|
1 |
|
00:00:21,140 --> 00:00:25,860 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ูุนูุฏ ุงูุขู ุฅูู ู
ุง ุงุจุชุฏุฃูุง ุจู |
|
|
|
2 |
|
00:00:25,860 --> 00:00:30,980 |
|
ู
ุญุงุถุฑุชูุง ูู ุงููุชุฑุฉ ุงูุตุจุงุญูุฉ ููู ุขุฎุฑ ุฌุฒุก ูุธุฑู ู
ู |
|
|
|
3 |
|
00:00:30,980 --> 00:00:36,940 |
|
section 4-3 ุงููุธุฑูุฉ ุจุชููู ู
ุง ูุชูู ุชุฑุถู ุงู ุงูุงูุฏุง |
|
|
|
4 |
|
00:00:36,940 --> 00:00:39,500 |
|
ูุงุญุฏ ูุงูุฏุง ุงุชููู ููุบุฉ ุงูุงูุฏุง ุฑ ุจูู distinct |
|
|
|
5 |
|
00:00:39,500 --> 00:00:45,260 |
|
eigenvalues of n by n matrix A ูุจูู ุงุญูุง ุนูุฏูุง ุนุฏุฏ |
|
|
|
6 |
|
00:00:45,260 --> 00:00:49,860 |
|
ู
ู ุงู eigenvalues ูุนุฏุฏูู
ูุณุงูู Rููุง ูุงุญุฏุฉ ูููู
ุฒู |
|
|
|
7 |
|
00:00:49,860 --> 00:00:54,820 |
|
ุงูุชุงููุฉ Destinates ู
ุนูุงุชู ู
ููุตููู ูุนูู ุบูุฑ ู
ุชุณุงููู |
|
|
|
8 |
|
00:00:54,820 --> 00:00:59,820 |
|
ููุง ูุงุญุฏุฉ ูููู
ู
ุชุณุงููุฉ ูุนูู ู
ุงููุด ุชูุฑุงุฑ ูู ูุฏูู |
|
|
|
9 |
|
00:00:59,820 --> 00:01:06,570 |
|
ุทูุจ ุงูู
ุตุฑููุฉ ูุธุงู
ูุง N ูู Nุทูุจ ุงู R ูุฐู ุดู ุนูุงูุชูุง |
|
|
|
10 |
|
00:01:06,570 --> 00:01:14,050 |
|
ุจ Mุ ุงู
ุง ุงู R ุชุณูู N ุงู ุงู R ุงูู ู
ู N ุฏุงุฆู
ุง ู ุงุจุฏุง |
|
|
|
11 |
|
00:01:14,050 --> 00:01:20,570 |
|
ูุจูู ุจูุงุก ุนููู ุจููู ุงูุชุฑุถ ุงู K1 ู K2 ู KR ูู
ุง ุงู |
|
|
|
12 |
|
00:01:20,570 --> 00:01:26,110 |
|
Eigen vectors ุงูู
ูุงุธุฑุฉ ูู
ูุ ูู Eigen values then |
|
|
|
13 |
|
00:01:26,110 --> 00:01:30,370 |
|
these vectors are linearly independent ูุนูู ู
ุงูุชุด |
|
|
|
14 |
|
00:01:30,370 --> 00:01:35,920 |
|
ูุตุฏ ูููููู ูููู ุฅุฐุง ูุงู ูุฏูู ุฏุณุชูููุณ ุงูุฌุงู ูุงูููุฒุ |
|
|
|
15 |
|
00:01:35,920 --> 00:01:38,820 |
|
ููู ุงููEigenvectors ุงููู ุจูุทูุนูุง ู
ูุงุถุฑุงุช ุงููู |
|
|
|
16 |
|
00:01:38,820 --> 00:01:43,340 |
|
ุจูููููุง ู
ุงููู
ุ ููููุงุฑูุง ูุงูุฏุจูุชูุงุ ููุง ูุงุญุฏ ูู |
|
|
|
17 |
|
00:01:43,340 --> 00:01:49,340 |
|
ุงุนุชู
ุงุฏ ุนูู ุงูุซุงููุ ุจุณ ูู
ูู ููุงูุถุงุกุงุช ุงูุบูุฑ ู
ูุฑุฑุงุชุ |
|
|
|
18 |
|
00:01:49,340 --> 00:01:55,300 |
|
ุฏู ุฑุจุงุฑููุง ููุงู
ููุถุนูุฐู ูู ุงููุธุฑูุฉ ุงููู ุจุชููููุง |
|
|
|
19 |
|
00:01:55,300 --> 00:02:04,000 |
|
ุงููุง ูุธุงู
ู ูู ู ูุงููุง in distinct eigenvalues |
|
|
|
20 |
|
00:02:06,880 --> 00:02:12,940 |
|
ูุณุงูู ุงููุธุงู
ุชุจุน ูุต ุงูู
ุตุญููุฉ N ูุจูู ุงูุนุฏุฏ ูุณุงูู N |
|
|
|
21 |
|
00:02:12,940 --> 00:02:21,120 |
|
ุซู
ูุจูู ููุงู ูู
ุจููุช ุณูุช ุงู ุงูุฌุงู ููุชุฑ ูู
ุชุฑูุณ |
|
|
|
22 |
|
00:02:21,120 --> 00:02:27,530 |
|
A ู
ุณุชูู ู
ุณุชูู ู
ุณุชูู ู
ุณุชูู ู
ุณุชูู ู
ุณุชููุจุชููู ูู ุงูุช |
|
|
|
23 |
|
00:02:27,530 --> 00:02:31,450 |
|
ุนูุฏู ุฌูุฉ ุงูู
ุตุทูู ูุธุงู
ูุง ู
ุซูุง ุชูุงุชุฉ ูู ุชูุงุชุฉ ุงู |
|
|
|
24 |
|
00:02:31,450 --> 00:02:35,730 |
|
ุงุชููู ูู ุงุชููู ุงู ุงุฑุจุนุฉ ูู ุงุฑุจุนุฉ ุงุฐุง ูุธุงู
ูุง ุงุฑุจุนุฉ |
|
|
|
25 |
|
00:02:35,730 --> 00:02:42,190 |
|
ูู ุงุฑุจุนุฉ ูุทูุน ุนูุฏู ุงุฑุจุนุฉ distinct eigenvalues ูุจูู |
|
|
|
26 |
|
00:02:42,190 --> 00:02:46,610 |
|
ุนูู ุทูู ุงูุฎุท ูุงุฏู diagonalizable ูุจูู ุงูู
ุตุทูู ุงููู |
|
|
|
27 |
|
00:02:46,610 --> 00:02:52,770 |
|
ุนูุฏู ุงุฐุง ุณุงููุนุฏุฏ ุงูู Destined Eigenvalues ูุธุงู
|
|
|
|
28 |
|
00:02:52,770 --> 00:02:57,770 |
|
ุงูู
ุตูููุฉ ุงูุชูู
ุงุชูู ูุฐู ุจุชุจูู Diagonalizable ูุนูู |
|
|
|
29 |
|
00:02:57,770 --> 00:03:02,310 |
|
ุจูุฏุฑ ุงูุชุจูุง ุนูู ุตูุบุฉ ู
ุตูููุฉ ูุทุฑูุฉ ู ุนูุงุตุฑ ุงููุทุฑ |
|
|
|
30 |
|
00:03:02,310 --> 00:03:07,870 |
|
ุงูุฑุฆูุณู ูููุง ูู
ุงููEigenvalues ูููุณ ูุงููู ุฏู ุจูุณูู |
|
|
|
31 |
|
00:03:07,870 --> 00:03:11,050 |
|
ุงูุดุบู ูุชูุฑ ูุนูู ุจุฏู ูุณู ู
ุงุฑูุญ ุงุซุจุช ู ุงุฌูุจ |
|
|
|
32 |
|
00:03:11,050 --> 00:03:14,510 |
|
ุงููEigenvectors ู ุงุญุณุจ ูุง ุฏุงุนู ุงููEigenvectors |
|
|
|
33 |
|
00:03:14,510 --> 00:03:17,670 |
|
ูุจูู ุจุณ ุจุฏู ุงุดูู ุนุฏุฏ |
|
|
|
34 |
|
00:03:20,480 --> 00:03:25,720 |
|
ูู ูุณุงูู ูุธุงู
ุงูู
ุตููุฉ ุงู ูุงุ ุงู ูู ูุณุงูู ุฑุชุจุฉ |
|
|
|
35 |
|
00:03:25,720 --> 00:03:29,620 |
|
ุงูู
ุตููุฉ ุงู ูุงุ ุงุฐุง ุณุงูู ุจูููู ุฎูุงุตูุง ูุจูู ุงูู
ุตููุฉ |
|
|
|
36 |
|
00:03:29,620 --> 00:03:34,060 |
|
ูุงุฏูุ ุฏุง ููููุงุ ูุง ูุฒูุจูุงุ ุฏุง ู
ูู
ุฌุฏุง ูู ุงูุดุบู ุจุนุฏ |
|
|
|
37 |
|
00:03:34,060 --> 00:03:43,260 |
|
ููููุงูู
ูุงุญุธุฉ ุงูุชุงููุฉ ุจูููู ูู An n by n matrix |
|
|
|
38 |
|
00:03:43,260 --> 00:03:47,980 |
|
need not have indistinct eigenvalues ุฒู ู
ุง ุดููุง |
|
|
|
39 |
|
00:03:47,980 --> 00:03:53,100 |
|
ูุจู ูููู ูู ู
ุญุงุถุฑุฉ ุงูุตุญุงุจุฉ ุงููู ูู ุงูู
ุตููุฉ ุงููู |
|
|
|
40 |
|
00:03:53,100 --> 00:03:58,040 |
|
ุนูุฏู ุทุงูุนุฉ two eigenvalues ุจูุณููุง ุจุนุถุ ู
ุธุจูุทุ ุฅุฐุง |
|
|
|
41 |
|
00:03:58,040 --> 00:04:03,610 |
|
ููุณ ุจุงูุถุฑูุฑุฉ ุฃู ูููููุง ูููู
ู
ููุตูุงุช ุนู ุจุนุถุงูู
ูู
ูู |
|
|
|
42 |
|
00:04:03,610 --> 00:04:07,490 |
|
ูุง ูููู ููุงู ุงูุฌุงู ูุงูู ู
ู
ูู ุงู ูููู ููุงู ุงูุฌุงู |
|
|
|
43 |
|
00:04:07,490 --> 00:04:08,370 |
|
ูุงูู ู
ู
ูู ุงู ูููู ููุงู ุงูุฌุงู ูุงูู ู
ู
ูู ุงู ูููู |
|
|
|
44 |
|
00:04:08,370 --> 00:04:11,710 |
|
ููุงู ุงูุฌุงู ูุงูู ู
ู
ูู ุงู ูููู ููุงู ุงูุฌุงู ูุงูู ู
ู
ูู |
|
|
|
45 |
|
00:04:11,710 --> 00:04:13,190 |
|
ุงู ูููู ููุงู ุงูุฌุงู ูุงูู ู
ู
ูู ุงู ูููู ููุงู ุงูุฌุงู |
|
|
|
46 |
|
00:04:13,190 --> 00:04:15,290 |
|
ูุงูู ู
ู
ูู ุงู ูููู ููุงู ุงูุฌุงู ูุงูู ู
ู
ูู ุงู ูููู |
|
|
|
47 |
|
00:04:15,290 --> 00:04:17,970 |
|
ููุงู ุงูุฌุงู ูุงูู ู
ู
ูู ุงู ูููู ููุงู ุงูุฌุงู ูุงูู ู
ู
ูู |
|
|
|
48 |
|
00:04:17,970 --> 00:04:18,890 |
|
ุงู ูููู ููุงู ุงูุฌุงู ูุงูู ู
ู
ูู ุงู ูููู ููุงู ุงูุฌุงู |
|
|
|
49 |
|
00:04:18,890 --> 00:04:21,270 |
|
ูุงูู ู
ู
ูู ุงู ูููู ููุงู ุงูุฌุงู ูุงูู ู
ู
ูู ุงู ูููู |
|
|
|
50 |
|
00:04:21,270 --> 00:04:25,130 |
|
ููุงู ุงูุฌุงู ูุงูู ู
ู
ูู ุงู ูููู ููุงู ุงูุฌุงู ูุงูู ู
ู
ูู |
|
|
|
51 |
|
00:04:25,130 --> 00:04:28,650 |
|
ุงู |
|
|
|
52 |
|
00:04:28,650 --> 00:04:31,000 |
|
ูููู ููุงู ุงูุฌุงู ูุงูุงูููุทุฉ ุงูุชุงููุฉ ุจูููู ูู ูุงู |
|
|
|
53 |
|
00:04:31,000 --> 00:04:33,080 |
|
ูุงูุฏุง ูุงุญุฏ ู ูุงูุฏุง ุงุชููู ู ูุงูุฏุง ุงุฑ ุงุฑ the |
|
|
|
54 |
|
00:04:33,080 --> 00:04:39,360 |
|
destined eigenvalues ููู
ูู ู ุงู n by n matrix A |
|
|
|
55 |
|
00:04:39,360 --> 00:04:46,600 |
|
ูุญุธุฉ R ุฃูู ู
ู ุงู ุชุณูู N ุฒู ู
ุง ูููุง ูุจู ูููู ูุจูู |
|
|
|
56 |
|
00:04:46,600 --> 00:04:51,180 |
|
ูุฐูู ุงู destined ูู
ูู ุงูู
ุตูุญุฉthe characteristic |
|
|
|
57 |
|
00:04:51,180 --> 00:04:55,820 |
|
polynomial ุจูุฏุฑ ุฃูุชุจูุง ุนูู ู
ูู
ุนูู ุงูุดูู ุงูุชุงูู |
|
|
|
58 |
|
00:04:55,820 --> 00:05:01,380 |
|
ูุนูู ู
ุด ุฃููู ุฃุณุนุฏุฏูู
in ูุฃู ุฃููู ุฃุณุนุฏุฏูู
in ู
ุนูุงุชู |
|
|
|
59 |
|
00:05:01,380 --> 00:05:06,340 |
|
ุงู ุนูุฏู in ู
ู ุงููุงูุฏุงุช ุจุนุถูู
ููููู ู
ูุฑุฑ ูุนูู ููุทูุน |
|
|
|
60 |
|
00:05:06,340 --> 00:05:10,640 |
|
ูุงูุฏุง ูุงูุต ูุงูุฏุง ูุงุญุฏ ู
ุซูุง ุชุฑุจูุน ูุฐู ุชูุนูุจ ุฏูููุชู |
|
|
|
61 |
|
00:05:10,640 --> 00:05:14,680 |
|
ู
ุงูุตู ููุงูุฏุง ุงุฑ ู
ู
ูู ููุณ ูุงุญุฏ ู
ู
ูู ููู ููุณ ุงุชููู |
|
|
|
62 |
|
00:05:14,680 --> 00:05:18,360 |
|
ู
ู
ูู ุชูุช ุงุฐุง ูุงู ู
ุฌู
ูุนู ุงูุฃุณุณ ูุฐู ูููุง ู
ุฏูุณุฉ |
|
|
|
63 |
|
00:05:18,360 --> 00:05:24,730 |
|
ุจุฏูุณุงูู inุฃูุด ุณุจุจ ุงูุฃุณุณุฉ ุฏูุ ุณุจุจู ุงูุชูุฑุงุฑ ุงู |
|
|
|
64 |
|
00:05:24,730 --> 00:05:30,470 |
|
multiplicity ุฌุงููู the integer mi ูุนูู ุฃู ูุงุญุฏ ู
ู |
|
|
|
65 |
|
00:05:30,470 --> 00:05:34,210 |
|
ุงุฏูู is called the multiplicity of the eigenvalue |
|
|
|
66 |
|
00:05:34,210 --> 00:05:38,970 |
|
lambda i ูุนูู ูุฐุง ุงูุฑูู
ูุฏู ุนูู ุงู ุงู lambda i |
|
|
|
67 |
|
00:05:38,970 --> 00:05:44,290 |
|
ู
ูุฑุฑุฉ ู
ุฑุชูู ุชูุงุชุฉ ุงุฑุจุนุฉ ุฌุฏ ู
ุง ูููููุจูู ูุง ุจูุงุชุ |
|
|
|
68 |
|
00:05:44,290 --> 00:05:50,730 |
|
ูุฐุง ุงููM ุงููู ุนูุฏูุง ูุฏู ุนูู ุนุฏุฏ ู
ุฑุงุช ุชูุฑุงุฑ ููู
ุฉ |
|
|
|
69 |
|
00:05:50,730 --> 00:05:56,350 |
|
ูุงูุฏุงุ ุงููู ูู ุงููEigenvalueุ ููุง ูุถุน ุงูุญุฏ ููุงุ |
|
|
|
70 |
|
00:05:56,350 --> 00:06:01,700 |
|
ุฌุงุจ ุงูู
ูุฑูุถุ ุญุฏ ููุงูู ุงุณุชูุณุงุฑ ููุงุูู
ุง ุจุชุณุฃู ุชุณุฃู |
|
|
|
71 |
|
00:06:01,700 --> 00:06:06,380 |
|
ู
ุด ุนูุจ ุงุณุฃููู ูุฎุฏ ุงูุณุคุงู ุงููู ุจุฏููู ููู ุงู ููุทุฉ |
|
|
|
72 |
|
00:06:06,380 --> 00:06:10,080 |
|
ุจุฏูููุง ูุฅูู ุจุนุฏ ูููู ุจุฏุฃุช ุจุชุทุจู ูุฐุง ุนูู ุฃุฑุถ ุงููุงูุน |
|
|
|
73 |
|
00:06:10,080 --> 00:06:15,760 |
|
ุชุทุจูุด ุงู characteristic polynomial ูุฅูุดุู
ุด .. ู
ุด |
|
|
|
74 |
|
00:06:15,760 --> 00:06:20,720 |
|
ุฃุฎุฏูุง ูู ุฃูู ู
ุจุงุฏุฆูุง ูุฐุง ุงู section ูููุง ููู ุญุงุฌุฉ |
|
|
|
75 |
|
00:06:20,720 --> 00:06:24,340 |
|
ุงุณู
ุงู characteristics polynomial ุงูู
ุญุฏุฏ ุชุจุน ุงู |
|
|
|
76 |
|
00:06:24,340 --> 00:06:27,380 |
|
land I ูุงูุต A ู
ุด ุณู
ูุงูุง ุงู characteristics |
|
|
|
77 |
|
00:06:27,380 --> 00:06:31,120 |
|
polynomial ูุฐู ุงููู ูู ุงู land ุชุฑุจููุง ุงู land ุชููุจ |
|
|
|
78 |
|
00:06:31,120 --> 00:06:34,220 |
|
ุฒุงุฆุฏ ู
ุด ุนุงุฑููู ุงููู ูู ุงูู
ุนุงุฏูุฉ ุงูุทูููุฉ ูุฐู ูุฐู |
|
|
|
79 |
|
00:06:34,220 --> 00:06:37,640 |
|
ุงููู ูู ุงูุญููู ุงููู ูู ุงู land I ุงูู
ุนุงุฏูุฉ ูุฐู ุฑูุญุช |
|
|
|
80 |
|
00:06:37,640 --> 00:06:42,130 |
|
ุญุทูุชูุง ุนูู ุงูุดูู ุงููู ูุฏุงู
ูุง ูุฐุงู
ู ููุฏุง ูุบุงูุฉ ููุฏุง |
|
|
|
81 |
|
00:06:42,130 --> 00:06:45,830 |
|
ูุงุญุฏ ูุบุงูุฉ ููุฏุง ุงุฎุฑ ุทุจ ููุด ู
ู
ูู ุชุดูู ููุฏุง in ูู |
|
|
|
82 |
|
00:06:45,830 --> 00:06:50,090 |
|
ููุช ู ููุฏุง in ู
ุนูุงุชู ููุง ูุงุญุฏุฉ ู
ูุฑุฑุฉ ุตุญ ููุง ูุง ูู |
|
|
|
83 |
|
00:06:50,090 --> 00:06:53,890 |
|
ูุงุญุฏุฉ ุจุณ ู
ุฑุฉ ูุงุญุฏุฉ ูููู our destiny ููู ู
ุงุฏุงู
|
|
|
|
84 |
|
00:06:53,890 --> 00:06:58,310 |
|
ุชุณุงูู ุงุฐุง ููุตูุฑ ููู ุชูุฑุงุฑ ูุจูู ุนุฏุฏ ุงูุฃููุงุต ูุง ูู
ูู |
|
|
|
85 |
|
00:06:58,310 --> 00:07:03,290 |
|
ุงู ูุณุงูู in ุจุณุงูู R ุฌุฏ ู
ุง ูููู ุจุดุฑุท R ูุฏ ุชููู |
|
|
|
86 |
|
00:07:03,290 --> 00:07:07,470 |
|
ุชุณุงูู in ุงู ุงูู ู
ููุง ุงู ุณูู ุงู ูุจูู ูู ูุงุญุฏ ู
ู |
|
|
|
87 |
|
00:07:07,470 --> 00:07:11,350 |
|
ุงูุฃุณุงุณ ูุฏูู ุจูุฏุงุดุจูู ุญุตุฉ ุบูุฑ ููู ุจุฏู ุฃุฒูุฏ ุนููุง |
|
|
|
88 |
|
00:07:11,350 --> 00:07:14,970 |
|
ูุนูู ุจุนุถูู
ูุฏ ูููู ูุงุญุฏ ุจุนุถูู
ุงุชููู ุจุนุถูู
ุชูุงุชุฉ |
|
|
|
89 |
|
00:07:14,970 --> 00:07:20,630 |
|
ุงูู ุขุฎุฑูู ุทูุจ ุจูุฌู ู remark ุจูููู the number of M |
|
|
|
90 |
|
00:07:20,630 --> 00:07:25,230 |
|
I of multiplicity of the eigen value of lambda I |
|
|
|
91 |
|
00:07:25,230 --> 00:07:28,230 |
|
equal the number of linearly independent eigen |
|
|
|
92 |
|
00:07:28,230 --> 00:07:36,170 |
|
vectors ูููุณุงูุงู ุงูุง ุฌูุช ุนูู ุงู mi ุงูุชุฑุถ ุงู mi |
|
|
|
93 |
|
00:07:36,170 --> 00:07:41,350 |
|
ูุงูุช ุจูุฏุฑุด ูุนูู ุงูุฃุณ ุจุงุชููู ูุนูู ูุงู ุฏู ู
ูุฑุฑ ุฑูู
|
|
|
|
94 |
|
00:07:41,350 --> 00:07:46,510 |
|
ู
ุฑุฉ ู
ุฑุชูู ูุจูู ุจูููู the number of multiplicity of |
|
|
|
95 |
|
00:07:46,510 --> 00:07:52,230 |
|
the eigen value line is equalุงูุนุฏุฏ ุงูููููุงุฑู |
|
|
|
96 |
|
00:07:52,230 --> 00:07:55,910 |
|
ุงูุงูุฏุจูุฏุงู ุงููู ูู ุงูุฌุงู ููุชุฑ ูุจูู ูู ูุฐู ุงูุญุงูุฉ |
|
|
|
97 |
|
00:07:55,910 --> 00:08:00,790 |
|
ุจุทู ุนูุฏู ูุงู
ุงูุฌุงู ููุชุฑ ุงุชูู ุงุชูู ุงุชูู ุงุชูู ุงุชูู |
|
|
|
98 |
|
00:08:00,790 --> 00:08:02,650 |
|
ุงุชูู ุงุชูู ุงุชูู ุงุชูู ุงุชูู ุงุชูู ุงุชูู ุงุชูู ุงุชูู ุงุชูู |
|
|
|
99 |
|
00:08:02,650 --> 00:08:04,110 |
|
ุงุชูู ุงุชูู ุงุชูู ุงุชูู ุงุชูู ุงุชูู ุงุชูู ุงุชูู ุงุชูู ุงุชูู |
|
|
|
100 |
|
00:08:04,110 --> 00:08:07,330 |
|
ุงุชูู ุงุชูู ุงุชูู ุงุชูู ุงุชูู ุงุชูู ุงุชูู ุงุชูู ุงุชูู ุงุชูู |
|
|
|
101 |
|
00:08:07,330 --> 00:08:15,170 |
|
ุงุชูู ุงุชูู ุงุชูู ุงุชูู ุงุชูู ุงุชูู ุงุชูู ุงุชูู ุงุชู |
|
|
|
102 |
|
00:08:15,190 --> 00:08:18,770 |
|
ุงูููุงู
ุงููู ุจููููู ูุฐุง ุจูุฑูุญ ูุญุทู ุนูู ุฃุฑุถ ุงููุงูุน |
|
|
|
103 |
|
00:08:18,770 --> 00:08:25,750 |
|
ุจุฃู
ุซูุฉ ูุซูุฑุฉ ุชูุถุญ ุงูููุงู
ูุฐุง ููู ุนู
ููุง ุฌุงูู ูู ุงู |
|
|
|
104 |
|
00:08:25,750 --> 00:08:33,470 |
|
matrix ุฏู diagonalizable ุฃู
ูุงุูุนุฑูุด ูุฐู ุจุชูููู |
|
|
|
105 |
|
00:08:33,470 --> 00:08:42,430 |
|
ุจูููู diagonalizable ุฅุฐุง ูุงู ูุธุงู
ุงูู
ุตูููุฉ ุฃู ุฑุชุจุฉ |
|
|
|
106 |
|
00:08:42,430 --> 00:08:47,870 |
|
ุงูู
ุตูููุฉ ุจุฏู ูุณุงูู ุนุฏุฏ ุงู characteristic values |
|
|
|
107 |
|
00:08:49,860 --> 00:08:56,060 |
|
characteristic values ูุจูู ุจุชุงุฌู ุงูููู ุจุฏู ุงุฎุฏ |
|
|
|
108 |
|
00:08:56,060 --> 00:09:03,480 |
|
ุงูุงู ุงููู ูู ู
ูู ูุงูุฏุง I ูุงูุต ุงู A ุจุฏู ูุณุงูู ูุฐู |
|
|
|
109 |
|
00:09:03,480 --> 00:09:07,960 |
|
ุชูุงุชุฉ ูู ุชูุงุชุฉ ูุจูู ูุงูุฏุง Zero Zero ูุงูุฏุง Zero |
|
|
|
110 |
|
00:09:07,960 --> 00:09:14,680 |
|
Zero ูุงูุฏุง ูุงูุต ุงู A ุชูุงุชุฉ Zero Zero ุงุชููู ูุงุญุฏ |
|
|
|
111 |
|
00:09:14,680 --> 00:09:19,970 |
|
Zero ูุงูุต ูุงุญุฏ ูุงูุต ุงุชููู ูุงูุต ูุงุญุฏุจุงูุดูู ุงููู |
|
|
|
112 |
|
00:09:19,970 --> 00:09:27,030 |
|
ุนูุฏูุง ูุจูู ูุฐุง ุจุฏู ูุนุทููุง ูุงูุฏุง ูุงูุต ุซูุงุซุฉ ูููุง |
|
|
|
113 |
|
00:09:27,030 --> 00:09:31,970 |
|
Zero Zero ุฒู ู
ุง ูู ูุฐุง ุจุฏู ูุนุทููุง ูุงูุต ุงุชููู ูุฐุง |
|
|
|
114 |
|
00:09:31,970 --> 00:09:38,870 |
|
ูุงูุฏุง ูุงูุต ูุงุญุฏ ูุฐุง Zero ุฒู ู
ุง ูู ูุฐุง ูุงุญุฏ ุงุชููู |
|
|
|
115 |
|
00:09:38,870 --> 00:09:47,930 |
|
ูุงูุฏุง ุฒุงุฆุฏ ูุงุญุฏูุจูู ูููุณ ุงูุง ุณู
ูุช ุญูู
ู
ุด ุนุงุฑู ููุง |
|
|
|
116 |
|
00:09:47,930 --> 00:09:51,710 |
|
ุญุงุฌุฉ ู ูุงุนุฏ ุจุดุชุบู ุฒู ู
ุง ููุช ุจุดุชุบู ุงูุตุจุญ ู ุฒู ู
ุง |
|
|
|
117 |
|
00:09:51,710 --> 00:09:55,750 |
|
ููุช ุจุดุชุบู ุงูู
ุฑุฉ ุงููู ูุงุชุช ูููุณ ููู ูู ูุงุญุฏุฉ ูุตุญู |
|
|
|
118 |
|
00:09:55,750 --> 00:10:04,000 |
|
ุดููู ูููู ูุงุชุญุฉ ุจุชูููู ูุฐู ู
ุตูููุฉ ู
ุซูุซุฉ ุณููุฉุตุญ ููุง |
|
|
|
119 |
|
00:10:04,000 --> 00:10:09,800 |
|
ูุฃุ ุฅุฐุง ุงูู
ุญุฏุฏ ุชุจุนูุง ุจุฏู ุณุงูู ุญุงุตู ุถุฑุจ ุนูุงุตุฑ ุงููุทุฑ |
|
|
|
120 |
|
00:10:09,800 --> 00:10:14,840 |
|
ุงูุฑุฆูุณูุ ู
ุงููุด ุฏุง ุชุฑูุญ ุชูููุ ุฎูุงุต ุญุงุตู ุถุฑุจ ู ุฌุงูุฒุฉ |
|
|
|
121 |
|
00:10:14,840 --> 00:10:19,580 |
|
ู ุฎุงูุตุฉุ ู
ุงุดู ุจููููุงุ ุจููู ูุงููู ูููุณุ ุฅุฐุง ุงู |
|
|
|
122 |
|
00:10:19,580 --> 00:10:26,000 |
|
determinant ู lambda I ูุงูุต ุงู A ุจุฏู ุณุงูู ุงู |
|
|
|
123 |
|
00:10:26,000 --> 00:10:35,660 |
|
lambdaูุงูุฏุง ูุงูุต ุชูุงุชุฉ ูู ูุงูุฏุง ูุงูุต ูุงุญุฏ ูู ูุงูุฏุง |
|
|
|
124 |
|
00:10:35,660 --> 00:10:42,160 |
|
ุฒุงูุฏ ูุงุญุฏ ูุฏู ุณุงูู ุฒูุฑู ุตุญูุญ ููุง ูุฃ ูุจูู ุณูู the |
|
|
|
125 |
|
00:10:42,160 --> 00:10:49,940 |
|
characteristic values ุงู ุงู eigen values are ูุงูุฏุง |
|
|
|
126 |
|
00:10:49,940 --> 00:10:55,860 |
|
ุชุณุงูู ุณุงูุจ ูุงุญุฏ ู ูุงูุฏุง ุชุณุงูู ูุงุญุฏ ู ูุงูุฏุง ุชุณุงูู |
|
|
|
127 |
|
00:10:55,860 --> 00:10:56,980 |
|
ุชูุงุชุฉ |
|
|
|
128 |
|
00:10:59,830 --> 00:11:05,150 |
|
ูุคูุงุก ุฏูุณุชูููุช ููุง ูุฃุ ููุธุงู
ุงูู
ุตููุฉ ุฅุฐุง ุฏู ูููู |
|
|
|
129 |
|
00:11:05,150 --> 00:11:09,470 |
|
ูุงุฒู
ูุจู ุทุจ ุฎููุงู ุงู crawler ุงููู ุฎููุตูุง ุจุฏูู ุฃู |
|
|
|
130 |
|
00:11:09,470 --> 00:11:12,870 |
|
ุชุฑูุญ ุชุฏูุฑ ููุง ุชุฌูุจ ุงู eigenvectors ููุง ุชุบูุจ ุดุญุงูู |
|
|
|
131 |
|
00:11:12,870 --> 00:11:21,490 |
|
ูุจูู ุจุงุฌู ุจููู ููุง since they eigenvectors |
|
|
|
132 |
|
00:11:21,490 --> 00:11:27,730 |
|
ุงู eigenvalues are destined |
|
|
|
133 |
|
00:11:31,680 --> 00:11:48,960 |
|
and equal a3 ุนุฏุฏูู
ุชูุงุชุฉ and the system of the |
|
|
|
134 |
|
00:11:48,960 --> 00:12:08,110 |
|
matrix A is ุชูุงุชุฉ ูู ุชูุงุชุฉ by theabove crawlery we |
|
|
|
135 |
|
00:12:08,110 --> 00:12:18,270 |
|
have ุงู ุงู a is diagonalization |
|
|
|
136 |
|
00:12:18,270 --> 00:12:23,530 |
|
ุฒูุจู diagonalization |
|
|
|
137 |
|
00:12:23,530 --> 00:12:30,390 |
|
ูุงููู ูููุณ ูุฐู ูุณููุฉ ุทุฑููุฉ ู
ุจุณุทุฉ ุจุชุณููู ูุงูุดุบู ูุฐู |
|
|
|
138 |
|
00:12:40,990 --> 00:12:47,810 |
|
ุจูุงุฎุฏ ูู
ุงู ู
ุซุงู ุญุฏ ู
ุง ููุช ู
ุนูู
ุฉ ุดููุจุงู ุงุณู
ูุง |
|
|
|
139 |
|
00:12:47,810 --> 00:12:56,010 |
|
example |
|
|
|
140 |
|
00:12:56,010 --> 00:13:04,950 |
|
2 ุจูููู |
|
|
|
141 |
|
00:13:04,950 --> 00:13:15,490 |
|
ุงูุงุช ู
ุตููุฉ ุงูู ุชุณุงููุงุชููู ุงุชููู ุชูุงุชุฉ ูุงุญุฏ ุงุชููู |
|
|
|
142 |
|
00:13:15,490 --> 00:13:23,050 |
|
ูุงุญุฏ ุงุชููู ุณุงูุจ ุงุชููู ูุงุญุฏ ุงุชููู ุณุงูุจ ุงุชููู ูุงุญุฏ |
|
|
|
143 |
|
00:13:23,050 --> 00:13:34,290 |
|
ุจูููู as a matrix as a matrix ูู diagonalizable |
|
|
|
144 |
|
00:13:56,840 --> 00:13:58,240 |
|
ุงูุณูุงู
ุนูููู
|
|
|
|
145 |
|
00:14:07,940 --> 00:14:12,040 |
|
ูุฐู ุงูุณุคุงู ู
ุฎุชููุฉ ุนู ุงูุณุคุงู ุงูุณุงุจู ูุงู ุงูุณุคุงู |
|
|
|
146 |
|
00:14:12,040 --> 00:14:17,040 |
|
ุงูุณุงุจู ูุงู ุณูู ูุฃูู ูุงู lower triangle matrix ุชู
ุงู
|
|
|
|
147 |
|
00:14:17,040 --> 00:14:21,280 |
|
ูุฐู ุงูุฃุจูุงุก ูุง lower ููุง upper ูุฐู ู
ุตููุฉ ุนุงุฏูุฉ |
|
|
|
148 |
|
00:14:21,280 --> 00:14:28,040 |
|
ูุจุงูุชุงูู ูุญุณุจ ุงูุญุณุงุจุงุช ูุฐู ุจุงูุชูุตูู ูุงุฎุฏ ุงู lambda |
|
|
|
149 |
|
00:14:28,040 --> 00:14:37,590 |
|
I ูุงูุต ุงู A ูุจุฏู ูุณุงูู lambda 00 lambda 0zero |
|
|
|
150 |
|
00:14:37,590 --> 00:14:44,330 |
|
ูุงูุฏุง ูุงูุต ุงููู ูู ุงุชููู ุงุชููู ุชูุงุชุฉ ูุงุญุฏ ุงุชููู |
|
|
|
151 |
|
00:14:44,330 --> 00:14:52,010 |
|
ูุงุญุฏ ุงุชููู ูุงูุต ุงุชููู ูุงุญุฏ ููุณุงูู ูุงูุฏุง ูุงูุต ุงุชููู |
|
|
|
152 |
|
00:14:52,010 --> 00:14:59,030 |
|
ู ููุง ูุงูุต ุงุชููู ูุงูุต ุชูุงุชุฉ ู ููุง ูุงูุต ูุงุญุฏ ู ููุง |
|
|
|
153 |
|
00:14:59,030 --> 00:15:05,250 |
|
ูุงูุฏุง ูุงูุต ุงุชููู ู ููุง ูุงูุต ูุงุญุฏ ูุงูุต ุงุชููู ุงุชููู |
|
|
|
154 |
|
00:15:05,480 --> 00:15:11,960 |
|
ูููุง ูุงูุฏุง ูุงูุต ูุงุญุฏ ุดูู ุงููู ุนูุฏูุง ููุง ุจุนุฏ ููู |
|
|
|
155 |
|
00:15:11,960 --> 00:15:17,780 |
|
ู
ุดุงู ูุฌูุจ ููู
ูุงูุฏุง ุจุฏูุง ูุฑูุญ ูุงุฎุฏ ุงูู
ุญุฏุฏ ุชุจุน ูุฐู |
|
|
|
156 |
|
00:15:17,780 --> 00:15:24,780 |
|
ุงูู
ุตูููุฉ ูุจูู ุจุฏู ุงุงุฎุฏ ุงู determinant ุชุจุน ูุงูุฏุง I |
|
|
|
157 |
|
00:15:24,780 --> 00:15:32,290 |
|
ูุงูุต ุงู A ูุจูู ุงูู
ุญุฏุฏูุงูุฏุง ูุงูุต ุงุชููู ูุงูุต ุงุชููู |
|
|
|
158 |
|
00:15:32,290 --> 00:15:40,050 |
|
ูุงูุต ุชูุงุชุฉ ูุงูุต ูุงุญุฏ ูุงูุฏุง ูุงูุต ุงุชููู ูุงูุต ูุงุญุฏ |
|
|
|
159 |
|
00:15:40,050 --> 00:15:47,600 |
|
ูุงูุต ุงุชููู ุงุชููู ูุงูุฏุง ูุงูุต ูุงุญุฏูุจูู ูุงู ุฑูุญูุง |
|
|
|
160 |
|
00:15:47,600 --> 00:15:52,200 |
|
ุฃุฎุฏูุง ุงูู
ุญุฏุฏ ุงููู ุนูุฏูุง ูุฐุง ู ุจุฏูุง ููุฌู ููู ุงูู
ุญุฏุฏ |
|
|
|
161 |
|
00:15:52,200 --> 00:15:58,800 |
|
ุจุงุณุชุฎุฏุงู
ุนูุงุตุฑ ุฃู ุตู ุฃู ุฃู ุนู
ูุฏ ููู ูู
ุซูุง ูู ุฌูุช |
|
|
|
162 |
|
00:15:58,800 --> 00:16:04,100 |
|
ููุช ุจุฏู ุฃููู ุจุงุณุชุฎุฏุงู
ุนูุงุตุฑ ุงูุตู ุงูุฃูู ูุจูู ูุงูุฏุง |
|
|
|
163 |
|
00:16:04,100 --> 00:16:11,080 |
|
ูุงูุต ุงุชููู ููู ุงูุฑุฆูุณู ูุงูุต ุงุชูู ููุจูู ูุงูุฏุง ูุงูุต |
|
|
|
164 |
|
00:16:11,080 --> 00:16:19,720 |
|
ุงุชููู ูููุงูุฏุง ูุงูุต ูุงุญุฏ ุฒุงุฆุฏู ุงุชููููุฐุง ู
ู ูุฐุง ูุณู |
|
|
|
165 |
|
00:16:19,720 --> 00:16:24,160 |
|
ุงูุญุฏ ุงูุฃูู ุงููู ุจุนุฏู ุญุณุจ ูุงุนุฉ ุงูุฅุดุงุฑุงุช ุฅุดุงุฑุชู |
|
|
|
166 |
|
00:16:24,160 --> 00:16:30,900 |
|
ุณุงูุจุฉ ู ุณุงูุจ ุจูุตูุฑ ู
ูุฌุฉ ุจุงุชููู ููู ุฃุดู ุจุตูู ู |
|
|
|
167 |
|
00:16:30,900 --> 00:16:37,140 |
|
ุนู
ูุฏู ูุจูู ูุฐุง ุงูู
ูุฏุงุฑ ุงููู ูู ุจูุตูุฑ ูุงุญุฏ ูุงูุต |
|
|
|
168 |
|
00:16:37,140 --> 00:16:42,820 |
|
ูุงูุฏุง ูุฅูู ุจูุดุงุฑ ุงูุณุงูุจ ูุงูุต ุงุชููู ุงูุดูู ุงููู |
|
|
|
169 |
|
00:16:42,820 --> 00:16:49,550 |
|
ุนูุฏูุง ูุฐุงุงููู ุจุนุฏู ูุงูุต ุชูุงุชุฉ ููู ุงุดุทุฑ ุจุตูู ุนู
ูุฏู |
|
|
|
170 |
|
00:16:49,550 --> 00:16:57,970 |
|
ูุจูู ูุงูุต ุงุชููู ุฒุงุฆุฏ ุงุชููู ูุงูุฏุง ูุงูุต ุงุฑุจุนุฉ ูู ูุฐุง |
|
|
|
171 |
|
00:16:57,970 --> 00:17:03,890 |
|
ุงูููุงู
ุจุฏู ูุณุงูู ุฒูุฑู ู
ุฑุฉ ุชุงููุฉ ููููู ู
ุนุงูุง ุชุงููุฉ |
|
|
|
172 |
|
00:17:04,670 --> 00:17:09,150 |
|
ุจููู ูุฐุง ุงู term ุงูุฃูู ุงูู
ุญุฏุฏ ุงูุฃุตุบุฑ ู
ุงุถู ุฑุงุญ ุญุตู |
|
|
|
173 |
|
00:17:09,150 --> 00:17:14,910 |
|
ุถุฑุจ ูุฏูู ูุงูุต ู
ุน ูุงูุต ุจุตูุฑ ุฒุงุฆุฏ ุงุชููู ุญุณุจ ูุงูู ุดุฑุท |
|
|
|
174 |
|
00:17:14,910 --> 00:17:20,790 |
|
ุงูุดุฑุท ุงูุณูุจู ุจุตูุฑ ู
ูุฌุจุฉ ุชู
ุดูุท ุจุตูู ุนู
ูุฏู ุจุตูุฑ ูุงูุต |
|
|
|
175 |
|
00:17:20,790 --> 00:17:27,670 |
|
ูุงูุฏุง ุฒุงุฆุฏ ูุงุญุฏูุจูู ูุงูุต ูุงูุฏุง ุฒุงุฆุฏ ูุงุญุฏ ูุงูุต ู
ุน |
|
|
|
176 |
|
00:17:27,670 --> 00:17:33,150 |
|
ุถุงุจู ูุงูุต ุจูุจูู ูุงูุต ูุฏุงุด ุงุชููู ูุงูุต ุซูุงุซุฉ ูุดุช |
|
|
|
177 |
|
00:17:33,150 --> 00:17:38,810 |
|
ุจูุตููุง ุนู
ูุฏู ุจูุตูุฑ ูุงูุตู ุงุชููู ูููุง ูุงูุต ู
ุน ูุงูุต |
|
|
|
178 |
|
00:17:38,810 --> 00:17:43,510 |
|
ุจูุตูุฑ ุฒุงุฆุฏ ุงุชููู ูุงูุฏุง ูุงูุต ุงุฑุจุนุฉ ูู ูุฐุง ุงูููุงู
|
|
|
|
179 |
|
00:17:43,510 --> 00:17:49,530 |
|
ุจุฏู ูุณุงูู ูุฏุงุด Zeroูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู ูุงูุฏุง ูุงูุต |
|
|
|
180 |
|
00:17:49,530 --> 00:17:57,530 |
|
ุงุชููู ูุงูุฏุง ุชุฑุจูุน ูุงูุต ุชูุงูุชุง ูุงูุฏุง ุฒูุฏู ุงุชููู |
|
|
|
181 |
|
00:17:57,530 --> 00:18:05,470 |
|
ุฒูุฏู ุงุชููููุฐุง ุจูุตูุฑ ุฒุงุฆุฏ ุงุชููู ูู ูุฏุงุด ูููุง ุงูุด |
|
|
|
182 |
|
00:18:05,470 --> 00:18:11,590 |
|
ุฑุงููุ ุจูุตูุฑ ุนูุฏูุง ูุงูุต ูุงูุฏุง ูุงูุต ูุงุญุฏ ูููุง ูุงูุต |
|
|
|
183 |
|
00:18:11,590 --> 00:18:18,550 |
|
ุชูุงุชุฉ ูู ุงุชููู ูุงูุฏุง ูุงูุต ุณุชุฉ ููู ุจุฏู ูุณุงูู ุฒูุฑู |
|
|
|
184 |
|
00:18:18,550 --> 00:18:23,710 |
|
ูุจูู ูุฐุง ุงูููุงู
ุจูุตูุฑ ูุงูุฏุง ูุงูุต ุงุชููู ูู ูุงูุฏุง |
|
|
|
185 |
|
00:18:23,710 --> 00:18:34,310 |
|
ุชุฑุงุจูุน ูุงูุต ุชูุงุชุฉ ูุงูุฏุง ุฒุงุฆุฏ ุงุฑุจุนูููุง ุฒุงุฆุฏ ุงู ูุงูุต |
|
|
|
186 |
|
00:18:34,310 --> 00:18:42,790 |
|
ูุงูุต ุงุชููู ูู lambda ุฒุงุฆุฏ ูุงุญุฏ ูููุง ุจูุตูุฑ ุนูุฏ ู
ูู |
|
|
|
187 |
|
00:18:42,790 --> 00:18:50,790 |
|
ูุงูุต ุชูุงุชุฉ ุฒู ู
ุง ูู ููุง ูุงูุต ุณุชุฉ ูู lambda ูุงูุต |
|
|
|
188 |
|
00:18:50,790 --> 00:18:53,810 |
|
ุชูุงุชุฉ ููู ุจุฏู ูุณุงูู zero |
|
|
|
189 |
|
00:18:56,330 --> 00:19:02,370 |
|
ุทูุจ ูุฐุง ุงูุงู ูู ุฌูุช ุญููุชูุง ุจุตูุฑ land ุงูุงูุตู ุงุชููู |
|
|
|
190 |
|
00:19:02,370 --> 00:19:06,250 |
|
land |
|
|
|
191 |
|
00:19:06,250 --> 00:19:11,150 |
|
ุงูุงูุตู ุงุฎุชุตุงุฑุงุช ู
ุงููุด ุฏูููุฉ ูุจูู ุฎูููู ุงูู ุจุงูู
ุฑุฉ |
|
|
|
192 |
|
00:19:11,150 --> 00:19:16,580 |
|
ุฎูููู ุงูููุง ู ุงุดูู ููู ุชูุตููู ูุฐููุจูู ูุงุฏ ูุง ุจูุงุช |
|
|
|
193 |
|
00:19:16,580 --> 00:19:24,280 |
|
ุจุตูุฑ ูุงูุฏุฉ ููุจ ูุงูุต ุชูุงุชุฉ ูุงูุฏุฉ ุชุฑุจูุน ุฒุงุฆุฏ ุฃุฑุจุนุฉ |
|
|
|
194 |
|
00:19:24,280 --> 00:19:33,760 |
|
ูุงูุฏุฉ ูุงูุต ุงุชููู ูุงูุฏุฉ ุชุฑุจูุน ุฒุงุฆุฏ ุณุชุฉ ูุงูุฏุฉ ูุงูุต |
|
|
|
195 |
|
00:19:33,760 --> 00:19:41,760 |
|
ุชู
ุงููุฉ ูุงูุต ุงุชููู ูุงูุฏุฉ ูุงูุต ุงุชููู ูุงูุต ุณุชุฉ ูุงูุฏุฉ |
|
|
|
196 |
|
00:19:41,760 --> 00:19:50,060 |
|
ุฒุงุฆุฏ ุซู
ุงููุฉ ุนุดุฑูุจูู ุงูู
ุนุงุฏูุฉ ุงุซุงุฑุฉ ูุฐู ูุงูุฏุง ุชููุจ |
|
|
|
197 |
|
00:19:50,060 --> 00:19:56,420 |
|
ู
ููุด ุบูุฑูุง ูุฐู ุชุฑุจูุน ููุฐู ุชุฑุจูุน ุชุจูู ูุงูุต ุฎู
ุณ |
|
|
|
198 |
|
00:19:56,420 --> 00:20:04,100 |
|
ูุงูุฏุง ุชุฑุจูุน ุงูุงู ูุฐู ูุงูุฏุง ููุฐู ูุงูุฏุง ููุฐู ูุงูุฏุง |
|
|
|
199 |
|
00:20:04,100 --> 00:20:11,130 |
|
ููุฐู ูุงูุฏุงุชู
ุงู
ุนูุฏู ุงุฑุจุนุฉ ูุณุชุฉ ุนุดุฑุฉ ุจูุดูู ู
ููู
|
|
|
|
200 |
|
00:20:11,130 --> 00:20:17,250 |
|
ุงุชููู ุจูุธู ุชู
ุงููุฉ ุจูุดูู ู
ููู
ุณุชุฉ ุจูุธู ุงุชููู |
|
|
|
201 |
|
00:20:17,250 --> 00:20:24,950 |
|
ุจุงูู
ูุฌุฉ ูุจูู ูุงู ุณุงูุจ ุชู
ุงููุฉ ุจูุธู ุณุงูุจู ุงุชููู ุจูุธู |
|
|
|
202 |
|
00:20:24,950 --> 00:20:32,150 |
|
ุฒุงุฆุฏ ุงุชููู ูุงู ู
ุธุจูุท ุงูู ูุง ุจูุงุชุุฃุฑุจุนุฉ ู ุณุชุฉ ุนุดุฑุฉ |
|
|
|
203 |
|
00:20:32,150 --> 00:20:36,070 |
|
ู
ูุฌุจ ู ุงุชููู ู ุณุชุฉ ุชู
ุงููุฉ ุจูุธู ุงุชููู ุจุงูู
ูุฌุจ ุจูุธู |
|
|
|
204 |
|
00:20:36,070 --> 00:20:40,590 |
|
ููุง ู
ู ููุง ุณุงูุจ ุชู
ุงููุฉ ู ุณุงูุจ ุงุชููู ุณุงูุจ ุนุดุฑุฉ ู |
|
|
|
205 |
|
00:20:40,590 --> 00:20:47,110 |
|
ุฒุงุฆุฏ ุน ุชู
ุงูุชุงุด ุจูุธู ุฒุงุฆุฏ ุชู
ุงููุฉ ูุณุงูู Zero |
|
|
|
206 |
|
00:21:06,420 --> 00:21:13,380 |
|
ูู ุญุฏ ุงูุงุนุชุฑุงุถุ ูููุ |
|
|
|
207 |
|
00:21:13,380 --> 00:21:18,000 |
|
ุงูู
ุนุงุฏูุฉ ุณููู
ู
ุงุฆุฉ ุจุงูู
ุงุฆุฉ ุทุจ ุจุฏูุง ูุญู ูุฐู ูุง ูู |
|
|
|
208 |
|
00:21:18,000 --> 00:21:23,280 |
|
ุนูุงู
ุงูู
ุดุชุฑูุฉ ููุง ูู ุบูุฑู ูุจูู ุฃูุง ุงูู
ุนุงุฏูุฉ ู
ููุง |
|
|
|
209 |
|
00:21:23,280 --> 00:21:27,600 |
|
ุงูุฏุฑุฌุฉ ุงูุชุงูุชุฉ ูู
ุง ุจุฏู ุฃุญู ููู ู ุชุจูู ุตุนุจุฉ ุจุฑูุญ |
|
|
|
210 |
|
00:21:27,600 --> 00:21:35,580 |
|
ุจุฏูุฑ ุนูู ููุงุณู
ุงูุชู
ุงู
ูุฉููุงุณู
ุงูู 8 ู
ููุ 1 ู ุณุงูุจ 1 |
|
|
|
211 |
|
00:21:35,580 --> 00:21:44,940 |
|
2 ุณุงูุจ 2 4 ุณุงูุจ 4 8 ุณุงูุจ 8 ูุนูู ุนูุฏู 8 ููุงุณู
ุชู
ุงู
|
|
|
|
212 |
|
00:21:44,940 --> 00:21:50,630 |
|
ุฎูููู ูุจุฏุฃ ุจุงูุฃูู ูู ุญุทูุช ูุงู ุฏู ุจูุงุญุฏุจุตูุฑ ููุง |
|
|
|
213 |
|
00:21:50,630 --> 00:21:57,350 |
|
ูุงุญุฏ ู ุงุชููู ุชูุงุชุฉ ุชูุงุชุฉ ู ุชู
ุงููุฉ ุงุญุฏุงุดุฑ ุงุญุฏุงุดุฑ |
|
|
|
214 |
|
00:21:57,350 --> 00:22:01,730 |
|
ููุง ุจูุงุญุฏ ุจุตูุฑ ูุงูุต ุฎู
ุณุฉ ูุจุนุชูู ุงููู ูุจูู ูุงู ุฏู |
|
|
|
215 |
|
00:22:01,730 --> 00:22:07,030 |
|
ุจูุงุญุฏ ูุฃ ุจุฏู ุงุญุท ูุงู ุฏู ุจูุฏุงุด ุณุงูุจ ูุงุญุฏูู ุญุทูุช |
|
|
|
216 |
|
00:22:07,030 --> 00:22:12,650 |
|
ุณุงูุจ ูุงุญุฏ ุจูุตูุฑ ููุง ุณุงูุจ ูุงุญุฏ ู ุณุงูุจ ุฎู
ุณุฉ ุณุงูุจ ุณุชุฉ |
|
|
|
217 |
|
00:22:12,650 --> 00:22:17,650 |
|
ุณุงูุจ ุณุชุฉ ู ุงุชููู ุณุงูุจ ุชู
ุงููุฉ ู ุชู
ุงููุฉ ุฒูุฑู ุชู
ุงู
|
|
|
|
218 |
|
00:22:17,650 --> 00:22:22,390 |
|
ุชู
ุงู
ูุจูู ุงู land ุชุณุงูู ุณุงูุจ ูุงุญุฏ ูู ุนุจุงุฑุฉ ุนู ู
ูู |
|
|
|
219 |
|
00:22:22,390 --> 00:22:27,910 |
|
ุนู ุญู ูุฐู ุงูู
ุนุงุฏูุฉ ูุนูู ุงู land ุฒุงุฆุฏ ูุงุญุฏ ูู ุงุญุฏ |
|
|
|
220 |
|
00:22:27,910 --> 00:22:34,990 |
|
ุนูุงู
ู ุงูู
ุนุงุฏูุฉ ูุฐู ูุจูู ุจุงุฌู ุจูููู since ุจู
ุง ุงู |
|
|
|
221 |
|
00:22:36,230 --> 00:22:47,810 |
|
Landa ุชุณุงูู ุณุงูุจ ูุงุญุฏ is a solution of |
|
|
|
222 |
|
00:22:47,810 --> 00:22:58,330 |
|
the equation A star ูุจูู |
|
|
|
223 |
|
00:22:58,330 --> 00:23:11,910 |
|
Landaุฒุงุฆุฏ ูุงุญุฏ is a factor of equation star ูุนูู |
|
|
|
224 |
|
00:23:11,910 --> 00:23:16,410 |
|
ุงูู
ุนุงุฏูุฉ ุชูุณู
ุนูู ูุฐุง ุงูู
ูุฏุงุฑ ุจุฏูู ุจุงูู |
|
|
|
225 |
|
00:23:23,490 --> 00:23:29,970 |
|
ูููุง ุนูุฏู ูุงูุต ุฎู
ุณุฉ ูุงูุฏุง ุชุฑุจูุฉ ูุงูุต ุฎู
ุณุฉ ุฒุงุฆุฏ |
|
|
|
226 |
|
00:23:29,970 --> 00:23:35,570 |
|
ุงุชููู ูุงูุฏุง ุฒุงุฆุฏ ุชู
ุงููุฉ ุจุฏู ุงุฌุณู
ูุง ุฌุณู
ุฉ ู
ุถููุฉ |
|
|
|
227 |
|
00:23:35,570 --> 00:23:41,350 |
|
ุนุงุฏูุฉ ุนูู ูุงูุฏุง ุฒุงุฆุฏ ูุงุญุฏ ูููุง ุฌุฏุงุด ูุงูุฏุง ุชุฑุจูุฉ ูู |
|
|
|
228 |
|
00:23:41,350 --> 00:23:48,610 |
|
ูุงูุฏุง ูุงูุฏุง ุชูุนูุจ ุฒุงุฆุฏ ูุงูุฏุง ุชุฑุจูุฉ ุชู
ุงู
ุุจุฃุฌู ุจุบูุฑ |
|
|
|
229 |
|
00:23:48,610 --> 00:23:54,810 |
|
ุงูุฅุดุงุฑุงุช ูุจุฌู
ุน ู
ุน ุงูุณูุงู
ุฉ ูุงููุงูุต ุณุชุฉ lambda ุชุฑุจูุน |
|
|
|
230 |
|
00:23:54,810 --> 00:24:00,330 |
|
ุฒุงุฆุฏ ุงุชููุฉ lambda ุฒุงุฆุฏ ุชู
ุงููุฉ ุงูุจุงูู ู
ู ุงูุฏุฑุฌุฉ |
|
|
|
231 |
|
00:24:00,330 --> 00:24:04,850 |
|
ุงูุซุงููุฉ ูุงูู
ูุณูู
ุนููู ู
ู ุงูุฏุฑุฌุฉ ุงูุฃููู ุจูุงุตู ุนู
ููุฉ |
|
|
|
232 |
|
00:24:04,850 --> 00:24:10,230 |
|
ุงููุณู
ุฉ ูุจูู ูุงูุต ุณุชุฉ lambda ุชุฑุจูุน ุนูู lambda ุจุทูุน |
|
|
|
233 |
|
00:24:10,230 --> 00:24:20,080 |
|
ูุฏุงุดููุต ุณุชุฉ ูุงูุฏุง ุชุฑุจูุน |
|
|
|
234 |
|
00:24:20,080 --> 00:24:24,120 |
|
ููุต ุณุชุฉ ูุงูุฏุง ุชุฑุจูุน ููุต ุณุชุฉ ูุงูุฏุง ุชุฑุจูุน ููุต ุณุชุฉ |
|
|
|
235 |
|
00:24:24,120 --> 00:24:24,160 |
|
ูุงูุฏุง ุชุฑุจูุน ููุต ุณุชุฉ ูุงูุฏุง ุชุฑุจูุน ููุต ุณุชุฉ ูุงูุฏุง |
|
|
|
236 |
|
00:24:24,160 --> 00:24:24,740 |
|
ุณุชุฉ ูุงูุฏุง ุชุฑุจูุน ููุต ุณุชุฉ ูุงูุฏุง ุชุฑุจูุน ููุต ุณุชุฉ ูุงูุฏุง |
|
|
|
237 |
|
00:24:24,740 --> 00:24:24,820 |
|
ุชุฑุจูุน ููุต ุณุชุฉ ูุงูุฏุง ุชุฑุจูุน ููุต ุณุชุฉ ูุงูุฏุง ุชุฑุจูุน ููุต |
|
|
|
238 |
|
00:24:24,820 --> 00:24:27,680 |
|
ุณุชุฉ ูุงูุฏุง ุชุฑุจูุน ููุต ุณุชุฉ ูุงูุฏุง ุชุฑุจูุน ููุต ุณุชุฉ ูุงูุฏุง |
|
|
|
239 |
|
00:24:27,680 --> 00:24:33,620 |
|
ุชุฑุจูุน ููุต ุณุชุฉ ูุงูุฏุง ุชุฑุจูุน ููุตุงูุจุงูู ู
ู ุงูุฏุฑุฌุฉ |
|
|
|
240 |
|
00:24:33,620 --> 00:24:37,500 |
|
ุงูุฃููู ูุงูู
ูุณูู
ุนููู ู
ู ุงูุฏุฑุฌุฉ ุงูุฃููู ุจูุงุตู ุนู
ููุฉ |
|
|
|
241 |
|
00:24:37,500 --> 00:24:42,580 |
|
ุงููุณู
ุฉ ูุจูู ุชู
ุงููุฉ ูุงูุฏุง ุนูู ูุงูุฏุง ูููุง ูุฏุงุดุฑ ูู |
|
|
|
242 |
|
00:24:42,580 --> 00:24:50,240 |
|
ุชู
ุงููุฉ ุชู
ุงููุฉ ูุงูุฏุง ูููุง ุฒุงุฆุฏ ุชู
ุงููุฉุบูุฑ ุงูุฅุดุงุฑุงุช |
|
|
|
243 |
|
00:24:50,240 --> 00:24:57,060 |
|
ูุฌู
ุนู ุจุตูุฑ ููุง ูุฏุงุด ุจุตูุฑ ูุฐู ุจุงูุฐุงุช ุจุตูุฑ ููุต ูุจูู |
|
|
|
244 |
|
00:24:57,060 --> 00:25:03,300 |
|
zero ู zero ูุจูู ุจูุงุก ุนููู ุงูู
ุนุงุฏูุฉ star ูุจูู |
|
|
|
245 |
|
00:25:03,300 --> 00:25:10,480 |
|
equation star take the fourูุจูู ุจุชุงุฎุฏ ุงูุดูู ุงูุฌุฏูุฏ |
|
|
|
246 |
|
00:25:10,480 --> 00:25:15,240 |
|
ุงููู ุนูุฏู ุฎุงุฑุฌ ุงููุณู
ุฉ ุงููู ูู ู
ุถุฑูุจ ูู ุงูู
ูุณูู
|
|
|
|
247 |
|
00:25:15,240 --> 00:25:21,760 |
|
ุนููู ูุงูุฏุง ุชุฑุจูุฉ ูุงูุต ุณุชุฉ ูุงูุฏุง ุฒุงุฆุฏ ุชู
ุงููุฉ ูุณุงูู |
|
|
|
248 |
|
00:25:21,760 --> 00:25:27,820 |
|
ุฒูุฑู ุงูุงู ูุฐู ุจูุฏุฑ ุงููู ูุงูุฏุง ุฒุงุฆุฏ ูุงุญุฏ ูุฐู ุจูุฏุฑ |
|
|
|
249 |
|
00:25:27,820 --> 00:25:35,340 |
|
ุงุญูููุง ูุญุงุตู ุถุฑุจ ููุณูู ููุง ูุงูุฏุง ููุง ูุงูุฏุงูููุง |
|
|
|
250 |
|
00:25:35,340 --> 00:25:41,400 |
|
ุงุชููู ูููุง ุงุฑุจุนุฉ ูููุง ูุงูุต ูููุง ูุงูุต ูุจูู ุจูุงุก |
|
|
|
251 |
|
00:25:41,400 --> 00:25:46,560 |
|
ุนููู ูุงูุฏุง ุชุณุงูู ุณุงูุจ ูุงุญุฏ ููุงูุฏุง ุชุณุงูู ุงุชููู |
|
|
|
252 |
|
00:25:46,560 --> 00:25:56,060 |
|
ููุงูุฏุง ุชุณุงูู ูุฏุงุด ุงุฑุจุนุฉ ูุฏูู ู
ุงููู
are distinct |
|
|
|
253 |
|
00:25:56,060 --> 00:25:59,380 |
|
eigen |
|
|
|
254 |
|
00:25:59,380 --> 00:26:02,100 |
|
values |
|
|
|
255 |
|
00:26:03,990 --> 00:26:08,370 |
|
ูุจูู ูุฏูู ุงูู Destinate Eigenvalues ุฅุฐุง ุจูุงุก ุนูู |
|
|
|
256 |
|
00:26:08,370 --> 00:26:13,030 |
|
ุงูู
ุตููุฉ ุนูุฏ ุงูุฃุตููุฉ ุฌุฏุงุด ูุธุงู
ูุง ุชูุงุชุฉ ูู ุชูุงุชุฉ |
|
|
|
257 |
|
00:26:13,030 --> 00:26:18,130 |
|
ูุจูู ูุฐู ู
ุงููุงุ Diagonalizable ูุจูู ููุง ุงูู Sense |
|
|
|
258 |
|
00:26:18,130 --> 00:26:24,230 |
|
ุงููู ุฏู Matrix A |
|
|
|
259 |
|
00:26:24,230 --> 00:26:41,130 |
|
is of the systemุชูุงุชุฉ ูู ุชูุงุชุฉ and we have three |
|
|
|
260 |
|
00:26:41,130 --> 00:26:49,950 |
|
distinct eigenvalues |
|
|
|
261 |
|
00:26:49,950 --> 00:26:57,170 |
|
we have ุงู a is |
|
|
|
262 |
|
00:27:06,400 --> 00:27:10,280 |
|
Diagonalizable ูุจูู ุงูููุช ูู ุฌุงุจูุชู ู
ุนุงุฏูุฉ ู
ู |
|
|
|
263 |
|
00:27:10,280 --> 00:27:14,800 |
|
ุงูุฏุฑุฌุฉ ุงูุซุงูุซุฉ ููู ุจุฏู ุชุญูููุง ุจุชุดููู ููุงุณู
ุงู |
|
|
|
264 |
|
00:27:14,800 --> 00:27:20,460 |
|
constant ุจุงูุฏูุฑู ุนูู ุฑูู
ุตูุฑ ุงูู
ุนุงุฏูุฉ ูุจุนุฏ ููู |
|
|
|
265 |
|
00:27:20,460 --> 00:27:24,460 |
|
ุจูุฌู ููุฑูู
ูุฐุง ุนูู ุงูุดุฌุฑุฉ ุงูุชุงููุฉ ูุจุงูุชุงูู ูููู |
|
|
|
266 |
|
00:27:24,460 --> 00:27:28,500 |
|
ูุฐุง ุฃุญุฏ ุนูุงู
ู ุงูู
ุนุงุฏูุฉูุจุงูุชุงูู ุจูุฒู ุฑูุชุจุชูุง ู
ู |
|
|
|
267 |
|
00:27:28,500 --> 00:27:31,260 |
|
ุงูุฏุฑุฌุฉ ุงูุชุงูุชุฉ ุฅูู ุงูุฏุฑุฌุฉ ุงูุซุงููุฉ ูุจุงูุชุงูู ุจูุฏุฑ |
|
|
|
268 |
|
00:27:31,260 --> 00:27:36,480 |
|
ุฃุญููุง ูุง ู
ุง ุชุญููู ุจุงูููุงุณ ุฃู ุจุงููุงููู ูุจุทูุน ูุฏุงุด |
|
|
|
269 |
|
00:27:36,480 --> 00:27:40,460 |
|
ุงููู ูู ููู
ูุงูุฏุง ุงูู
ุฎุชููุฉ |
|
|
|
270 |
|
00:28:01,410 --> 00:28:11,690 |
|
ู
ุซุงู ุชูุงุชุฉ ุจูููู |
|
|
|
271 |
|
00:28:11,690 --> 00:28:22,350 |
|
is the matrix is the matrix ูููู ู
ุตูููุฉ ุงูู ุชุณุงููุ |
|
|
|
272 |
|
00:28:22,350 --> 00:28:29,410 |
|
Zero ู Zero ู ูุงุญุฏู zero ูุงุญุฏ ู ุงุชููู ู zero ู |
|
|
|
273 |
|
00:28:29,410 --> 00:28:49,510 |
|
zero ู ูุงุญุฏ ุฏูููุฉ journalizable ูููุ |
|
|
|
274 |
|
00:28:54,850 --> 00:28:59,810 |
|
ุงูู
ุญุฏุฏ ุตุญูุญ ูุณุงูู ุฒูุฑู ููู ุงุญูุง ู
ุง ูููุง ุงุด ุญุงุฌุฉ |
|
|
|
275 |
|
00:28:59,810 --> 00:29:03,990 |
|
ุงุญูุง ูููุง ุงุจุญุซูุง ูุฏูุฑูุง ุฎูุงุต ููู ูู ุญุทููุง ุดุฑููุง ูู |
|
|
|
276 |
|
00:29:03,990 --> 00:29:09,010 |
|
ูุงู ุงูู
ุญุฏุฏ ูุณุงูู ุฒูุฑู ู
ู
ููุนุ ูุฃ ุงูู
ุตูููุฉ ุงูุฃุฎุฑู |
|
|
|
277 |
|
00:29:09,010 --> 00:29:12,450 |
|
ุงููู ุจุฏู ุงุถุฑุจูุง ูููุง ุจุฏูุงูุง ุงูู
ุญุฏุฏ ุชุจุนูุง ููููู |
|
|
|
278 |
|
00:29:12,450 --> 00:29:15,910 |
|
ู
ุงูุนู ูู ุณูู ุงู ู
ุงุชููู
ูุงุด ุนูููุง ุฏู ููุง ุญุงุฌุฉ ุงุญูุง |
|
|
|
279 |
|
00:29:15,910 --> 00:29:22,290 |
|
ุจููู ูุฏ ุชููู ููุฏ ูุง ุชูููุชู
ุงู
ุ ุฅุฐุง ุจุฏู ุฃุฑูุญ ููุณ |
|
|
|
280 |
|
00:29:22,290 --> 00:29:27,150 |
|
ุงููุตุฉ ุจุฏู ุฃู
ุดู ุฒู ู
ุง ููุช ุจู
ุดู ูุจู ูููู ุทุจ ุจุงุฌู |
|
|
|
281 |
|
00:29:27,150 --> 00:29:32,410 |
|
ุจุณุฃู ููุณู ูุฐู upper ููุง ุงู lower triangleุ upper |
|
|
|
282 |
|
00:29:32,410 --> 00:29:36,850 |
|
ูุจูู ู
ุนูุงุช ู ุงู zero ู ุงู ูุงุญุฏ ู ุงููุงุญุฏ ูู
ู
ู |
|
|
|
283 |
|
00:29:36,850 --> 00:29:42,950 |
|
ุงูููุฏุงุช ูุจุงูุชุงูู ุงูููุฏุงู ูุฑุฑ ูุฏูุ ู
ุฑุชูู ูุจูู ุจูุงุก |
|
|
|
284 |
|
00:29:42,950 --> 00:29:43,750 |
|
ุนููู |
|
|
|
285 |
|
00:29:46,400 --> 00:29:53,620 |
|
ุงูู Determinant ูู Lambda I ูุงูุต ุงูู A ูู ุงูู
ุญุฏุฏ |
|
|
|
286 |
|
00:29:53,620 --> 00:30:03,240 |
|
ุชุจุน Lambda ู Zero ู ูุงูุต ูุงุญุฏ ู Zero ู ููุง Lambda |
|
|
|
287 |
|
00:30:03,240 --> 00:30:09,860 |
|
ูุงูุต ูุงุญุฏ ู ูุงูุต ุงุชููู ู Zero Zero Lambda ูุงูุต |
|
|
|
288 |
|
00:30:09,860 --> 00:30:10,540 |
|
ูุงุญุฏ |
|
|
|
289 |
|
00:30:13,120 --> 00:30:20,760 |
|
ููุฐุง ูููู
ุจุฅุถุงูุฉ ููLambda ูุงูุต ูุงุญุฏ ููLambda ูุงูุต |
|
|
|
290 |
|
00:30:20,760 --> 00:30:22,260 |
|
ูุงุญุฏ ููLambda ูุงูุต ูุงุญุฏ ููLambda ูุงูุต ูุงุญุฏ |
|
|
|
291 |
|
00:30:22,260 --> 00:30:31,000 |
|
ููLambda ูุงูุต ูุงุญุฏ ููLambda ูุงูุต |
|
|
|
292 |
|
00:30:31,000 --> 00:30:37,450 |
|
ูุงุญุฏูุจูู ุงูู ุฌุจุชูู ู
ุงู ุฌุจุชูู ุงููู ูู ุงู ุงู |
|
|
|
293 |
|
00:30:37,450 --> 00:30:43,230 |
|
eigenvalues ููู ููู ุชูุชูู are repeated ูุนูู ูุง |
|
|
|
294 |
|
00:30:43,230 --> 00:30:47,410 |
|
ุจูุงุช ูู ููุช ุงูุฌุซุฉ ุฏู ุงุด ุจูุตูุฑ ูุงูุฏุง ูู ูุงูุฏุง ูุงูุต |
|
|
|
295 |
|
00:30:47,410 --> 00:30:53,330 |
|
ูุงุญุฏ ููู ุชุฑุจูุน ูุณูู zeroูุงู ุฏูุณ ูุงุญุฏ ูุงูุฌูุณ ุฃุณู |
|
|
|
296 |
|
00:30:53,330 --> 00:30:58,550 |
|
ุงุชููู ูุจูู ู
ุฌู
ูุญ ู
ุฌุฏุฏุด ุชูุงุชุฉ ูุณุงูู ุงู N ุงูุฏุฑุฌุฉ |
|
|
|
297 |
|
00:30:58,550 --> 00:31:02,730 |
|
ุชุจุนุช ู
ู ุชุจุนุช ุงูู
ุตุญู ูุฐู ุชู
ุงู
ูุจุงูุชุงูู ูุฐุง ุงููู ููุง |
|
|
|
298 |
|
00:31:02,730 --> 00:31:06,730 |
|
ูุงุชุจููู ูุจู ูููู M ูุงุญุฏ ุฒู M ุงุชููู ุฒู M ุชูุงุชุฉ ุฒู M |
|
|
|
299 |
|
00:31:06,730 --> 00:31:13,390 |
|
N ุจุฏู ูุณุงูู N ู
ุธุจูุท ูุจูู ูู ุชูุทุจู ุนูููุง ุชู
ุงู
ุงุทูุจ |
|
|
|
300 |
|
00:31:13,390 --> 00:31:17,670 |
|
ูุงูุฌูุจูุง ุงููุงูุฏุงุช ุงููู ุนูุฏูุง ุจุณ ูุฏูู ู
ุด destined |
|
|
|
301 |
|
00:31:17,670 --> 00:31:25,330 |
|
ุทูุนูุง ูููู
ุงูุชูุชูู ูุฏูู ู
ุงููู
ู
ูุฑุฑุงุช ุชู
ุงู
ุจุงุฌู |
|
|
|
302 |
|
00:31:25,330 --> 00:31:31,190 |
|
ุจููู ูุงููู ู
ุงูุง ุนุงุฑู ุงูุญูู ุงุฎุชููุช ุนู ุงูุฑูู
ุชูุงุชุฉ |
|
|
|
303 |
|
00:31:31,190 --> 00:31:34,650 |
|
ุงููู ุนูุฏูุง ูู ุชุทูุน ุฏู ูููู ุงููู ูุฒุจู ูุงููู ู
ูุฒุจู |
|
|
|
304 |
|
00:31:34,650 --> 00:31:41,570 |
|
ูููู ุงููู ุฃุนูู
ูุจูู ุจุงุฌู ุจูููู ููุง Fูุงูุฏุง ุชุณุงูู |
|
|
|
305 |
|
00:31:41,570 --> 00:31:46,890 |
|
ุฒูุฑู ูุงูุฏุง |
|
|
|
306 |
|
00:31:46,890 --> 00:31:54,270 |
|
I ูุงูุต ุงู A ูู ุงู X ุจุฏู ูุณุงูู ุฒูุฑู M Plus ูุงูุฏุง I |
|
|
|
307 |
|
00:31:54,270 --> 00:32:01,150 |
|
ูุงูุต ุงู A ููู ูุจูู ููู ุนูุฏ ู
ูุ ูู ูุงูุฏุง ูุฒูุฑู ูุณูุจ |
|
|
|
308 |
|
00:32:01,150 --> 00:32:07,010 |
|
ูุงุญุฏ ูุฒูุฑู ููุงูุฏุง ูุงูุต ูุงุญุฏ ููุงูุต ุงุชููู ูุฒูุฑู ุฒูุฑู |
|
|
|
309 |
|
00:32:07,010 --> 00:32:17,390 |
|
ูุงูุฏุง ูุงูุต ูุงุญุฏูู X1, X2, X3 ุจุฏู ูุณุงูู 000 ุจุฏู |
|
|
|
310 |
|
00:32:17,390 --> 00:32:21,870 |
|
ุฃุดูู ูู ูุงูุฏุง ู ุฃุญุท ู
ูุงููุง Zero ูุจูู ุจูุงุด ูุงุฏ |
|
|
|
311 |
|
00:32:21,870 --> 00:32:28,270 |
|
ููุชุจูุง ููุง ู
ุด ููููู ุฃุฑุชุจ ุจุณ F ูุงูุฏุง ุชุณุงูู Zero |
|
|
|
312 |
|
00:32:28,270 --> 00:32:34,310 |
|
then ุจุฏู ุฃุฌุนู ูุฐู ู ุฃุดูู ูู ูุงูุฏุง ู ุฃุญุท ู
ูุงููุง |
|
|
|
313 |
|
00:32:34,310 --> 00:32:42,620 |
|
Zero ูุจูู Zeroูููุง zero ูููุง ุณุงูุจ ูุงุญุฏ ูููุง zero |
|
|
|
314 |
|
00:32:42,620 --> 00:32:49,980 |
|
ุณุงูุจ ูุงุญุฏ ุณุงูุจ ุงุชููู zero zero ุณุงูุจ ูุงุญุฏ X ูุงุญุฏ X |
|
|
|
315 |
|
00:32:49,980 --> 00:32:55,440 |
|
ุงุชููู X ุชูุงุชุฉ ุจุฏู ูุณุงูู zero zero zero ูุฐุง ุจุฏู |
|
|
|
316 |
|
00:32:55,440 --> 00:33:00,810 |
|
ูุนุทููุงุจุฏุฃ ุงูุชุจ ุงูู
ุนุงุฏูุงุช ุงููู ุนูุฏู ูุจูู ุงูู
ุนุงุฏูุงุช |
|
|
|
317 |
|
00:33:00,810 --> 00:33:06,950 |
|
ุงููู ุนูุฏู ุณุงูุจ x ูุงุญุฏ ุจุฏู ูุณูู ุฌุฏุงุด zero ู ุณุงูุจ x |
|
|
|
318 |
|
00:33:06,950 --> 00:33:13,550 |
|
ุงุชููู ุณุงูุจ ุงุชููู x ุชูุงุชุฉ ุจุฏู ูุณูู zero ู ุงู x |
|
|
|
319 |
|
00:33:13,550 --> 00:33:23,110 |
|
ุชูุงุชุฉ ุจุฏู ูุณูู ุฌุฏุงุด ุจุฏู ูุณูู zero ุชู
ุงู
ูุฐุง ู
ุนูุงู ู |
|
|
|
320 |
|
00:33:23,110 --> 00:33:31,390 |
|
ุงู x ุชูุงุชุฉ ุงู ุณุงูุจ x ุชูุงุชุฉุณุงูุจ X ุซูุงุซุฉ ุจุฏู ูุณุงูู |
|
|
|
321 |
|
00:33:31,390 --> 00:33:32,250 |
|
ุฒูุฑ |
|
|
|
322 |
|
00:33:40,120 --> 00:33:45,880 |
|
ุณุงูุจ ุงูุณ ุชูุงุชุฉ ู
ุธุจูุท ูุฐุง ุณุงูุจ ุงูุณ ุชูุงุชุฉ ููุฐุง ุณุงูุจ |
|
|
|
323 |
|
00:33:45,880 --> 00:33:51,100 |
|
ุงูุณ ุงุชููู ุณุงูุจ ุงุชููู ุงูุณ ุชูุงุชุฉ ุจุฏู ูุณุงูู Zero ููุฐุง |
|
|
|
324 |
|
00:33:51,100 --> 00:33:55,220 |
|
ุณุงูุจ ุงูุณ ุชูุงุชุฉ ุจุฏู ูุณุงูู ู
ุธุจูุท ูุจูู ูุฐุง ู
ุนูุงู ุงู |
|
|
|
325 |
|
00:33:55,220 --> 00:34:00,670 |
|
ุงูุณ ุชูุงุชุฉ ุจุฏู ูุณุงูู ุฌุฏุง ุฌุจูุงูุงุจุฏููุง ูุณุงูู Zero ูู
ุง |
|
|
|
326 |
|
00:34:00,670 --> 00:34:05,810 |
|
ุงู X ุชูุงุชุฉ ุจุฏููุง ูุณุงูู Zero X ุงุชููู ูู
ุงู ุจุฏููุง |
|
|
|
327 |
|
00:34:05,810 --> 00:34:10,290 |
|
ูุณุงูู ู
ููุ Zero ูู
ุดุงู ูููู Eigen vector X ูุงุญุฏ |
|
|
|
328 |
|
00:34:10,290 --> 00:34:19,070 |
|
ู
ู
ูู ุชุจูู ุงูุฑูู
ุบูุฑ Zero ูุจูู ุจุงุฌู ุจูููู ููุง F X |
|
|
|
329 |
|
00:34:19,070 --> 00:34:26,810 |
|
ูุงุญุฏ ุจุฏููุง ูุณุงูู ุงู A then the Eigen vectors |
|
|
|
330 |
|
00:34:34,960 --> 00:34:48,020 |
|
Lambda ุชุณุงูู ุฒูุฑู ุฑ in the formุจุงูุดูู ุงูุชุงูู ุงูุณ |
|
|
|
331 |
|
00:34:48,020 --> 00:34:55,140 |
|
ูุงุญุฏ ุจ a ู ุงููู ุจุนุฏู ุจ zero zero ูุจูู a ูู ูุงุญุฏ |
|
|
|
332 |
|
00:34:55,140 --> 00:35:02,960 |
|
zero zero ุจุงูุดูู ุงููู ุนูุฏูุง ูุจูู ุฌุจุช ูุฐุง ุงู eigen |
|
|
|
333 |
|
00:35:02,960 --> 00:35:07,880 |
|
vector ุงููู ุนูุฏูุง ุงูู ููุง zero zero |
|
|
|
334 |
|
00:35:22,560 --> 00:35:28,320 |
|
ุทูุจ ุจุฏูุง ูุฑูุญ ูุฌู ูุงุฎุฏ ุงููู ูู ุงูุญุงูุฉ ุงูุชุงููุฉ ูู |
|
|
|
335 |
|
00:35:28,320 --> 00:35:33,260 |
|
ูุงู Atlanta ุชุณุงูู ุงุชููู ุงู ุชุณุงูู ุงูููู
ุฉ ุงูุซุงููุฉ |
|
|
|
336 |
|
00:35:43,490 --> 00:35:55,310 |
|
ุจุงุฏู ุจููู ููุง F ูุงูุฏุง ุชุณุงูู ูุงูุฏุง ุงุชููู ุงู ุชุณุงูู |
|
|
|
337 |
|
00:35:55,310 --> 00:36:00,090 |
|
ูุงูุฏุง ุชูุงุชุฉ ุชุณุงูู ูุงุญุฏ then ูุฐู ุงูู
ุตู
ูู
ุฉ ุงููู |
|
|
|
338 |
|
00:36:00,090 --> 00:36:03,430 |
|
ุนูุฏูุง ุจุฏู ุงุดูู ูุงูุฏุง ู ุงุญุทู ู
ูุงููุง ูุงุญุฏ ูุง ุจูุงุช |
|
|
|
339 |
|
00:36:03,430 --> 00:36:12,270 |
|
ูุจูุงุด ุจุตูุฑ ุงู ูุงุญุฏ Zero ุณุงูุจ ูุงุญุฏ Zero Zeroููุง |
|
|
|
340 |
|
00:36:12,270 --> 00:36:20,610 |
|
ูุงูุต ุงุชููู ูููุง ุฒูุฑู ุฒูุฑู ูููุง ูู
ุงู ุฒูุฑู ุจุงูุดูู |
|
|
|
341 |
|
00:36:20,610 --> 00:36:25,650 |
|
ุงููู ุนูุฏูุง ูุฐุง ูุจูู ุงูุณ ูุงุญุฏ ุงูุณ ุงุชููู ุงูุณ ุชูุงุชุฉ |
|
|
|
342 |
|
00:36:25,650 --> 00:36:33,930 |
|
ูุณูู ุฒูุฑู ูุฒูุฑู ูุฒูุฑู ูุจูู ุงูู
ุนุงุฏูุงุช ุงูุณ ูุงุญุฏ ูุงูุต |
|
|
|
343 |
|
00:36:33,930 --> 00:36:41,750 |
|
ุงูุณ ุชูุงุชุฉ ุจุฏู ูุณูู ุฒูุฑูู ูุงูุต ุงุชููู X |
|
|
|
344 |
|
00:36:41,750 --> 00:36:50,760 |
|
ุชูุงุชุฉ ุจุฏู ูุณุงูู Zeroูุจูู ุจูุงุก ุนููู ูุฐุง ู
ุนูุงู ุงูู |
|
|
|
345 |
|
00:36:50,760 --> 00:36:57,780 |
|
ู
ุนูุงู ุงู x3 ุจุฏู ูุณูู zero ูู
ุง x3 ุจุฏู ูุณูู zero |
|
|
|
346 |
|
00:36:57,780 --> 00:37:07,220 |
|
ููุจุฑ x1 ุจุฏู ูุณูู zero ู
ุนูุงุชู ุงู x2 ุจุฏู ูุณูู b ู
ุซูุง |
|
|
|
347 |
|
00:37:07,220 --> 00:37:13,100 |
|
ูุจูู ุงุตุจุญ ุงูุฌู |
|
|
|
348 |
|
00:37:13,100 --> 00:37:15,060 |
|
vectors |
|
|
|
349 |
|
00:37:20,700 --> 00:37:31,840 |
|
corresponding the eigen vector eigen value ุงููููุฏุฉ |
|
|
|
350 |
|
00:37:31,840 --> 00:37:42,920 |
|
ุชุณุงูู ูุงุญุฏ are in the formุจุงูุดูู ุงูุชุงูู ุงููู ูู ู
ู |
|
|
|
351 |
|
00:37:42,920 --> 00:37:54,240 |
|
X1 X2 X3 ุจุฏู ูุณุงูู X1 ุจู 0 ู X3 ุจู 0 ู ูุฐู ุจู ุจู |
|
|
|
352 |
|
00:37:54,240 --> 00:38:01,860 |
|
ุงููู ูู ุจุฏูุง ุชุณุงูู ุจู ูู Zero ูุงุญุฏ Zero ูุฏู ุนุฏุฏ |
|
|
|
353 |
|
00:38:01,860 --> 00:38:03,820 |
|
ู
ุฑุงุช ุชูุฑุงุฑ ุงููุบุฉ ุฏูุ |
|
|
|
354 |
|
00:38:21,090 --> 00:38:27,910 |
|
ุฅู ุญุฏุซ ุฐูู ุจูููู ุฏูุงุฌููุงูุงูุฒูุงุจู ู
ุง ุญุฏุซ ูุจูู ุงูู |
|
|
|
355 |
|
00:38:27,910 --> 00:38:33,910 |
|
not diagonalizable ูุจูู since |
|
|
|
356 |
|
00:38:35,540 --> 00:38:42,840 |
|
ูุงูุฏุง ุชุณุงูู ูุงุญุฏ has multiplicity |
|
|
|
357 |
|
00:38:42,840 --> 00:38:59,640 |
|
two and we have one ุงููู ูู one eigen vector only |
|
|
|
358 |
|
00:38:59,640 --> 00:39:11,770 |
|
for ูุงูุฏุง ุชุณุงูู ูุงุญุฏThe matrix A is not |
|
|
|
359 |
|
00:39:11,770 --> 00:39:15,350 |
|
diagonalizable |
|
|
|
360 |
|
00:39:25,990 --> 00:39:30,550 |
|
ุทุจ ูุนุทูููุง ุงูุนูู ู ููู
ู ุงูู
ุฑุฉ ุงููุงุฏู
ุฉ ูุณู ูุง ูุฒุงู |
|
|
|
361 |
|
00:39:30,550 --> 00:39:34,370 |
|
ุนูุฏูุง ู
ุฒูุฏ ู
ู ุงูุฃู
ุซูุฉ |
|
|
|
|