear Transformation ูู ุชุจุฏุฃ ุงูู |
|
|
|
286 |
|
00:33:21,580 --> 00:33:25,730 |
|
Kernelู ุจุฏู ุงู dimension ููููุฑูู ูุงู ููุฑูู ู
ุงูู |
|
|
|
287 |
|
00:33:25,730 --> 00:33:31,790 |
|
sub space ูุนูู space ุจุฏู ุงู dimension ูู ุฌุฏุงุด ุชููู |
|
|
|
288 |
|
00:33:31,790 --> 00:33:38,350 |
|
ุจุฏู basis ูู range ุจุฏู ุงู vectors ุงููู ุจูุงูุฏููู ุงู |
|
|
|
289 |
|
00:33:38,350 --> 00:33:42,650 |
|
range ุชุจุน ู
ู ุงู subspace R of T ู ุจุนุฏ ููู ุจุฏู ุงู |
|
|
|
290 |
|
00:33:42,650 --> 00:33:47,570 |
|
dimension ูู
ุงู ูู R of T ูุนูู ูู ููุทุฉ ุฒู ู
ุง ุชูุงุญุธุช |
|
|
|
291 |
|
00:33:47,570 --> 00:33:50,730 |
|
ุจ main ุจู
ุทูุจูู ููู ุฅุฐุง ุฌุจุช ุงูู
ุทูุจ ุงูุฃูู ุจุตูุฑ |
|
|
|
292 |
|
00:33:50,730 --> 00:33:55,160 |
|
ุงูู
ุทูุจ ุงูุชุงูู ุงูุณูู ุชุญุตูู ุญุตูุงูู
ุทููุจ ูู
ุฑู C ุจูููู |
|
|
|
293 |
|
00:33:55,160 --> 00:33:58,840 |
|
ูู ูุงุชูู T of ูุงุญุฏ ูุงุซููู ูุซูุงุซ ุจุชุนุฑู ูุฏุงุด ุตูุฑุฉ |
|
|
|
294 |
|
00:33:58,840 --> 00:34:03,340 |
|
ูุงุญุฏ ูุงุซููู ูุซูุงุซ ุดู ุจุชุนุทููู ุงูุฃู
ุฑ ุงูุฑุงุจุน ุจูููู ูู |
|
|
|
295 |
|
00:34:03,340 --> 00:34:08,100 |
|
ูู ุงูุนูุตุฑ ูุฐุง ู
ูุฌูุฏ ูู ุงู range ุฃู
ูุงุ ุจูููู ูู |
|
|
|
296 |
|
00:34:08,100 --> 00:34:13,400 |
|
ุงููู ุฃุนูู
ูุจูู ุจุฏุงุฌู ููููุทุฉ ุงูุฃููู ุงููู ูู A ูุงู |
|
|
|
297 |
|
00:34:13,400 --> 00:34:18,280 |
|
ูู ูุงุชูู ุงู kernelุจููู ูู ูุจู ุงู kernel ุฎููููู ุฃุญุท |
|
|
|
298 |
|
00:34:18,280 --> 00:34:24,740 |
|
ูุฐู ูู ุดูู ุฃูุทู ู
ู ููู ุดููุฉ ุจูููู ููู ุจูููู ููุชู |
|
|
|
299 |
|
00:34:24,740 --> 00:34:35,180 |
|
of X1 X2 X3 ูู
ุตูููุฉ ุงูุดูู ุงููู ุนูุฏูุง ุชู
ุงู
ุ ุจุฏู |
|
|
|
300 |
|
00:34:35,180 --> 00:34:41,490 |
|
ูุณุงูู ุญุงุตู ุถุฑุจ ูุฏูู ุทุจ ู
ุถุฑุจูู
ูู ุจุนุถู
ุงุดู ูุจูู ูู |
|
|
|
301 |
|
00:34:41,490 --> 00:34:45,690 |
|
ุฑูุญุช ุถุฑุจุชู
ูู ุจุนุถ ุจูููู ูู
ูู ุงูุตู ุงูุฃูู ูู ุงูุนู
ูุฏ |
|
|
|
302 |
|
00:34:45,690 --> 00:34:54,690 |
|
ุงูุฃูู ูุจูู x1 ุฒุงุฆุฏ x3 ุงูุตู ุงูุซุงูู ูุจูู x1 ุฒุงุฆุฏ x2 |
|
|
|
303 |
|
00:34:54,690 --> 00:35:08,130 |
|
ุฒุงุฆุฏ 2x3 ุงูุตู ุงูุชุงูุช 2x1 ุฒุงุฆุฏ x2 ุฒุงุฆุฏ 3x3 ูุงู |
|
|
|
304 |
|
00:35:08,130 --> 00:35:13,070 |
|
ุถุฑุจูุงูุจูู ูุฐุง ุงููlinear transformation ุงูู
ุนุฑูุฉ ุนูู |
|
|
|
305 |
|
00:35:13,070 --> 00:35:21,360 |
|
ุฌุงูู ูุงุชู ุงูููุฑูู ุจุงุฌู ุจูููู ุงู ุงูููุฑููุงูุชู ูู ูู |
|
|
|
306 |
|
00:35:21,360 --> 00:35:26,880 |
|
ุงู X's ุงููู ู
ูุฌูุฏุฉ ูู ุงู R3 ุงููู ุนูุฏูุง ู ุงููู |
|
|
|
307 |
|
00:35:26,880 --> 00:35:33,580 |
|
ุตูุฑุชูุง T of X ุจุฏู ูุณุงูู ู
ููุ ุจุฏู ูุณุงูู Zero ูุจูู |
|
|
|
308 |
|
00:35:33,580 --> 00:35:39,660 |
|
ูุฐู ูู ุงู X's ุงู X ูุฐู ุงููู ูู ู
ููุ X ูุงุญุฏ ู X |
|
|
|
309 |
|
00:35:39,660 --> 00:35:45,650 |
|
ุงุชููู ู X ุชูุงุชุฉ ุงููู ู
ูุฌูุฏุฉ ูู ุงู R3 ุตุชุด ุฏููู
ุง |
|
|
|
310 |
|
00:35:45,650 --> 00:35:49,810 |
|
ุฃููู ูุฐุง ุงููT of X ุณุงูู 0ุ ุงููT of X ุณุงูู ู
ููุ |
|
|
|
311 |
|
00:35:49,810 --> 00:35:54,170 |
|
ูุณุงูู ูุฐุง ูููุ ู
ุนูุงุชู ูุฐู ุจุฏูุง ุชุณุงูู ู
ููุ ุจุฏูุง |
|
|
|
312 |
|
00:35:54,170 --> 00:36:00,630 |
|
ุชุณุงูู ุงูู
ุตููุฉ ุงูุตูุฑูุฉ ูุจูู ุฏู such that ุงูู
ุตููุฉ ุฏู |
|
|
|
313 |
|
00:36:00,630 --> 00:36:12,850 |
|
X1 ุฒุงุฆุฏ X3ูููุง X1 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ 2 X3 ูููุง 2 X1 ุฒุงุฆุฏ |
|
|
|
314 |
|
00:36:12,850 --> 00:36:20,570 |
|
X2 ุซูุงุซุฉ X3 ููู ุจูุณุงูู ุงูู
ุตูููุฉ ุงูุตูุฑูุฉ ุงููู ุนูุฏูุง |
|
|
|
315 |
|
00:36:20,570 --> 00:36:27,790 |
|
ุจุงูุดูู ูุฐุง ุชู
ุงู
ุ ุงุฐุง ุงูุง ุทุจูุช ุญุชู ุงูุงู ุชุนุฑูู ู
ู ุงู |
|
|
|
316 |
|
00:36:27,790 --> 00:36:33,830 |
|
kernel ูุฐุง ูุง ุจูุงุช ุจูููุฏูุง ุงูู ูุงู
ู
ุนุงุฏูุฉุูุนูู ูู |
|
|
|
317 |
|
00:36:33,830 --> 00:36:38,630 |
|
homogeneous system ุตุญ ููุง ูุฃุ ูุจูู ูุฐุง ูููุฏูุง ุฅูู |
|
|
|
318 |
|
00:36:38,630 --> 00:36:48,330 |
|
ู
ุง ูุฃุชู ุงู X1 ุฒุงุฆุฏ X3 ูุณูู 0 ู X1 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ 2 |
|
|
|
319 |
|
00:36:48,330 --> 00:36:58,590 |
|
X3 ูุณูู 0 ู 2X1 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ 3X3 ูุณูู 0 ูุฐุง ุนุจุงุฑุฉ |
|
|
|
320 |
|
00:36:58,590 --> 00:37:03,230 |
|
ุนู ู
ุงุฐุงุHomogeneous System ุจุญุงูู ูุญู ุงูู |
|
|
|
321 |
|
00:37:03,230 --> 00:37:07,270 |
|
Homogeneous System ุจุฃู ุทุฑููุฉ ู
ู ุงูุทุฑู ุงูุชู ุณุจูุช |
|
|
|
322 |
|
00:37:07,270 --> 00:37:11,870 |
|
ุฏุฑุงุณุชูุง ุทุจุนุง ุงูู Homogeneous ุฃุณูู ู
ู ุงูู Non |
|
|
|
323 |
|
00:37:11,870 --> 00:37:14,890 |
|
-Homogeneous ูู ุงูุญู ูุจุงูุชุงูู ู
ู
ูู ูุฌูุจ ุงูุญู |
|
|
|
324 |
|
00:37:14,890 --> 00:37:19,930 |
|
ุจุณูููุฉ ุจุฏูู ู
ูุฌุฃ ูู Gaussian ููุง ูู Rho Epsilon |
|
|
|
325 |
|
00:37:19,930 --> 00:37:24,790 |
|
Form ุฅูู ุขุฎุฑู ูู
ุซูุง ูู ุฌูุช ููุช ููุง X ูุงุญุฏ ุชุชุณุงูู |
|
|
|
326 |
|
00:37:24,790 --> 00:37:32,000 |
|
ู
ูู ูุง ุจูุงุชุุจุฏู ูุณุงูู ุณุงูุจ X3 ู
ุธุจูุท ุทูุจ ุฅุฐุง ูู ุฌูุช |
|
|
|
327 |
|
00:37:32,000 --> 00:37:38,640 |
|
ุนูู ุงูู
ุนุฏู ุงูุชุงูู ูุฐุง ุฅูุด ุจูุตูุฑ ุณุงูุจ X3 ุฒุงุฆุฏ X2 |
|
|
|
328 |
|
00:37:38,640 --> 00:37:48,770 |
|
ุฒุงุฆุฏ 2 X3 ุจุฏู ูุณุงูู Zero ูููุง ุณุงูุจ 2 X3ุฒุงุฆุฏ X2 |
|
|
|
329 |
|
00:37:48,770 --> 00:37:51,710 |
|
ุฒุงุฆุฏ X3 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X3 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 |
|
|
|
330 |
|
00:37:51,710 --> 00:37:52,070 |
|
ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 |
|
|
|
331 |
|
00:37:52,070 --> 00:37:55,290 |
|
ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 |
|
|
|
332 |
|
00:37:55,290 --> 00:37:58,550 |
|
ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 |
|
|
|
333 |
|
00:37:58,550 --> 00:37:58,550 |
|
ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 |
|
|
|
334 |
|
00:37:58,550 --> 00:37:58,550 |
|
ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 |
|
|
|
335 |
|
00:37:58,550 --> 00:38:01,530 |
|
ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 |
|
|
|
336 |
|
00:38:01,530 --> 00:38:11,710 |
|
ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X |
|
|
|
337 |
|
00:38:11,740 --> 00:38:21,720 |
|
ุจุชุจูู x2 ุฒุงุฆุฏ x3 ูุณุงูู 0 ู ูุฐู ุจุชุนุทููู x2 ุฒุงุฆุฏ x3 |
|
|
|
338 |
|
00:38:21,720 --> 00:38:28,280 |
|
ูุณุงูู 0 ูุนูู ุจุชุนุทููู ู
ููุ ููุณ ุงูู
ุนุงุฏูุฉ ุฅุฐุง ู
ู |
|
|
|
339 |
|
00:38:28,280 --> 00:38:36,720 |
|
ุงูุงุชููู ูุฏูู ุจูุฏุฑ ุฃููู ุงู x2 ุจุฏู ูุณุงูู ุณุงูุจ x3ูุจูู |
|
|
|
340 |
|
00:38:36,720 --> 00:38:44,160 |
|
ุจูุงุก ุนููู ูู ูุงูุช x ุชูุงุชุฉ ุชุณุงูู a then x ูุงุญุฏ ูุฏู |
|
|
|
341 |
|
00:38:44,160 --> 00:38:52,920 |
|
ุจุฏู ูุณุงููู X2 ุจุฏู ูุณูู ูุฏูุ ุณุงูุจ A ูุจูู ุฃุตุจุญ ุงูู |
|
|
|
342 |
|
00:38:52,920 --> 00:38:59,340 |
|
Kernel ูู
ูุ ูู Linear Transformation T ูู ุนุจุงุฑุฉ ุนู |
|
|
|
343 |
|
00:38:59,340 --> 00:39:05,920 |
|
ู
ูุ The set of all elements X1 ุงููู ูุจูู ูุฏูุ ุณุงูุจ |
|
|
|
344 |
|
00:39:05,920 --> 00:39:15,850 |
|
A ู X2 ุงููู ูู ุณุงูุจ A ู X3 ุงููุฐุง ุงููู ุจูุฏุฑ ุงูุชุจ |
|
|
|
345 |
|
00:39:15,850 --> 00:39:21,690 |
|
ุนููู ุงูุดูู ุงูุชุงูู ูู ุงูู
ุตูู ุงููู ุน ุดูู ูุงูุต ุงูู |
|
|
|
346 |
|
00:39:21,690 --> 00:39:27,870 |
|
ูุงูุต ุงูู ู ุงูู such that ุงู ูุฐุง ุงููู ุจุฏู ูุณุงูู |
|
|
|
347 |
|
00:39:27,870 --> 00:39:33,910 |
|
ูู
ุงู ุงูู ูู ุฃุฎุฏุช ุนุงู
ู ู
ุดุชุฑู ุจุฏู ูููู ู
ูู ูุงูุต ูุงุญุฏ |
|
|
|
348 |
|
00:39:33,910 --> 00:39:39,570 |
|
ูุงูุต ูุงุญุฏ ูุงุญุฏ such that ุงู a ู
ูุฌูุฏุฉ ูู ุงู set of |
|
|
|
349 |
|
00:39:39,570 --> 00:39:44,330 |
|
real numbersูุนูู ู
ุงุญุทูุชุด ุนูููุง ุฃู ูููุฏ ูุฃู ุนุฏุฏ |
|
|
|
350 |
|
00:39:44,330 --> 00:39:52,070 |
|
ุญูููู ู
ู ู
ูุงู ูููู ุชู
ุงู
ุ ุฅุฐุง ุฃุตุจุญ ุงู kernel ู
ู ููุ |
|
|
|
351 |
|
00:39:52,070 --> 00:39:58,590 |
|
ูู ูู ุงู vectors ุงููู ุงูู
ุฑูุจุฉ ุงูุฃููู ุชุณุงูู ุงูู
ุฑูุจุฉ |
|
|
|
352 |
|
00:39:58,590 --> 00:40:03,070 |
|
ุงูุซุงููุฉ ู ุงูู
ุฑูุจุฉ ุงูุชุงูุชุฉ ุจุงุณ ุชุณุงูููู
ููููุง ุชุฎูููู
|
|
|
|
353 |
|
00:40:03,070 --> 00:40:07,990 |
|
ูู ู
ูุ ุงูุฅุดุงุฑุฉ ูุจูู ุงู vector ูุฐุง ู
ูุงุช ุฅูุด ุนูุงูุชู |
|
|
|
354 |
|
00:40:07,990 --> 00:40:17,040 |
|
ุจุงู kernelุุจุฌูุจ ุจุนุถ ุนูุงุตุฑ ุงููุฑูู ููุง ูููู
ุ ูุนูู |
|
|
|
355 |
|
00:40:17,040 --> 00:40:23,300 |
|
ุฅูุด ุจูููุน ููููุbases ูุฃูู ู
ุณุชูู ุญุงูู ููููุงุฑู ู
ุด |
|
|
|
356 |
|
00:40:23,300 --> 00:40:28,720 |
|
ู
ุนุชู
ุฏ ุนูู ุบูุฑู ูุจูู ูุฐุง ููููุงุฑู independent ุงุซููู |
|
|
|
357 |
|
00:40:28,720 --> 00:40:33,780 |
|
ูู ุฃูุตุฑ ูู ุงู kernel ุจูุฏุฑ ุงูุชุจ ุฏูุชู ุญุทูุช ูููุฏ ุนูู |
|
|
|
358 |
|
00:40:33,780 --> 00:40:39,340 |
|
ุงูู ูุฃ ูุจูู ุญุท ุงูุฑูู
ุงููู ูุฌุจู ููุฐุง ุซุงุจุช ูุจูู ูุฐุง |
|
|
|
359 |
|
00:40:39,340 --> 00:40:43,800 |
|
ู
ุนูุงุชู ุงู bases ููููุฑูู ูู ู
ูู ุงู vector ุงููู |
|
|
|
360 |
|
00:40:43,800 --> 00:40:53,340 |
|
ุนูุฏูุง ูุฐุง ูุจูู ูุฐุง ู
ุนูุงู ุงูุด ู
ุนูุงู ุฐุงVector ูุญุงูู |
|
|
|
361 |
|
00:40:53,340 --> 00:41:01,200 |
|
ุฃู the set ูุฐุง ู
ุนูุงุชู ุงู vector |
|
|
|
362 |
|
00:41:01,200 --> 00:41:08,220 |
|
ุนูู ุงูุดูู ูุฐุง ุณุงูุจ ูุงุญุฏ ุณุงูุจ ูุงุญุฏ ูุฐุง is a basis |
|
|
|
363 |
|
00:41:08,220 --> 00:41:24,320 |
|
for ุงู kernel ุงูุชููุฐุง ู
ุนูุงุชู ุงู ุงู dimension ูู |
|
|
|
364 |
|
00:41:24,320 --> 00:41:29,660 |
|
kernel of T ูุณุงูู ุฌุฏุงุด ูุง ุจูุงุช ุฎูุตูุง ุงูู
ุทููุจ ุงูุฃูู |
|
|
|
365 |
|
00:41:30,630 --> 00:41:33,890 |
|
ูุงู ูู ูุชู ุงู kernel ู ูู ููุณ ุงูููุช ูุชู ุงู |
|
|
|
366 |
|
00:41:33,890 --> 00:41:40,770 |
|
dimension ุชู
ุงู
ุ ุฅุฐุง ููุฌุจ ูุงูู ุงู kernel ู
ู ูู ูู |
|
|
|
367 |
|
00:41:40,770 --> 00:41:45,050 |
|
ุงู vectors ุงููู ุงูู
ุฑูุจุฉ ุงูุฃููู ุชุณุงูู ุงูู
ุฑูุจุฉ |
|
|
|
368 |
|
00:41:45,050 --> 00:41:50,010 |
|
ุงูุชุงููุฉ ุชุณุงูู ุงูู
ุฑูุจุฉ ุงูุชุงูุชุฉ ุจุฅุดุงุฑุฉ ู
ุฎุงููุฉ ูุจูู |
|
|
|
369 |
|
00:41:50,010 --> 00:41:55,010 |
|
ูุฐุง ูู ุงู kernel ุฅุฐุง ุจูุฏุฑ ุฃุญุฏุฏ ู
ููู
ุง ูู
vector |
|
|
|
370 |
|
00:41:55,010 --> 00:42:03,880 |
|
ูุฏูู ูุง ุจูุงุชุ2 3 4 10 100 ุนุฏุฏ ูุง ููุงุฆู ูุฃู ุงูู a |
|
|
|
371 |
|
00:42:03,880 --> 00:42:11,100 |
|
ูู ุนุฏุฏ ูุง ููุงุฆู ู
ู ุงูู vector ุชู
ุงู
ุฅุฐุง ุฌูุจูุง ุงูู |
|
|
|
372 |
|
00:42:11,100 --> 00:42:14,940 |
|
main ุฌูุจูุง ุงู basis ุงููู ูู ุจุงูุชุงูู ุฌูุจูุง ุงู |
|
|
|
373 |
|
00:42:14,940 --> 00:42:19,540 |
|
dimension ูู main ูู kernel ุจุงูู
ุซู ุจุฏูุง ูุฑูุญ ูุฌูุจ |
|
|
|
374 |
|
00:42:19,540 --> 00:42:23,540 |
|
mainุงูู
ุทูุจ ุงูุซุงูู ุงูู
ุทูุจ ุงูุซุงูู ุจุงู domain ุงู |
|
|
|
375 |
|
00:42:23,540 --> 00:42:29,280 |
|
bases ูู range ุชู
ุงู
ุ ุฅุฐุง ุจุฑูุญ ุฃุฌูุจ ูู ุงู bases ูู |
|
|
|
376 |
|
00:42:29,280 --> 00:42:34,720 |
|
range ูุจูู ูุฐุง ุงู element ู
ูุฌูุฏ ูู ุงู range ููุง |
|
|
|
377 |
|
00:42:34,720 --> 00:42:41,320 |
|
ูุงุ ุตุญ ููุง ูุงุ ูุจูู ูุฐุง ุงู element ู
ูุฌูุฏ ูู ุงู |
|
|
|
378 |
|
00:42:41,320 --> 00:42:47,720 |
|
range ูุจูู ุจุงุฌู ุจูููู ููุง ูุฐุง ูู
ุฑุง a ูู
ุฑุง b the b |
|
|
|
379 |
|
00:42:47,720 --> 00:42:48,980 |
|
ุฃู the element |
|
|
|
380 |
|
00:42:51,600 --> 00:43:00,500 |
|
ุงููู ูู ุนูู ุงูุดูู ุงูุชุงูู X1 ุฒุงุฆุฏ X3 ู X1 ุฒุงุฆุฏ X2 |
|
|
|
381 |
|
00:43:00,500 --> 00:43:14,940 |
|
ุฒุงุฆุฏ 2 X3 ู 2 X1 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ 3 X3 ู
ูุฌูุฏ ูู R of D |
|
|
|
382 |
|
00:43:14,940 --> 00:43:20,220 |
|
ุทุจ ุจุฏู ุฃุดูู ุงู element ูุฐุง ุฅูุด ุจูุฏุฑ ุฃุนู
ู ู
ูู |
|
|
|
383 |
|
00:43:33,550 --> 00:43:36,010 |
|
ุชุนุงูู ูุดูู ุงู element ูุฐุง ุงููู ู
ูุฌูุฏ ูู ุงู range |
|
|
|
384 |
|
00:43:36,010 --> 00:43:43,650 |
|
ุดู ุดููู ูุจูู ุจุงุฌู ุจููููู
ุงู element ูุฐุง x1 ุฒุงุฆุฏ x3 |
|
|
|
385 |
|
00:43:43,650 --> 00:43:57,150 |
|
ุงููู ุจุนุฏู x1 ุฒุงุฆุฏ x2 ุฒุงุฆุฏ 2x3 2x1 ุฒุงุฆุฏ x2 ุฒุงุฆุฏ 3x3 |
|
|
|
386 |
|
00:43:57,150 --> 00:44:03,470 |
|
ููุณูููุฐุง ุงู element ุฃุฎุฏุชู ู
ู ุงู R of T ูุนูู ู
ู ุงู |
|
|
|
387 |
|
00:44:03,470 --> 00:44:07,490 |
|
range ุทุจุนุง ููุด ูุงููู ู
ุงุฌูููุด ูุงุชุฑูู ูุงููู ูุงุชูู |
|
|
|
388 |
|
00:44:07,490 --> 00:44:13,170 |
|
basis ูู range ุจูููู ูููุณ ุทูุจ ูุฐุง ูุง ุจูุงุช ุจูุฏุฑ |
|
|
|
389 |
|
00:44:13,170 --> 00:44:20,770 |
|
ุฃูุชุจู ุนูู ุดูู ู
ุฌู
ูุน ุชูุงุชุฉ vectorsุฃู ุจููุฏุฑุ ููู ูุงู |
|
|
|
390 |
|
00:44:20,770 --> 00:44:31,360 |
|
ุงูุชุงููุ ุจุฏุงุฎู ููุง x1 ูููุง x1 ูููุง 2x1ูู ุงุฌู ุงููู |
|
|
|
391 |
|
00:44:31,360 --> 00:44:36,320 |
|
ุฒุงุฏ ุงูู
ุตููู ุงูุชุงูู ุงูุณ ุงุชููู ู
ุงุนูุฏูุด ูุจูู ุจุฒูุฑู |
|
|
|
392 |
|
00:44:36,320 --> 00:44:43,140 |
|
ููู ุงูุณ ุงุชููู ููู ุงูุณ ุงุชููู ุฒุงุฏ ุจุฏูุงุฌู ูู
ูู ููู |
|
|
|
393 |
|
00:44:43,140 --> 00:44:50,220 |
|
ุจุนุฏู ุงูุณ ุชูุงุชุฉ ุงุชููู ุงูุณ ุชูุงุชุฉ ุชูุงุชุฉ ุงูุณ ุชูุงุชุฉ |
|
|
|
394 |
|
00:44:50,220 --> 00:44:57,420 |
|
ู
ุธุจูุท ูููุุทูุจ ุจูุฏุฑ ุงููู ูุฐุง ุงูููุงู
ูู ุงุฎุฏุช x ูุงุญุฏ |
|
|
|
395 |
|
00:44:57,420 --> 00:45:04,220 |
|
ุจุตูุฑ ูุงุญุฏ ูุงุญุฏ ุงุชููู ุฒุงุฆุฏ zero ูุงุญุฏ ูุงุญุฏ ู ููุง x |
|
|
|
396 |
|
00:45:04,220 --> 00:45:10,660 |
|
ุงุชููู ุฒุงุฆุฏ x ุงุชููู ู ุฌููุง ุงููู ุจุนุฏู ุฒุงุฆุฏ x ุชูุงุชุฉ |
|
|
|
397 |
|
00:45:10,660 --> 00:45:17,230 |
|
ูู ูุงุญุฏ ุงุชููู ุชูุงุชุฉ ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุงูุจูู ุงู |
|
|
|
398 |
|
00:45:17,230 --> 00:45:21,070 |
|
element ุงููู ู
ูุฌูุฏ ูู ุงู range ุญุทูุชู ุนูู ุตูุบุฉ |
|
|
|
399 |
|
00:45:21,070 --> 00:45:27,950 |
|
linear combination ู
ู ู
ู ุงู vectors ุงูุชูุงุชุฉ ุงููู |
|
|
|
400 |
|
00:45:27,950 --> 00:45:32,790 |
|
ุนูุฏูุง ูุจูู ุฃู element ูู ุงู range ูุชุจุชู ุนูู ุตูุบุฉ |
|
|
|
401 |
|
00:45:32,790 --> 00:45:36,970 |
|
linear combination ู
ู three vectors x1 ูู ุงู |
|
|
|
402 |
|
00:45:36,970 --> 00:45:41,010 |
|
vector ุฒุงุฏ x2 ูู ุงู vector ุฒุงุฏ x3 ูู ุงู vector |
|
|
|
403 |
|
00:45:41,010 --> 00:45:47,950 |
|
ุงูุชุงูููู ุทูุนูุง ูุฏูู linearly independent ุจูุตูุฑ ูู
|
|
|
|
404 |
|
00:45:47,950 --> 00:45:53,610 |
|
ุงู bases ุทุจ ูู ุทูุนูุง linearly dependent ุจุฏู ุชุฏูุฑ |
|
|
|
405 |
|
00:45:53,610 --> 00:46:00,010 |
|
ุนูู ุงู bases ุชุนุงููุง ูุทูุน ูู ูุฏุฌุฌ ุงููุธุฑ ูู ุฌู
ุนุช ุงู |
|
|
|
406 |
|
00:46:00,010 --> 00:46:07,150 |
|
two vectors ูุฏูู ูุฏุด ุจูุนุทููู ุงูู ุงูุชุงูุช ุจูุนุทููู |
|
|
|
407 |
|
00:46:07,150 --> 00:46:13,280 |
|
ุงูุชุงูุชู 1 ุฒู 0 ุจ1 ู 1 ุจ1 ุจ2 ุจ2 ุจ1 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 |
|
|
|
408 |
|
00:46:13,280 --> 00:46:13,760 |
|
ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 |
|
|
|
409 |
|
00:46:13,760 --> 00:46:14,000 |
|
ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 |
|
|
|
410 |
|
00:46:14,000 --> 00:46:16,760 |
|
ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 |
|
|
|
411 |
|
00:46:16,760 --> 00:46:17,760 |
|
ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 |
|
|
|
412 |
|
00:46:17,760 --> 00:46:17,760 |
|
ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 |
|
|
|
413 |
|
00:46:17,760 --> 00:46:26,640 |
|
ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 |
|
|
|
414 |
|
00:46:26,640 --> 00:46:33,340 |
|
ุจูุจุงูุชุงูู ุงูุงุชููู ูุฐูู ุจููุถูู ุจููุถููู ุฌู
ูุน ุฃูุงุตุฑ |
|
|
|
415 |
|
00:46:33,340 --> 00:46:37,740 |
|
ุงู vector of space ุฃู ุงู subspace R of T ุทุจ ู |
|
|
|
416 |
|
00:46:37,740 --> 00:46:40,480 |
|
ุงูุชูุช ู
ุด ุฌุฒุก ู ุงูุชูุช ู
ุง ูู linear combination ู
ู |
|
|
|
417 |
|
00:46:40,480 --> 00:46:44,100 |
|
ุงูุงุชููู ุตุญูุญ ููุง ูุนูู ุงูู ุจูุฏุฑ ุงุฎูู ูุฐุง ูู ุดุฌุฉ ู |
|
|
|
418 |
|
00:46:44,100 --> 00:46:46,660 |
|
ุงุฏู ูุฐูู ุนูู ุดุฌุฉ ุชุงููุฉ ุณุงูุฉ ุฒูุฑุฉ ู ุงุฎูููุง ุณุงูุจ |
|
|
|
419 |
|
00:46:46,660 --> 00:46:49,240 |
|
ุณุงูุจ ู ุงูุช ุงูู ุฑุฃู ู
ููู
ูุจูู ุฏู ุงุณู
linearly |
|
|
|
420 |
|
00:46:49,240 --> 00:46:55,200 |
|
dependent ููู ุงุชููู ูุฐูู linearly independent ูุจูู |
|
|
|
421 |
|
00:46:55,200 --> 00:47:04,320 |
|
ุจุงุฌู ุจููู ููุงุงูุงู ุงููุงุญุฏ ูุงููุงุญุฏ ูุงุซููู ุฒุงุฆุฏ ุฒูุฑู |
|
|
|
422 |
|
00:47:04,320 --> 00:47:11,940 |
|
ูุงุญุฏ ูุงุญุฏ ุจุฏู ูุณุงูู ูุงุญุฏ ุงุชููู ุชูุงุชุฉ ุงุฐุง ูุง ูู
ูู |
|
|
|
423 |
|
00:47:11,940 --> 00:47:17,460 |
|
ุงููู ุงู ุงูุชูุงุชุฉ ุฏูู linearly independent ููู ูุง |
|
|
|
424 |
|
00:47:17,460 --> 00:47:25,480 |
|
ุจูุงุช ุจูุฏุฑ ุงููู ููุง the vectorsv1 ุงููู ูู ุจุฏู ูุณุงูู |
|
|
|
425 |
|
00:47:25,480 --> 00:47:33,560 |
|
11e2 ูv2 ุจุฏู ูุณุงูู 011r |
|
|
|
426 |
|
00:47:33,560 --> 00:47:44,700 |
|
ู
ุงูู linearly independent ุงูุณุจุจ because anyone of |
|
|
|
427 |
|
00:47:44,700 --> 00:47:59,140 |
|
v1 and v2 is notmultiple of the other ููุง ูุงุญุฏ |
|
|
|
428 |
|
00:47:59,140 --> 00:48:04,660 |
|
ูููู
ู
ุถุงุนูุงุช ุงูุชุงููุฉ ูุจูู ูุฏูู ุฅูุด ุจูุดูููููุ |
|
|
|
429 |
|
00:48:04,660 --> 00:48:09,660 |
|
ุจุงููุณุจุฉ ู R2 ุจูุจูู ููุง ุณุงุนุฉ |
|
|
|
430 |
|
00:48:17,300 --> 00:48:34,460 |
|
V1 V2 V3 |
|
|
|
431 |
|
00:48:34,460 --> 00:48:34,620 |
|
V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V12 V13 V12 V12 |
|
|
|
432 |
|
00:48:34,620 --> 00:48:34,620 |
|
V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 |
|
|
|
433 |
|
00:48:34,620 --> 00:48:35,020 |
|
V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 |
|
|
|
434 |
|
00:48:35,020 --> 00:48:35,080 |
|
V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 |
|
|
|
435 |
|
00:48:35,080 --> 00:48:35,180 |
|
V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 |
|
|
|
436 |
|
00:48:35,180 --> 00:48:35,180 |
|
V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 |
|
|
|
437 |
|
00:48:35,180 --> 00:48:35,180 |
|
V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 |
|
|
|
438 |
|
00:48:35,180 --> 00:48:35,180 |
|
V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 |
|
|
|
439 |
|
00:48:35,180 --> 00:48:39,590 |
|
V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V122 ุนุฏุฏ |
|
|
|
440 |
|
00:48:39,590 --> 00:48:44,570 |
|
ุงูุนูุงุตุฑ ูู ุงูู Basel ุฅุฐุง ุฎูุตูุง ู
ู ุงูู
ุทููุจ ุงูุซุงูู |
|
|
|
441 |
|
00:48:44,570 --> 00:48:50,270 |
|
ูุงู ูู ูุงุชูู Basel ูู R of T of 2 of T ุฌูุจูุงูู ู |
|
|
|
442 |
|
00:48:50,270 --> 00:48:53,130 |
|
ูุงููู ูุงุชูู ุงู dimension ุฌูุจูุงูู ุงู dimension |
|
|
|
443 |
|
00:48:53,130 --> 00:48:58,810 |
|
ูุงููู ุจุนุฏูู ูุงุชูู ุตูุฑุฉ ุงูุนูุตุฑ T of 1 ู 2 ู 3 ุฅุฐุง |
|
|
|
444 |
|
00:48:58,810 --> 00:49:02,850 |
|
ุจูุฏุงุฌู ููู
ุทููุจ ุงูุชุงูุฏ |
|
|
|
445 |
|
00:49:15,200 --> 00:49:21,440 |
|
ุฅุฐุง ุงูู
ุทููุจ ุงูุชุงูุช ูู
ุฑู ุงููC ุจุฏูุง T of ูุงุญุฏ ูุงุชููู |
|
|
|
446 |
|
00:49:21,440 --> 00:49:29,300 |
|
ูุชูุงุชุฉ ู
ู ููู ุจุฏู ุฃุฌูุจ ูู ูุฐุงุ |
|
|
|
447 |
|
00:49:29,300 --> 00:49:38,550 |
|
ู
ู ููู ุจุฏู ุฃุฌูุจ ููุ ููู ููุ ู
ุด ูุฐูุู
ุด T of element |
|
|
|
448 |
|
00:49:38,550 --> 00:49:42,250 |
|
ูุณุงูู ุฃู ุนูุตุฑ ูู ุงู range ุนูู ุงูุดูู ุงููู ุนูุฏูุง ูุฐุง |
|
|
|
449 |
|
00:49:42,250 --> 00:49:47,550 |
|
ูุจูู ุฏู ูููู X1 ุฒู X3 ูุฐุง ูุจูู ุจูุงุก ุงู ุนููู ูุฐุง |
|
|
|
450 |
|
00:49:47,550 --> 00:49:54,210 |
|
ุงูููุงู
ุจุฏู ูุณุงูู ุจุฏู ูุณุงูู ู
ู X1 ุฒู X3 ูุจูู 1 ุฒู 3 |
|
|
|
451 |
|
00:49:56,030 --> 00:50:05,930 |
|
ุงูุนูุตุฑ ุงูุชุงูู X1 ุฒู X2 ุฒู 2X3 ูุจูู 1 ุฒู 2 ุฒู 3 |
|
|
|
452 |
|
00:50:11,050 --> 00:50:21,370 |
|
ูุจูู ูุฐุง ุงูุนูุตุฑ ุงูุชุงูุช 2x1 ูุจูู 2 ูู 1 ุฒุงุฆุฏ 2 ุฒุงุฆุฏ |
|
|
|
453 |
|
00:50:21,370 --> 00:50:28,010 |
|
3 ูู 3 ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุงุชู
ุงู
ูุงุญุฏ ุฒู ุงูุชูุงุชุฉ |
|
|
|
454 |
|
00:50:28,010 --> 00:50:33,010 |
|
ูุฏุงุด ุงุฑุจุนุฉ ููุง ุงุชููู ูู ุงูุชูุงุชุฉ ุจุณุชุฉ ู ุชูุงุชุฉ ุชุณุนุฉ |
|
|
|
455 |
|
00:50:33,010 --> 00:50:38,850 |
|
ุชุณุนุฉ ู ุงุชููู ุงุญุฏุงุด ู ุงุชููู ุชูุชุงุด ุงุฐุง ุตูุฑุฉ ุงูุนูุตุฑ |
|
|
|
456 |
|
00:50:38,850 --> 00:50:44,370 |
|
ูุงุญุฏ ู ุงุชููู ู ุชูุงุชุฉ ูู ุงุฑุจุนุฉ ู ุชุณุนุฉ ู ุชูุชุงุด ุงุธู |
|
|
|
457 |
|
00:50:44,370 --> 00:50:48,210 |
|
ูุงุถุญ ุงุฏู ููู ุฌูุจูุงูุง ุฌูุจูุงูุง ู
ู ุฎูุงู ุงูุชุนุฑูู ูู
ุง |
|
|
|
458 |
|
00:50:48,210 --> 00:50:51,430 |
|
ูููุง T of X ูุงุญุฏ ู X ุงุชููู ูู
ุง ุถุฑุจูุง ุงูู
ุตููู T |
|
|
|
459 |
|
00:50:51,430 --> 00:50:56,330 |
|
ุงูุงุชููู ูุงุฏูู ุทูุนุช ุนูู ุงูุดูู ุงููู ูุฏุงู
ูุง ูุฐุงุทูุจ |
|
|
|
460 |
|
00:50:56,330 --> 00:51:00,550 |
|
ุจุณุฃู ูู
ุงู ุณุคุงู ุจููู ูู ูู ุงูุนูุตุฑ ูุฐุง ู
ูุฌูุฏ ูู ุงู |
|
|
|
461 |
|
00:51:00,550 --> 00:51:05,450 |
|
range ุฃู
ูุงุ ุจููู ูู ุงููู ุฃุนูู
ุชุนุงูู ูุดูู ูุนูู ูู |
|
|
|
462 |
|
00:51:05,450 --> 00:51:09,970 |
|
ุงูุนูุตุฑ ุงุชููู ู ุฎู
ุณุฉ ู ุณุจุนุฉ ู
ูุฌูุฏ ูู ุงู range ุชุจุน |
|
|
|
463 |
|
00:51:09,970 --> 00:51:16,130 |
|
ุงู T ุจุงุฌู ุจุณุฃู ู
ูู ูู ุงู business ุชุจุน ุงู Tุุฅุฐุง |
|
|
|
464 |
|
00:51:16,130 --> 00:51:20,610 |
|
ูุฏุฑูุง ููุชุจ ุงูุนูุตุฑ ูุฐุง ุนูู ุตูุฑุฉ linear combination |
|
|
|
465 |
|
00:51:20,610 --> 00:51:25,050 |
|
ู
ู ุงูุงุชููู ูุฐูู ุจุตูุฑ ู
ูุฌูุฏ ูู ุงู range ุตุญ ููุง ูุฃ |
|
|
|
466 |
|
00:51:25,050 --> 00:51:30,580 |
|
ูุฅุฐุง ู
ุงูุฏุฑูุงุด ูุจูู ู
ููู ุจุฑุง ุงู rangeุทุจุนุง ุฅุฐุง ุจุฏุงุฌู |
|
|
|
467 |
|
00:51:30,580 --> 00:51:35,540 |
|
ูู
ูุ ููู
ุฑุฏู ุจุฏุงุฌู ุฃุฎุฏ ุงูุนูุตุฑ ุงููู ูู ุงุชููู ูุฎู
ุณุฉ |
|
|
|
468 |
|
00:51:35,540 --> 00:51:41,680 |
|
ูุณุจุนุฉ ูุจูู ุงุชููู ูุฎู
ุณุฉ ูุณุจุนุฉ ุจูุฏุฑ ุงูุชุจู ุนูู ุดูู |
|
|
|
469 |
|
00:51:41,680 --> 00:51:48,080 |
|
ู
ุตูู ุงุชููู ุฎู
ุณุฉ ุณุจุนุฉ ู
ุด ููู ููููุง ูุฐุง if and ูููู |
|
|
|
470 |
|
00:51:48,080 --> 00:51:55,390 |
|
if ู ุจูุฏุฑ ุงูุชุจู ูููู ูู
ุงู ุทุจ ุฅูุด ุฑุฃููุุฃูุง ุจุฏู ุฃูุชุจ |
|
|
|
471 |
|
00:51:55,390 --> 00:51:59,970 |
|
ุนููู ุดูููุง ูุนูู ุจุฏู ุงูุฑูู
ุงูุฃูู ุฌุฏ ุงูุฑูู
ุงูุซุงูู |
|
|
|
472 |
|
00:51:59,970 --> 00:52:06,010 |
|
ุงูุฑูู
ุงูุฃูู ุนูุฏู ู
ูุฏุงุด ุงุชููู ูุงูุฑูู
ุงูุซุงูู ุจุฏู |
|
|
|
473 |
|
00:52:06,010 --> 00:52:13,250 |
|
ูููู ุฒูู ุงุชููู ูุงูุฑูู
ุงูุชุงูุช ุจุงุชููู ูุจูู ุจุฏู ุฃูุชุจ |
|
|
|
474 |
|
00:52:13,250 --> 00:52:16,170 |
|
ุฃุฑุจุนุฉ ุฒุงุฏ |
|
|
|
475 |
|
00:52:17,970 --> 00:52:22,250 |
|
ุฃูุด ุจูุธู ุนูุฏูุ ุจุฏู ุฃูุชุจู ุงูุญูู ู
ู ุงุชููู ุฃุฎุฏุช ุงุชููู |
|
|
|
476 |
|
00:52:22,250 --> 00:52:26,910 |
|
ุจูุธู ูุฏูุ Zero ู
ู ุงูุฎู
ุณุฉ ุฃุฎุฏุช ุงุชููู ุจูุธู ูุฏูุ |
|
|
|
477 |
|
00:52:26,910 --> 00:52:32,170 |
|
ุชูุงุชุฉ ู
ู ุงูุณุจุนุฉ ุฃุฎุฏุช ุฃุฑุจุนุฉ ุจูุธู ูุฏูุ ุชูุงุชุฉ ูุจูู |
|
|
|
478 |
|
00:52:32,170 --> 00:52:36,670 |
|
ูุฐุง ุงูููุงู
.. ุจูุฏุฑ ุฃุฎุฏู ุงุชููู ุนุงู
ู ู
ุดุชุฑู ุฃูุด ุจูุธู |
|
|
|
479 |
|
00:52:36,670 --> 00:52:41,890 |
|
ุนูุฏูุ ูุงุญุฏ ูุงุญุฏ ุงุชููู ุจูุฏุฑ ุฃุฎุฏ ุชูุงุชุฉ ุนุงู
ู ู
ุดุชุฑู |
|
|
|
480 |
|
00:52:41,890 --> 00:52:46,910 |
|
Zero ูุงุญุฏ ูุงุญุฏ linear combination ู
ู ุงูุงุชูููุูุจูู |
|
|
|
481 |
|
00:52:46,910 --> 00:52:50,950 |
|
ู
ูุฌูุฏ ูู ุงู range ููุง ูุง ูุฅูู ูุจูู ูุชุจุช ูุฐุง ุงู |
|
|
|
482 |
|
00:52:50,950 --> 00:52:56,390 |
|
element ุจูุงุณุท ุนูุงุตุฑ ุงูุจุฐู ูู ู
ุง ุฌุฏุฑุชุด ูุจูู ุจูููู |
|
|
|
483 |
|
00:52:56,390 --> 00:53:00,930 |
|
ู
ุด ู
ูุฌูุฏ ุทุจุนุง ูุฐู ุทุฑููุฉ ุณููุฉ ุฌุฏุง ุจู
ุฌุฑุฏ ุงููุธุฑ ููู |
|
|
|
484 |
|
00:53:00,930 --> 00:53:04,590 |
|
ุงูุฃุตู ุงู ุงููู ุงุชููู ูุฎู
ุณุฉ ูุณุจุนุฉ ูุณุงูู ูููู ุงุตูุง ูู |
|
|
|
485 |
|
00:53:04,590 --> 00:53:07,470 |
|
ุงูุฃูู ููููู ุงุตูุง ูู ุงูุชุงูู ูุงุฑูุญ ุงุญู ุงู non |
|
|
|
486 |
|
00:53:07,470 --> 00:53:15,710 |
|
homogeneous system ุชู
ุงู
ูุจูู ูุฐุง ู
ุนูุงู ูุฐุง ูุจูู |
|
|
|
487 |
|
00:53:16,490 --> 00:53:26,090 |
|
ุฅุชููู ูุฎู
ุณุฉ ูุณุจุนุฉ is a linear combination of the |
|
|
|
488 |
|
00:53:26,090 --> 00:53:41,660 |
|
elements of the basesof R of T Thus ู ููุฐุง ุงุชููู |
|
|
|
489 |
|
00:53:41,660 --> 00:53:53,540 |
|
ุฎู
ุณุฉ ุณุจุนุฉ ู ุนูุตุฑ ู
ูุฌูุฏ ูู R of T ู ูู ุงูู
ุทููุจ ุญุฏ |
|
|
|
490 |
|
00:53:53,540 --> 00:53:58,980 |
|
ูููู
ุจุชุญุจ ุชุณุฃู ุงู ุณุคุงู ููุง ูุง ู
ุงูุงูุ ุงู ุณุคุงูุุทุจ |
|
|
|
491 |
|
00:53:58,980 --> 00:54:03,480 |
|
ูุงุฒููุง ูู ููุณ ุงู section ู ููุงู ุจุฏู ุงูู
ุซุงู ุงุชููู |
|
|
|
492 |
|
00:54:03,480 --> 00:54:07,880 |
|
ูุณู ูู
ุงู ูุฅู ุงูู
ูุถูุน ูุฐุง ููุชูููุง ูุฐุง ุงู section |
|
|
|
493 |
|
00:54:07,880 --> 00:54:13,000 |
|
ุจุงูุฐุงุช very important ู ูุงุฒู
ููุฌู ุนููู ุณุคุงู ูู |
|
|
|
494 |
|
00:54:13,000 --> 00:54:17,720 |
|
ุงู
ุชุญุงู ุฃุนู
ุงู ุงููุตู ู ูุฐูู ุงูููุงูุฉ ูุถุน ุทุจูุนู ูุงุฒู
|
|
|
|
495 |
|
00:54:17,720 --> 00:54:19,620 |
|
ูููู ูุฐุง ูุนุทูููุง ุงูุนูู |
|
|
|
|