abdullah's picture
Add files using upload-large-folder tool
db9b795 verified
raw
history blame
40.2 kB
1
00:00:21,140 --> 00:00:25,860
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ู†ุนูˆุฏ ุงู„ุขู† ุฅู„ู‰ ู…ุง ุงุจุชุฏุฃู†ุง ุจู‡
2
00:00:25,860 --> 00:00:30,980
ู…ุญุงุถุฑุชู†ุง ููŠ ุงู„ูุชุฑุฉ ุงู„ุตุจุงุญูŠุฉ ูˆู‡ูˆ ุขุฎุฑ ุฌุฒุก ู†ุธุฑูŠ ู…ู†
3
00:00:30,980 --> 00:00:36,940
section 4-3 ุงู„ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ ู…ุง ูŠุชูŠู ุชุฑุถูŠ ุงู† ุงู„ุงู†ุฏุง
4
00:00:36,940 --> 00:00:39,500
ูˆุงุญุฏ ูˆุงู†ุฏุง ุงุชู†ูŠู† ูˆู„ุบุฉ ุงู„ุงู†ุฏุง ุฑ ุจูŠู‡ distinct
5
00:00:39,500 --> 00:00:45,260
eigenvalues of n by n matrix A ูŠุจู‚ู‰ ุงุญู†ุง ุนู†ุฏู†ุง ุนุฏุฏ
6
00:00:45,260 --> 00:00:49,860
ู…ู† ุงู„ eigenvalues ูˆุนุฏุฏู‡ู… ูŠุณุงูˆูŠ Rูˆู„ุง ูˆุงุญุฏุฉ ููŠู‡ู… ุฒูŠ
7
00:00:49,860 --> 00:00:54,820
ุงู„ุชุงู†ูŠุฉ Destinates ู…ุนู†ุงุชู‡ ู…ู†ูุตู„ูŠู† ูŠุนู†ูŠ ุบูŠุฑ ู…ุชุณุงูˆูŠู†
8
00:00:54,820 --> 00:00:59,820
ูˆู„ุง ูˆุงุญุฏุฉ ููŠู‡ู… ู…ุชุณุงูˆูŠุฉ ูŠุนู†ูŠ ู…ุงููŠุด ุชูƒุฑุงุฑ ููŠ ู‡ุฏูˆู„
9
00:00:59,820 --> 00:01:06,570
ุทูŠุจ ุงู„ู…ุตุฑูˆูุฉ ู†ุธุงู…ู‡ุง N ููŠ NุทูŠุจ ุงู„ R ู‡ุฐู‡ ุดูˆ ุนู„ุงู‚ุชู‡ุง
10
00:01:06,570 --> 00:01:14,050
ุจ MุŸ ุงู…ุง ุงู„ R ุชุณูˆู‰ N ุงูˆ ุงู„ R ุงู‚ู„ ู…ู† N ุฏุงุฆู…ุง ูˆ ุงุจุฏุง
11
00:01:14,050 --> 00:01:20,570
ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุจู‚ูˆู„ ุงูุชุฑุถ ุงู† K1 ูˆ K2 ูˆ KR ู‡ู…ุง ุงู„
12
00:01:20,570 --> 00:01:26,110
Eigen vectors ุงู„ู…ู†ุงุธุฑุฉ ู„ู…ู†ุŸ ู„ู„ Eigen values then
13
00:01:26,110 --> 00:01:30,370
these vectors are linearly independent ูŠุนู†ูŠ ู…ุงู†ุชุด
14
00:01:30,370 --> 00:01:35,920
ู‚ุตุฏ ูŠู‚ูˆู„ู‡ูˆ ูŠู‚ูˆู„ ุฅุฐุง ูƒุงู† ู„ุฏูŠูƒ ุฏุณุชู†ูŠูƒุณ ุงูŠุฌุงู† ูุงู„ูŠูˆุฒุŒ
15
00:01:35,920 --> 00:01:38,820
ููƒู„ ุงู„ู€Eigenvectors ุงู„ู„ูŠ ุจูŠุทู„ุนูˆุง ู…ู†ุงุถุฑุงุช ุงู„ู„ูŠ
16
00:01:38,820 --> 00:01:43,340
ุจูŠูƒูˆู†ูˆุง ู…ุงู„ู‡ู…ุŒ ู„ูŠู†ูŠุงุฑูŠุง ูˆุงู†ุฏุจู†ุชูŠุงุŒ ูˆู„ุง ูˆุงุญุฏ ู„ู‡
17
00:01:43,340 --> 00:01:49,340
ุงุนุชู…ุงุฏ ุนู„ู‰ ุงู„ุซุงู†ูŠุŒ ุจุณ ู„ู…ูŠู† ู„ู„ุงู†ุถุงุกุงุช ุงู„ุบูŠุฑ ู…ูƒุฑุฑุงุชุŒ
18
00:01:49,340 --> 00:01:55,300
ุฏูŠ ุฑุจุงุฑูƒูˆุง ูƒู„ุงู… ู„ูˆุถุนู‡ุฐู‡ ู‡ูŠ ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ุจุชู‚ูˆู„ู‡ุง
19
00:01:55,300 --> 00:02:04,000
ุงู†ู‡ุง ู†ุธุงู… ู† ููŠ ู† ูˆุงู†ู‡ุง in distinct eigenvalues
20
00:02:06,880 --> 00:02:12,940
ูŠุณุงูˆูŠ ุงู„ู†ุธุงู… ุชุจุน ู†ุต ุงู„ู…ุตุญูˆูุฉ N ูŠุจู‚ู‰ ุงู„ุนุฏุฏ ูŠุณุงูˆูŠ N
21
00:02:12,940 --> 00:02:21,120
ุซู… ูŠุจู‚ู‰ ู‡ู†ุงูƒ ูƒู…ุจู„ูŠุช ุณูŠุช ุงู ุงูŠุฌุงู† ููƒุชุฑ ูˆู…ุชุฑูƒุณ
22
00:02:21,120 --> 00:02:27,530
A ู…ุณุชู‚ู„ ู…ุณุชู‚ู„ ู…ุณุชู‚ู„ ู…ุณุชู‚ู„ ู…ุณุชู‚ู„ ู…ุณุชู‚ู„ุจุชู‚ูˆู„ ู„ูˆ ุงู†ุช
23
00:02:27,530 --> 00:02:31,450
ุนู†ุฏูƒ ุฌู‡ุฉ ุงู„ู…ุตุทูู‰ ู†ุธุงู…ู‡ุง ู…ุซู„ุง ุชู„ุงุชุฉ ููŠ ุชู„ุงุชุฉ ุงูˆ
24
00:02:31,450 --> 00:02:35,730
ุงุชู†ูŠู† ููŠ ุงุชู†ูŠู† ุงูˆ ุงุฑุจุนุฉ ููŠ ุงุฑุจุนุฉ ุงุฐุง ู†ุธุงู…ู‡ุง ุงุฑุจุนุฉ
25
00:02:35,730 --> 00:02:42,190
ููŠ ุงุฑุจุนุฉ ูˆุทู„ุน ุนู†ุฏูŠ ุงุฑุจุนุฉ distinct eigenvalues ูŠุจู‚ู‰
26
00:02:42,190 --> 00:02:46,610
ุนู„ู‰ ุทูˆู„ ุงู„ุฎุท ู‡ุงุฏูŠ diagonalizable ูŠุจู‚ู‰ ุงู„ู…ุตุทูู‰ ุงู„ู„ูŠ
27
00:02:46,610 --> 00:02:52,770
ุนู†ุฏูŠ ุงุฐุง ุณุงูˆู‰ุนุฏุฏ ุงู„ู€ Destined Eigenvalues ู†ุธุงู…
28
00:02:52,770 --> 00:02:57,770
ุงู„ู…ุตููˆูุฉ ุงูˆุชูˆู…ุงุชูŠูƒ ู‡ุฐูŠ ุจุชุจู‚ู‰ Diagonalizable ูŠุนู†ูŠ
29
00:02:57,770 --> 00:03:02,310
ุจู‚ุฏุฑ ุงูƒุชุจู‡ุง ุนู„ู‰ ุตูŠุบุฉ ู…ุตููˆูุฉ ู‚ุทุฑูŠุฉ ูˆ ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ
30
00:03:02,310 --> 00:03:07,870
ุงู„ุฑุฆูŠุณูŠ ููŠู‡ุง ู‡ู… ุงู„ู€Eigenvalues ูƒูˆูŠุณ ูˆุงู„ู„ู‡ ุฏูŠ ุจูŠุณู‡ู„
31
00:03:07,870 --> 00:03:11,050
ุงู„ุดุบู„ ูƒุชูŠุฑ ูŠุนู†ูŠ ุจุฏู„ ู„ุณู‡ ู…ุงุฑูˆุญ ุงุซุจุช ูˆ ุงุฌูŠุจ
32
00:03:11,050 --> 00:03:14,510
ุงู„ู€Eigenvectors ูˆ ุงุญุณุจ ู„ุง ุฏุงุนูŠ ุงู„ู€Eigenvectors
33
00:03:14,510 --> 00:03:17,670
ูŠุจู‚ู‰ ุจุณ ุจุฏู‰ ุงุดูˆู ุนุฏุฏ
34
00:03:20,480 --> 00:03:25,720
ู‡ู„ ูŠุณุงูˆูŠ ู†ุธุงู… ุงู„ู…ุตูˆูุฉ ุงูˆ ู„ุงุŸ ุงูˆ ู‡ู„ ูŠุณุงูˆูŠ ุฑุชุจุฉ
35
00:03:25,720 --> 00:03:29,620
ุงู„ู…ุตูˆูุฉ ุงูˆ ู„ุงุŸ ุงุฐุง ุณุงูˆู‰ ุจูŠู‚ูˆู„ ุฎู„ุงุตู†ุง ูŠุจู‚ู‰ ุงู„ู…ุตูˆูุฉ
36
00:03:29,620 --> 00:03:34,060
ู‡ุงุฏู‰ุŒ ุฏุง ูŠู‚ูˆู†ุงุŒ ู„ุง ูŠุฒูŠุจู†ุงุŒ ุฏุง ู…ู‡ู… ุฌุฏุง ููŠ ุงู„ุดุบู„ ุจุนุฏ
37
00:03:34,060 --> 00:03:43,260
ู‚ู„ูŠู„ุงู„ู…ู„ุงุญุธุฉ ุงู„ุชุงู„ูŠุฉ ุจูŠู‚ูˆู„ ู„ู€ An n by n matrix
38
00:03:43,260 --> 00:03:47,980
need not have indistinct eigenvalues ุฒูŠ ู…ุง ุดูู†ุง
39
00:03:47,980 --> 00:03:53,100
ู‚ุจู„ ู‚ู„ูŠู„ ููŠ ู…ุญุงุถุฑุฉ ุงู„ุตุญุงุจุฉ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุตูˆูุฉ ุงู„ู„ูŠ
40
00:03:53,100 --> 00:03:58,040
ุนู†ุฏูŠ ุทุงู„ุนุฉ two eigenvalues ุจูŠุณูˆูˆุง ุจุนุถุŒ ู…ุธุจูˆุทุŸ ุฅุฐุง
41
00:03:58,040 --> 00:04:03,610
ู„ูŠุณ ุจุงู„ุถุฑูˆุฑุฉ ุฃู† ูŠูƒูˆู†ูˆุง ูƒู„ู‡ู… ู…ู†ูุตู„ุงุช ุนู† ุจุนุถุงู„ู…ู‡ู… ู‡ูˆ
42
00:04:03,610 --> 00:04:07,490
ู„ุง ูŠูƒูˆู† ู‡ู†ุงูƒ ุงูŠุฌุงู† ูุงู„ูˆ ู…ู…ูƒู† ุงู† ูŠูƒูˆู† ู‡ู†ุงูƒ ุงูŠุฌุงู†
43
00:04:07,490 --> 00:04:08,370
ูุงู„ูˆ ู…ู…ูƒู† ุงู† ูŠูƒูˆู† ู‡ู†ุงูƒ ุงูŠุฌุงู† ูุงู„ูˆ ู…ู…ูƒู† ุงู† ูŠูƒูˆู†
44
00:04:08,370 --> 00:04:11,710
ู‡ู†ุงูƒ ุงูŠุฌุงู† ูุงู„ูˆ ู…ู…ูƒู† ุงู† ูŠูƒูˆู† ู‡ู†ุงูƒ ุงูŠุฌุงู† ูุงู„ูˆ ู…ู…ูƒู†
45
00:04:11,710 --> 00:04:13,190
ุงู† ูŠูƒูˆู† ู‡ู†ุงูƒ ุงูŠุฌุงู† ูุงู„ูˆ ู…ู…ูƒู† ุงู† ูŠูƒูˆู† ู‡ู†ุงูƒ ุงูŠุฌุงู†
46
00:04:13,190 --> 00:04:15,290
ูุงู„ูˆ ู…ู…ูƒู† ุงู† ูŠูƒูˆู† ู‡ู†ุงูƒ ุงูŠุฌุงู† ูุงู„ูˆ ู…ู…ูƒู† ุงู† ูŠูƒูˆู†
47
00:04:15,290 --> 00:04:17,970
ู‡ู†ุงูƒ ุงูŠุฌุงู† ูุงู„ูˆ ู…ู…ูƒู† ุงู† ูŠูƒูˆู† ู‡ู†ุงูƒ ุงูŠุฌุงู† ูุงู„ูˆ ู…ู…ูƒู†
48
00:04:17,970 --> 00:04:18,890
ุงู† ูŠูƒูˆู† ู‡ู†ุงูƒ ุงูŠุฌุงู† ูุงู„ูˆ ู…ู…ูƒู† ุงู† ูŠูƒูˆู† ู‡ู†ุงูƒ ุงูŠุฌุงู†
49
00:04:18,890 --> 00:04:21,270
ูุงู„ูˆ ู…ู…ูƒู† ุงู† ูŠูƒูˆู† ู‡ู†ุงูƒ ุงูŠุฌุงู† ูุงู„ูˆ ู…ู…ูƒู† ุงู† ูŠูƒูˆู†
50
00:04:21,270 --> 00:04:25,130
ู‡ู†ุงูƒ ุงูŠุฌุงู† ูุงู„ูˆ ู…ู…ูƒู† ุงู† ูŠูƒูˆู† ู‡ู†ุงูƒ ุงูŠุฌุงู† ูุงู„ูˆ ู…ู…ูƒู†
51
00:04:25,130 --> 00:04:28,650
ุงู†
52
00:04:28,650 --> 00:04:31,000
ูŠูƒูˆู† ู‡ู†ุงูƒ ุงูŠุฌุงู† ูุงู„ุงู„ู†ู‚ุทุฉ ุงู„ุชุงู†ูŠุฉ ุจูŠู‚ูˆู„ ู„ูˆ ูƒุงู†
53
00:04:31,000 --> 00:04:33,080
ู„ุงู†ุฏุง ูˆุงุญุฏ ูˆ ู„ุงู†ุฏุง ุงุชู†ูŠู† ูˆ ู„ุงู†ุฏุง ุงุฑ ุงุฑ the
54
00:04:33,080 --> 00:04:39,360
destined eigenvalues ู„ู„ู…ูŠู† ู„ ุงู„ n by n matrix A
55
00:04:39,360 --> 00:04:46,600
ู„ุญุธุฉ R ุฃู‚ู„ ู…ู† ุงูˆ ุชุณูˆู‰ N ุฒูŠ ู…ุง ู‚ู„ู†ุง ู‚ุจู„ ู‚ู„ูŠู„ ูŠุจู‚ู‰
56
00:04:46,600 --> 00:04:51,180
ู‡ุฐูˆู„ ุงู„ destined ู„ู…ูŠู† ุงู„ู…ุตู„ุญุฉthe characteristic
57
00:04:51,180 --> 00:04:55,820
polynomial ุจู‚ุฏุฑ ุฃูƒุชุจู‡ุง ุนู„ู‰ ู…ูŠู… ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ
58
00:04:55,820 --> 00:05:01,380
ูŠุนู†ูŠ ู…ุด ุฃู‚ูˆู‰ ุฃุณุนุฏุฏู‡ู… in ู„ุฃู† ุฃู‚ูˆู‰ ุฃุณุนุฏุฏู‡ู… in ู…ุนู†ุงุชู‡
59
00:05:01,380 --> 00:05:06,340
ุงู† ุนู†ุฏูŠ in ู…ู† ุงู„ู„ุงู†ุฏุงุช ุจุนุถู‡ู… ู‡ูŠูƒูˆู† ู…ูƒุฑุฑ ูŠุนู†ูŠ ู‡ูŠุทู„ุน
60
00:05:06,340 --> 00:05:10,640
ู„ุงู†ุฏุง ู†ุงู‚ุต ู„ุงู†ุฏุง ูˆุงุญุฏ ู…ุซู„ุง ุชุฑุจูŠุน ู‡ุฐูŠ ุชูƒุนูŠุจ ุฏู„ูˆู‚ุชูŠ
61
00:05:10,640 --> 00:05:14,680
ู…ุงูˆุตู„ ู„ู„ุงู†ุฏุง ุงุฑ ู…ู…ูƒู† ู„ูˆุณ ูˆุงุญุฏ ู…ู…ูƒู† ูƒู„ู‡ ู„ูˆุณ ุงุชู†ูŠู†
62
00:05:14,680 --> 00:05:18,360
ู…ู…ูƒู† ุชู„ุช ุงุฐุง ูƒุงู† ู…ุฌู…ูˆุนูŠ ุงู„ุฃุณุณ ู‡ุฐู‡ ูƒู„ู‡ุง ู…ุฏูˆุณุฉ
63
00:05:18,360 --> 00:05:24,730
ุจุฏูˆุณุงูˆูŠ inุฃูŠุด ุณุจุจ ุงู„ุฃุณุณุฉ ุฏูŠุŸ ุณุจุจู‡ ุงู„ุชูƒุฑุงุฑ ุงู„
64
00:05:24,730 --> 00:05:30,470
multiplicity ุฌุงู„ูƒู‡ the integer mi ูŠุนู†ูŠ ุฃูŠ ูˆุงุญุฏ ู…ู†
65
00:05:30,470 --> 00:05:34,210
ุงุฏูˆู„ is called the multiplicity of the eigenvalue
66
00:05:34,210 --> 00:05:38,970
lambda i ูŠุนู†ูŠ ู‡ุฐุง ุงู„ุฑู‚ู… ูŠุฏู„ ุนู„ู‰ ุงู† ุงู„ lambda i
67
00:05:38,970 --> 00:05:44,290
ู…ูƒุฑุฑุฉ ู…ุฑุชูŠู† ุชู„ุงุชุฉ ุงุฑุจุนุฉ ุฌุฏ ู…ุง ูŠูƒูˆู†ูŠุจู‚ู‰ ูŠุง ุจู†ุงุชุŒ
68
00:05:44,290 --> 00:05:50,730
ู‡ุฐุง ุงู„ู€M ุงู„ู„ูŠ ุนู†ุฏู†ุง ูŠุฏู„ ุนู„ู‰ ุนุฏุฏ ู…ุฑุงุช ุชูƒุฑุงุฑ ู‚ูŠู…ุฉ
69
00:05:50,730 --> 00:05:56,350
ู„ุงู†ุฏุงุŒ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€EigenvalueุŒ ู‡ู†ุง ูˆุถุน ุงู„ุญุฏ ู‡ู†ุงุŒ
70
00:05:56,350 --> 00:06:01,700
ุฌุงุจ ุงู„ู…ูุฑูˆุถุŒ ุญุฏ ูŠู„ุงู‚ูŠ ุงุณุชูุณุงุฑ ู‡ู†ุงุŸู„ู…ุง ุจุชุณุฃู„ ุชุณุฃู„
71
00:06:01,700 --> 00:06:06,380
ู…ุด ุนูŠุจ ุงุณุฃู„ูŠู‡ ูˆุฎุฏ ุงู„ุณุคุงู„ ุงู„ู„ูŠ ุจุฏูƒูŠู‡ ููŠู‡ ุงูŠ ู†ู‚ุทุฉ
72
00:06:06,380 --> 00:06:10,080
ุจุฏูƒูŠู‡ุง ู„ุฅู†ู‡ ุจุนุฏ ู‚ู„ูŠู„ ุจุฏุฃุช ุจุชุทุจู‚ ู‡ุฐุง ุนู„ู‰ ุฃุฑุถ ุงู„ูˆุงู‚ุน
73
00:06:10,080 --> 00:06:15,760
ุชุทุจู‚ุด ุงู„ characteristic polynomial ู„ุฅูŠุดุŸู…ุด .. ู…ุด
74
00:06:15,760 --> 00:06:20,720
ุฃุฎุฏู†ุง ููŠ ุฃูˆู„ ู…ุจุงุฏุฆู†ุง ู‡ุฐุง ุงู„ section ู‚ู„ู†ุง ููŠู‡ ุญุงุฌุฉ
75
00:06:20,720 --> 00:06:24,340
ุงุณู… ุงู„ characteristics polynomial ุงู„ู…ุญุฏุฏ ุชุจุน ุงู„
76
00:06:24,340 --> 00:06:27,380
land I ู†ุงู‚ุต A ู…ุด ุณู…ู†ุงู‡ุง ุงู„ characteristics
77
00:06:27,380 --> 00:06:31,120
polynomial ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ land ุชุฑุจูŠู‡ุง ุงู„ land ุชูƒูŠุจ
78
00:06:31,120 --> 00:06:34,220
ุฒุงุฆุฏ ู…ุด ุนุงุฑููŠู† ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุทูˆูŠู„ุฉ ู‡ุฐู‡ ู‡ุฐู‡
79
00:06:34,220 --> 00:06:37,640
ุงู„ู„ูŠ ู‡ูŠ ุงู„ุญู„ูˆู„ ุงู„ู„ูŠ ู‡ูŠ ุงู„ land I ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ุฑูˆุญุช
80
00:06:37,640 --> 00:06:42,130
ุญุทูŠุชู‡ุง ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ู„ูŠ ู‚ุฏุงู…ู†ุง ู‡ุฐุงู…ู† ู„ู†ุฏุง ู„ุบุงูŠุฉ ู„ู†ุฏุง
81
00:06:42,130 --> 00:06:45,830
ูˆุงุญุฏ ู„ุบุงูŠุฉ ู„ู†ุฏุง ุงุฎุฑ ุทุจ ู„ูŠุด ู…ู…ูƒู† ุชุดูŠู„ ู„ู†ุฏุง in ู„ูˆ
82
00:06:45,830 --> 00:06:50,090
ู‚ู„ุช ู„ ู„ู†ุฏุง in ู…ุนู†ุงุชู‡ ูˆู„ุง ูˆุงุญุฏุฉ ู…ูƒุฑุฑุฉ ุตุญ ูˆู„ุง ู„ุง ูƒู„
83
00:06:50,090 --> 00:06:53,890
ูˆุงุญุฏุฉ ุจุณ ู…ุฑุฉ ูˆุงุญุฏุฉ ูˆูƒู„ู‡ our destiny ู„ูƒู† ู…ุงุฏุงู…
84
00:06:53,890 --> 00:06:58,310
ุชุณุงูˆูŠ ุงุฐุง ู‡ูŠุตูŠุฑ ููŠู‡ ุชูƒุฑุงุฑ ูŠุจู‚ู‰ ุนุฏุฏ ุงู„ุฃู‚ูˆุงุต ู„ุง ูŠู…ูƒู†
85
00:06:58,310 --> 00:07:03,290
ุงู† ูŠุณุงูˆูŠ in ุจุณุงูˆูŠ R ุฌุฏ ู…ุง ูŠูƒูˆู† ุจุดุฑุท R ู‚ุฏ ุชูƒูˆู†
86
00:07:03,290 --> 00:07:07,470
ุชุณุงูˆูŠ in ุงูˆ ุงู‚ู„ ู…ู†ู‡ุง ุงู† ุณูˆู‰ ุงู† ูŠุจู‚ู‰ ูƒู„ ูˆุงุญุฏ ู…ู†
87
00:07:07,470 --> 00:07:11,350
ุงู„ุฃุณุงุณ ู‡ุฏูˆู„ ุจู‚ุฏุงุดุจู‚ู‰ ุญุตุฉ ุบูŠุฑ ู‡ูŠูƒ ุจุฏูŠ ุฃุฒูŠุฏ ุนู†ู‡ุง
88
00:07:11,350 --> 00:07:14,970
ูŠุนู†ูŠ ุจุนุถู‡ู… ู‚ุฏ ูŠูƒูˆู† ูˆุงุญุฏ ุจุนุถู‡ู… ุงุชู†ูŠู† ุจุนุถู‡ู… ุชู„ุงุชุฉ
89
00:07:14,970 --> 00:07:20,630
ุงู„ู‰ ุขุฎุฑูŠู† ุทูŠุจ ุจู†ุฌูŠ ู„ remark ุจู‚ูˆู„ูŠ the number of M
90
00:07:20,630 --> 00:07:25,230
I of multiplicity of the eigen value of lambda I
91
00:07:25,230 --> 00:07:28,230
equal the number of linearly independent eigen
92
00:07:28,230 --> 00:07:36,170
vectors ูƒูˆูŠุณุงู„ุงู† ุงู†ุง ุฌูŠุช ุนู„ู‰ ุงู„ mi ุงูุชุฑุถ ุงู„ mi
93
00:07:36,170 --> 00:07:41,350
ูƒุงู†ุช ุจู‚ุฏุฑุด ูŠุนู†ูŠ ุงู„ุฃุณ ุจุงุชู†ูŠู† ูŠุนู†ูŠ ู„ุงู† ุฏู‡ ู…ูƒุฑุฑ ุฑู‚ู…
94
00:07:41,350 --> 00:07:46,510
ู…ุฑุฉ ู…ุฑุชูŠู† ูŠุจู‚ู‰ ุจูŠู‚ูˆู„ the number of multiplicity of
95
00:07:46,510 --> 00:07:52,230
the eigen value line is equalุงู„ุนุฏุฏ ุงู„ู„ูŠู†ูŠุงุฑูŠ
96
00:07:52,230 --> 00:07:55,910
ุงู„ุงู†ุฏุจู†ุฏุงู† ุงู„ู„ูŠ ู‡ูˆ ุงูŠุฌุงู† ููƒุชุฑ ูŠุจู‚ู‰ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ
97
00:07:55,910 --> 00:08:00,790
ุจุทู„ ุนู†ุฏู‰ ูƒุงู… ุงูŠุฌุงู† ููƒุชุฑ ุงุชู†ู‰ ุงุชู†ู‰ ุงุชู†ู‰ ุงุชู†ู‰ ุงุชู†ู‰
98
00:08:00,790 --> 00:08:02,650
ุงุชู†ู‰ ุงุชู†ู‰ ุงุชู†ู‰ ุงุชู†ู‰ ุงุชู†ู‰ ุงุชู†ู‰ ุงุชู†ู‰ ุงุชู†ู‰ ุงุชู†ู‰ ุงุชู†ู‰
99
00:08:02,650 --> 00:08:04,110
ุงุชู†ู‰ ุงุชู†ู‰ ุงุชู†ู‰ ุงุชู†ู‰ ุงุชู†ู‰ ุงุชู†ู‰ ุงุชู†ู‰ ุงุชู†ู‰ ุงุชู†ู‰ ุงุชู†ู‰
100
00:08:04,110 --> 00:08:07,330
ุงุชู†ู‰ ุงุชู†ู‰ ุงุชู†ู‰ ุงุชู†ู‰ ุงุชู†ู‰ ุงุชู†ู‰ ุงุชู†ู‰ ุงุชู†ู‰ ุงุชู†ู‰ ุงุชู†ู‰
101
00:08:07,330 --> 00:08:15,170
ุงุชู†ู‰ ุงุชู†ู‰ ุงุชู†ู‰ ุงุชู†ู‰ ุงุชู†ู‰ ุงุชู†ู‰ ุงุชู†ู‰ ุงุชู†ู‰ ุงุชู†
102
00:08:15,190 --> 00:08:18,770
ุงู„ูƒู„ุงู… ุงู„ู„ูŠ ุจู†ู‚ูˆู„ู‡ ู‡ุฐุง ุจู†ุฑูˆุญ ู†ุญุทู‡ ุนู„ู‰ ุฃุฑุถ ุงู„ูˆุงู‚ุน
103
00:08:18,770 --> 00:08:25,750
ุจุฃู…ุซู„ุฉ ูƒุซูŠุฑุฉ ุชูˆุถุญ ุงู„ูƒู„ุงู… ู‡ุฐุง ูƒู„ู‡ ุนู…ู„ูŠุง ุฌุงู„ูŠ ู‡ู„ ุงู„
104
00:08:25,750 --> 00:08:33,470
matrix ุฏูŠ diagonalizable ุฃู… ู„ุงุŸู†ุนุฑูุด ู‡ุฐูŠ ุจุชู‚ูˆู„ูŠ
105
00:08:33,470 --> 00:08:42,430
ุจูŠูƒูˆู† diagonalizable ุฅุฐุง ูƒุงู† ู†ุธุงู… ุงู„ู…ุตููˆูุฉ ุฃูˆ ุฑุชุจุฉ
106
00:08:42,430 --> 00:08:47,870
ุงู„ู…ุตููˆูุฉ ุจุฏู‡ ูŠุณุงูˆูŠ ุนุฏุฏ ุงู„ characteristic values
107
00:08:49,860 --> 00:08:56,060
characteristic values ูŠุจู‚ู‰ ุจุชุงุฌูŠ ุงู‚ูˆู„ู‡ ุจุฏูŠ ุงุฎุฏ
108
00:08:56,060 --> 00:09:03,480
ุงู„ุงู† ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู† ู„ุงู†ุฏุง I ู†ุงู‚ุต ุงู„ A ุจุฏู‡ ูŠุณุงูˆูŠ ู‡ุฐู‡
109
00:09:03,480 --> 00:09:07,960
ุชู„ุงุชุฉ ููŠ ุชู„ุงุชุฉ ูŠุจู‚ู‰ ู„ุงู†ุฏุง Zero Zero ู„ุงู†ุฏุง Zero
110
00:09:07,960 --> 00:09:14,680
Zero ู„ุงู†ุฏุง ู†ุงู‚ุต ุงู„ A ุชู„ุงุชุฉ Zero Zero ุงุชู†ูŠู† ูˆุงุญุฏ
111
00:09:14,680 --> 00:09:19,970
Zero ู†ุงู‚ุต ูˆุงุญุฏ ู†ุงู‚ุต ุงุชู†ูŠู† ู†ุงู‚ุต ูˆุงุญุฏุจุงู„ุดูƒู„ ุงู„ู„ูŠ
112
00:09:19,970 --> 00:09:27,030
ุนู†ุฏู†ุง ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏูŠ ูŠุนุทูŠู†ุง ู„ุงู†ุฏุง ู†ุงู‚ุต ุซู„ุงุซุฉ ูˆู‡ู†ุง
113
00:09:27,030 --> 00:09:31,970
Zero Zero ุฒูŠ ู…ุง ู‡ูŠ ู‡ุฐุง ุจุฏูŠ ูŠุนุทูŠู†ุง ู†ุงู‚ุต ุงุชู†ูŠู† ู‡ุฐุง
114
00:09:31,970 --> 00:09:38,870
ู„ุงู†ุฏุง ู†ุงู‚ุต ูˆุงุญุฏ ู‡ุฐุง Zero ุฒูŠ ู…ุง ู‡ูˆ ู‡ุฐุง ูˆุงุญุฏ ุงุชู†ูŠู†
115
00:09:38,870 --> 00:09:47,930
ู„ุงู†ุฏุง ุฒุงุฆุฏ ูˆุงุญุฏูุจู‚ู‰ ูƒูˆูŠุณ ุงู†ุง ุณู…ูŠุช ุญู„ู… ู…ุด ุนุงุฑู ูˆู„ุง
116
00:09:47,930 --> 00:09:51,710
ุญุงุฌุฉ ูˆ ู‚ุงุนุฏ ุจุดุชุบู„ ุฒูŠ ู…ุง ูƒู†ุช ุจุดุชุบู„ ุงู„ุตุจุญ ูˆ ุฒูŠ ู…ุง
117
00:09:51,710 --> 00:09:55,750
ูƒู†ุช ุจุดุชุบู„ ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ูƒูˆูŠุณ ู„ูƒู† ู„ูˆ ูˆุงุญุฏุฉ ู†ุตุญู‰
118
00:09:55,750 --> 00:10:04,000
ุดูˆูŠู‡ ูŠูƒูˆู† ูุงุชุญุฉ ุจุชู‚ูˆู„ูŠ ู‡ุฐู‡ ู…ุตููˆูุฉ ู…ุซู„ุซุฉ ุณูู„ุฉุตุญ ูˆู„ุง
119
00:10:04,000 --> 00:10:09,800
ู„ุฃุŸ ุฅุฐุง ุงู„ู…ุญุฏุฏ ุชุจุนู‡ุง ุจุฏูŠ ุณุงูˆูŠ ุญุงุตู„ ุถุฑุจ ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ
120
00:10:09,800 --> 00:10:14,840
ุงู„ุฑุฆูŠุณูŠุŒ ู…ุงููŠุด ุฏุง ุชุฑูˆุญ ุชููƒูŠุŒ ุฎู„ุงุต ุญุงุตู„ ุถุฑุจ ูˆ ุฌุงู‡ุฒุฉ
121
00:10:14,840 --> 00:10:19,580
ูˆ ุฎุงู„ุตุฉุŒ ู…ุงุดูŠ ุจู‚ูˆู„ู‡ุงุŒ ุจู‚ูˆู„ ูˆุงู„ู„ู‡ ูƒูˆูŠุณุŒ ุฅุฐุง ุงู„
122
00:10:19,580 --> 00:10:26,000
determinant ู„ lambda I ู†ุงู‚ุต ุงู„ A ุจุฏูŠ ุณุงูˆูŠ ุงู„
123
00:10:26,000 --> 00:10:35,660
lambdaู„ุงู†ุฏุง ู†ุงู‚ุต ุชู„ุงุชุฉ ููŠ ู„ุงู†ุฏุง ู†ุงู‚ุต ูˆุงุญุฏ ููŠ ู„ุงู†ุฏุง
124
00:10:35,660 --> 00:10:42,160
ุฒุงูŠุฏ ูˆุงุญุฏ ูˆุฏู‡ ุณุงูˆูŠ ุฒูŠุฑูˆ ุตุญูŠุญ ูˆู„ุง ู„ุฃ ูŠุจู‚ู‰ ุณูˆู‰ the
125
00:10:42,160 --> 00:10:49,940
characteristic values ุงูˆ ุงู„ eigen values are ู„ุงู†ุฏุง
126
00:10:49,940 --> 00:10:55,860
ุชุณุงูˆูŠ ุณุงู„ุจ ูˆุงุญุฏ ูˆ ู„ุงู†ุฏุง ุชุณุงูˆูŠ ูˆุงุญุฏ ูˆ ู„ุงู†ุฏุง ุชุณุงูˆูŠ
127
00:10:55,860 --> 00:10:56,980
ุชู„ุงุชุฉ
128
00:10:59,830 --> 00:11:05,150
ู‡ุคู„ุงุก ุฏูŠุณุชูŠู†ูƒุช ูˆู„ุง ู„ุฃุŸ ูˆู†ุธุงู… ุงู„ู…ุตูˆูุฉ ุฅุฐุง ุฏู‡ ูŠูƒูˆู†
129
00:11:05,150 --> 00:11:09,470
ู„ุงุฒู… ูŠุจู„ ุทุจ ุฎู„ู‘ุงู„ ุงู„ crawler ุงู„ู„ูŠ ุฎู„ู‘ุตู†ุง ุจุฏูˆู† ุฃู†
130
00:11:09,470 --> 00:11:12,870
ุชุฑูˆุญ ุชุฏูˆุฑ ูˆู„ุง ุชุฌูŠุจ ุงู„ eigenvectors ูˆู„ุง ุชุบู„ุจ ุดุญุงู„ูƒ
131
00:11:12,870 --> 00:11:21,490
ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ ู‡ู†ุง since they eigenvectors
132
00:11:21,490 --> 00:11:27,730
ุงูŠ eigenvalues are destined
133
00:11:31,680 --> 00:11:48,960
and equal a3 ุนุฏุฏู‡ู… ุชู„ุงุชุฉ and the system of the
134
00:11:48,960 --> 00:12:08,110
matrix A is ุชู„ุงุชุฉ ููŠ ุชู„ุงุชุฉ by theabove crawlery we
135
00:12:08,110 --> 00:12:18,270
have ุงู† ุงู„ a is diagonalization
136
00:12:18,270 --> 00:12:23,530
ุฒูŠุจู„ diagonalization
137
00:12:23,530 --> 00:12:30,390
ูˆุงู„ู„ู‡ ูƒูˆูŠุณ ู‡ุฐู‡ ูˆุณูŠู„ุฉ ุทุฑูŠู‚ุฉ ู…ุจุณุทุฉ ุจุชุณู‡ู„ูŠ ู‡ุงู„ุดุบู„ ู‡ุฐู‡
138
00:12:40,990 --> 00:12:47,810
ุจู†ุงุฎุฏ ูƒู…ุงู† ู…ุซุงู„ ุญุฏ ู…ุง ู†ู‚ุช ู…ุนู„ู…ุฉ ุดูŠูƒุจุงู„ ุงุณู…ู‡ุง
139
00:12:47,810 --> 00:12:56,010
example
140
00:12:56,010 --> 00:13:04,950
2 ุจูŠู‚ูˆู„
141
00:13:04,950 --> 00:13:15,490
ุงู„ุงุช ู…ุตูˆูุฉ ุงูŠู‡ ุชุณุงูˆูŠุงุชู†ูŠู† ุงุชู†ูŠู† ุชู„ุงุชุฉ ูˆุงุญุฏ ุงุชู†ูŠู†
142
00:13:15,490 --> 00:13:23,050
ูˆุงุญุฏ ุงุชู†ูŠู† ุณุงู„ุจ ุงุชู†ูŠู† ูˆุงุญุฏ ุงุชู†ูŠู† ุณุงู„ุจ ุงุชู†ูŠู† ูˆุงุญุฏ
143
00:13:23,050 --> 00:13:34,290
ุจูŠู‚ูˆู„ as a matrix as a matrix ู‡ูŠ diagonalizable
144
00:13:56,840 --> 00:13:58,240
ุงู„ุณู„ุงู… ุนู„ูŠูƒู…
145
00:14:07,940 --> 00:14:12,040
ู‡ุฐู‡ ุงู„ุณุคุงู„ ู…ุฎุชู„ูุฉ ุนู† ุงู„ุณุคุงู„ ุงู„ุณุงุจู‚ ู„ุงู† ุงู„ุณุคุงู„
146
00:14:12,040 --> 00:14:17,040
ุงู„ุณุงุจู‚ ูƒุงู† ุณู‡ู„ ู„ุฃู†ู‡ ูƒุงู† lower triangle matrix ุชู…ุงู…
147
00:14:17,040 --> 00:14:21,280
ู‡ุฐู‡ ุงู„ุฃุจู†ุงุก ู„ุง lower ูˆู„ุง upper ู‡ุฐู‡ ู…ุตูˆูุฉ ุนุงุฏูŠุฉ
148
00:14:21,280 --> 00:14:28,040
ูˆุจุงู„ุชุงู„ูŠ ู†ุญุณุจ ุงู„ุญุณุงุจุงุช ู‡ุฐู‡ ุจุงู„ุชูุตูŠู„ ู†ุงุฎุฏ ุงู„ lambda
149
00:14:28,040 --> 00:14:37,590
I ู†ุงู‚ุต ุงู„ A ูŠุจุฏูˆ ูŠุณุงูˆูŠ lambda 00 lambda 0zero
150
00:14:37,590 --> 00:14:44,330
ู„ุงู†ุฏุง ู†ุงู‚ุต ุงู„ู„ูŠ ู‡ูˆ ุงุชู†ูŠู† ุงุชู†ูŠู† ุชู„ุงุชุฉ ูˆุงุญุฏ ุงุชู†ูŠู†
151
00:14:44,330 --> 00:14:52,010
ูˆุงุญุฏ ุงุชู†ูŠู† ู†ุงู‚ุต ุงุชู†ูŠู† ูˆุงุญุฏ ูˆูŠุณุงูˆูŠ ู„ุงู†ุฏุง ู†ุงู‚ุต ุงุชู†ูŠู†
152
00:14:52,010 --> 00:14:59,030
ูˆ ู‡ู†ุง ู†ุงู‚ุต ุงุชู†ูŠู† ู†ุงู‚ุต ุชู„ุงุชุฉ ูˆ ู‡ู†ุง ู†ุงู‚ุต ูˆุงุญุฏ ูˆ ู‡ู†ุง
153
00:14:59,030 --> 00:15:05,250
ู„ุงู†ุฏุง ู†ุงู‚ุต ุงุชู†ูŠู† ูˆ ู‡ู†ุง ู†ุงู‚ุต ูˆุงุญุฏ ู†ุงู‚ุต ุงุชู†ูŠู† ุงุชู†ูŠู†
154
00:15:05,480 --> 00:15:11,960
ูˆู‡ู†ุง ู„ุงู†ุฏุง ู†ุงู‚ุต ูˆุงุญุฏ ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง ุจุนุฏ ู‡ูŠูƒ
155
00:15:11,960 --> 00:15:17,780
ู…ุดุงู† ู†ุฌูŠุจ ู‚ูŠู… ู„ุงู†ุฏุง ุจุฏู†ุง ู†ุฑูˆุญ ู†ุงุฎุฏ ุงู„ู…ุญุฏุฏ ุชุจุน ู‡ุฐู‡
156
00:15:17,780 --> 00:15:24,780
ุงู„ู…ุตููˆูุฉ ูŠุจู‚ู‰ ุจุฏูŠ ุงุงุฎุฏ ุงู„ determinant ุชุจุน ู„ุงู†ุฏุง I
157
00:15:24,780 --> 00:15:32,290
ู†ุงู‚ุต ุงู„ A ูŠุจู‚ู‰ ุงู„ู…ุญุฏุฏู„ุงู†ุฏุง ู†ุงู‚ุต ุงุชู†ูŠู† ู†ุงู‚ุต ุงุชู†ูŠู†
158
00:15:32,290 --> 00:15:40,050
ู†ุงู‚ุต ุชู„ุงุชุฉ ู†ุงู‚ุต ูˆุงุญุฏ ู„ุงู†ุฏุง ู†ุงู‚ุต ุงุชู†ูŠู† ู†ุงู‚ุต ูˆุงุญุฏ
159
00:15:40,050 --> 00:15:47,600
ู†ุงู‚ุต ุงุชู†ูŠู† ุงุชู†ูŠู† ู„ุงู†ุฏุง ู†ุงู‚ุต ูˆุงุญุฏูŠุจู‚ู‰ ู‡ุงูŠ ุฑูˆุญู†ุง
160
00:15:47,600 --> 00:15:52,200
ุฃุฎุฏู†ุง ุงู„ู…ุญุฏุฏ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ูˆ ุจุฏู†ุง ู†ูŠุฌูŠ ู†ููƒ ุงู„ู…ุญุฏุฏ
161
00:15:52,200 --> 00:15:58,800
ุจุงุณุชุฎุฏุงู… ุนู†ุงุตุฑ ุฃูŠ ุตู ุฃูˆ ุฃูŠ ุนู…ูˆุฏ ููŠู‡ ูู…ุซู„ุง ู„ูˆ ุฌูŠุช
162
00:15:58,800 --> 00:16:04,100
ูƒู„ุช ุจุฏูŠ ุฃููƒู‡ ุจุงุณุชุฎุฏุงู… ุนู†ุงุตุฑ ุงู„ุตู ุงู„ุฃูˆู„ ูŠุจู‚ู‰ ู„ุงู†ุฏุง
163
00:16:04,100 --> 00:16:11,080
ู†ุงู‚ุต ุงุชู†ูŠู† ููŠู‡ ุงู„ุฑุฆูŠุณูŠ ู†ุงู‚ุต ุงุชู†ู‰ ูˆูŠุจู‚ู‰ ู„ุงู†ุฏุง ู†ุงู‚ุต
164
00:16:11,080 --> 00:16:19,720
ุงุชู†ูŠู† ููŠู„ุงู†ุฏุง ู†ุงู‚ุต ูˆุงุญุฏ ุฒุงุฆุฏูŠ ุงุชู†ูŠู†ู‡ุฐุง ู…ู† ู‡ุฐุง ู„ุณู‡
165
00:16:19,720 --> 00:16:24,160
ุงู„ุญุฏ ุงู„ุฃูˆู„ ุงู„ู„ูŠ ุจุนุฏู‡ ุญุณุจ ู‚ุงุนุฉ ุงู„ุฅุดุงุฑุงุช ุฅุดุงุฑุชู‡
166
00:16:24,160 --> 00:16:30,900
ุณุงู„ุจุฉ ูˆ ุณุงู„ุจ ุจูŠุตูŠุฑ ู…ูˆุฌุฉ ุจุงุชู†ูŠู† ููŠู‡ ุฃุดู ุจุตูู‡ ูˆ
167
00:16:30,900 --> 00:16:37,140
ุนู…ูˆุฏู‡ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุงู„ู„ูŠ ู‡ูˆ ุจูŠุตูŠุฑ ูˆุงุญุฏ ู†ุงู‚ุต
168
00:16:37,140 --> 00:16:42,820
ู„ุงู†ุฏุง ู„ุฅู†ู‡ ุจูŠุดุงุฑ ุงู„ุณุงู„ุจ ู†ุงู‚ุต ุงุชู†ูŠู† ุงู„ุดูƒู„ ุงู„ู„ูŠ
169
00:16:42,820 --> 00:16:49,550
ุนู†ุฏู†ุง ู‡ุฐุงุงู„ู„ูŠ ุจุนุฏู‡ ู†ุงู‚ุต ุชู„ุงุชุฉ ููŠู‡ ุงุดุทุฑ ุจุตูู‡ ุนู…ูˆุฏู‡
170
00:16:49,550 --> 00:16:57,970
ูŠุจู‚ู‰ ู†ุงู‚ุต ุงุชู†ูŠู† ุฒุงุฆุฏ ุงุชู†ูŠู† ู„ุงู†ุฏุง ู†ุงู‚ุต ุงุฑุจุนุฉ ูƒู„ ู‡ุฐุง
171
00:16:57,970 --> 00:17:03,890
ุงู„ูƒู„ุงู… ุจุฏู‰ ูŠุณุงูˆูŠ ุฒูŠุฑูˆ ู…ุฑุฉ ุชุงู†ูŠุฉ ู‚ู„ูŠูƒูŠ ู…ุนุงูŠุง ุชุงู†ูŠุฉ
172
00:17:04,670 --> 00:17:09,150
ุจู‚ูˆู„ ู‡ุฐุง ุงู„ term ุงู„ุฃูˆู„ ุงู„ู…ุญุฏุฏ ุงู„ุฃุตุบุฑ ู…ุงุถูŠ ุฑุงุญ ุญุตู„
173
00:17:09,150 --> 00:17:14,910
ุถุฑุจ ู‡ุฏูˆู„ ู†ุงู‚ุต ู…ุน ู†ุงู‚ุต ุจุตูŠุฑ ุฒุงุฆุฏ ุงุชู†ูŠู† ุญุณุจ ู‚ุงู„ู‡ ุดุฑุท
174
00:17:14,910 --> 00:17:20,790
ุงู„ุดุฑุท ุงู„ุณู„ุจู‰ ุจุตูŠุฑ ู…ูˆุฌุจุฉ ุชู…ุดูŠุท ุจุตูู‡ ุนู…ูˆุฏู‡ ุจุตูŠุฑ ู†ุงู‚ุต
175
00:17:20,790 --> 00:17:27,670
ู„ุงู†ุฏุง ุฒุงุฆุฏ ูˆุงุญุฏูŠุจู‚ู‰ ู†ุงู‚ุต ู„ุงู†ุฏุง ุฒุงุฆุฏ ูˆุงุญุฏ ู†ุงู‚ุต ู…ุน
176
00:17:27,670 --> 00:17:33,150
ุถุงุจู„ ู†ุงู‚ุต ุจูŠุจู‚ู‰ ู†ุงู‚ุต ู‚ุฏุงุด ุงุชู†ูŠู† ู†ุงู‚ุต ุซู„ุงุซุฉ ูˆุดุช
177
00:17:33,150 --> 00:17:38,810
ุจูŠุตููˆุง ุนู…ูˆุฏู‡ ุจูŠุตูŠุฑ ู†ุงู‚ุตูŠ ุงุชู†ูŠู† ูˆู‡ู†ุง ู†ุงู‚ุต ู…ุน ู†ุงู‚ุต
178
00:17:38,810 --> 00:17:43,510
ุจูŠุตูŠุฑ ุฒุงุฆุฏ ุงุชู†ูŠู† ู„ุงู†ุฏุง ู†ุงู‚ุต ุงุฑุจุนุฉ ูƒู„ ู‡ุฐุง ุงู„ูƒู„ุงู…
179
00:17:43,510 --> 00:17:49,530
ุจุฏู‰ ูŠุณุงูˆูŠ ู‚ุฏุงุด Zeroู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ู„ุงู†ุฏุง ู†ุงู‚ุต
180
00:17:49,530 --> 00:17:57,530
ุงุชู†ูŠู† ู„ุงู†ุฏุง ุชุฑุจูŠุน ู†ุงู‚ุต ุชู„ุงู„ุชุง ู„ุงู†ุฏุง ุฒูŠุฏูŠ ุงุชู†ูŠู†
181
00:17:57,530 --> 00:18:05,470
ุฒูŠุฏูŠ ุงุชู†ูŠู†ู‡ุฐุง ุจูŠุตูŠุฑ ุฒุงุฆุฏ ุงุชู†ูŠู† ููŠ ู‚ุฏุงุด ูˆู‡ู†ุง ุงูŠุด
182
00:18:05,470 --> 00:18:11,590
ุฑุงูŠูƒุŸ ุจูŠุตูŠุฑ ุนู†ุฏู†ุง ู†ุงู‚ุต ู„ุงู†ุฏุง ู†ุงู‚ุต ูˆุงุญุฏ ูˆู‡ู†ุง ู†ุงู‚ุต
183
00:18:11,590 --> 00:18:18,550
ุชู„ุงุชุฉ ููŠ ุงุชู†ูŠู† ู„ุงู†ุฏุง ู†ุงู‚ุต ุณุชุฉ ูƒู„ู‡ ุจุฏู‡ ูŠุณุงูˆูŠ ุฒูŠุฑูˆ
184
00:18:18,550 --> 00:18:23,710
ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจูŠุตูŠุฑ ู„ุงู†ุฏุง ู†ุงู‚ุต ุงุชู†ูŠู† ููŠ ู„ุงู†ุฏุง
185
00:18:23,710 --> 00:18:34,310
ุชุฑุงุจูŠุน ู†ุงู‚ุต ุชู„ุงุชุฉ ู„ุงู†ุฏุง ุฒุงุฆุฏ ุงุฑุจุนูˆู‡ู†ุง ุฒุงุฆุฏ ุงูˆ ู†ุงู‚ุต
186
00:18:34,310 --> 00:18:42,790
ู†ุงู‚ุต ุงุชู†ูŠู† ููŠ lambda ุฒุงุฆุฏ ูˆุงุญุฏ ูˆู‡ู†ุง ุจูŠุตูŠุฑ ุนู†ุฏ ู…ูŠู†
187
00:18:42,790 --> 00:18:50,790
ู†ุงู‚ุต ุชู„ุงุชุฉ ุฒูŠ ู…ุง ู‡ูŠ ูˆู„ุง ู†ุงู‚ุต ุณุชุฉ ููŠ lambda ู†ุงู‚ุต
188
00:18:50,790 --> 00:18:53,810
ุชู„ุงุชุฉ ูƒู„ู‡ ุจุฏู‡ ูŠุณุงูˆูŠ zero
189
00:18:56,330 --> 00:19:02,370
ุทูŠุจ ู‡ุฐุง ุงู„ุงู† ู„ูˆ ุฌูŠุช ุญู„ู„ุชู‡ุง ุจุตูŠุฑ land ุงู†ุงู‚ุตูŠ ุงุชู†ูŠู†
190
00:19:02,370 --> 00:19:06,250
land
191
00:19:06,250 --> 00:19:11,150
ุงู†ุงู‚ุตูŠ ุงุฎุชุตุงุฑุงุช ู…ุงููŠุด ุฏู‚ูŠู‚ุฉ ูŠุจู‚ู‰ ุฎู„ูŠู†ูŠ ุงููƒ ุจุงู„ู…ุฑุฉ
192
00:19:11,150 --> 00:19:16,580
ุฎู„ูŠู†ูŠ ุงููƒู‡ุง ูˆ ุงุดูˆู ูˆูŠู† ุชูˆุตู„ู†ูŠ ู‡ุฐู‡ูŠุจู‚ู‰ ู‡ุงุฏ ูŠุง ุจู†ุงุช
193
00:19:16,580 --> 00:19:24,280
ุจุตูŠุฑ ู„ุงู†ุฏุฉ ูƒูŠุจ ู†ุงู‚ุต ุชู„ุงุชุฉ ู„ุงู†ุฏุฉ ุชุฑุจูŠุน ุฒุงุฆุฏ ุฃุฑุจุนุฉ
194
00:19:24,280 --> 00:19:33,760
ู„ุงู†ุฏุฉ ู†ุงู‚ุต ุงุชู†ูŠู† ู„ุงู†ุฏุฉ ุชุฑุจูŠุน ุฒุงุฆุฏ ุณุชุฉ ู„ุงู†ุฏุฉ ู†ุงู‚ุต
195
00:19:33,760 --> 00:19:41,760
ุชู…ุงู†ูŠุฉ ู†ุงู‚ุต ุงุชู†ูŠู† ู„ุงู†ุฏุฉ ู†ุงู‚ุต ุงุชู†ูŠู† ู†ุงู‚ุต ุณุชุฉ ู„ุงู†ุฏุฉ
196
00:19:41,760 --> 00:19:50,060
ุฒุงุฆุฏ ุซู…ุงู†ูŠุฉ ุนุดุฑูŠุจู‚ู‰ ุงู„ู…ุนุงุฏู„ุฉ ุงุซุงุฑุฉ ู‡ุฐู‡ ู„ุงู†ุฏุง ุชูƒูŠุจ
197
00:19:50,060 --> 00:19:56,420
ู…ููŠุด ุบูŠุฑู‡ุง ู‡ุฐู‡ ุชุฑุจูŠุน ูˆู‡ุฐู‡ ุชุฑุจูŠุน ุชุจู‚ู‰ ู†ุงู‚ุต ุฎู…ุณ
198
00:19:56,420 --> 00:20:04,100
ู„ุงู†ุฏุง ุชุฑุจูŠุน ุงู„ุงู† ู‡ุฐู‡ ู„ุงู†ุฏุง ูˆู‡ุฐู‡ ู„ุงู†ุฏุง ูˆู‡ุฐู‡ ู„ุงู†ุฏุง
199
00:20:04,100 --> 00:20:11,130
ูˆู‡ุฐู‡ ู„ุงู†ุฏุงุชู…ุงู… ุนู†ุฏูƒ ุงุฑุจุนุฉ ูˆุณุชุฉ ุนุดุฑุฉ ุจู†ุดูŠู„ ู…ู†ู‡ู…
200
00:20:11,130 --> 00:20:17,250
ุงุชู†ูŠู† ุจูŠุธู„ ุชู…ุงู†ูŠุฉ ุจู†ุดูŠู„ ู…ู†ู‡ู… ุณุชุฉ ุจูŠุธู„ ุงุชู†ูŠู†
201
00:20:17,250 --> 00:20:24,950
ุจุงู„ู…ูˆุฌุฉ ูŠุจู‚ู‰ ู‡ุงูŠ ุณุงู„ุจ ุชู…ุงู†ูŠุฉ ุจูŠุธู„ ุณุงู„ุจูŠ ุงุชู†ูŠู† ุจูŠุธู„
202
00:20:24,950 --> 00:20:32,150
ุฒุงุฆุฏ ุงุชู†ูŠู† ู„ุงู† ู…ุธุจูˆุท ุงูŠู‡ ูŠุง ุจู†ุงุชุŸุฃุฑุจุนุฉ ูˆ ุณุชุฉ ุนุดุฑุฉ
203
00:20:32,150 --> 00:20:36,070
ู…ูˆุฌุจ ูˆ ุงุชู†ูŠู† ูˆ ุณุชุฉ ุชู…ุงู†ูŠุฉ ุจูŠุธู„ ุงุชู†ูŠู† ุจุงู„ู…ูˆุฌุจ ุจูŠุธู„
204
00:20:36,070 --> 00:20:40,590
ู„ู†ุง ู…ู† ู‡ู†ุง ุณุงู„ุจ ุชู…ุงู†ูŠุฉ ูˆ ุณุงู„ุจ ุงุชู†ูŠู† ุณุงู„ุจ ุนุดุฑุฉ ูˆ
205
00:20:40,590 --> 00:20:47,110
ุฒุงุฆุฏ ุน ุชู…ุงู†ุชุงุด ุจูŠุธู„ ุฒุงุฆุฏ ุชู…ุงู†ูŠุฉ ูŠุณุงูˆูŠ Zero
206
00:21:06,420 --> 00:21:13,380
ููŠ ุญุฏ ุงู„ุงุนุชุฑุงุถุŸ ูƒูŠูุŸ
207
00:21:13,380 --> 00:21:18,000
ุงู„ู…ุนุงุฏู„ุฉ ุณู„ูŠู… ู…ุงุฆุฉ ุจุงู„ู…ุงุฆุฉ ุทุจ ุจุฏู†ุง ู†ุญู„ ู‡ุฐู‡ ู„ุง ููŠ
208
00:21:18,000 --> 00:21:23,280
ุนูˆุงู… ุงู„ู…ุดุชุฑูƒุฉ ูˆู„ุง ููŠ ุบูŠุฑู‡ ูŠุจู‚ู‰ ุฃู†ุง ุงู„ู…ุนุงุฏู„ุฉ ู…ู†ู‡ุง
209
00:21:23,280 --> 00:21:27,600
ุงู„ุฏุฑุฌุฉ ุงู„ุชุงู„ุชุฉ ู„ู…ุง ุจุฏูŠ ุฃุญู„ ู‡ูŠูƒ ูˆ ุชุจู‚ู‰ ุตุนุจุฉ ุจุฑูˆุญ
210
00:21:27,600 --> 00:21:35,580
ุจุฏูˆุฑ ุนู„ู‰ ู‚ูˆุงุณู… ุงู„ุชู…ุงู…ูŠุฉู‚ูˆุงุณู… ุงู„ู€ 8 ู…ูŠู†ุŸ 1 ูˆ ุณุงู„ุจ 1
211
00:21:35,580 --> 00:21:44,940
2 ุณุงู„ุจ 2 4 ุณุงู„ุจ 4 8 ุณุงู„ุจ 8 ูŠุนู†ูŠ ุนู†ุฏู‰ 8 ู‚ูˆุงุณู… ุชู…ุงู…
212
00:21:44,940 --> 00:21:50,630
ุฎู„ูŠู†ู‰ ู†ุจุฏุฃ ุจุงู„ุฃูˆู„ ู„ูˆ ุญุทูŠุช ู„ุงู† ุฏู‡ ุจูˆุงุญุฏุจุตูŠุฑ ู‡ู†ุง
213
00:21:50,630 --> 00:21:57,350
ูˆุงุญุฏ ูˆ ุงุชู†ูŠู† ุชู„ุงุชุฉ ุชู„ุงุชุฉ ูˆ ุชู…ุงู†ูŠุฉ ุงุญุฏุงุดุฑ ุงุญุฏุงุดุฑ
214
00:21:57,350 --> 00:22:01,730
ู‡ู†ุง ุจูˆุงุญุฏ ุจุตูŠุฑ ู†ุงู‚ุต ุฎู…ุณุฉ ูŠุจุนุชู„ูƒ ุงู„ู„ู‡ ูŠุจู‚ู‰ ู„ุงู† ุฏู‡
215
00:22:01,730 --> 00:22:07,030
ุจูˆุงุญุฏ ู„ุฃ ุจุฏูŠ ุงุญุท ู„ุงู† ุฏู‡ ุจู‚ุฏุงุด ุณุงู„ุจ ูˆุงุญุฏู„ูˆ ุญุทูŠุช
216
00:22:07,030 --> 00:22:12,650
ุณุงู„ุจ ูˆุงุญุฏ ุจูŠุตูŠุฑ ู‡ู†ุง ุณุงู„ุจ ูˆุงุญุฏ ูˆ ุณุงู„ุจ ุฎู…ุณุฉ ุณุงู„ุจ ุณุชุฉ
217
00:22:12,650 --> 00:22:17,650
ุณุงู„ุจ ุณุชุฉ ูˆ ุงุชู†ูŠู† ุณุงู„ุจ ุชู…ุงู†ูŠุฉ ูˆ ุชู…ุงู†ูŠุฉ ุฒูŠุฑูˆ ุชู…ุงู…
218
00:22:17,650 --> 00:22:22,390
ุชู…ุงู… ูŠุจู‚ู‰ ุงู„ land ุชุณุงูˆูŠ ุณุงู„ุจ ูˆุงุญุฏ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ู…ูŠู†
219
00:22:22,390 --> 00:22:27,910
ุนู† ุญู„ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ูŠุนู†ูŠ ุงู„ land ุฒุงุฆุฏ ูˆุงุญุฏ ู‡ูŠ ุงุญุฏ
220
00:22:27,910 --> 00:22:34,990
ุนูˆุงู…ู„ ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ since ุจู…ุง ุงู†
221
00:22:36,230 --> 00:22:47,810
Landa ุชุณุงูˆูŠ ุณุงู„ุจ ูˆุงุญุฏ is a solution of
222
00:22:47,810 --> 00:22:58,330
the equation A star ูŠุจู‚ู‰
223
00:22:58,330 --> 00:23:11,910
Landaุฒุงุฆุฏ ูˆุงุญุฏ is a factor of equation star ูŠุนู†ูŠ
224
00:23:11,910 --> 00:23:16,410
ุงู„ู…ุนุงุฏู„ุฉ ุชู‚ุณู… ุนู„ู‰ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุจุฏูˆู† ุจุงู‚ูŠ
225
00:23:23,490 --> 00:23:29,970
ูˆู‡ู†ุง ุนู†ุฏูƒ ู†ุงู‚ุต ุฎู…ุณุฉ ู„ุงู†ุฏุง ุชุฑุจูŠุฉ ู†ุงู‚ุต ุฎู…ุณุฉ ุฒุงุฆุฏ
226
00:23:29,970 --> 00:23:35,570
ุงุชู†ูŠู† ู„ุงู†ุฏุง ุฒุงุฆุฏ ุชู…ุงู†ูŠุฉ ุจุฏูŠ ุงุฌุณู…ู‡ุง ุฌุณู…ุฉ ู…ุถูˆู„ุฉ
227
00:23:35,570 --> 00:23:41,350
ุนุงุฏูŠุฉ ุนู„ู‰ ู„ุงู†ุฏุง ุฒุงุฆุฏ ูˆุงุญุฏ ููŠู‡ุง ุฌุฏุงุด ู„ุงู†ุฏุง ุชุฑุจูŠุฉ ููŠ
228
00:23:41,350 --> 00:23:48,610
ู„ุงู†ุฏุง ู„ุงู†ุฏุง ุชูƒุนูŠุจ ุฒุงุฆุฏ ู„ุงู†ุฏุง ุชุฑุจูŠุฉ ุชู…ุงู…ุŸุจุฃุฌูŠ ุจุบูŠุฑ
229
00:23:48,610 --> 00:23:54,810
ุงู„ุฅุดุงุฑุงุช ูˆุจุฌู…ุน ู…ุน ุงู„ุณู„ุงู…ุฉ ูุงู„ู†ุงู‚ุต ุณุชุฉ lambda ุชุฑุจูŠุน
230
00:23:54,810 --> 00:24:00,330
ุฒุงุฆุฏ ุงุชู†ูŠุฉ lambda ุฒุงุฆุฏ ุชู…ุงู†ูŠุฉ ุงู„ุจุงู‚ูŠ ู…ู† ุงู„ุฏุฑุฌุฉ
231
00:24:00,330 --> 00:24:04,850
ุงู„ุซุงู†ูŠุฉ ูˆุงู„ู…ู‚ุณูˆู… ุนู„ูŠู‡ ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ุจูˆุงุตู„ ุนู…ู„ูŠุฉ
232
00:24:04,850 --> 00:24:10,230
ุงู„ู‚ุณู…ุฉ ูŠุจู‚ู‰ ู†ุงู‚ุต ุณุชุฉ lambda ุชุฑุจูŠุน ุนู„ู‰ lambda ุจุทู„ุน
233
00:24:10,230 --> 00:24:20,080
ู‚ุฏุงุดู†ู‚ุต ุณุชุฉ ู„ุงู†ุฏุง ุชุฑุจูŠุน
234
00:24:20,080 --> 00:24:24,120
ู†ู‚ุต ุณุชุฉ ู„ุงู†ุฏุง ุชุฑุจูŠุน ู†ู‚ุต ุณุชุฉ ู„ุงู†ุฏุง ุชุฑุจูŠุน ู†ู‚ุต ุณุชุฉ
235
00:24:24,120 --> 00:24:24,160
ู„ุงู†ุฏุง ุชุฑุจูŠุน ู†ู‚ุต ุณุชุฉ ู„ุงู†ุฏุง ุชุฑุจูŠุน ู†ู‚ุต ุณุชุฉ ู„ุงู†ุฏุง
236
00:24:24,160 --> 00:24:24,160
ุชุฑุจูŠุน ู†ู‚ุต ุณุชุฉ ู„ุงู†ุฏุง ุชุฑุจูŠุน ู†ู‚ุต ุณุชุฉ ู„ุงู†ุฏุง ุชุฑุจูŠุน ู†ู‚ุต
237
00:24:24,160 --> 00:24:24,740
ุณุชุฉ ู„ุงู†ุฏุง ุชุฑุจูŠุน ู†ู‚ุต ุณุชุฉ ู„ุงู†ุฏุง ุชุฑุจูŠุน ู†ู‚ุต ุณุชุฉ ู„ุงู†ุฏุง
238
00:24:24,740 --> 00:24:24,820
ุชุฑุจูŠุน ู†ู‚ุต ุณุชุฉ ู„ุงู†ุฏุง ุชุฑุจูŠุน ู†ู‚ุต ุณุชุฉ ู„ุงู†ุฏุง ุชุฑุจูŠุน ู†ู‚ุต
239
00:24:24,820 --> 00:24:27,680
ุณุชุฉ ู„ุงู†ุฏุง ุชุฑุจูŠุน ู†ู‚ุต ุณุชุฉ ู„ุงู†ุฏุง ุชุฑุจูŠุน ู†ู‚ุต ุณุชุฉ ู„ุงู†ุฏุง
240
00:24:27,680 --> 00:24:33,620
ุชุฑุจูŠุน ู†ู‚ุต ุณุชุฉ ู„ุงู†ุฏุง ุชุฑุจูŠุน ู†ู‚ุตุงู„ุจุงู‚ูŠ ู…ู† ุงู„ุฏุฑุฌุฉ
241
00:24:33,620 --> 00:24:37,500
ุงู„ุฃูˆู„ู‰ ูˆุงู„ู…ู‚ุณูˆู… ุนู„ูŠู‡ ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ุจูˆุงุตู„ ุนู…ู„ูŠุฉ
242
00:24:37,500 --> 00:24:42,580
ุงู„ู‚ุณู…ุฉ ูŠุจู‚ู‰ ุชู…ุงู†ูŠุฉ ู„ุงู†ุฏุง ุนู„ู‰ ู„ุงู†ุฏุง ููŠู‡ุง ูŠุฏุงุดุฑ ู‡ูŠ
243
00:24:42,580 --> 00:24:50,240
ุชู…ุงู†ูŠุฉ ุชู…ุงู†ูŠุฉ ู„ุงู†ุฏุง ูˆู‡ู†ุง ุฒุงุฆุฏ ุชู…ุงู†ูŠุฉุบูŠุฑ ุงู„ุฅุดุงุฑุงุช
244
00:24:50,240 --> 00:24:57,060
ูˆุฌู…ุนูŠ ุจุตูŠุฑ ู‡ู†ุง ู‚ุฏุงุด ุจุตูŠุฑ ู‡ุฐู‡ ุจุงู„ุฐุงุช ุจุตูŠุฑ ู†ู‚ุต ูŠุจู‚ู‰
245
00:24:57,060 --> 00:25:03,300
zero ูˆ zero ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุงู„ู…ุนุงุฏู„ุฉ star ูŠุจู‚ู‰
246
00:25:03,300 --> 00:25:10,480
equation star take the fourูŠุจู‚ู‰ ุจุชุงุฎุฏ ุงู„ุดูƒู„ ุงู„ุฌุฏูŠุฏ
247
00:25:10,480 --> 00:25:15,240
ุงู„ู„ูŠ ุนู†ุฏูŠ ุฎุงุฑุฌ ุงู„ู‚ุณู…ุฉ ุงู„ู„ูŠ ู‡ูˆ ู…ุถุฑูˆุจ ููŠ ุงู„ู…ู‚ุณูˆู…
248
00:25:15,240 --> 00:25:21,760
ุนู„ูŠู‡ ู„ุงู†ุฏุง ุชุฑุจูŠุฉ ู†ุงู‚ุต ุณุชุฉ ู„ุงู†ุฏุง ุฒุงุฆุฏ ุชู…ุงู†ูŠุฉ ูŠุณุงูˆูŠ
249
00:25:21,760 --> 00:25:27,820
ุฒูŠุฑูˆ ุงู„ุงู† ู‡ุฐู‡ ุจู‚ุฏุฑ ุงู‚ูˆู„ ู„ุงู†ุฏุง ุฒุงุฆุฏ ูˆุงุญุฏ ู‡ุฐู‡ ุจู‚ุฏุฑ
250
00:25:27,820 --> 00:25:35,340
ุงุญู„ู„ู‡ุง ูƒุญุงุตู„ ุถุฑุจ ู‚ูˆุณูŠู† ู‡ู†ุง ู„ุงู†ุฏุง ู‡ู†ุง ู„ุงู†ุฏุงูˆู‡ู†ุง
251
00:25:35,340 --> 00:25:41,400
ุงุชู†ูŠู† ูˆู‡ู†ุง ุงุฑุจุนุฉ ูˆู‡ู†ุง ู†ุงู‚ุต ูˆู‡ู†ุง ู†ุงู‚ุต ูŠุจู‚ู‰ ุจู†ุงุก
252
00:25:41,400 --> 00:25:46,560
ุนู„ูŠู‡ ู„ุงู†ุฏุง ุชุณุงูˆูŠ ุณุงู„ุจ ูˆุงุญุฏ ูˆู„ุงู†ุฏุง ุชุณุงูˆูŠ ุงุชู†ูŠู†
253
00:25:46,560 --> 00:25:56,060
ูˆู„ุงู†ุฏุง ุชุณุงูˆูŠ ูƒุฏุงุด ุงุฑุจุนุฉ ู‡ุฏูˆู„ ู…ุงู„ู‡ู… are distinct
254
00:25:56,060 --> 00:25:59,380
eigen
255
00:25:59,380 --> 00:26:02,100
values
256
00:26:03,990 --> 00:26:08,370
ูŠุจู‚ู‰ ู‡ุฏูˆู„ ุงู„ู€ Destinate Eigenvalues ุฅุฐุง ุจู†ุงุก ุนู„ู‰
257
00:26:08,370 --> 00:26:13,030
ุงู„ู…ุตูˆูุฉ ุนู†ุฏ ุงู„ุฃุตู„ูŠุฉ ุฌุฏุงุด ู†ุธุงู…ู‡ุง ุชู„ุงุชุฉ ููŠ ุชู„ุงุชุฉ
258
00:26:13,030 --> 00:26:18,130
ูŠุจู‚ู‰ ู‡ุฐู‡ ู…ุงู„ู‡ุงุŸ Diagonalizable ูŠุจู‚ู‰ ู‡ู†ุง ุงู„ู€ Sense
259
00:26:18,130 --> 00:26:24,230
ุงู„ู„ูŠ ุฏูŠ Matrix A
260
00:26:24,230 --> 00:26:41,130
is of the systemุชู„ุงุชุฉ ููŠ ุชู„ุงุชุฉ and we have three
261
00:26:41,130 --> 00:26:49,950
distinct eigenvalues
262
00:26:49,950 --> 00:26:57,170
we have ุงู„ a is
263
00:27:06,400 --> 00:27:10,280
Diagonalizable ูŠุจู‚ู‰ ุงู„ูˆู‚ุช ู„ูˆ ุฌุงุจู„ุชูƒ ู…ุนุงุฏู„ุฉ ู…ู†
264
00:27:10,280 --> 00:27:14,800
ุงู„ุฏุฑุฌุฉ ุงู„ุซุงู„ุซุฉ ูƒูŠู ุจุฏูƒ ุชุญู„ูŠู‡ุง ุจุชุดูˆููŠ ู‚ูˆุงุณู… ุงู„
265
00:27:14,800 --> 00:27:20,460
constant ุจุงู„ุฏูˆุฑูŠ ุนู„ู‰ ุฑู‚ู… ุตูุฑ ุงู„ู…ุนุงุฏู„ุฉ ูˆุจุนุฏ ู‡ูŠูƒ
266
00:27:20,460 --> 00:27:24,460
ุจู†ุฌูˆ ู„ู„ุฑู‚ู… ู‡ุฐุง ุนู„ู‰ ุงู„ุดุฌุฑุฉ ุงู„ุชุงู†ูŠุฉ ูˆุจุงู„ุชุงู„ูŠ ูŠูƒูˆู†
267
00:27:24,460 --> 00:27:28,500
ู‡ุฐุง ุฃุญุฏ ุนูˆุงู…ู„ ุงู„ู…ุนุงุฏู„ุฉูˆุจุงู„ุชุงู„ูŠ ุจู†ุฒู„ ุฑูˆุชุจุชู‡ุง ู…ู†
268
00:27:28,500 --> 00:27:31,260
ุงู„ุฏุฑุฌุฉ ุงู„ุชุงู„ุชุฉ ุฅู„ู‰ ุงู„ุฏุฑุฌุฉ ุงู„ุซุงู†ูŠุฉ ูˆุจุงู„ุชุงู„ูŠ ุจู‚ุฏุฑ
269
00:27:31,260 --> 00:27:36,480
ุฃุญู„ู‡ุง ูŠุง ู…ุง ุชุญู„ูŠู‡ ุจุงู„ู‚ูˆุงุณ ุฃูˆ ุจุงู„ู‚ุงู†ูˆู† ูˆุจุทู„ุน ู‚ุฏุงุด
270
00:27:36,480 --> 00:27:40,460
ุงู„ู„ูŠ ู‡ูˆ ู‚ูŠู… ู„ุงู†ุฏุง ุงู„ู…ุฎุชู„ูุฉ
271
00:28:01,410 --> 00:28:11,690
ู…ุซุงู„ ุชู„ุงุชุฉ ุจูŠู‚ูˆู„
272
00:28:11,690 --> 00:28:22,350
is the matrix is the matrix ู‚ู„ูŠู„ ู…ุตููˆูุฉ ุงูŠู‡ ุชุณุงูˆูŠุŸ
273
00:28:22,350 --> 00:28:29,410
Zero ูˆ Zero ูˆ ูˆุงุญุฏูˆ zero ูˆุงุญุฏ ูˆ ุงุชู†ูŠู† ูˆ zero ูˆ
274
00:28:29,410 --> 00:28:49,510
zero ูˆ ูˆุงุญุฏ ุฏู‚ูŠู‚ุฉ journalizable ูƒูŠูุŸ
275
00:28:54,850 --> 00:28:59,810
ุงู„ู…ุญุฏุฏ ุตุญูŠุญ ูŠุณุงูˆูŠ ุฒูŠุฑูˆ ู„ูƒู† ุงุญู†ุง ู…ุง ู‚ู„ู†ุง ุงุด ุญุงุฌุฉ
276
00:28:59,810 --> 00:29:03,990
ุงุญู†ุง ู‚ู„ู†ุง ุงุจุญุซูˆุง ูˆุฏูˆุฑูˆุง ุฎู„ุงุต ู„ูƒู† ู‡ู„ ุญุทูŠู†ุง ุดุฑู‚ู†ุง ู„ูˆ
277
00:29:03,990 --> 00:29:09,010
ูƒุงู† ุงู„ู…ุญุฏุฏ ูŠุณุงูˆูŠ ุฒูŠุฑูˆ ู…ู…ู†ูˆุนุŸ ู„ุฃ ุงู„ู…ุตููˆูุฉ ุงู„ุฃุฎุฑู‰
278
00:29:09,010 --> 00:29:12,450
ุงู„ู„ู‰ ุจุฏูŠ ุงุถุฑุจู‡ุง ููŠู‡ุง ุจุฏูŠุงู‡ุง ุงู„ู…ุญุฏุฏ ุชุจุนู‡ุง ู‡ูŠูƒูˆู†
279
00:29:12,450 --> 00:29:15,910
ู…ุงู†ุนู‡ ู„ูˆ ุณูˆู‰ ุงู† ู…ุงุชูƒู„ู…ู†ุงุด ุนู„ูŠู‡ุง ุฏู‰ ูˆู„ุง ุญุงุฌุฉ ุงุญู†ุง
280
00:29:15,910 --> 00:29:22,290
ุจู‚ูˆู„ ู‚ุฏ ุชูƒูˆู† ูˆู‚ุฏ ู„ุง ุชูƒูˆู†ุชู…ุงู…ุŸ ุฅุฐุง ุจุฏูŠ ุฃุฑูˆุญ ู†ูุณ
281
00:29:22,290 --> 00:29:27,150
ุงู„ู‚ุตุฉ ุจุฏูŠ ุฃู…ุดูŠ ุฒูŠ ู…ุง ูƒู†ุช ุจู…ุดูŠ ู‚ุจู„ ู‚ู„ูŠู„ ุทุจ ุจุงุฌูŠ
282
00:29:27,150 --> 00:29:32,410
ุจุณุฃู„ ู†ูุณูŠ ู‡ุฐูŠ upper ูˆู„ุง ุงู„ lower triangleุŸ upper
283
00:29:32,410 --> 00:29:36,850
ูŠุจู‚ู‰ ู…ุนู†ุงุช ูˆ ุงู„ zero ูˆ ุงู„ ูˆุงุญุฏ ูˆ ุงู„ูˆุงุญุฏ ู‡ู… ู…ู†
284
00:29:36,850 --> 00:29:42,950
ุงู„ู„ู†ุฏุงุช ูˆุจุงู„ุชุงู„ูŠ ุงู„ู„ู†ุฏุงู† ูƒุฑุฑ ูƒุฏู‡ุŸ ู…ุฑุชูŠู† ูŠุจู‚ู‰ ุจู†ุงุก
285
00:29:42,950 --> 00:29:43,750
ุนู„ูŠู‡
286
00:29:46,400 --> 00:29:53,620
ุงู„ู€ Determinant ู„ู€ Lambda I ู†ุงู‚ุต ุงู„ู€ A ู‡ูˆ ุงู„ู…ุญุฏุฏ
287
00:29:53,620 --> 00:30:03,240
ุชุจุน Lambda ูˆ Zero ูˆ ู†ุงู‚ุต ูˆุงุญุฏ ูˆ Zero ูˆ ู‡ู†ุง Lambda
288
00:30:03,240 --> 00:30:09,860
ู†ุงู‚ุต ูˆุงุญุฏ ูˆ ู†ุงู‚ุต ุงุชู†ูŠู† ูˆ Zero Zero Lambda ู†ุงู‚ุต
289
00:30:09,860 --> 00:30:10,540
ูˆุงุญุฏ
290
00:30:13,120 --> 00:30:20,760
ูˆู‡ุฐุง ูŠู‚ูˆู… ุจุฅุถุงูุฉ ู„ู€Lambda ู†ุงู‚ุต ูˆุงุญุฏ ู„ู€Lambda ู†ุงู‚ุต
291
00:30:20,760 --> 00:30:22,260
ูˆุงุญุฏ ู„ู€Lambda ู†ุงู‚ุต ูˆุงุญุฏ ู„ู€Lambda ู†ุงู‚ุต ูˆุงุญุฏ
292
00:30:22,260 --> 00:30:31,000
ู„ู€Lambda ู†ุงู‚ุต ูˆุงุญุฏ ู„ู€Lambda ู†ุงู‚ุต
293
00:30:31,000 --> 00:30:37,450
ูˆุงุญุฏูŠุจู‚ู‰ ุงูŠู‡ ุฌุจุชู„ู‡ ู…ุงู† ุฌุจุชู„ู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ ุงู„
294
00:30:37,450 --> 00:30:43,230
eigenvalues ู„ูƒู† ููŠู‡ ุชู†ุชูŠู† are repeated ูŠุนู†ูŠ ูŠุง
295
00:30:43,230 --> 00:30:47,410
ุจู†ุงุช ู„ูˆ ููƒุช ุงู„ุฌุซุฉ ุฏู‡ ุงุด ุจูŠุตูŠุฑ ู„ุงู†ุฏุง ููŠ ู„ุงู†ุฏุง ู†ุงู‚ุต
296
00:30:47,410 --> 00:30:53,330
ูˆุงุญุฏ ู„ูƒู„ ุชุฑุจูŠุน ูŠุณูˆู‰ zeroู„ุงู† ุฏูˆุณ ูˆุงุญุฏ ูˆุงู„ุฌูˆุณ ุฃุณูŠ
297
00:30:53,330 --> 00:30:58,550
ุงุชู†ูŠู† ูŠุจู‚ู‰ ู…ุฌู…ูˆุญ ู…ุฌุฏุฏุด ุชู„ุงุชุฉ ูŠุณุงูˆูŠ ุงู„ N ุงู„ุฏุฑุฌุฉ
298
00:30:58,550 --> 00:31:02,730
ุชุจุนุช ู…ู† ุชุจุนุช ุงู„ู…ุตุญู ู‡ุฐูŠ ุชู…ุงู… ูˆุจุงู„ุชุงู„ูŠ ู‡ุฐุง ุงู„ู„ูŠ ูƒู†ุง
299
00:31:02,730 --> 00:31:06,730
ูƒุงุชุจูŠู†ู‡ ู‚ุจู„ ู‚ู„ูŠู„ M ูˆุงุญุฏ ุฒูŠ M ุงุชู†ูŠู† ุฒูŠ M ุชู„ุงุชุฉ ุฒูŠ M
300
00:31:06,730 --> 00:31:13,390
N ุจุฏู‡ ูŠุณุงูˆูŠ N ู…ุธุจูˆุท ูŠุจู‚ู‰ ู‡ูŠ ุชู†ุทุจู‚ ุนู„ูŠู‡ุง ุชู…ุงู…ุงุทูŠุจ
301
00:31:13,390 --> 00:31:17,670
ู‡ุงูŠุฌูŠุจู†ุง ุงู„ู„ุงู†ุฏุงุช ุงู„ู„ูŠ ุนู†ุฏู†ุง ุจุณ ู‡ุฏูˆู„ ู…ุด destined
302
00:31:17,670 --> 00:31:25,330
ุทู„ุนูˆุง ููŠู‡ู… ุงู„ุชู†ุชูŠู† ู‡ุฏูˆู„ ู…ุงู„ู‡ู… ู…ูƒุฑุฑุงุช ุชู…ุงู… ุจุงุฌูŠ
303
00:31:25,330 --> 00:31:31,190
ุจู‚ูˆู„ ูˆุงู„ู„ู‡ ู…ุงู†ุง ุนุงุฑู ุงู„ุญูŠู† ุงุฎุชู„ูุช ุนู† ุงู„ุฑู‚ู… ุชู„ุงุชุฉ
304
00:31:31,190 --> 00:31:34,650
ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู„ ุชุทู„ุน ุฏู‡ ูŠู‚ูˆู„ ุงู„ู„ูŠ ูŠุฒุจู„ ูˆุงู„ู„ู‡ ู…ูŠุฒุจู„
305
00:31:34,650 --> 00:31:41,570
ูŠู‚ูˆู„ ุงู„ู„ู‡ ุฃุนู„ู… ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ู‡ู†ุง Fู„ุงู†ุฏุง ุชุณุงูˆูŠ
306
00:31:41,570 --> 00:31:46,890
ุฒูŠุฑูˆ ู„ุงู†ุฏุง
307
00:31:46,890 --> 00:31:54,270
I ู†ุงู‚ุต ุงู„ A ููŠ ุงู„ X ุจุฏู‡ ูŠุณุงูˆูŠ ุฒูŠุฑูˆ M Plus ู„ุงู†ุฏุง I
308
00:31:54,270 --> 00:32:01,150
ู†ุงู‚ุต ุงู„ A ู‡ูŠู‡ ูŠุจู‚ู‰ ู‡ูŠู‡ ุนู†ุฏ ู…ู†ุŸ ู‡ูŠ ู„ุงู†ุฏุง ูˆุฒูŠุฑูˆ ูˆุณู„ุจ
309
00:32:01,150 --> 00:32:07,010
ูˆุงุญุฏ ูˆุฒูŠุฑูˆ ูˆู„ุงู†ุฏุง ู†ุงู‚ุต ูˆุงุญุฏ ูˆู†ุงู‚ุต ุงุชู†ูŠู† ูˆุฒูŠุฑูˆ ุฒูŠุฑูˆ
310
00:32:07,010 --> 00:32:17,390
ู„ุงู†ุฏุง ู†ุงู‚ุต ูˆุงุญุฏูู‰ X1, X2, X3 ุจุฏูŠ ูŠุณุงูˆูŠ 000 ุจุฏูŠ
311
00:32:17,390 --> 00:32:21,870
ุฃุดูŠู„ ูƒู„ ู„ุงู†ุฏุง ูˆ ุฃุญุท ู…ูƒุงู†ู‡ุง Zero ูŠุจู‚ู‰ ุจู„ุงุด ู‡ุงุฏ
312
00:32:21,870 --> 00:32:28,270
ู†ูƒุชุจู‡ุง ู‡ู†ุง ู…ุด ู‡ูŠูƒูˆู† ุฃุฑุชุจ ุจุณ F ู„ุงู†ุฏุง ุชุณุงูˆูŠ Zero
313
00:32:28,270 --> 00:32:34,310
then ุจุฏูŠ ุฃุฌุนู„ ู‡ุฐู‡ ูˆ ุฃุดูŠู„ ูƒู„ ู„ุงู†ุฏุง ูˆ ุฃุญุท ู…ูƒุงู†ู‡ุง
314
00:32:34,310 --> 00:32:42,620
Zero ูŠุจู‚ู‰ Zeroูˆู‡ู†ุง zero ูˆู‡ู†ุง ุณุงู„ุจ ูˆุงุญุฏ ูˆู‡ู†ุง zero
315
00:32:42,620 --> 00:32:49,980
ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจ ุงุชู†ูŠู† zero zero ุณุงู„ุจ ูˆุงุญุฏ X ูˆุงุญุฏ X
316
00:32:49,980 --> 00:32:55,440
ุงุชู†ูŠู† X ุชู„ุงุชุฉ ุจุฏู‡ ูŠุณุงูˆูŠ zero zero zero ู‡ุฐุง ุจุฏู‡
317
00:32:55,440 --> 00:33:00,810
ูŠุนุทูŠู†ุงุจุฏุฃ ุงูƒุชุจ ุงู„ู…ุนุงุฏู„ุงุช ุงู„ู„ูŠ ุนู†ุฏูŠ ูŠุจู‚ู‰ ุงู„ู…ุนุงุฏู„ุงุช
318
00:33:00,810 --> 00:33:06,950
ุงู„ู„ูŠ ุนู†ุฏูŠ ุณุงู„ุจ x ูˆุงุญุฏ ุจุฏู‡ ูŠุณูˆูŠ ุฌุฏุงุด zero ูˆ ุณุงู„ุจ x
319
00:33:06,950 --> 00:33:13,550
ุงุชู†ูŠู† ุณุงู„ุจ ุงุชู†ูŠู† x ุชู„ุงุชุฉ ุจุฏู‡ ูŠุณูˆูŠ zero ูˆ ุงู„ x
320
00:33:13,550 --> 00:33:23,110
ุชู„ุงุชุฉ ุจุฏู‡ ูŠุณูˆูŠ ุฌุฏุงุด ุจุฏู‡ ูŠุณูˆูŠ zero ุชู…ุงู… ู‡ุฐุง ู…ุนู†ุงู‡ ูˆ
321
00:33:23,110 --> 00:33:31,390
ุงู„ x ุชู„ุงุชุฉ ุงูˆ ุณุงู„ุจ x ุชู„ุงุชุฉุณุงู„ุจ X ุซู„ุงุซุฉ ุจุฏู‡ ูŠุณุงูˆูŠ
322
00:33:31,390 --> 00:33:32,250
ุฒูŠุฑ
323
00:33:40,120 --> 00:33:45,880
ุณุงู„ุจ ุงูƒุณ ุชู„ุงุชุฉ ู…ุธุจูˆุท ู‡ุฐุง ุณุงู„ุจ ุงูƒุณ ุชู„ุงุชุฉ ูˆู‡ุฐุง ุณุงู„ุจ
324
00:33:45,880 --> 00:33:51,100
ุงูƒุณ ุงุชู†ูŠู† ุณุงู„ุจ ุงุชู†ูŠู† ุงูƒุณ ุชู„ุงุชุฉ ุจุฏู‡ ูŠุณุงูˆูŠ Zero ูˆู‡ุฐุง
325
00:33:51,100 --> 00:33:55,220
ุณุงู„ุจ ุงูƒุณ ุชู„ุงุชุฉ ุจุฏู‡ ูŠุณุงูˆูŠ ู…ุธุจูˆุท ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ ุงู†
326
00:33:55,220 --> 00:34:00,670
ุงูƒุณ ุชู„ุงุชุฉ ุจุฏู‡ ูŠุณุงูˆูŠ ุฌุฏุง ุฌุจู†ุงู‡ุงุจุฏูŠูˆุง ูŠุณุงูˆูŠ Zero ู„ู…ุง
327
00:34:00,670 --> 00:34:05,810
ุงู„ X ุชู„ุงุชุฉ ุจุฏูŠูˆุง ูŠุณุงูˆูŠ Zero X ุงุชู†ูŠู† ูƒู…ุงู† ุจุฏูŠูˆุง
328
00:34:05,810 --> 00:34:10,290
ูŠุณุงูˆูŠ ู…ูŠู†ุŸ Zero ู„ู…ุดุงู† ูŠูƒูˆู† Eigen vector X ูˆุงุญุฏ
329
00:34:10,290 --> 00:34:19,070
ู…ู…ูƒู† ุชุจู‚ู‰ ุงู„ุฑู‚ู… ุบูŠุฑ Zero ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ู‡ู†ุง F X
330
00:34:19,070 --> 00:34:26,810
ูˆุงุญุฏ ุจุฏูŠูˆุง ูŠุณุงูˆูŠ ุงู„ A then the Eigen vectors
331
00:34:34,960 --> 00:34:48,020
Lambda ุชุณุงูˆูŠ ุฒูŠุฑูˆ ุฑ in the formุจุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ุงูƒุณ
332
00:34:48,020 --> 00:34:55,140
ูˆุงุญุฏ ุจ a ูˆ ุงู„ู„ูŠ ุจุนุฏู‡ ุจ zero zero ูŠุจู‚ู‰ a ููŠ ูˆุงุญุฏ
333
00:34:55,140 --> 00:35:02,960
zero zero ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ูŠุจู‚ู‰ ุฌุจุช ู‡ุฐุง ุงู„ eigen
334
00:35:02,960 --> 00:35:07,880
vector ุงู„ู„ูŠ ุนู†ุฏู†ุง ุงูŠู‡ ู‡ู†ุง zero zero
335
00:35:22,560 --> 00:35:28,320
ุทูŠุจ ุจุฏู†ุง ู†ุฑูˆุญ ู†ุฌูŠ ู†ุงุฎุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุญุงู„ุฉ ุงู„ุชุงู†ูŠุฉ ู„ูˆ
336
00:35:28,320 --> 00:35:33,260
ูƒุงู† Atlanta ุชุณุงูˆูŠ ุงุชู†ูŠู† ุงูˆ ุชุณุงูˆูŠ ุงู„ู‚ูŠู…ุฉ ุงู„ุซุงู†ูŠุฉ
337
00:35:43,490 --> 00:35:55,310
ุจุงุฏู‰ ุจู‚ูˆู„ ู‡ู†ุง F ู„ุงู†ุฏุง ุชุณุงูˆูŠ ู„ุงู†ุฏุง ุงุชู†ูŠู† ุงูˆ ุชุณุงูˆูŠ
338
00:35:55,310 --> 00:36:00,090
ู„ุงู†ุฏุง ุชู„ุงุชุฉ ุชุณุงูˆูŠ ูˆุงุญุฏ then ู‡ุฐู‡ ุงู„ู…ุตู…ูˆู…ุฉ ุงู„ู„ู‰
339
00:36:00,090 --> 00:36:03,430
ุนู†ุฏู†ุง ุจุฏู‰ ุงุดูŠู„ ู„ุงู†ุฏุง ูˆ ุงุญุทู‡ ู…ูƒุงู†ู‡ุง ูˆุงุญุฏ ูŠุง ุจู†ุงุช
340
00:36:03,430 --> 00:36:12,270
ูŠุจู‚ุงุด ุจุตูŠุฑ ุงูŠ ูˆุงุญุฏ Zero ุณุงู„ุจ ูˆุงุญุฏ Zero Zeroู‡ู†ุง
341
00:36:12,270 --> 00:36:20,610
ู†ุงู‚ุต ุงุชู†ูŠู† ูˆู‡ู†ุง ุฒูŠุฑูˆ ุฒูŠุฑูˆ ูˆู‡ู†ุง ูƒู…ุงู† ุฒูŠุฑูˆ ุจุงู„ุดูƒู„
342
00:36:20,610 --> 00:36:25,650
ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ูŠุจู‚ู‰ ุงูƒุณ ูˆุงุญุฏ ุงูƒุณ ุงุชู†ูŠู† ุงูƒุณ ุชู„ุงุชุฉ
343
00:36:25,650 --> 00:36:33,930
ูŠุณูˆูŠ ุฒูŠุฑูˆ ูˆุฒูŠุฑูˆ ูˆุฒูŠุฑูˆ ูŠุจู‚ู‰ ุงู„ู…ุนุงุฏู„ุงุช ุงูƒุณ ูˆุงุญุฏ ู†ุงู‚ุต
344
00:36:33,930 --> 00:36:41,750
ุงูƒุณ ุชู„ุงุชุฉ ุจุฏู‡ ูŠุณูˆูŠ ุฒูŠุฑูˆูˆ ู†ุงู‚ุต ุงุชู†ูŠู† X
345
00:36:41,750 --> 00:36:50,760
ุชู„ุงุชุฉ ุจุฏู‡ ูŠุณุงูˆูŠ ZeroูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ู‡ุฐุง ู…ุนู†ุงู‡ ุงูŠู‡
346
00:36:50,760 --> 00:36:57,780
ู…ุนู†ุงู‡ ุงู† x3 ุจุฏู‡ ูŠุณูˆู‰ zero ู„ู…ุง x3 ุจุฏู‡ ูŠุณูˆู‰ zero
347
00:36:57,780 --> 00:37:07,220
ูŠูƒุจุฑ x1 ุจุฏู‡ ูŠุณูˆู‰ zero ู…ุนู†ุงุชู‡ ุงู† x2 ุจุฏู‡ ูŠุณูˆู‰ b ู…ุซู„ุง
348
00:37:07,220 --> 00:37:13,100
ูŠุจู‚ู‰ ุงุตุจุญ ุงูŠุฌู†
349
00:37:13,100 --> 00:37:15,060
vectors
350
00:37:20,700 --> 00:37:31,840
corresponding the eigen vector eigen value ุงู„ูˆู„ู†ุฏุฉ
351
00:37:31,840 --> 00:37:42,920
ุชุณุงูˆูŠ ูˆุงุญุฏ are in the formุจุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ุงู„ู„ูŠ ู‡ูˆ ู…ู†
352
00:37:42,920 --> 00:37:54,240
X1 X2 X3 ุจุฏู‡ ูŠุณุงูˆูŠ X1 ุจู€ 0 ูˆ X3 ุจู€ 0 ูˆ ู‡ุฐู‡ ุจูŠ ุจูŠ
353
00:37:54,240 --> 00:38:01,860
ุงู„ู„ูŠ ู‡ูŠ ุจุฏู‡ุง ุชุณุงูˆูŠ ุจูŠ ููŠ Zero ูˆุงุญุฏ Zero ูƒุฏู‡ ุนุฏุฏ
354
00:38:01,860 --> 00:38:03,820
ู…ุฑุงุช ุชูƒุฑุงุฑ ุงู„ู„ุบุฉ ุฏู‡ุŸ
355
00:38:21,090 --> 00:38:27,910
ุฅู† ุญุฏุซ ุฐู„ูƒ ุจูŠู‚ูˆู„ ุฏูŠุงุฌูˆู†ุงู„ุงูŠุฒูŠุงุจู„ ู…ุง ุญุฏุซ ูŠุจู‚ู‰ ุงู„ู€
356
00:38:27,910 --> 00:38:33,910
not diagonalizable ูŠุจู‚ู‰ since
357
00:38:35,540 --> 00:38:42,840
ู„ุงู†ุฏุง ุชุณุงูˆูŠ ูˆุงุญุฏ has multiplicity
358
00:38:42,840 --> 00:38:59,640
two and we have one ุงู„ู„ูŠ ู‡ูˆ one eigen vector only
359
00:38:59,640 --> 00:39:11,770
for ู„ุงู†ุฏุง ุชุณุงูˆูŠ ูˆุงุญุฏThe matrix A is not
360
00:39:11,770 --> 00:39:15,350
diagonalizable
361
00:39:25,990 --> 00:39:30,550
ุทุจ ูŠุนุทูŠูƒูˆุง ุงู„ุนููˆ ูˆ ู†ูƒู…ู„ ุงู„ู…ุฑุฉ ุงู„ู‚ุงุฏู…ุฉ ู„ุณู‡ ู„ุง ูŠุฒุงู„
362
00:39:30,550 --> 00:39:34,370
ุนู†ุฏู†ุง ู…ุฒูŠุฏ ู…ู† ุงู„ุฃู…ุซู„ุฉ