abdullah's picture
Add files using upload-large-folder tool
db9b795 verified
raw
history blame
52.2 kB
1
00:00:19,760 --> 00:00:25,200
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ู†ู†ุชู‚ู„ ุงู„ุงู† ุฅู„ู‰ ุดุจุชุฑ ุชุณุนุฉ
2
00:00:25,200 --> 00:00:31,020
ุดุจุชุฑ ุชุณุนุฉ ุจุชุญุฏุซ ุนู† ู„ุจู„ุงุณูŠ transforms ุชุญูˆูŠู„ุงุช
3
00:00:31,020 --> 00:00:36,440
ู„ุจู„ุงุณูŠู„ูŠุด ุงู„ุชุญูˆูŠู„ุงุช ู‡ุฐู‡ุŸ ู‡ุฐู‡ ุฃุญูŠุงู†ุงู‹ ุจูŠูƒูˆู† ุงู„ุฏุงู„ุฉ
4
00:00:36,440 --> 00:00:41,860
ุตุนุจุฉ ุงู„ุชุนุงู…ู„ ู…ุนุงู‡ุง ูุจู†ุญูˆู„ู‡ุง ุฅู„ู‰ ุตูˆุฑุฉ ู…ูƒุงูุฆุฉ ู„ู‡ุง
5
00:00:41,860 --> 00:00:46,520
ุณู‡ู„ ุงู„ุชุนุงู…ู„ ู…ุนุงู‡ุง ู‡ุฐู‡ ุงู„ุชุญูˆูŠู„ุฉ ุจู†ุณู…ูŠู‡ุง ุชุญูˆูŠู„ุฉ
6
00:00:46,520 --> 00:00:51,580
Laplace ู„ุฅู† ู‡ูˆ ุงู„ู„ูŠ ุงูƒุชุดู ุงู„ุดุบู„ ู‡ุฐู‡ุจู†ุฃุฎุฏ ุฃูˆู„
7
00:00:51,580 --> 00:00:55,340
section ููŠ ู‡ุฐุง ุงู„ุดุจุชุฑ ุงู„ู„ูŠ ู‡ูˆ the place transform
8
00:00:55,340 --> 00:01:00,700
ู‡ู†ุนุทูŠ ุชุนุฑูŠู ูˆู…ู† ุซู… ู†ุงุฎุฏ ุฃู…ุซู„ุฉ ู…ุฎุชู„ูุฉ ุนู„ู‰ ูƒูŠููŠุฉ
9
00:01:00,700 --> 00:01:07,060
ุญุณุงุจ the place transform ู„ู„ุฏูˆุงู„ ุงู„ู…ุฎุชู„ูุฉ ุจูŠู‚ูˆู„
10
00:01:07,060 --> 00:01:11,000
ุงูุชุฑุถ ุงู† ุงู„ f of t ุจูŠู‡ function ู…ุนุฑูุฉ ุนู„ู‰ ุงู„ูุชุฑุฉ
11
00:01:11,000 --> 00:01:15,830
ู…ู† zero ู„ infinityLaplace transform the function f
12
00:01:15,830 --> 00:01:20,670
of t denoted by ูŠุจู‚ู‰ Laplace transform ู„ุฏุงู„ุฉ f of
13
00:01:20,670 --> 00:01:26,870
t ูŠุง ุจุนุทูŠู„ู‡ ุฑู…ุฒ L of f of t ูŠุนู†ูŠ Laplace ู„ F of T
14
00:01:26,870 --> 00:01:32,330
ุงู„ L ู‡ุฐู‡ ุงู„ุญุฑู ุงู„ุฃูˆู„ ู…ุง ูƒู„ู…ุช Laplace or capital F
15
00:01:32,330 --> 00:01:36,650
of S ูŠุนู†ูŠ ุจุงุนุชุจุฑู‡ function ููŠ ู…ู†ุŸ function ููŠ S
16
00:01:36,650 --> 00:01:41,010
ู„ูŠุด function ููŠ SุŸ ู‡ุฐุง ู…ุซู„ุง ู†ุฌูŠุจ ุนู„ูŠู‡ ุจุนุฏ ู‚ู„ูŠู„
17
00:01:41,580 --> 00:01:45,760
ุจูŠู‚ูˆู„ ู„ู„ุงุจู„ุงูŠุณุชุฑุงู†ุณูˆู† ุงู„ F of T ุงูˆ ุงู„ F of S is
18
00:01:45,760 --> 00:01:52,680
defined by ูƒุงุจุชุงู„ F of S ูŠุณูˆู‰ ุชูƒุงู…ู„ ู…ู† 0 ู„ุฅู†ููŠู†ูŠุชูŠ
19
00:01:52,680 --> 00:01:58,620
ู„ู„ E ู†ู‚ุต ST ู„ู„ F of T ุฏูŠ T ุญูŠุซ S parameter ุงูˆ any
20
00:01:58,620 --> 00:02:03,100
real number ู‡ุฐุง ุงู„ุงู† ูˆุงุถุญ ุงู†ู‡ improper integral
21
00:02:03,100 --> 00:02:04,340
ุจุณุจุจ ูˆุฌูˆุฏ man
22
00:02:12,050 --> 00:02:16,210
ุนู† ุทุฑูŠู‚ ุงู„ู€ Limit ุจูŠุจุฏุฃ ุชุฐู‡ุจ ุฅู„ู‰ ุงู„ู€ Infinity ู„ู…ู†ุŸ
23
00:02:16,210 --> 00:02:17,850
ู„ุชูƒู…ู„ ู…ู† Zero ุฅู„ู‰ B
24
00:02:21,360 --> 00:02:26,240
ุจู†ุฎู„ู‘ูŠ P ุชุฑูˆุญ ู„ Infinity ูˆุจุงู„ุชุงู„ูŠ ุงูˆุฌุฏู†ุง ู„ู€ Placid
25
00:02:26,240 --> 00:02:31,460
transform ู†ุชูŠุฌุชูŠ ุงู„ุชูƒุงู…ู„ ู„ุงุฒู… ุชุทู„ุน function ููŠ S
26
00:02:31,460 --> 00:02:37,320
ูˆู…ู† ู‡ู†ุง ู‚ูˆู„ู†ุง F of S ุถุฑูˆุฑูŠ ุฌุฏุง ู„ุงุฒู… ุชุทู„ุน function
27
00:02:37,320 --> 00:02:41,650
ููŠ S ุฒูŠ ู…ุง ู‡ู†ุดูˆู ุงู„ุขู†ุฃูˆู„ ู…ุซุงู„ ู‚ุงู„ ู„ูŠ ุฎุฏ ู„ู„ F of T
28
00:02:41,650 --> 00:02:45,450
ูˆ ุณูˆู‰ E ุฃุณ AT ูˆ T greater than or equal to zero
29
00:02:45,450 --> 00:02:49,770
ู‚ุงู„ ู„ูŠ ู‡ุงุชูŠ ู„ุฃ plus ู„ู„ E ุฃุณ AT ุทุจุนุง ุงู„ area number
30
00:02:49,770 --> 00:02:54,470
ูˆ ู‡ุงุชูŠ ู„ุฃ plus ู„ู„ ูˆุงุญุฏ ูˆ ู„ุฃ plus ู„ E ุฃุณ ู†ุงู‚ุต AT ูˆ
31
00:02:54,470 --> 00:02:58,630
ู„ุฃ plus ู„ E ุฃุณ ู†ุงู‚ุต ุฎู…ุณุฉ T ูŠุนู†ูŠ ุชุทุจูŠู‚ ู…ุจุงุดุฑ ุฏูŠ
32
00:02:58,630 --> 00:03:05,000
ุชุทุจูŠู‚ ู…ุจุงุดุฑ ุนู„ู‰ Cุฅุฐุง ุจุฏู†ุง ู†ุญุณุจ ู„ุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู…
33
00:03:05,000 --> 00:03:11,760
ู„ุฏุงู„ุฉ ุงู„ุฃูˆู„ู‰ ูŠุจู‚ู‰ ู‡ุฐุง ู„ุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… ู„ู„ E ุฃูุณ AT
34
00:03:11,760 --> 00:03:16,520
ุจุฏูŠ ุฃุฑุฌุน ู„ู„ุชุนุฑูŠู ูŠุจู‚ู‰ ู‡ูˆ ุชูƒุงู…ู„ ู…ู† Zero ุฅู„ู‰
35
00:03:16,520 --> 00:03:23,180
Infinity ู„ู„ E ุฃูุณ ู†ุงู‚ุต ST ุงู„ F of T ุฃู†ุง ู…ุงุฎุฏู‡ุง E
36
00:03:23,180 --> 00:03:26,340
ุฃูุณ AT ูƒู„ู‡ ููŠ DT
37
00:03:34,330 --> 00:03:40,950
ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ limit ูˆ ู‡ูŠ ุชูƒุงู…ู„ ู…ู† zero
38
00:03:40,950 --> 00:03:49,630
ุฅู„ู‰ B ู„ู…ุง B tends to infinity ู„ู„ E ุฃุณ ู†ุงู‚ุต S ู†ุงู‚ุต
39
00:03:49,630 --> 00:03:57,170
A ูƒู„ู‡ ููŠ T dtูŠุจู‚ู‰ ูƒุชุงุจุช ู‡ุฐุง ุงู„ุชูƒุงู…ู„ ุนู„ู‰ ุดูƒู„ limit
40
00:03:57,170 --> 00:04:02,750
ูŠุนู†ูŠ ุจุฏูŠ ุฃูƒุงู…ู„ ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ ุซู… ุฃุฑูˆุญ ุฃุฎุฏู„ู‡ุง ุงู„ limit
41
00:04:02,750 --> 00:04:10,770
ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ูŠุจู‚ู‰ ุงู„ plus ู„ู„ E ุฃูุณ AT ุจุฏู‡
42
00:04:10,770 --> 00:04:15,490
ูŠุณุงูˆูŠ ู‡ูŠ ุงู„ limit ูˆู‡ุฐุง ุงู„ B ุจุฏู‡ุง ุชุฑูˆุญ ู„ู„ infinity
43
00:04:16,130 --> 00:04:20,470
ุฃุธู† ูŠุง ุจู†ุงุช ุชูƒุงู…ู„ ุงู„ exponential ุจู†ูุณ ุงู„
44
00:04:20,470 --> 00:04:26,830
exponential itself ู…ู‚ุณูˆู…ุง ุนู„ู‰ ุชูุงุถู„ S ุฅู† ูƒุงู†ุช ุงู„ู€S
45
00:04:26,830 --> 00:04:30,710
ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ูˆุฒูŠ ู…ุง ุงู†ุชูˆุง ุดุงูŠููŠู† ู‡ูˆ ู…ู† ุงู„ุฏุฑุฌุฉ
46
00:04:30,710 --> 00:04:37,230
ุงู„ุฃูˆู„ู‰ ููŠ T ูŠุจู‚ู‰ ู…ู‚ุณูˆู…ุง ุนู„ู‰ ู†ุงู‚ุต ุงู„ S ู†ุงู‚ุต ุงู„ A
47
00:04:37,230 --> 00:04:43,240
ูˆุงู„ุญูƒูŠ ู‡ุฐุง ูƒู„ู‡ ู…ู† Zero ู„ูˆูŠู†ุŸ ู…ู† Zero ู„ุบุงูŠุฉ Bุฅุฐุง
48
00:04:43,240 --> 00:04:48,160
ุจุฏู†ุง ู†ุนูˆุถ ุจุญุฏูˆุฏ ุงู„ุชูƒุงู…ู„ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ
49
00:04:48,160 --> 00:04:54,100
ุงู„ limit ู„ู…ุง B tends to infinity ู„ู„ E ุฃุณ ู†ุงู‚ุต S
50
00:04:54,100 --> 00:05:01,260
ู†ุงู‚ุต ุงู„ A ููŠ B ุนู„ู‰ ู…ูŠู† ุนู„ู‰ ู†ุงู‚ุต ุงู„ S ู†ุงู‚ุต ุงู„ A
51
00:05:01,260 --> 00:05:06,850
ู†ุงู‚ุต ู…ุน ู†ุงู‚ุต ุจุงู„ุตูŠุฑ ุฒุงุฆุฏุจุฏูŠ ุฃุดูŠู„ ุงู„ู€ T ูˆ ุฃุถุน
52
00:05:06,850 --> 00:05:10,950
ู…ูƒุงู†ู‡ุง Zero ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู€ Plus ูŠุตุจุญ E ูˆ ุงู„ Zero
53
00:05:10,950 --> 00:05:19,350
ูŠุจู‚ู‰ ุฏุงุดุฑ ุจูˆุงุญุฏ ูŠุจู‚ู‰ ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ S ู†ุงู‚ุต ุงู„ู€ A
54
00:05:19,350 --> 00:05:24,630
ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง ูŠุจู‚ู‰ ุฃุตุจุญ ู„ุจู„ุงุณ Transform
55
00:05:24,630 --> 00:05:32,370
ู„ุฏู„ุฉ E ุฃุณ A T ุจุฏูŠ ุฃุณุงูˆูŠ ุทุจุนุง ู‡ุฐุง ุงู„ู€ O ุงู„ุณุงู„ุจู…ู…ูƒู†
56
00:05:32,370 --> 00:05:37,110
ุงู†ุงุฒู„ู‡ ุชุญุช ุงูŠุด ุจูŠุตูŠุฑุŸ ุจูŠุตูŠุฑ ู…ูˆุฌุจ ูŠุจู‚ู‰ ุจูŠุตูŠุฑ limit
57
00:05:37,110 --> 00:05:45,870
ู„ู…ุง B tends to infinity ู„ูˆุงุญุฏ ุนู„ู‰ ู†ุงู‚ุต ุงู„ S ู†ุงู‚ุต
58
00:05:45,870 --> 00:05:55,990
ุงู„ A ููŠ E ุฃุณ S ู†ุงู‚ุต ุงู„ A ูƒู„ู‡ ููŠ B ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ S
59
00:05:55,990 --> 00:06:01,940
ู†ุงู‚ุต ุงู„ Aุงู„ุญูŠู† ู„ู…ุง ุจูŠุจุฏุฃ ุชุฑูˆุญ ู„ zero ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ
60
00:06:01,940 --> 00:06:09,220
ูƒู„ู‡ ุจู‚ุฏุงุดุŸ ู„ู…ุง ุชุฑูˆุญ ู„ ู…ุงู„ุฉ ู†ู‡ุงูŠุฉ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ูƒู„ู‡
61
00:06:09,220 --> 00:06:10,940
ู…ุงู„ุฉ ู†ู‡ุงูŠุฉ ููŠ ุฑู‚ู…
62
00:06:14,430 --> 00:06:19,930
ูŠุจู‚ู‰ ู‡ุฐุง ูƒู„ู‡ ุฑุงุญ ุจุฒูŠุฑูˆ ูŠุจู‚ู‰ ุถู„ุฉ ุงู„ู†ุชูŠุฌุฉ ูˆุงุญุฏ ุนู„ู‰ S
63
00:06:19,930 --> 00:06:25,550
ู†ู‚ุต ุงู„ A ุจุดุฑุท ุงู† ุงู„ S is greater than A ูŠุจู‚ู‰ ุจู†ุงุก
64
00:06:25,550 --> 00:06:29,510
ุนู„ูŠู‡ ู…ู† ุงู„ุขู† ูุง ุณุงุนุฏุง Laplace transform ู„ู„
65
00:06:29,510 --> 00:06:34,490
exponential function E ุฃุณ AT ู‡ูˆ ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ ุนู„ู‰
66
00:06:34,490 --> 00:06:39,880
S ู†ุงู‚ุต ุงู„ A ุงู†ุชู‡ูŠู†ุง ู…ู†ู‡ุงุทูŠุจ ุงู† ุงู„ู…ุทู„ูˆุจ ุงู„ุฃูˆู„
67
00:06:39,880 --> 00:06:45,820
ุจูŠุฏุงุฌูŠ ู„ู„ู…ุทู„ูˆุจ ุงู„ุซุงู†ูŠ ู†ู…ุฑุง ุจูŠ ู†ู…ุฑุง ุจูŠ ุงูŠูˆุฉ ุงุฎุฑ ุดุฑุท
68
00:06:45,820 --> 00:06:49,820
ู†ู‚ุตู†ุง ุงูƒุชุฑ ู…ู† ุงูŠู‡ุŸ ุจุฏูŠ ู…ุดุงู† ุงุถู…ู† ุงู†ู‡ ู…ุงุตู„ุชุด ุณุงู„ุจุฉ
69
00:06:49,820 --> 00:06:54,880
ุฏุงุฆู…ุง ุงู†ุง ุจุฏูŠ ู†ู‚ุต ุณุฌุฑูŠุชุฑ ุฏู‡ ู†ู‚ุตู‡ ุทูŠุจ ุงู„ุงู† ุจูŠุฏุงุฌูŠ
70
00:06:54,880 --> 00:07:00,180
ู„ู†ู…ุฑุง ุจูŠ ู†ู…ุฑุง ุจูŠ ุจุฏูŠ ู„ plus ู„ู„ one ู‡ู„ ุจู‚ุฏุฑ ุงุฌุฑุจ ุงู†
71
00:07:00,180 --> 00:07:07,320
ุงุชุฌูŠุจ ุงู„ูˆุงุญุฏ ุงู„ุตุญูŠุญ ู…ู† ุงู„ E ุฃุณ ET ู‡ุฐูŠ
72
00:07:07,320 --> 00:07:13,490
ู†ู‚ุฏุฑุŸู„ูˆ ุญุทูŠู†ุง ุงู„ a ุจู‚ุฏุฑุดุŸ Zero ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ู‡ู†ุง
73
00:07:13,490 --> 00:07:22,130
F ุงู„ a ุชุณุงูˆูŠ zero then Laplace transform ู„ู„ e ุงูˆ
74
00:07:22,130 --> 00:07:27,850
ุงู„ zero ู‡ูˆ Laplace transform ู„ู…ู†ุŸ ู„ู„ ูˆุงุญุฏ ูŠุนู†ูŠ ู‡ู†ุง
75
00:07:27,850 --> 00:07:33,830
ู‡ุดูŠู„ ุงู„ a ูˆ ุฃุญุท ู…ูƒุงู†ู‡ุง zero ูŠุจู‚ู‰ ูˆุงุญุฏ ุนู„ู‰ s ู†ุงู‚ุต
76
00:07:33,830 --> 00:07:40,620
ุงู„ zero ูŠุจู‚ู‰ ุจู‡ูˆู„ู‡ ุจู‚ุฏุฑุด1 ุนู„ู‰ S ุฅุฐุง ู…ู† ุงู„ุขู† ูุตุงุนุฏุง
77
00:07:40,620 --> 00:07:48,480
ู„ plus transform ู„ู„ูˆุงุญุฏ ุงู„ุตุญูŠุญ ู‡ูŠ 1 ุนู„ู‰ S ุทูŠุจ ู†ู…ุฑู‰
78
00:07:48,480 --> 00:07:57,560
C ุฌุงู„ ุจูŠุฏู‡ ู„ plus transform ู„ู„ E ุฃุณ ู†ุงู‚ุต AT ู‡ุฐู‡
79
00:07:57,560 --> 00:08:03,340
ู†ู…ุฑู‰ C ุดูˆ ุจุชูุฑุฌ ุนู† ุงู„ AุŸุจุณ ุงู„ู€ A ุจุงู„ุณุงู„ุจ. ุฅุฐุง ุจุฏูŠ
80
00:08:03,340 --> 00:08:06,620
ุฃุฎุฏ ุงู„ุฅุฌุงุจุฉ ุงู„ู„ูŠ ุญุตู„ุช ุนู„ูŠู‡ุง ููˆู‚ ูˆ ุฃุญุท ุงู„ู€ A
81
00:08:06,620 --> 00:08:12,860
ุจุงู„ุณุงู„ุจ. ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฏูŠ ุณูˆุงุก 1 ุนู„ู‰ S ู†ุงู‚ุต ุจุฏู„
82
00:08:12,860 --> 00:08:20,310
ุงู„ู€ A ุงุฌุงู†ุจ ู†ุงู‚ุต A ูŠุจู‚ู‰ 1 ุนู„ู‰ S ุฒุงุฆุฏ ุงู„ู€ A.ู†ู…ุฑ ุฏูŠ
83
00:08:20,310 --> 00:08:27,310
ุฌุงู„ูŠ ู‡ุชู„ูŠ plus transform ู„ E ุฃุณ ู†ุงู‚ุต ุฎู…ุณุฉ T ูŠุจู‚ู‰
84
00:08:27,310 --> 00:08:33,330
ูˆุงุญุฏ ุนู„ู‰ S ุฒุงุฆุฏ ุฎู…ุณุฉ ู„ุฃู† ู‡ุฐุง ู‡ูˆ ุญุงู„ุฉ ุฎุงุตุฉ ู„ู„ูŠ
85
00:08:33,330 --> 00:08:39,110
ุนู†ุฏู†ุง ู‡ุฐุง ุงูŠู‡ ุจู‡ูŠ ุญุณุจู†ุง plus transform ู„ุฏูˆุงู„ูŠู†
86
00:08:39,110 --> 00:08:41,670
ู…ุฎุชู„ูุฉ example two
87
00:08:51,800 --> 00:08:57,540
ุจู‚ูˆู„ find ู†ู…ุฑุง
88
00:08:57,540 --> 00:09:10,360
A ู„ุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… ู„ุตูŠู† AT ู†ู…ุฑุง B ู„ุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู…
89
00:09:10,360 --> 00:09:24,710
ู„ูƒูˆ ุตูŠู† ATู†ู…ุฑ ุงู„ c ู„ plus transform ู„ cos cos 5t
90
00:09:24,710 --> 00:09:35,410
ุฎู„ูŠ
91
00:09:35,410 --> 00:09:43,800
ุจุฑูƒุชูŠุจุฏู‘ู‰ ุงุฎุฏ ู†ู…ุฑุฉ ุงูŠู‡ ุจุฏูŠ ู„ุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… ู„ุตูŠู† ุงูŠ
92
00:09:43,800 --> 00:09:48,580
ุชูŠ ุจุฏูŠ ุงุฑุฌุน ู„ู„ุชุนุฑูŠู ุงู„ู„ู‰ ุนู†ุฏู†ุง ูŠุจู‚ู‰ ู‡ูˆ ุชูƒุงู…ู„ ู…ู†
93
00:09:48,580 --> 00:09:58,520
zero ู„ infinity ู„ู„ E ุฃุณ ู†ุงู‚ุต ST ู„ุตูŠู† ุงูŠ ุชูŠ ุฏูŠ ุชูŠ
94
00:09:58,520 --> 00:10:06,480
ุทุจุนุง ูŠุจู‚ู‰ ู‡ุฐุง ู‡ูˆ ุนุจุงุฑุฉ ุนู† ู…ูŠู† ุนุจุงุฑุฉ ุนู† limitู„ู…ุง B
95
00:10:06,480 --> 00:10:13,320
tends to infinity ู„ุชูƒู…ู„ ู…ู† zero ู„ B ู„ E ุฃุณ ู†ุงู‚ุต ST
96
00:10:13,320 --> 00:10:24,340
cosine AT sin AT DT sin AT DT
97
00:10:24,340 --> 00:10:28,380
ุทุจ
98
00:10:28,380 --> 00:10:34,340
ูƒูŠู ุจู†ูƒู…ู„ ู‡ุฐุง ูŠุง ู…ู†ุงุณูŠุŸ ุดูˆ ุงู„ุทุฑูŠู‚ุฉุŸ ุจู† calculate B
99
00:10:36,410 --> 00:10:39,210
ุจุฏูŠ ูˆุงุญุฏุฉ ุชุญูƒูŠ ุงู†ุง ู…ุงุชุฏูŠุด ุงู„ู‡ู…ุงู…ุงุช ุจุฏูŠ ูˆุงุญุฏุฉ ุชุฑูุน
100
00:10:39,210 --> 00:10:41,950
ุฃูŠุฏูŠู‡ุง ูˆ ุชุญูƒูŠ ุงู‡ integration by parts integration
101
00:10:41,950 --> 00:10:45,370
by parts ุชู…ุงู…ุŸ ูˆ ู‡ู†ุง ุฒูŠ ู…ุง ูŠู‚ูˆู„ูˆุง ุถุฑุจ ุงู„ุนู…ูŠุงู†
102
00:10:45,370 --> 00:10:49,110
ุงู„ุตูŠู ุงูŠุด ู…ุง ุชุงุฎุฏ ุตุญ ุงู† ุงุฎุฏุช ุงู„ U ุชุณุงูˆูŠ ุงู„
103
00:10:49,110 --> 00:10:53,150
exponential ูˆ ุงู„ DV ุชุณุงูˆูŠ ุงู„ cosine ู…ุงุดูŠ ุงู† ุงุนู…ู„ุช
104
00:10:53,150 --> 00:10:58,270
ุงู„ุนู…ู„ูŠุฉ ุงู„ุนูƒุณูŠุฉ ุงุฎุฏุช ุงู„ U ู‡ูŠ ุงู„ sine ูˆ ุงู„ DV ู‡ูŠ ุงู„
105
00:10:58,270 --> 00:11:02,600
exponential ู…ุงุนู†ุงุด ู…ุดูƒู„ุฉูŠุจู‚ู‰ ูƒู„ ู…ุง ุชุงุฎุฏ ุงู„ุงุชู†ูŠู†
106
00:11:02,600 --> 00:11:10,140
ุตุญูŠุญ ูŠุจู‚ู‰ ุงู†ุง ุจุฏูŠ ุงุฎุฏ ุงู„ U ุชุณุงูˆูŠ E ุฃุณ ู†ุงู‚ุต ST ูˆ
107
00:11:10,140 --> 00:11:19,820
ุจุฏูŠ ุงุฎุฏ ุงู„ DV Sin AT ุจุฏูŠ ุงู„ DU ูŠุจู‚ู‰ ู†ุงู‚ุต S E ุฃุณ
108
00:11:19,820 --> 00:11:32,010
ู†ุงู‚ุต ST DT ุจุฏูŠ ุงู„ V ู†ุงู‚ุต Cos AT ุนู„ู‰ AูŠุจู‚ู‰ ุงู„ู†ุชูŠุฌุฉ
109
00:11:32,010 --> 00:11:39,290
ู‡ุฐู‡ ุจุฏู‡ุง ุชุณุงูˆูŠ limit ู„ู…ุง B tends to infinity ู„ู…ู†ุŸ
110
00:11:39,290 --> 00:11:44,510
ู„ ุงู„ U ููŠ ุงู„ V ูŠุจู‚ู‰ ู‡ูŠ ุงู„ U ูˆ ุงู„ V ุงู„ู„ูŠ ู‡ูˆ ู†ุงู‚ุต
111
00:11:44,510 --> 00:11:56,510
ูˆุงุญุฏ ุนู„ู‰ A ููŠ A ุฃุณ ู†ุงู‚ุต ST ููŠ cosine AT ู‡ุฐุง ุงู„ U
112
00:11:56,510 --> 00:12:06,050
ููŠ ุงู„ V ู†ุงู‚ุต ุชูƒุงู…ู„ V ุฏู‡ UV ู†ุงู‚ุต cosine AT ุนู„ู‰ A
113
00:12:06,050 --> 00:12:16,750
ุฏุงู„ูŠู‡ ู†ุงู‚ุต S ูŠูˆุณ ู†ุงู‚ุต ST ูƒู„ู‡ ุจุงู„ู†ุณุจุฉ ุงู„ู‰ DTุทุจุนุง
114
00:12:16,750 --> 00:12:21,910
ูƒูˆู†ูŠ ูƒุงู…ู„ ุชุจู‚ู‰ ุญุฏูˆุฏ ุงู„ุชูƒุงู…ู„ ู‡ุฐู‡ ู‡ุชุจู‚ู‰ ู…ู† ูˆูŠู† ู„ูˆูŠู†ุŸ
115
00:12:21,910 --> 00:12:30,010
ู…ู† zero ู„ุบุงูŠุฉ B ูˆู‡ุฐุง ูƒู…ุงู† ุชูƒุงู…ู„ ู…ู† zero ู„ุบุงูŠุฉ B ูˆ
116
00:12:30,010 --> 00:12:34,570
limit ู„ู„ูƒู„ ู…ู† ู‡ู†ุง ู„ู…ุง ู†ูƒู…ู„ ู…ู† ู‡ู†ุง
117
00:12:42,160 --> 00:12:47,560
ุจุชุนูˆุถ ุจุงู„ู‚ูŠู…ุฉ ุงู„ู„ู‰ ููˆู‚ ู†ุงู‚ุต ุงู„ู‚ูŠู…ุฉ ุงู„ู„ู‰ ุงุชุงู‡ุง ูŠุจู‚ู‰
118
00:12:47,560 --> 00:12:59,450
ู‡ู†ุง ู†ุงู‚ุต cosine a b ุนู„ู‰ a ููŠ a ุฃุณ Sbู†ุฒู„ุช ุงู„
119
00:12:59,450 --> 00:13:03,910
exponential ุชุญุช ุจุฅุดุงุฑุฉ ู…ูˆุฌุจุฉ ู‡ุฐุง ุงู„ุชุนูŠูŠู„ ุงู„ุฃูˆู„
120
00:13:03,910 --> 00:13:11,630
ู†ุงู‚ุต ู…ุน ู†ุงู‚ุต ุจุตูŠุฑ ุฒุงุฆุฏ ูƒุณูŠู† ุตูุฑ ุจูˆุงุญุฏ ูˆ E of zero
121
00:13:11,630 --> 00:13:19,020
ุจูˆุงุญุฏ ุจุธู„ ุนู†ุฏู‰ ู‡ู†ุง ุจุณ ูƒุฏู‡ุด ูˆุงุญุฏ ุนู„ู‰ ุงูŠู‡ูˆ ุฃูŠ limit
122
00:13:19,020 --> 00:13:24,280
ู„ู„ูƒู„ ู†ุฌูŠ ู„ู„ูŠ ุจุนุฏ ู‡ุฐู‡ ุนู†ุฏูƒ ู‡ู†ุง ู†ุงู‚ุต ูˆ ู‡ู†ุง ู†ุงู‚ุต ูˆ
123
00:13:24,280 --> 00:13:31,160
ู‡ู†ุง ู†ุงู‚ุต ูŠุจู‚ู‰ ุชู„ุงุชุฉ ุจุงู„ู†ุงู‚ุต ุนู†ุฏูƒ S ูˆ ู‡ู†ุง A ู…ู‚ุงุฏูŠุฑ
124
00:13:31,160 --> 00:13:36,540
ุซุงุจุชุฉ ูŠุจู‚ู‰ ุจู‚ุฏุฑ ุงุฎุฏู‡ุง ุจุฑุง ุงู„ุชูƒุงู…ู„ ูˆ ุจุตูŠุฑ ุชูƒุงู…ู„ ู…ู†
125
00:13:36,540 --> 00:13:44,920
zero ุฅู„ู‰ B ู„ู„ E ุฃุณ ู†ุงู‚ุต ST ู„ cosine ATDT
126
00:13:47,530 --> 00:13:50,510
ุฎู„ู‘ูŠ ุจุงู„ูƒ ู‡ู†ุง ุทุจุนุง ู‡ุฐุง ุญุงู„ู†ุง ููŠูƒุงู„ ูƒู„ุงุตูŠ ุจุณ ุฃู†ุง
127
00:13:50,510 --> 00:13:55,190
ุจุฏูƒุฑ ุชุฐูƒูŠุฑ ูŠุจู‚ู‰ ุฃู†ุง ุฃุฎุฏุช ุงู„ U ู‡ู†ุง ุจุงู„ exponential
128
00:13:55,190 --> 00:14:02,450
ูˆ ุฃุฎุฏุช ุงู„ DV ุจsin 80 ุงุดุชู‚ุช ูˆ ู‡ู†ุง ูƒุงู…ู„ ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„
129
00:14:02,450 --> 00:14:10,330
U ููŠ ุงู„ Vู…ุงู‚ุต ุชูƒุงู…ู„ Vุฏุงู„ูŠูˆู† ุจุฏูŠ ุฃุนูŠุฏ ุงู„ุชุฑุชูŠุจ ูˆ
130
00:14:10,330 --> 00:14:13,530
ุฃุนูˆุถ ุจุงู„ู‚ูŠู…ุฉ ุงู„ู„ูŠ ููˆู‚ ู†ุงู‚ุต ุงู„ู‚ูŠู…ุฉ ุงู„ู„ูŠ ููˆู‚ ู‡ุฐู‡
131
00:14:13,530 --> 00:14:18,410
ุงู„ุณู„ุฉ ุงู„ู„ูŠ ุจุฏูŠ ุฃู†ุฒู„ู‡ุง ุชุญุช ุจุตูŠุฑ ู…ุฌุจุฑุฉ ุจูŠุจู‚ู‰ Cos AB
132
00:14:18,410 --> 00:14:24,540
ุนู„ู‰ A ููŠ Sู‡ู†ุง ู†ุงู‚ุต ู…ุน ู†ุงู‚ุต ุฒุงุฆุฏ ุจุฏูŠ ุฃุดูŠู„ ุงู„ T ูˆ
133
00:14:24,540 --> 00:14:27,900
ุฃุถุน ู…ูƒุงู†ู‡ุง Zero ูˆ ุงู„ cosine ุตูุฑ ุจูˆุงุญุฏ E ูˆ ุงู„ Zero
134
00:14:27,900 --> 00:14:33,380
ุจูˆุงุญุฏ ุจูŠุถู„ ุจุณ ูƒุฏู‡ุด ูˆุงุญุฏ ุนู„ู‰ A ู‡ู†ุง ุนู†ุฏู†ุง S ุนู„ู‰ A
135
00:14:33,380 --> 00:14:38,780
ุจุฑุง ุนู†ุฏูƒ ู†ุงู‚ุต ู†ุงู‚ุต ู†ุงู‚ุต ูŠุจู‚ู‰ ุชู„ุงุชุฉ ุจุงู„ู†ุงู‚ุต ุจูŠุตูŠุฑ
136
00:14:38,780 --> 00:14:43,500
ุนู†ุฏู†ุง ู†ุงู‚ุต S ุนู„ู‰ A ุชูƒู…ู„ ู…ู† Zero ู„ B ู„ู„ E ูˆ ู†ุงู‚ุต ุงู„
137
00:14:43,500 --> 00:14:48,840
T cosine ATDTุชุนุงู„ู‰ ู†ุญุณุจ ุงู„ุญุณุจุฉ ุงู„ู„ู‰ ุนู†ุฏู†ุง ู‡ุฐู‡ ู‡ุฐุง
138
00:14:48,840 --> 00:14:53,740
ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ ู„ูˆ ุฃุฎุฏุช limit ู„ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ูŠุงุจุงู†ุงุช
139
00:14:53,740 --> 00:15:00,060
ูƒุฏู‡ุด ุจุทู„ุน ูŠู„ุง ุงูŠู‡ ุงุดูˆู ุนู„ู‰ ุงู„ุณุฑูŠุน ูƒุฏู‡ุด ูˆุงุญุฏ ุนู„ู‰
140
00:15:00,060 --> 00:15:07,480
ุงูŠู‡ ู‡ุฐุง term ุงู„ุงูˆู„ term ุงู„ุงูˆู„ ูƒุตูŠู†ู…ู‡ ู…ุญุตุฑ ู…ู† ูˆุงุญุฏ
141
00:15:07,480 --> 00:15:12,510
ูˆ ุณุงู„ุจ ูˆุงุญุฏ ูˆ ู‡ุฐุง ุจูŠู† ุจูŠุฑูˆุญู…ุง ู„ุง ู„ุง ูŠุจู‚ู‰ ุนู„ู‰ ุฌุฏ
142
00:15:12,510 --> 00:15:16,030
ูŠุงุดู ุฒูŠุฑูˆ ุนู„ู‰ ุทูˆู„ ุงู„ุฎุท ุงูˆ ุจุชู‚ูˆู„ูˆุง ู„ูŠู‡ cos a b
143
00:15:16,030 --> 00:15:19,590
ู…ุญุตูˆุฑ ู…ู† ูˆุงุญุฏ ูˆ ุณุงู„ุจ ูˆุงุญุฏ ูˆ ุจุฏูŠ ุงุถุฑุจ ุงู„ุทุฑููŠู† ููŠ
144
00:15:19,590 --> 00:15:24,410
ูˆุงุญุฏ ุนู„ู‰ a ููŠ e ุฃุณ s a b ูˆ ุงุฎุฏ ุงู„ู„ูŠ ู…ุง ุจุตูŠุฑ ู‡ู†ุง
145
00:15:24,410 --> 00:15:27,110
ุฒูŠุฑูˆ ู‡ู†ุง ุฒูŠุฑูˆ ูˆ ุจูŠุฌูŠุจ ุณุงู†ุฏูˆุดุชูŠู† ูˆ ุงู„ู„ูŠ ููŠ ุงู„ู†ุต
146
00:15:27,110 --> 00:15:32,130
ุจูŠุฒูŠุฑูˆุฅุฐุง ู‡ุฐุง ุงู„ limit ุงู„ู„ูŠ ู‡ูˆ ูƒู„ู‡ ุจู€0 ูˆุงุญุฏ ุนู„ู‰
147
00:15:32,130 --> 00:15:36,250
ุฅูŠู‡ ู…ู‚ุฏุงุฑ ุซุงุจุชุŒ ู…ุงู„ูˆุด ุฏุนูˆุฉ ุจุงู„ limit ุชู…ุงู…ุŒ ูˆุงู†ู‡ูŠุช
148
00:15:36,250 --> 00:15:40,230
ุงู„ู…ู‚ุฏุงุฑ ุงู„ุซุงุจุช ุจุงู„ู…ู‚ุฏุงุฑ ุงู„ุซุงุจุช itself ูŠุจู‚ู‰ ูˆุงุญุฏ
149
00:15:40,230 --> 00:15:46,450
ุนู„ู‰ ุฅูŠู‡ ู†ุงู‚ุต S ุนู„ู‰ ุฅูŠู‡ ููŠ limit ู„ู…ุง B tends to
150
00:15:46,450 --> 00:15:52,970
infinity ู„ุชูƒุงู…ู„ ู…ู† zero ุฅู„ู‰ B ู„ู„ E ุฃุณ ู†ุงู‚ุต ST
151
00:15:52,970 --> 00:15:56,190
cosine ATDT
152
00:16:12,880 --> 00:16:18,440
ุงู„ุงู† ุจุฑุถู‡ ุจู†ุนู…ู„ ู‡ุฐู‡ integration by parts ุชู…ุงู…ุŸ
153
00:16:18,440 --> 00:16:21,940
ุจุฑุถู‡ ู†ูุณ ุงู„ุชุนูˆูŠุถ ุงู„ู„ูŠ ุฃุฎุฏุช U ู‡ู†ุง ุจุฏูŠ ุฃุฎุฏู‡ุง U ู‡ู†ุง
154
00:16:21,940 --> 00:16:25,760
ุจุงู„ุถุจุท ู„ุฅู† ู„ูˆ ุนู…ู„ุช ุงู„ุนู…ู„ูŠุฉ ุงู„ุนูƒุณูŠุฉ ู…ุงุนุฑูุด ุงู„ู„ูŠ
155
00:16:25,760 --> 00:16:29,100
ุงุดุชุบู„ุช ูˆ ุฎุฑุจุช ูˆ ุฑุฌุนุช ูˆ ู…ุงุณูˆูŠุด ุดูŠุก ุดูŠุกูŠุจู‚ู‰ ุจุถุงู„ุฉ
156
00:16:29,100 --> 00:16:35,180
ุงู„ู…ุงุดูŠ ุจู†ูุณ ุงู„ุงุชุฌุงู‡ ุฅุฐุง ุจุฏูŠ ุฃุฎุฏ ุงู„ U ุชุณุงูˆูŠ E ุฃุณ
157
00:16:35,180 --> 00:16:47,130
ู†ุงู‚ุต ST ูˆ DV ู„ูŠู‡ cosine ATDTูŠุจู‚ู‰ ุงู„ู€ DU ูŠูƒูˆู† ู†ุงู‚ุต
158
00:16:47,130 --> 00:16:56,610
SE ุฃูุณ ู†ุงู‚ุต ST ููŠ DT ูˆุงู„ู€ V ุจู€Sin AT ุนู„ู‰ A ูŠุจู‚ู‰
159
00:16:56,610 --> 00:17:01,630
ุฃุตุจุญ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ู…ู† ู„ุจู„ุงุณุฑ ุชุฑุงู†ุณููˆุฑู… ุงู„ู„ูŠ ู‡ูŠ
160
00:17:01,630 --> 00:17:07,330
ุงู„ู€Sin AT ุจุฏูŠ ุณูˆูŠุฉ ูˆุงุญุฏ ุนู„ู‰ A ุงู„ุซุงุจุช ุงู„ู„ูŠ ุนู†ุฏู†ุง
161
00:17:07,330 --> 00:17:16,080
ู†ุงู‚ุตS ุนู„ู‰ A ููŠ ุงู„ู€ limit ู„ู…ุง B tends to infinity ูˆ
162
00:17:16,080 --> 00:17:21,480
ู‡ุฐุง ุงู„ู€ goose ุงู„ู„ูŠ ุนู†ุฏู†ุง ุจู†ุฑูˆุญ ู†ูƒุชุจ U ููŠ V ู‡ุฐุง ุงู„ู€
163
00:17:21,480 --> 00:17:29,680
U ูˆ ู‡ุฐุง ุงู„ู€ V ูŠุจู‚ู‰ E ุฃุณ ู†ุงู‚ุต ST ููŠ Sin AT ูƒู„ู‡ ุนู„ู‰
164
00:17:29,680 --> 00:17:40,940
ุฌุฏุงุด ุนู„ู‰ A ู†ุงู‚ุต ุชูƒุงู…ู„V ุงู„ุชูŠ ู‡ูŠ ุงู„ู€Sin AT ุนู„ู‰ A W
165
00:17:40,940 --> 00:17:50,160
ุงู„ุชูŠ ู‡ูŠ ู†ุงู‚ุต SEOS ู†ุงู‚ุต ST ูƒู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุงู„ู†ุณุจุฉ
166
00:17:50,160 --> 00:17:57,360
ุฅู„ู‰ ู…ูŠู† ุฅู„ู‰ DT ูˆู‡ูŠุฌูู„ู†ุง ุงู„ุฌูˆุฒ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุงู‡ุฐุง
167
00:17:57,360 --> 00:18:02,800
ุงู„ูƒู„ุงู… ูŠุจุฏูˆ ูŠุณุงูˆูŠ 1 ุนู„ู‰ a ู†ุฒู„ู†ุงู‡ุง ุฒูŠ ู…ุง ู‡ูŠ ู†ุงู‚ุต s
168
00:18:02,800 --> 00:18:07,600
ุนู„ู‰ a ุฒูŠ ู…ุง ู‡ูŠ ูˆ ุฌูŠู†ุง ุจุฏู†ุง ู†ุงุฎุฏ a ุจุณ ู‡ุฐู‡ ูŠุง ุจู†ุงุช
169
00:18:07,600 --> 00:18:13,460
ุจู†ุนูˆุฏ ุจุญุฏูˆุฏ ุงู„ุชูƒุงู…ู„ ู…ู† zero ุฅู„ู‰ b ูˆู‡ุฐู‡ ู…ู† zero ุฅู„ู‰
170
00:18:13,460 --> 00:18:20,680
b ูƒุฐู„ูƒ ูŠุจู‚ู‰ ู‡ุฐู‡ ุจุฏู‡ุง ุงู„ุตูŠุฑุฉ ุงู„ู„ูŠ ู…ุงุชู„ู…ุง ุงู„ู€ B ุจุฏู‡ุง
171
00:18:20,680 --> 00:18:24,920
ุชุฑูˆุญ ุฅู„ู‰ infinity ู„ู„ุฌูˆุฒุŒ ุจุชุนูˆุถ ุจุงู„ู‚ูŠู…ุฉ ุงู„ู„ู‰ ููˆู‚
172
00:18:24,920 --> 00:18:35,350
ู†ุงู‚ุต ุงู„ู„ู‰ ุชุญุชู‰ ุจุฌุง ุตูŠู† A B ุนู„ู‰ A ููŠ E ุฃุณ S Bู†ู‚ุต
173
00:18:35,350 --> 00:18:43,130
ู†ู‚ุต
174
00:18:43,130 --> 00:18:46,250
ู†ู‚ุต
175
00:18:46,250 --> 00:18:53,490
ู†ู‚ุต ู†ู‚ุต
176
00:18:53,490 --> 00:18:57,730
ู†ู‚ุต
177
00:18:57,730 --> 00:19:03,650
ู†ู‚ุต ู†ู‚ุต ู†ู‚ุต
178
00:19:05,270 --> 00:19:11,130
ุทูŠุจ ู‡ุฐุง ุงู„ู„ูŠ ู…ุง ุชู‚ุฒุด ุจุชุนุทูŠู†ูŠ ุงุจู†ุงุช ูƒู…ุงู†0 ูŠุจู‚ู‰ ุตุงุฑุฉ
179
00:19:11,130 --> 00:19:18,530
ุฅู† ุงู„ู†ุชูŠุฌุฉ 1 ุนู„ู‰ a ู†ุงู‚ุต s ุนู„ู‰ a ุจ a ููŠ s ุนู„ู‰ a s
180
00:19:18,530 --> 00:19:25,790
ุชุฑุจูŠุน ุนู„ู‰ a ุชุฑุจูŠุน ุชู…ุงู…ุŸ ููŠ limit ู„ู…ู†ุŸ ู„ู…ุง ุงู„ b
181
00:19:25,790 --> 00:19:32,550
tends to infinity ู„ุชูƒุงู…ู„ ู…ู† 0 ุฅู„ู‰ b ู„ู„ e ุฃุณ ู†ุงู‚ุต
182
00:19:32,550 --> 00:19:42,530
st ููŠ sin a t ููŠ dtุฃูˆ ุงู† ุดุฆุชู†ุง ูู‚ูˆู„ู†ุง ูˆุงุญุฏ ุนู„ู‰ ุฅูŠู‡
183
00:19:42,530 --> 00:19:48,150
ู†ุงู‚ุต S ุชุฑุจูŠุน ุนู„ู‰ ุฅูŠู‡ ุชุฑุจูŠุน ู…ุด ู‡ุฐู‡ ู‡ูŠ ุงู„ุชุนุฑูŠู
184
00:19:48,150 --> 00:19:53,470
ุงู„ุฃุณุงุณูŠ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏู†ุง ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐุง ูŠุนู†ูŠ ู‡ุฐู‡ ุจู‚ุฏุฑ
185
00:19:53,470 --> 00:20:00,090
ุฃู‚ูˆู„ ู‡ูŠ ุชูƒุงู…ู„ ู…ู† zero ุฅู„ู‰ infinity ู„ู„ E ุฃุณ ู†ุงู‚ุต ST
186
00:20:00,090 --> 00:20:03,810
ู„ sign ATDT
187
00:20:06,160 --> 00:20:11,660
ู…ุตุจูˆุทุŸ ู‡ุฐู‡ ู„ูŠู„ุง plus ู„ู‡ุฐู‡ ุฅุฐุง ุจุฏู‡ ุฃุฑุฌุนู‡ุง ูŠุนู†ูŠ ุตุงุฑ
188
00:20:11,660 --> 00:20:18,140
ู‡ุฐุง ุนู†ุฏู†ุง ูƒุงู„ุชุงู„ูŠ ุตุงุฑ ุนู†ุฏู†ุง ุจุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ู‡ุฐู‡ ู‡ูˆ
189
00:20:19,660 --> 00:20:25,980
ุงู„ู„ูŠ ู‡ูŠ S ุชุฑุจูŠุน ุนู„ู‰ A ุชุฑุจูŠุน ูˆู‡ูŠ ุงู„ู†ุงู‚ุต ูˆู‡ูŠ ูˆุงุญุฏ
190
00:20:25,980 --> 00:20:31,260
ุนู„ู‰ A ุชุณุงูˆูŠ ุชุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูŠ ุชูƒุงู…ู„ ู…ู† Zero ุฅู„ู‰
191
00:20:31,260 --> 00:20:40,480
Infinity ู„ู„ E ุฃูุณ ู†ุงู‚ุต ST ู„ู€Sin ATDT ู‡ูŠ ุงู„ู„ูŠ ุจุฏุฃุช
192
00:20:40,480 --> 00:20:45,580
ููŠู‡ุง ู…ุด ู‡ูŠ ุงู„ุชุนุฑูŠู ู‡ุฐุง ู„ุฅู† ูƒุชุจุชู‡ ุฒูŠ ู…ุง ู‡ูˆ ุทุจ ุฅูŠุด
193
00:20:45,580 --> 00:20:51,300
ุฑุฃูŠูƒ ุงู„ term ู‡ุฐุง ู…ุด ู‡ูˆ ุงู„ term ู‡ุฐุงูŠุจู‚ู‰ ุฎู„ูŠู†ูŠ ุฃู†ู‚ู„ู‡
194
00:20:51,300 --> 00:20:57,920
ุนู†ุฏู‡ ุจูŠุฌูŠู†ูŠ ุจุดุฑุท ู…ูŠู†ุŸ ู…ูˆุฌุฉ ูŠุจู‚ู‰ ุจุตูŠุฑ ุนู†ุง ู‡ู†ุง ูˆุงุญุฏ
195
00:20:57,920 --> 00:21:07,080
ุฒุงุฆุฏ ุงู„ู„ูŠ ู‡ูˆ S ุชุฑุจูŠุน ุนู„ู‰ A ุชุฑุจูŠุน ูƒู„ู‡ ู‡ุฏููŠ ู„ุงุจู„ุงุณ
196
00:21:07,080 --> 00:21:15,320
ุชุฑุงู†ุณููˆุฑู… ู„ุตูŠู† AT ุจุฏู‡ ูŠุณูˆูŠ ู‚ุฏุงุด1 ุนู„ู‰ a ูŠุจู‚ู‰ ู‡ุฐุง
197
00:21:15,320 --> 00:21:23,240
ู…ุนู†ุงู‡ ุงู† a ุชุฑุจูŠุน ุฒุงุฆุฏ s ุชุฑุจูŠุน ุนู„ู‰ a ุชุฑุจูŠุน ูƒู„ ู‡ุฐุง
198
00:21:23,240 --> 00:21:30,000
ุงู„ูƒู„ุงู… ููŠ ู„ุงุจู„ุงุณูŠ ุชุฑุงู†ุณ ููˆุฑู… ู„ุตูŠู† at ุณูˆู‰ 1 ุนู„ู‰ a
199
00:21:30,510 --> 00:21:37,050
ูŠุจู‚ู‰ ุจู†ุงุก ุฃู† ุนู„ูŠ ุฃุตุจุญ ู„ุจู„ุงุณ ุงู„ transform ู„ sign AT
200
00:21:37,050 --> 00:21:44,690
ุฃุถุฑุจ A ุจุตูŠุฑ ุงู„ A ุนู„ู‰ S ุชุฑุจูŠุน ุฒุงุฆุฏ A ุชุฑุจูŠุน ู…ูŠู† ุงู„ู„ูŠ
201
00:21:44,690 --> 00:21:51,110
ุจุฏู‡ุง ุชุณุฃู„ุŸ ุงู‡ ุงูŠูˆุฉ ู„ู…ุงุฐุงุŸ
202
00:21:51,110 --> 00:21:55,170
ุทุจ ุงู†ุง ุจุฌุฒุฑ ูˆ ู„ุณู‡ ุจุชู†ุงู‚ุด ุงู†ุง ูˆูŠุงูƒ ูˆ ุงู†ุง ุจุงุดุฑุน
203
00:21:55,170 --> 00:22:01,800
ุงู„ุชูƒุงู…ู„ ู‡ุฐุงุชูƒุงู…ู„ ู‡ุฐุง ูƒุงู„ูƒู„ุตุจูŠุฉ ุจู†ุช ุงู„ุญู„ุงู„ ูˆ ุงุตูˆู„ูƒ
204
00:22:01,800 --> 00:22:05,940
ุชุจู‚ู‰ ุนุฑูุงุฉ ูˆ ุงุตูˆู„ ุญูุธูƒ ุงู„ู†ุชูŠุฌุฉ ูˆุงู…ุดูŠ ู„ูƒู† ุงู†ุง ุจุญุตู„ูƒ
205
00:22:05,940 --> 00:22:09,280
ุงุชูุตูŠู„ ูˆ ุจุฐูƒุฑ ุชุฐูƒูŠุฑ ู„ุงู† ุงู„ุนู‚ู„ ู…ุด ุฏุงูŠู…ุง ู…ูˆุฌูˆุฏ
206
00:22:09,280 --> 00:22:17,330
ุนุจุฏุงู„ู„ู‡ ุจูŠุฌูŠ ุจูŠุนุฏุฑุทูŠุจ ูŠุจู‚ู‰ ู…ุฑุฉ ุชุงู†ูŠุฉ ุจู‚ูˆู„ ุงุญู†ุง
207
00:22:17,330 --> 00:22:21,650
ุฎู„ุตู†ุง ุงู„ุญู„ ุดูˆ ุงู„ู„ูŠ ุนู…ู„ู†ุงู‡ ูˆ ุงูŠู† ุชูˆุตู„ู†ุง ุงุญู†ุง ุจุฏู†ุง
208
00:22:21,650 --> 00:22:26,450
ู„ุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… ู„ุตูŠู† ุงุชูŠ ุงู†ุง ู…ุงุนู†ุฏูŠุด ุงู„ุง ุงู„ุชุนุฑูŠู
209
00:22:26,450 --> 00:22:31,410
ูŠุจู‚ู‰ ุจุฏูŠ ุงุถุฑุจ ู‡ุฏู E ูˆุงู„ุณุงู„ู… ST ูˆูƒู…ู„ ู…ู† Zero ุงู„ู‰
210
00:22:31,410 --> 00:22:35,580
Infinity ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู‡ุงุงู„ุงู† ู‡ุฐุง ุงู„ู€ improper
211
00:22:35,580 --> 00:22:39,540
integral ูŠุจู‚ู‰ ุฎุงุชู„ ูˆ limit integration by parts
212
00:22:39,540 --> 00:22:44,480
ุจุฏูŠ ุงุนู…ู„ู‡ุง ู…ุฑุชูŠู† ุฅุฐุง ุนู…ู„ุชู‡ุง ู…ุฑุชูŠู† ุจุชุจู‚ู‰ ู…ุณุฃู„ุฉ T
213
00:22:44,480 --> 00:22:49,580
ุฎู„ุตุช ูˆู‡ุฐุง ูƒุงู† ู…ุนู†ุง ุณุคุงู„ ููŠ calculus B ุฅุฐุง ู…ุฐุงูƒุฑูŠู†
214
00:22:49,580 --> 00:22:53,380
ู…ูˆุฌูˆุฏ ูƒุงู† ู…ุนู†ุง ููŠ calculus B ููŠ ุงู„ integration by
215
00:22:53,380 --> 00:22:56,920
parts ุจุณ ุฏู‡ ู…ุฌู†ูˆู† integration by parts ู…ุน ุงู„
216
00:22:56,920 --> 00:23:02,640
improper integralูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุชูƒุงู…ู„ ุจุฏูŠ ุฃุฎุฏ ู‡ุฐู‡ U ูˆ
217
00:23:02,640 --> 00:23:08,940
ู‡ุฐู‡ DV ูˆุจุงู„ุชุงู„ูŠ ุณู„ู…ุช U ููŠ V ู†ุงู‚ุต ุชูƒุงู…ู„ V ุฏุงู„ูŠูˆ
218
00:23:08,940 --> 00:23:14,500
ุงู„ุงู† ุจุฏูŠ ุฃุนูŠุฏ ุงู„ุชุฑุชูŠุจ ู‡ุฐู‡ ุจุฏูŠ ุฃุนูˆุถ ุจุงู„ู‚ูŠู… ุงู„ู„ูŠ ููˆู‚
219
00:23:14,500 --> 00:23:18,480
ู†ุงู‚ุต ุงู„ู„ูŠ ุชุญุชูŠ ุจุฏูŠ ุฃุดูŠู„ ูƒู„ T ูˆ ุฃุญุท ู…ูƒุงู†ู‡ุง
220
00:23:25,040 --> 00:23:31,240
ู†ู‚ุต ู†ู‚ุต ู†ู‚ุต ูŠุจู‚ู‰ ุชู„ุงุชุฉ ุจุงู„ุณุงู„ุจ ุจุตูŠุฑ ุนู†ุฏู†ุง ุณุงู„ุจ S
221
00:23:31,240 --> 00:23:35,860
ุนู„ู‰ A ุซุงุจุช ุจุฏูŠ ุฃุฎุฏู‡ ุจุฑุง ุจุถุงู„ ุชูƒุงุจู„ ู…ู† Zero ุฅู„ู‰ B
222
00:23:35,860 --> 00:23:42,890
ู„ุฅูŠู‡ุŸ ูˆ ุงุฐุง ู†ุงู‚ุต ST Cos ATDTุจุนุฏ ุฐู„ูƒ ุจุฏูŠ ู†ุฒู„ ู‡ุฐู‡ ุฒูŠ
223
00:23:42,890 --> 00:23:47,610
ู…ุง ู‡ูŠ ู‡ุฐู‡ ุฒูŠ ู…ุง ู‡ูŠ ูˆู‡ูŠ ุงู„ limit ุงู„ exponential
224
00:23:47,610 --> 00:23:53,150
ุงู„ู„ูŠ ุนู†ุฏู†ุง ูŠุนู†ูŠ ุงู†ุชู‚ู„ู†ุง ู…ู† E ุฃุณ ุณุงู„ุจ ST ู„ sine AT
225
00:23:53,150 --> 00:23:59,550
ุฅู„ู‰ ุชูƒุงู…ู„ ู„ู„ E ุฃุณ ู†ู‚ู„ ST cosine AT ูŠุจู‚ู‰ ู„ูˆ ูƒู…ู„ุช
226
00:23:59,550 --> 00:24:04,250
ูƒู…ุงู† ู…ุฑุฉ ุจุฑุฌุน ู„ุฑุงุณูŠ ุงู„ู…ุณุฃู„ุฉ ุงู„ู„ูŠ ููˆู‚ ุฅุฐุง ุจุฏูŠ ุฃุฑูˆุญ
227
00:24:04,250 --> 00:24:08,330
ูƒุงู…ู„ ูƒู…ุงู† ู…ุฑุฉ ุจุฏูŠ ุฃุฎุฏ ู‡ุฐู‡ U ูˆู‡ุฐู‡ DV
228
00:24:15,840 --> 00:24:22,700
ู‡ุฐู‡ ุชูƒุงู…ู„ู‡ุง ุจู€sin at ุนู„ูŠู‡ุง ุจู†ู‚ุณู… ุนู„ู‰ ุชูุงุถู„ ุงู„ุฒุงูˆูŠุฉ
229
00:24:22,700 --> 00:24:28,810
ุฅู† ูƒุงู†ุช ุงู„ุฒุงูˆูŠุฉ ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ุทูŠุจ ุจุฏู†ุง ู†ุจุฏุฃ ู†ุนูˆุถ
230
00:24:28,810 --> 00:24:34,090
ูŠุจู‚ู‰ 1 ุนู„ู‰ a ู†ุงู‚ุต s ุนู„ู‰ a ููŠ limit ุงู„ู„ูŠ ู‡ูŠ ู…ูˆุฌูˆุฏุฉ
231
00:24:34,090 --> 00:24:39,670
ุนู†ุฏู†ุง ู‡ู†ุง ุจุงู„ุถุบุท ุชู…ุงู…ุง ุงู„ุงู† ุจุฏุงุฌูŠ ุงู‚ูˆู„ู‡ ุงู„ U ููŠ ุงู„
232
00:24:39,670 --> 00:24:46,290
V ุฃูŠู‡ุง ู…ู† a ู…ู† zero ู„ b ู†ุงู‚ุต ุชูƒู…ู„ ู…ู† zero ู„ b ู„ู„ V
233
00:24:46,290 --> 00:24:52,090
ุฏู‡ ุงู„ U ู‡ุฐุง ุงู„ V ูˆู‡ุฐู‡ ุฏู‡ ุงู„ U ูƒุชุจุชู‡ุง ุฒูŠ ู…ุงู†ูŠุทูŠุจ 1
234
00:24:52,090 --> 00:24:56,930
ุนู„ู‰ a ู†ุฒู„ุช ุณุงู„ุจ s a ุนู„ู‰ a ู†ุฒู„ุช ุงู„ limit ูƒู…ุง ู‡ูŠ ู‡ุฐู‡
235
00:24:56,930 --> 00:25:01,890
ู„ู…ุง ุชู†ุฒู„ ุจูŠ ุชุญุช ุจุตูŠุฑ sin a ุจูŠ ุนู„ู‰ a ููŠ ุงู„ s ุจูŠ
236
00:25:01,890 --> 00:25:05,730
ุทุจุนุง ู‡ุฐู‡ ุงู„ limit ุงู„ู„ูŠ ู‡ุจุฒูŠุฑ ูˆุงู†ู…ุง ุจูŠ ุชุฑูˆุญ ู„ู…ุง ู„ุง
237
00:25:05,730 --> 00:25:09,790
ู†ู‡ุงูŠุฉ ู„ูŠุด ุงู†ูˆ ุงู„ sin a ุจูŠ ู…ุญุตูˆุฑ ู…ู† ูˆุงุญุฏ ูˆุณุงู„ุจ ูˆุงุญุฏ
238
00:25:09,790 --> 00:25:13,910
ุถุฑุจู†ุง ููŠ ูˆุงุญุฏ ุนู„ู‰ ุงู„ exponential ูˆุฎู„ุช ุจูŠ ุชุฑูˆุญ ู„ู…ุง
239
00:25:13,910 --> 00:25:19,550
ู„ุง ู†ู‡ุงูŠุฉ ุจุตูŠุฑ ุนุฏุฏ ุนู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ู„ู‡ูˆุจุฒูŠุฑูˆ ูŠุจู‚ู‰
240
00:25:19,550 --> 00:25:25,410
ู‡ุฐู‡ zero ุฏุงุฆู…ุง ูˆ ุฃุจุฏุง ุงู„ุงู† ู†ุงู‚ุต ุจุฏูŠ ุฃุถุน ู‡ู†ุง zero
241
00:25:25,410 --> 00:25:31,210
ูˆู‡ู†ุง zero ู‡ุฐู‡ ูˆุงุญุฏ ูˆู‡ุฐู‡ ุฒูŠุฑูˆ ุนู„ู‰ ุฃูŠ ุนุฏุฏ ุจู‚ุฏุฑ ุจุฒูŠุฑูˆ
242
00:25:31,210 --> 00:25:37,330
ูˆุตู„ู†ุง ู„ู‡ุฐู‡ ุงู„ S ุนู„ู‰ A ุจุฑุฉ ูˆู†ุงู‚ุต ู…ุน ู†ุงู‚ุต ุจุตูŠุฑ ุฒุงุฏ
243
00:25:37,330 --> 00:25:45,330
ูˆE ุฃู‚ุต ู†ุงู‚ุต ST sin ATDT ู‡ูŠ ูƒู…ุง ู‡ูŠุฅุฐุง ุงู†ุตุฑุช ุงู„ู…ุณุฃู„ุฉ
244
00:25:45,330 --> 00:25:50,690
ุงู„ุชูƒุงู…ู„ ุงู„ุฃุณุงุณูŠ elemental ูˆุงู„ู€sin AT ู‡ุฐุง ุจุฏูŠ ุฃุณุงูˆูŠ
245
00:25:50,690 --> 00:25:54,430
ู…ูŠู†ุŸ ุจุฏูŠ ุฃุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰ ุฅูŠู‡ุŸ ู†ุงู‚ุตุŒ ูุนู†ุฏูƒ ู‡ู†ุง S
246
00:25:54,430 --> 00:25:59,090
ุนู„ูŠู‘ ูˆู‡ู†ุง S ุนู„ูŠ ุฅูŠู‡ุŸ S ุชุฑุจูŠุน ุนู„ูŠ ุชุฑุจูŠุน limit ู„ู…ุง
247
00:25:59,090 --> 00:26:04,030
ุงู„ู€P ุจุฏุฃ ุชุฑูˆุญ ู„ู„ infinity ู„ู„ุชูƒุงู…ู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง
248
00:26:04,340 --> 00:26:09,480
ุงู„ุชูƒุงู…ู„ ู„ุฃู† ู‡ุฐุง ู‡ูˆ ู†ูุณ ุงู„ุชูƒุงู…ู„ ู‡ุฐุง ุชู…ุงู… ุจุณ ุจุฏู‡
249
00:26:09,480 --> 00:26:13,700
ุฃุฑุฌุน ู‡ุฐุง ุฅู„ู‰ ุฃุตู„ู‡ ู‚ุจู„ ุงู„ limit ูŠุจู‚ู‰ ุฑุฌุนุชู‡ ุฅู„ู‰ ุฃุตู„ู‡
250
00:26:13,700 --> 00:26:17,340
ุจุฏู„ ู…ุง ู‡ูˆ limit ุดูŠู„ุชู‡ ูˆ ูƒุชุจุช ุชูƒุงู…ู„ ู…ู† zero ุฅู„ู‰
251
00:26:17,340 --> 00:26:23,420
infinity ู„ู„ EOS ู†ุงู‚ุต STDD ู‡ุฐุง ู‡ูˆ ุงู„ุทุฑู ุงู„ุดู…ุงู„ ูŠุจู‚ู‰
252
00:26:23,420 --> 00:26:27,640
ุจุฏู‡ ุฃุฏูŠู‡ ุนู†ุฏู‡ ูˆ ุฃุฌู…ุน ุจุฏู„ ู…ุง ูƒุงู†ุช ุดุฑุทู‡ ุณู„ู…ุฉ ุจุตูŠุฑูŠ
253
00:26:27,640 --> 00:26:33,560
ุดุฑุทู‡ ู…ูˆุฌุจุฉ ูŠุจู‚ู‰ ุจุธู„ ู‡ู†ุง ูˆุงุญุฏูˆู‡ู†ุง ุจูŠุธู„ S ุชุฑุจูŠุน ุนู„ู‰
254
00:26:33,560 --> 00:26:36,820
A ุชุฑุจูŠุน ูƒู„ู‡ ููŠ ุงู„ุชูƒุงู…ู„ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ Laplace
255
00:26:36,820 --> 00:26:41,240
transform ู„sin A T ุจูŠุธู„ ุงู„ุทุฑู ุงู„ูŠู…ูŠู† ูู‚ุท ุงู„ู„ูŠ ู‡ูˆ
256
00:26:41,240 --> 00:26:47,500
ุฌุฏุงุด 1 ุนู„ู‰ Aุงู„ุฃู† ูˆุญุฏู†ุง ุงู„ู…ู‚ุงู…ุงุช ู„ู‡ุฐู‡ ุตูˆุฑุฉ a ุชุฑุจูŠุฉ
257
00:26:47,500 --> 00:26:52,780
ุฒุงุฆุฏ s ุชุฑุจูŠุฉ ุนู„ู‰ a ุชุฑุจูŠุฉ ุจุฏู‡ ูŠุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰ a ุงู„ุงู†
258
00:26:52,780 --> 00:26:59,260
ุจุฏู†ุง ู†ุฌุณู… ุนู„ู‰ ู‡ุฐูŠ ุจูŠุตูŠุฑ a ุชุฑุจูŠุฉ ุนู„ู‰ s ุชุฑุจูŠุฉ ุฒุงุฆุฏ a
259
00:26:59,260 --> 00:27:04,260
ุชุฑุจูŠุฉ ููŠ a ุชุฑุจูŠุฉ ุจุชุฑูˆุญ ุงู„ a ู…ุน ุงู„ a ุจูŠุธู‡ุฑ ุฃู† a ููŠ
260
00:27:04,260 --> 00:27:09,960
s ุชุฑุจูŠุฉ ุนุงู„ ุฒุงุฆุฏ a ุชุฑุจูŠุฉ ู‡ุฐุง ู„ plus transform ู„
261
00:27:09,960 --> 00:27:16,650
sign atู„ุฐู„ูƒ ูƒู…ู„ู†ุง ู…ุฑุชูŠู† ูˆ ุชูˆุตู„ู†ุง ุฅู„ู‰ ุชูŠุช ุงู„ุชูƒุงู…ู„ ูˆ
262
00:27:16,650 --> 00:27:19,750
ู‚ุจู„ ุดูˆูŠุฉ ู„ู…ุง ุฏูŠ ุงู†ุง ุงุนุทูŠู†ุง ุชุนุฑูŠู ู„ุจู„ุงูŠุณุชุฑุงู†ุณูˆู†ู‡
263
00:27:19,750 --> 00:27:25,690
ุงู‚ูˆู„ ู„ูƒ ูŠุง ุจู‚ูˆู„ L of F of T ูŠุง ุงู…ุง F of S ู„ุญุธุฉ ู…ู†
264
00:27:25,690 --> 00:27:30,750
ุญุฏ ู…ุง ุงู†ูƒู…ู„ ุจุทู„ุน ุนู†ุฏูŠ ุฏุงู„ุฉ ููŠ ู…ูŠู†ุŸุฏุงู„ุฉ ููŠ S ูˆ ู‡ู†ุง
265
00:27:30,750 --> 00:27:34,250
ุฏุงู„ุฉ ููŠ S ูˆ ู‡ู†ุง ุฏุงู„ุฉ ููŠ S ูˆ ู‡ู†ุง ุฏุงู„ุฉ ููŠ S ูˆ ูƒู„ู‡
266
00:27:34,250 --> 00:27:39,090
ุฏุงู„ุฉ ููŠ S ูˆ ุณุฃู„ุชูƒ ู‡ุฐุง ุงู„ุณุคุงู„ ู„ูŠุด ุงู„ F of S ูŠุจู‚ู‰
267
00:27:39,090 --> 00:27:43,030
ุงู„ู†ุชูŠุฌุฉ ุจุนุฏ ู…ุง ู†ูƒู…ู„ ูˆ ู†ุนูˆุถ ูƒู„ู‡ุง ุจุชุทู„ุน function ููŠ
268
00:27:43,030 --> 00:27:48,170
S ูู‚ุท ู…ุถุงู„ุด ุนู†ุฏ ู…ู† T ูˆ ุจุงู„ุชุงู„ูŠ ุฌูŠุจ ุฏุงู„ุฉ ูƒุงูุฉ ู…ู†
269
00:27:48,170 --> 00:27:52,330
ุงู„ุฏุงู„ุฉ ุงู„ุฃุตู„ูŠุฉ ุทุจ ุงุญู†ุง ุงู„ุฃู† ุฌูŠุจู†ุง
270
00:27:59,930 --> 00:28:04,430
ุจุชุนู…ู„ูŠ ุงู„ุฎุทูˆุงุช ุงู„ู„ูŠ ุนู…ู„ุชู‡ุง ุจุณ ุจุฏู„ ุงู„ุตูŠู† ุจุชุญุท ู…ุนู‡ุง
271
00:28:04,430 --> 00:28:05,530
ูƒูˆุตูŠู†
272
00:28:11,800 --> 00:28:18,920
ู‡ุฐู‡ ู†ู…ุฑ ุจูŠู‡ Similarly ุงู„ู„ูŠ ู‡ูˆ Laplace transform La
273
00:28:18,920 --> 00:28:27,400
cosine AT ุจุฏูŠู‡ ุณุงูˆูŠุฉ ุจู†ุงุช S ุนู„ู‰ S ุชุฑุจูŠุน ุฒุงุฆุฏ A
274
00:28:27,400 --> 00:28:33,190
ุชุฑุจูŠุนู‡ุฐู‡ ุงู„ู€Sin ุจุฏู„ ุงู„ู€Constant ุจูŠุฌูŠู†ูŠ S ูˆู„ูŠุณ
275
00:28:33,190 --> 00:28:37,470
ConstantุŒ ุจุณ ู‡ู†ุง ูƒุงู†ุช ุฅุนุงุฏุฉ ุงู„ู€Sin Constant ูˆู‡ู†ุง S
276
00:28:37,470 --> 00:28:44,050
ูˆู‡ุฐู‡ ุชุดูƒ ุจุฑุงุญุชูƒุŒ ุฑูˆุญ ุฃุนู…ู„ู‡ุง ููŠ ุงู„ุฏุงุฑุŒ ุดูŠูƒ ุนู„ูŠู‡ุงุทูŠุจ
277
00:28:44,050 --> 00:28:49,850
ู…ู† B ุจุฏู‡ ุฃุฑูˆุญ ุฃุฌูŠุจ C ูŠุจู‚ู‰ ุจุฏูŠ C ุจุฏูŠ ู„ plus
278
00:28:49,850 --> 00:28:58,630
transform ู„ cosine 5T ุงู„ู„ูŠ ุนุจุงุฑุฉ ุนู† S ุนู„ู‰ S ุชุฑุจูŠุน
279
00:28:58,630 --> 00:29:07,570
ุฒุงุฆุฏ ุฎู…ุณุฉ ู„ูƒู„ ุชุฑุจูŠุน ูŠุนู†ูŠ S ุนู„ู‰ S ุชุฑุจูŠุน ุฒุงุฆุฏ ุฎู…ุณุฉ
280
00:29:07,570 --> 00:29:16,620
ูˆุนุดุฑูŠู† ุญุฏ ููŠูƒู… ุจุชุญุจ ุชุณุฃู„ ุฃุณุฆู„ุฉ ู‡ู†ุงุŸุฎู„ุงุตุŸ ู‡ุง ูŠุง ุจู†ุช
281
00:29:16,620 --> 00:29:21,540
ุงู„ุญู„ุงู„ ุงู†ุช ู„ุนุจุชูŠ ุชู‚ุตุจูŠ ูˆู„ุง ู„ุงุŸ ุฎู„ุงุต ูŠุนู†ูŠุŸ ูุฑุฌุช
282
00:29:21,540 --> 00:29:23,640
ูˆูƒู†ุช ูˆู‚ู†ูˆู‡ุง ุชูุฑุฌูˆุงุŸ
283
00:29:42,720 --> 00:29:48,600
ู…ุง ุจุนุฏ ุงู„ุถูŠู‚ุฉ ุจู†ุงุช ุฅู„ุง ุงู„ูˆุณุนุฉุŒ ูˆู…ุง ุจุนุฏ ุงู„ุนุณุฑ ุฅู„ุง
284
00:29:48,600 --> 00:29:55,240
ุงู„ูŠุณุฑุŒ ูˆู„ู‡ุฐุง ู‚ุงู„ ุงู„ู„ู‡ ุชุนุงู„ู‰ ูุฅู† ู…ุน ุงู„ุนุณุฑ ูŠุณุฑุงุŒ ูˆุฅู†
285
00:29:55,240 --> 00:29:59,660
ู…ุน ุงู„ุนุณุฑ ูŠุณุฑุงุŒ ูˆู„ู† ูŠุบู„ุจ ุนุณุฑุง ูŠุณุฑูŠู† ุฃูˆ ูƒู…ุง ู‚ุงู„ ุตู„ู‰
286
00:29:59,660 --> 00:30:03,470
ุงู„ู„ู‡ ุนู„ูŠู‡ ูˆุณู„ู….ูŠุนู†ูŠ ู‚ุฏุด ุจุชุฏุงูŠู‚ ููŠ ู„ุญุธุฉ ุชู…ุงู… ูˆ ุจุนุฏ
287
00:30:03,470 --> 00:30:07,830
ุดูˆูŠุฉ ุจุชุชูˆุณุน ูˆ ู‡ุฐู‡ ุทุจูŠุนุฉ ุงู„ุฏู†ูŠุง ุจุถู„ุด ุงู„ูˆุงุญุฏ ุนู†ุฏู‡
288
00:30:07,830 --> 00:30:13,030
ุนุตุฑ ุนู„ู‰ ุทูˆู„ ูˆู„ุง ุจุถู„ ุนู†ุฏู‡ ุงู†ูุฑุงุฌุฉ ุนู„ู‰ ุทูˆู„ ุงู„ู„ู‡ ูŠุฎูุถ
289
00:30:13,030 --> 00:30:18,670
ุงู„ู‚ุตุฉ ูˆ ูŠุฑูุนู‡ุง ูˆ ู‡ุฐู‡ ุทุจุนุง ู…ู† ุจุฏู‡ูŠุงุช ุงู„ู„ูŠ ู‡ูˆ ุนู…ู„
290
00:30:18,670 --> 00:30:26,550
ุงู„ู„ู‡ ุณุจุญุงู†ู‡ ูˆ ุชุนุงู„ู‰ ุทูŠุจ ู†ุฑุฌุน ุงู„ุขู† ูˆ ู†ูƒู…ู„ ููŠ ุนู†ุฏู†ุง
291
00:30:26,550 --> 00:30:30,170
ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ ู…ุง ูŠุฃุชูŠ theorem
292
00:30:34,330 --> 00:30:44,450
ู„ุงุจู„ุงุณ ุชุญูˆูŠู„ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ
293
00:30:44,450 --> 00:30:53,230
ู„ุงุจู„ุงุณ
294
00:30:53,230 --> 00:30:53,550
ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ
295
00:30:53,550 --> 00:30:53,930
ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ
296
00:30:53,930 --> 00:30:54,070
ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ
297
00:30:54,070 --> 00:30:54,690
ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ
298
00:30:54,690 --> 00:30:54,690
ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ
299
00:30:54,690 --> 00:30:54,690
ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ
300
00:30:54,690 --> 00:30:54,690
ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ
301
00:31:04,380 --> 00:31:14,120
ู„ูˆ ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… ู„ู„ F1 and ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… ู„ู„
302
00:31:14,120 --> 00:31:27,260
F2 are both exist ู„ูˆ ูƒุงู†ูˆุง exist for ู„ู„ S ุงู„ู„ูŠ
303
00:31:27,260 --> 00:31:30,320
ุฃูƒุจุฑ ู…ู† S node then
304
00:31:52,040 --> 00:31:59,900
ุฃูˆ ุจู‚ุฏุฑ ุฃู‚ูˆู„ C1 F1
305
00:31:59,900 --> 00:32:16,940
of Sุฒุงุฆุฏ C2 capital F2 of S example ู†ู…ุฑุฉ
306
00:32:16,940 --> 00:32:30,900
A find Laplace transform ู„ ุชู…ุงู†ูŠุฉ ู‡ุฐุง ู†ู…ุฑุฉ A ู†ู…ุฑุฉ
307
00:32:30,900 --> 00:32:45,060
Bู†ุจุฏุฃ ุจุงู„ู€ Plastic Transform ู„ู€ 3 Cos 2T 3 Cos 2T
308
00:32:45,060 --> 00:32:59,120
ู†ุงู‚ุต ุฎู…ุณุฉ E ุฃุณ ู†ุงู‚ุต ุชู„ุงุชุฉ T ู†ู…ุฑู‰ C Find
309
00:33:01,390 --> 00:33:12,550
Laplace transform La cosine ุชุฑุจูŠุน AT Cosine ุชุฑุจูŠุน
310
00:33:12,550 --> 00:33:26,770
ุงุชู†ูŠู† T ู†ู…ุฑุฉ D find Laplace transform Lagosh AT
311
00:33:39,130 --> 00:33:45,090
ุฎู„ู‘ูŠ ุจุงู„ูƒ ู‡ู†ุงุŒ ุงู„ู„ูŠ ุจุชุญูƒูŠ ู‡ู†ุงูƒุŒ ุฎู„ู‘ูŠ ุจุงู„ูƒ ู‡ู†ุง ูŠุจู‚ู‰
312
00:33:45,090 --> 00:33:51,050
ุจุงุฌูŠ ูˆ ุจู‚ูˆู„ ุจุฏู†ุง ุงู„ุขู† ู†ุฌู„ุน ู†ุธุฑูŠุฉ ู‡ุฐู‡ ูˆ ู†ุญุงูˆู„ ู†ุทุจู‚
313
00:33:51,050 --> 00:33:54,930
ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉุŒ ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ ู„ูŠ ุฃู† ุงู„ู€placid
314
00:33:54,930 --> 00:34:00,430
transform ุนุจุงุฑุฉ ุนู† ู…ุคุซุฑ ุฎุทูŠุŒ ุดูˆ ูŠุนู†ูŠ ู…ุคุซุฑ ุฎุทูŠุŸ ู‡ุฐุง
315
00:34:00,430 --> 00:34:05,200
ุงู„ู„ูŠ ุจุฏู†ุง ู†ุนุฑูุจูŠู‚ูˆู„ ู‡ู†ุง ู„ุฃ ุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… is a
316
00:34:05,200 --> 00:34:11,000
linear operator ู…ุคุซุฑ ุฎุทูŠ ุฐุงุชูŠ an ู„ูˆ ูƒุงู† ู„ุงุจู„ุงุณ
317
00:34:11,000 --> 00:34:15,640
ุชุฑุงู†ุณููˆุฑู… ู„ุฏุงู„ู‡ f1 ูˆ ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… ู„ุฏุงู„ู‡ f2
318
00:34:15,640 --> 00:34:21,920
ุงุชู†ูŠู† ู…ุนุฑููŠู† ูŠุจู‚ู‰ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุจุฏูŠ ู„ุงุจู„ุงุณ ู„ c1 f1
319
00:34:21,920 --> 00:34:28,660
ุฒุงุฏ c2 f2 ู„ู…ุง ุงู‚ูˆู„ ู…ุคุซุฑ ุฎุทูŠ ู…ุนู†ุงุชู‡ ู„ุงุจู„ุงุณ ุจุฏูŠ ูŠุฏุฎู„
320
00:34:28,660 --> 00:34:33,120
ุนู„ู‰ ูƒู„ term ู…ู† ู‡ุฐูŠู† ุงู„termูŠู†ูŠุจู‚ู‰ ุจุตูŠุฑ Laplace
321
00:34:33,120 --> 00:34:37,960
ู„ู„ุฃูˆู„ ุฒูŠ Laplace ู„ู„ุซุงู†ู‰ ุงู„ constant ุจู†ู‚ุฏุฑ ู†ุทู„ุนู‡
322
00:34:37,960 --> 00:34:43,600
ุจุฑุง Laplace ูŠุจู‚ู‰ C1 Laplace ู„ู„ F1 ุฒูŠ C2 Laplace ู„ู„
323
00:34:43,600 --> 00:34:48,880
F2 Laplace ู„ู„ F1 ู„ูˆ ุนุฏูŠุชู‡ุง ุฑู…ุฒ capital F1 of S
324
00:34:48,880 --> 00:34:56,310
ูŠุจู‚ู‰ ุจุตูŠุฑ C1 F1 of S ูˆุงู„ุชุงู†ูŠุฉ C2 F2 of Sุจู†ุฑูˆุญ
325
00:34:56,310 --> 00:35:00,030
ู†ุณุชุฎุฏู… ู‡ุฐุง ุงู„ูƒู„ุงู… ููŠ ุฅูŠุฌุงุฏ Laplace ุงู„ transform
326
00:35:00,030 --> 00:35:07,190
ู„ู„ุฏูˆุงู„ูŠ ุงู„ู…ุฎุชู„ูุฉ ูˆ ูƒุฐู„ูƒ ุจุงุณุชุฎุฏุงู… ุงู„ู…ุซุงู„ูŠู† ุงู„ุณุงุจู‚ูŠู†
327
00:35:07,190 --> 00:35:14,310
ุงู„ู„ูŠ ุฃุฎุฐู†ุงู‡ู… ู‚ุจู„ ู‚ู„ูŠู„ ูŠุจู‚ู‰ ุจุฏุงูŠุฌูŠ ู„ู†ู…ุฑุฉ A ุจูŠู‚ูˆู„
328
00:35:14,310 --> 00:35:19,110
ู„ู‡ุง Laplace ู„ ุชู…ุงู†ูŠุฉุจู‚ูˆู„ ู…ุด ุจุนุฑูู†ูŠ ุงู„ place ุฃู†ุง
329
00:35:19,110 --> 00:35:24,730
ุจุนุฑู ุงู„ place ู„ู„ูˆุงุญุฏ ุตุญ ุจู‚ุฏุฑ ุฃู‚ูˆู„ ู„ู‡ ู‡ุฐู‡ ุงู„ place
330
00:35:24,730 --> 00:35:32,400
ู„ ุชู…ุงู†ูŠุฉ ููŠ ูˆุงุญุฏ ู…ุธุจูˆุทุงู„ุชู…ุงู†ูŠุฉ ู‡ูŠ ุงู„ู…ู‚ุฏุงุฑ ุงู„ุซุงุจุช
331
00:35:32,400 --> 00:35:38,100
ุจู‚ุฏุฑ ุงุทู„ุนู‡ ุจุฑุง ูŠุงุด ุจุฑุง Laplace ูŠุจู‚ู‰ ู‡ุฐู‡ ุชู…ุงู†ูŠุฉ ููŠ
332
00:35:38,100 --> 00:35:44,440
Laplace ู„ู„ูˆุงุญุฏ ุชู…ุงู†ูŠุฉ ู‚ุฏุงุด Laplace ู„ู„ูˆุงุญุฏ ูˆุงุญุฏ ุนู„ู‰
333
00:35:44,440 --> 00:35:52,260
ุงุณ ูู‚ุท ู„ุบูŠุฑ ูŠุจู‚ู‰ ุชู…ุงู†ูŠุฉ ุนู„ู‰ ุงุณ ู‡ุฐุง Laplace ู„ุชู…ุงู†ูŠุฉ
334
00:35:52,260 --> 00:35:57,080
ุทุจ Laplace Laplace ู„ู…ูŠุฉ ู…ู†ู‡ุงู…ูŠุฉ ู„ูŠุณ ุญุท ุงู„ุฑู‚ู… ุงู„ู„ูŠ
335
00:35:57,080 --> 00:36:00,560
ุจุฏูƒ ุงูŠุงู‡ ุจุณ ุงู†ุง ูƒู†ุช ุจุงุนู„ูŠ ุงุณู…ูƒ ูˆ ุฌุจุช ุงู„ plus ุงูŠู‡
336
00:36:00,560 --> 00:36:04,740
ุงู„ู„ูŠุŸ ู‡ุฐุง ุจุงู„ู†ุณุจุงู„ูŠ ุงูŠู‡ุŸ ุจุฏู†ุง ู†ู…ุฑุฃ ุจูŠู‡ ู†ู…ุฑุฃ ุจูŠู‡
337
00:36:04,740 --> 00:36:10,680
ู‚ู„ูŠ ุงู„ plus ุงูŠูˆุฉ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ plus ู„ู…ูŠู†ุŸ ุงู„ู„ูŠ
338
00:36:10,680 --> 00:36:18,140
ุชู„ุงุชุฉ cosine ุงุชู†ูŠู† T ู†ุงู‚ุต ุฎู…ุณุฉ E ุฃุณ ู†ุงู‚ุต ุชู„ุงุชุฉ T
339
00:36:18,140 --> 00:36:26,670
ูˆุชุณุงูˆูŠ ู‡ุฐู‡ ู‡ูŠ ู‡ุฐู‡ ุจุงู„ุถุจุท ุตุญุŸู…ุธุจูˆุทุŸ ูŠุจู‚ู‰ ุจุฏุฃ ุฃู‚ูˆู„
340
00:36:26,670 --> 00:36:29,690
ุงู„ู€constant ููŠ Laplace ู„ู„ุฏุงู„ุฉ ุงู„ุฃูˆู„ู‰ุŒ ู†ุงู‚ุต
341
00:36:29,690 --> 00:36:33,310
ุงู„ู€constant ููŠ Laplace ู„ู„ุฏุงู„ุฉ ุงู„ุซุงู†ูŠุฉุŒ ูŠุจู‚ู‰ ู‡ุฐุง
342
00:36:33,310 --> 00:36:42,950
ุนุจุงุฑุฉ ุนู† ุชู„ุงุชุฉ Laplace ู„ู…ูŠู†ุŸ ู„ูŠู‡ุŸ Cos 2T ู†ุงู‚ุต ุฎู…ุณุฉ
343
00:36:42,950 --> 00:36:49,600
ููŠ Laplace ู„ู„ุฅูŠู‚ูˆุณ ู†ุงู‚ุต ุชู„ุงุชุฉ Tู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณูˆู‰
344
00:36:49,600 --> 00:36:55,320
ุชู„ุงุชุฉ ููŠู‡ ุจุฏูŠู„ุง ุจู„ุงุณู„ุง ูƒูˆุตูŠู† ุงุชู†ูŠู† T ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ
345
00:36:55,320 --> 00:37:04,940
ุนู† S ุนู„ู‰ S ุชุฑุจูŠุน ุฒุงุฆุฏ ูƒู…ุŸ ุงุชู†ูŠู† ุชุฑุจูŠุน ุญุณุจู†ุงู‡ุง ู‚ุจู„
346
00:37:04,940 --> 00:37:11,210
ู‚ู„ูŠู„ุŒ ู…ุธุจูˆุทุŸ ูˆู‚ู„ู†ุง ู„ูƒ ุชุดูƒู‡ุง ูŠุนู†ูŠู…ุธุจูˆุทุŸ ูŠุจู‚ู‰ ุดูŠู„ู†ุง
347
00:37:11,210 --> 00:37:15,050
ุงู„ a ูˆุญุทูŠู†ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฑู‚ู… ุงู„ู„ูŠ ู…ุถุฑูˆู‡ ููŠ ุงู„ุฒุงูˆูŠุฉ
348
00:37:15,050 --> 00:37:20,910
ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฃุซู†ูŠู† ู‡ุฐู‡ ุงู„ุฃูˆู„ู‰ุŒ ุงู„ุชุงู†ูŠุฉ ู†ุงู‚ุต ุฎู…ุณุฉ ููŠ
349
00:37:20,910 --> 00:37:30,430
ู†ูŠุฌูŠ ู„ู‡ุฐู‡ ุงู„ exponential ุงู„ู„ูŠ ู‡ูˆ ูˆุงุญุฏ ุนู„ู‰ Sุฅุฐุง
350
00:37:30,430 --> 00:37:38,350
ุตุงุฑุช ุงู„ู…ุณุฃู„ุฉ ู‡ูŠ ุชู„ุงุชุฉ S ุนู„ู‰ S ุชุฑุงุจูŠุน ุฒุงุฆุฏ ุฃุฑุจุนุฉ
351
00:37:38,350 --> 00:37:46,270
ู†ุงู‚ุต ุฎู…ุณุฉ ุนู„ู‰ S ุฒุงุฆุฏ ุชู„ุงุชุฉุฃุธู† ุฃู† ู‡ุฐุง ู‡ูˆ ุงู„ู…ุถุงุนู
352
00:37:46,270 --> 00:37:54,610
ุงู„ู…ุดุชุฑูƒ ูƒู„ู‡ S ุชุฑุจูŠุน ุฒุงุฆุฏ ุฃุฑุจุนุฉ ููŠ S ุฒุงุฆุฏ ุชู„ุงุชุฉ ู‡ุฐูŠ
353
00:37:54,610 --> 00:38:05,470
ุจูŠุตูŠุฑ ุชู„ุงุชุฉ S ููŠ S ุฒุงุฆุฏ ุชู„ุงุชุฉ ู†ุงู‚ุต ุฎู…ุณุฉ ููŠ S ุชุฑุจูŠุน
354
00:38:05,470 --> 00:38:13,940
ุฒุงุฆุฏ ุฃุฑุจุนุฉุงู„ู†ุชูŠุฌุฉ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ุชุณุงูˆูŠ ู‡ุฐู‡ ุชู„ุงุชุฉ
355
00:38:13,940 --> 00:38:23,180
ุฃุณ ุชุฑุจูŠุน ุฒุงุฆุฏ ุชุณุนุฉ ุฃุณุงู„ู€ term ุงู„ุชุงู†ูŠ ู†ุงู‚ุต ุฎู…ุณุฉ
356
00:38:23,180 --> 00:38:31,260
ุงุณุชุฑุจูŠุน ู†ุงู‚ุต ุนุดุฑูŠู† ูƒู„ู‡ ุนู„ู‰ ุงู„ู…ู‚ุงู… ุงู„ู„ูŠ ู‡ูˆ ุงุณุชุฑุจูŠุน
357
00:38:31,260 --> 00:38:38,340
ุฒุงุฆุฏ ุฃุฑุจุนุฉ ููŠ S ุฒุงุฆุฏ ุชู„ุงุชุฉ ูŠุจู‚ู‰ ุงู„ู†ุชูŠุฌุฉ ุนู„ู‰ ุงู„ูˆุฌู‡
358
00:38:38,340 --> 00:38:47,870
ุงู„ุชุงู„ูŠ ู†ุงู‚ุต ุงุชู†ูŠู† ุงุณุชุฑุจูŠุนูˆู‡ู†ุง ุฒุงุฆุฏ ุชุณุนุฉ S ูˆู‡ู†ุง
359
00:38:47,870 --> 00:38:57,130
ู†ุงู‚ุต ุนุดุฑูŠู† ูƒู„ู‡ ู…ู‚ุณูˆู…ุง ุนู„ู‰ S ุชุฑุจูŠุน ุฒุงุฆุฏ ุฃุฑุจุน ููŠ ู…ูŠู†
360
00:38:57,130 --> 00:39:03,770
ููŠ S ุฒุงุฆุฏ ุชู„ุงุชุฉ ูŠุจู‚ู‰ ู‡ุฐุง ู„ plus transform ู„ู„ุฏุงู„ุฉ
361
00:39:03,770 --> 00:39:08,370
ู‡ุฐู‡ ุทุจ ู‡ุฐู‡ ูŠุง ุจู†ุงุช ู„ูˆ ุนู…ู„ุชู„ู‡ุง partial fraction
362
00:39:08,370 --> 00:39:16,730
ูƒุณูˆุฑ ุฌุฒุก ูŠู…ูŠู† ุจุทู„ุน ุจุทู„ุน ู‡ุฐุงุตุญุŸ ู…ุด ู‡ุฐุง ูˆุญุฏู†ุง
363
00:39:16,730 --> 00:39:20,510
ุงู„ู…ู‚ุงู…ุงุชุŒ ูŠุจู‚ู‰ ู„ูˆ ุจุฏู‰ ุฃุนู…ู„ ูƒุณูˆุฑุฒ ุจุชูƒูˆู† ุนู†ุฏูŠ ู‡ุฐู‡
364
00:39:20,510 --> 00:39:24,650
ุจุงู„ุฏุฑุฌุฉ ุนู„ู‰ ุงู„ุฃุตู„ ุชุจุนู‡ุงุŒ ูŠุจู‚ู‰ ู‡ุฐุง ู‡ูˆ ุงู„ุฃุตู„ ุชุจุนู‡ุง
365
00:39:24,650 --> 00:39:30,130
ุทุจุนุง ู„ูŠุด ู‡ูˆ ุจูŠู‚ูˆู„ูƒ ูƒุฏู‡ ุงู„ูƒู„ุงู… ุฃู†ู‡ ุณูŠู„ุฒู…ู†ุง ุจุนุฏ ุดูˆูŠุฉ
366
00:39:30,130 --> 00:39:35,350
ุงู† ุดุงุก ุงู„ู„ู‡ ู†ุถุทุฑ ู†ุนู…ู„ ูƒุณูˆุฑ ุฌุฒุฆูŠุฉ ู„ู…ู‚ุฏุงุฑ ู…ุซู„ ู‡ุฐุง
367
00:39:35,350 --> 00:39:40,310
ุงู„ู…ู‚ุฏุงุฑ ู…ุด ู‡ู†ู‚ุฏุฑ ู†ูˆุฌุฏ Laplace transform ู„ู‡ ุฃูˆ ู†ูˆุฌุฏ
368
00:39:40,310 --> 00:39:42,710
ู…ุนูƒูˆุณ Laplace transform
369
00:39:55,960 --> 00:40:03,920
ู‡ุฐุง ู†ู…ุฑุฉ ุจูŠุจุฏุฃ ูŠุฌูŠ ู„ู†ู…ุฑุฉ C ู†ู…ุฑุฉ C ุจูŠู‚ูˆู„ ุงู„ู„ูŠ ุจุฏู‡
370
00:40:03,920 --> 00:40:10,760
ู„ุจู„ุงุณ ุชุฑุงู†ุณ ูˆูŠุฑุงู‡ุฏ C ู„ุจู„ุงุณ ู„ูƒูˆุณูŠู† ุชุฑุจูŠุน ุจุฏู†ุง ู„ุจู„ุงุณ
371
00:40:10,760 --> 00:40:19,240
ู„ูƒูˆุณูŠู† ุชุฑุจูŠุน ุงุชู†ูŠู† T ูŠุจู‚ู‰ ู‡ุฐู‡ ู„ุจู„ุงุณ ุชุฑุงู†ุณ ููˆุฑู… ู„ู…ุต
372
00:40:19,240 --> 00:40:27,020
ููŠ ูˆุงุญุฏ ุฒุงุฆุฏ ูƒูˆุณูŠู† ูƒุฏู‡ ุดุงุจู†ุงุชุŸุฃุฑุจุนุฉ T ู…ู† ุญุณุงุจ
373
00:40:27,020 --> 00:40:35,300
ุงู„ู…ุซู„ุซุงุช ูŠุจู‚ู‰ ู‡ุฐู‡ ูƒุฃู†ู‡ุง Laplace transform ู„ู†ุต ุฒุงุฆุฏ
374
00:40:35,300 --> 00:40:43,960
ู†ุต ูƒูˆุณุงูŠู† ุฃุฑุจุนุฉ Tู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏูŠ ูŠุณูˆูŠ ู†ุต ู„ plus
375
00:40:43,960 --> 00:40:51,620
transform ู„ู„ูˆุงุญุฏ ุฒุงุฆุฏ ู†ุต ู„ plus transform ู„ cosine
376
00:40:51,620 --> 00:40:58,860
ุฃุฑุจุนุฉ T ูˆูŠุณูˆูŠ ู‡ุฐุง ู†ุต ูˆ ู„ plus transform ู„ู„ูˆุงุญุฏ
377
00:40:58,860 --> 00:41:06,880
ุงู„ู„ูŠ ู‡ูˆ ุจู‚ุฏุงุด ุจูˆุงุญุฏ ุนู„ู‰ S ุชู‡ูŠุฆู†ุง ู…ู†ู‡ ุฒุงุฆุฏ ูƒู…ุงู† ู†ุต
378
00:41:07,510 --> 00:41:13,630
ู‡ุฐู‡ ูƒูˆุตูŠู†ุฉ ุฃุฑุจุนุฉ ุช ุงู„ู„ูŠ ุจุงุณ ุนู„ู‰ ุงุณ ุชุฑุจูŠุฉ ุฒุงุฆุฏ
379
00:41:13,630 --> 00:41:18,860
ุฃุฑุจุนุฉ ุชุฑุจูŠุฉ ุงู„ู„ูŠ ุจู‚ุฏุงุด ุจุณุชุงุดุฉู„ูˆ ุญุจูŠุช ุงุญุทู‡ุง ููŠ
380
00:41:18,860 --> 00:41:24,560
ุงู„ุตูŠุบุฉ ุงู„ู†ู‡ุงุฆูŠุฉ ูŠุจู‚ู‰ ู†ุต ุนุงู…ู„ ู…ุดุชุฑูƒ ุจูŠุธู„ ุงู„ู…ู‚ุงู… S
381
00:41:24,560 --> 00:41:34,380
ููŠ S ุชุฑุจูŠุน ุฒุงุฆุฏ 16 ูŠุจู‚ู‰ ู‡ู†ุง S ุชุฑุจูŠุน ุฒุงุฆุฏ 16 ุฒุงุฆุฏ
382
00:41:34,380 --> 00:41:42,180
ุงู„ู„ูŠ ู‡ูˆ ู…ู† S ุชุฑุจูŠุน ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุงูŠุจู‚ู‰ ู‡ุฐุง ูŠุตูŠุฑ
383
00:41:42,180 --> 00:41:52,840
ู†ุตู ุงุชู†ูŠู† ุงุณุชุฑุจูŠุน ุฒุงุฆุฏ ุณุชุงุด ุนู„ู‰ ุงุณ ููŠ ุงุณุชุฑุจูŠุน ุฒุงุฆุฏ
384
00:41:52,840 --> 00:41:54,880
ุณุชุงุด ูˆูŠุณุงูˆูŠ
385
00:42:09,410 --> 00:42:17,350
ู‡ุฐุง ู„ุจู„ุงุณ ุชุฑุงู†ุณูˆุฑู… ู„ู„ู‚ูˆุณุงูŠู† ุชูŠุฑููŠุง ู†ู…ุฑุฃ ุฏูŠู† ู†ู…ุฑุฃ
386
00:42:17,350 --> 00:42:27,630
ุฏูŠ ูƒุงู† ู„ุจู„ุงุณ ู„ู„ู‚ูˆุด AT ุจุฏูŠ ู„ุจู„ุงุณ ู„ู„ู‚ูˆุด AT ุทุจุนุง
387
00:42:27,630 --> 00:42:33,810
ุฅุฐุง ุจุฏูŠ ุฃุจุฏุฃ ุฒูŠ ู…ุง ุฌูŠุจ ู„ุจู„ุงุณ ู„ู„ุตูŠู† ุตุญุŸูŠุนู†ูŠ ุจุฏูŠ
388
00:42:33,810 --> 00:42:39,210
ุฃู‚ูˆู„ EOS ู†ู‚ุต ST ููŠ ุฌูˆุด AT ูˆูƒุงู…ู„ ู…ุฑุชูŠู† integration
389
00:42:39,210 --> 00:42:46,130
by parts ู„ูƒู† ุงู„ู„ูŠ ุนุงุฑู ุงู„ู†ุธุฑูŠุฉ ููŠ ุนู†ุฏู‡ุง ุทุฑูŠู‚ุฉ ุฃุณู‡ู„
390
00:42:46,130 --> 00:42:53,600
ู…ู† ุฐู„ูƒ ูˆู‡ูˆ ูƒุชุงุจุฉ ุงู„ุฌูˆุด ุจุฏู„ุงู„ุฉExponential ุชู…ุงู… ูŠุจู‚ู‰
391
00:42:53,600 --> 00:42:59,320
ุจุชู‚ุฏุฑ ุชู‚ูˆู„ูŠ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ Laplace transform
392
00:42:59,320 --> 00:43:09,580
ู„ู„ E ุฃุณ AT ุฒุงุฆุฏ ุงู„ E ุฃุณ ู†ุงู‚ุต AT ูƒู„ู‡ ุนู„ู‰ ุงุชู†ูŠู† ุงูˆ
393
00:43:10,140 --> 00:43:16,980
ุชู‚ูˆู„ ู„ูŠ ู‡ุฐุง ุงู„ูƒู„ุงู… ู†ุต ุจุฑุง ูˆู‡ูŠ ู†ุต ุจุฑุง ูˆุจุธู„ ุงู†ู…ูŠู†
394
00:43:16,980 --> 00:43:25,080
ู„ุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… ู„ู„ E ุฃุณ AT ุฒุงุฆุฏ ู„ุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… ู„ู„
395
00:43:25,080 --> 00:43:34,580
E ุฃุณ ู†ุงู‚ุต AT ูˆู‡ูŠ ู‚ูู„ู†ุง ุงู„ุฌุฒุกู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ ู‡ูŠ ู†ุต
396
00:43:34,580 --> 00:43:41,720
ุจุฑุง ู…ุงู„ูˆุด ุฏุนูˆุฉ ู„ plus ู„ู„ E ุฃุณ AT ู„ู‡ ู…ู† ูˆุงุญุฏ ุนู„ู‰ S
397
00:43:41,720 --> 00:43:51,370
ู†ุงู‚ุต ุงู„ A ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ S ุฒุงุฆุฏ ุงู„ AูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู…
398
00:43:51,370 --> 00:44:00,550
ู…ูุต ูˆุงุญุฏ ุงู„ู…ู‚ุงู…ุงุช S ู†ุงู‚ุต ุงู„ู€A S ุฒุงุฆุฏ ุงู„ู€A ู„ูˆ ุฌูŠุช
399
00:44:00,550 --> 00:44:07,970
ุฌู…ุนุช ุจุตูŠุฑ ุงู„ู€S ุฒุงุฆุฏ ุงู„ู€A ุฒุงุฆุฏ ุงู„ู€S ู†ุงู‚ุต ุงู„ู€A
400
00:44:07,970 --> 00:44:16,210
ูˆูŠุณุงูˆูŠ ุงุธู† ุฒุงุฆุฏ A ูˆู†ุงู‚ุต A ู…ุน ุงู„ุณู„ุงู…ุฉุจูŠุธู„ ู†ุตู ุงุชู†ูŠู†
401
00:44:16,210 --> 00:44:22,410
ุงุณ ุนุงู„ู…ูŠู† ู…ุด ู‡ุฐุง ูุฑู‚ ุจูŠู† ุงู„ู…ุฑุจุนูŠู† ูŠุง ุจู†ุงุชูŠุจู‚ู‰ S
402
00:44:22,410 --> 00:44:28,170
ุชุฑุจูŠุน ู†ุงู‚ุต ุงู„ A ุชุฑุจูŠุน ู†ุต ู…ุน ุงุชู†ูŠู† ุงู„ู„ู‡ ุณู‡ู„ ุนู„ูŠู‡ุง
403
00:44:28,170 --> 00:44:36,470
ูŠุจู‚ู‰ ุงู„ู†ุชูŠุฌุฉ S ุนู„ู‰ S ุชุฑุจูŠุน ู†ุงู‚ุต A ุชุฑุจูŠุน ุงุธู† ุฒูŠ ุงู„
404
00:44:36,470 --> 00:44:45,150
cosine ุจุณ ุงู„ุฅุดุงุฑุฉ ููŠ ุงู„ู…ู‚ุงู… ุจุงู„ุณุงู„ุจ ูˆู„ูŠุณ ุจุงู„ู…ูˆุฌุฉ
405
00:44:45,150 --> 00:44:49,790
ูƒูŠู
406
00:44:49,790 --> 00:44:50,390
ูƒูŠูุŸ
407
00:44:53,080 --> 00:44:58,040
ู„ุง ุชุญูุธูŠุด ูˆ ู‡ู†ุตูˆุฑู‡ุง ู„ูƒ ุงู† ุดุงุก ุงู„ู„ู‡ ูƒู„ ุงู„ aplasia
408
00:44:58,040 --> 00:45:02,880
transform ุจุฏู„ ุงู„ุฏุงู„ุฉ ุนุดุฑูŠู† ุฏุงู„ุฉ ูˆ ู†ุนุทูŠูƒ ูŠุง ููŠู„ู…
409
00:45:02,880 --> 00:45:08,460
ุชุนุงู„ู‰ ุงุชูุถู„ูŠ ู‡ูŠู‡ุง ู…ุนุงูƒูŠ ุงุณุชุฎุฏู…ูŠู‡ุง ู…ุชู‰ ู„ุงุฒู… ุงู„ุฃู…ุฑ
410
00:45:08,460 --> 00:45:13,220
ูŠุนู†ูŠ ุงู„ุตูุญุฉ ุงู„ุฃุฎูŠุฑุฉ ููŠ ูˆุฑู‚ุฉ ุงู„ุฃุณุฆู„ุฉ ุจุชูƒูˆู† ุงู„
411
00:45:13,220 --> 00:45:17,220
aplasia transform ู„ู„ุฏูˆุงู„ ูƒู„ู‡ุง ุงู„ู„ูŠ ุจุชู„ุฒู…ูƒ ูˆ ุฒูŠุงุฏุฉ
412
00:45:17,220 --> 00:45:23,250
ุดูˆูŠุฉุจุณ ุจุฏูŠ ุชุนุฑููŠ ู„ูˆ ู‚ู„ุชู„ูƒ use the definition to
413
00:45:23,250 --> 00:45:26,850
find Laplace transform ู„ุฏู„ุฉ ูู„ุงู†ูŠุฉ ูˆ ุฃุนุทูŠุชูƒ ุฏู„ุฉ
414
00:45:26,850 --> 00:45:32,990
ูŠุจู‚ู‰ ุจุฏูƒ ุชุฑูˆุญ ุชุดุชุบู„ูŠ ุงู„ุดุบู„ ู‡ุฐุงุŒ ุชู…ุงู…ุŸ ู„ูƒู† ุฅุฐุง ู…ุง
415
00:45:32,990 --> 00:45:36,850
ู‚ู„ุชุด ู‡ุฐุง ุงู„ูƒู„ุงู… ูˆ ู„ุฒู…ู† Laplace ู„ุงูŠ ุฏู„ุฉ ุจุฌูŠุจู‡ุง ู…ู†
416
00:45:36,850 --> 00:45:40,990
ุงู„ุฌุฏูˆู„ ุฏูˆุฑูŠุŒ ุงู„ุฌุฏูˆู„ ู‡ุฐุง ู‡ู†ุนุทูŠูƒูˆุง ูŠูˆู…ูŠ ุฐู„ูƒุงู„ู…ุฑุฉ
417
00:45:40,990 --> 00:45:44,270
ุงู„ู‚ุงุฏู…ุฉ ุฏุง ู…ู† ุงู„ู…ุฑุฉ ุงู„ู‚ุงุฏู…ุฉ ุฏูŠ ูƒู„ ูˆุงุญุฏ ุฃููŠูƒูˆุง ูŠูƒูˆู†
418
00:45:44,270 --> 00:45:47,570
ุงูƒุชุจู‡ุง ู…ุนุงู‡ุง ู„ุฅู†ู‡ ููŠ ุฌุฏูˆู„ ุจุฏูŠ ุฃู‚ูˆู„ูƒ ูŠุงู„ุง ุนุดุงู†
419
00:45:47,570 --> 00:45:52,390
ุชุชุนูˆุฏูŠ ุชูุชุดูŠ ูˆ ุชุนุฑููŠ ูƒูŠู ุชู‚ูˆู„ูŠ ู…ู† ุงู„ุฌุฏูˆู„ ู„ place
420
00:45:52,390 --> 00:45:56,510
transform ู„ุฏุงู„ุฉ ู…ุง ูƒู„ ูˆุงุญุฏ ุงู„ู…ุฑุฉ ุงู„ุฌุงูŠุฉ ูŠูƒูˆู†
421
00:45:56,510 --> 00:45:57,810
ุงูƒุชุจู‡ุง ู…ุนุงู‡ุง ุฏูŠ ุฑุจุงู„ูƒู…
422
00:46:01,630 --> 00:46:06,770
ุทูŠุจ ููŠู†ุง ูƒู…ุงู† ู†ุธุฑูŠุฉ ุจู†ุงุช ุจุชุฌูŠุจ ู„ุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู…
423
00:46:06,770 --> 00:46:12,390
ู„ู„ู…ุดุชู‚ุงุช ูŠุนู†ูŠ ู„ูˆ ุงุดุชู‚ู†ุง ุฏู‡ ุงู„ู„ูŠ ุจุฏูŠ ู„ุจู„ุงุณ ู„ู„ู…ุดุชู‚ุฉ
424
00:46:12,390 --> 00:46:16,150
ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ ุชู†ุต ุนู„ู‰ ู…ุง ูŠู‚ูŠู„
425
00:46:19,780 --> 00:46:24,840
ุทุจ ู„ูŠุด ุจุฏู†ุง Laplace transform ู„ู‡ุฐู‡ ุงู„ู…ุดุชู‚ุฏุŸ ู„ุฅู†
426
00:46:24,840 --> 00:46:29,940
ู…ูˆุถูˆุนู†ุง ู…ูˆุถูˆุน ู…ุนุงุฏู„ุงุช ุชูุงุถู„ูŠุฉ ุจุฏู†ุง ู†ุฌูŠุจ ุญู„
427
00:46:29,940 --> 00:46:36,120
ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ ุจุงุณุชุฎุฏุงู… Laplace transform ูŠุจู‚ู‰
428
00:46:36,120 --> 00:46:43,560
ุงู„ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ ู…ุง ูŠุงุชูŠ theorem f
429
00:46:43,560 --> 00:47:00,950
f of tis a function such that ุจุญูŠุซ ุงู† both Laplace
430
00:47:00,950 --> 00:47:12,190
transform both Laplace transform ู„ู„ F of T and
431
00:47:12,190 --> 00:47:27,640
Laplace transformู„ู„ู€ F' of T exists then
432
00:47:27,640 --> 00:47:31,240
ุจุฏู†ุง
433
00:47:31,240 --> 00:47:40,380
Laplace transform ู„ู„ F' of T ุจู†ุนุฑู ุนู„ู‰ ุฅู†ู‡ุง S ููŠ
434
00:47:40,380 --> 00:47:52,260
Laplace transform ู„ู„ F of Tู†ุงู‚ุต ุงู„ F of Zero ู‡ุฐู‡
435
00:47:52,260 --> 00:47:59,940
ู„ู‡ุง ุตูŠุบุฉ ุชุงู†ูŠุฉ ูƒู…ุงู† ูˆู‡ูŠ S ููŠ ู…ูŠู†ุŸ ููŠ capital X as
436
00:47:59,940 --> 00:48:07,640
a function of S ู†ุงู‚ุต ุงู„ F of Zero ู‡ุฐู‡ ู„ูˆ ูƒุงู†ุช
437
00:48:07,640 --> 00:48:13,320
ุงู„ู…ุดุชู‚ุฉ ุงู„ุฃูˆู„ู‰ ู„ูˆ ุฌูŠู†ุง ู„ู„ู…ุดุชู‚ุฉ ุงู„ุซุงู†ูŠุฉ Similarly
438
00:48:15,900 --> 00:48:22,260
ู„ุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… ู„ู„ู…ุดุชู‚ุฉ ุงู„ุซุงู†ูŠุฉ as a function of T
439
00:48:22,260 --> 00:48:34,360
ุจุฏูŠ ุณุงูˆูŠ S squared ู„ุจู„ุงุณ ู„ู„ F of T ู†ุงู‚ุต ุงู„ S ููŠ ุงู„
440
00:48:34,360 --> 00:48:42,800
F of Zero ู†ุงู‚ุต ุงู„ F prime of Zero in general
441
00:48:46,850 --> 00:48:53,970
ุนู„ู‰ ูˆุฌู‡ ุงู„ุนู…ูˆู… ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… ู„ู„ุชูุงุถู„ ุงู„ู†ูˆู†ูŠ as
442
00:48:53,970 --> 00:48:55,690
a function of T
443
00:49:02,760 --> 00:49:13,960
ู†ุงู‚ุต SN ู†ุงู‚ุต ูˆุงุญุฏ ููŠ ุงู„ F of Zero ู†ุงู‚ุต SN ู†ุงู‚ุต
444
00:49:13,960 --> 00:49:23,220
ุงุชู†ูŠู† ููŠ ุงู„ F prime of Zero ู†ุงู‚ุต ู†ุงู‚ุต ุงู„ู„ูŠ ู‡ูˆ ุงู„ S
445
00:49:24,240 --> 00:49:30,300
ูู‰ ุงู„ F to the derivative of N minus two ุนู†ุฏ ุงู„
446
00:49:30,300 --> 00:49:37,560
zero ู†ุงู‚ุต F to the derivative of N minus one ุนู†ุฏ
447
00:49:37,560 --> 00:49:38,160
ุงู„ zero
448
00:49:57,000 --> 00:50:02,900
ุงู„ุญุณุงุจุงุช ุงู„ู„ูŠ ูุงุชุช ูƒุงู†ุช ูƒู„ู‡ุง ุญุณุงุจุงุช ู„ุจู„ุงุณ ู„ู„ุฏูˆุงู„
449
00:50:02,900 --> 00:50:09,080
ู„ูƒู† ู‡ู†ุง ุจูŠุฌูŠ ุญุณุงุจุงุช ู„ุจู„ุงุณ ู„ู…ุดุชู‚ุงุช ุงู„ุฏูˆุงู„ ู‡ู†ุงุฎุฏ
450
00:50:09,080 --> 00:50:12,820
ู„ุจู„ุงุณ ุงู„ู…ุดุชู‚ุฉ ุงู„ุฃูˆู„ู‰ ู„ุจู„ุงุณ ุงู„ู…ุดุชู‚ุฉ ุงู„ุซุงู†ูŠุฉ ูˆู…ู† ุซู…
451
00:50:12,820 --> 00:50:18,280
ุงู†ุนู…ู… ู„ุจู„ุงุณ ุงู„ู…ุดุชู‚ุฉ ุงู„ู†ูˆู†ูŠุฉ ู„ูˆ ุฌูŠู†ุง ุงู„ุฌุฏูˆู„ ู‡ุฐุง
452
00:50:18,280 --> 00:50:24,200
ูุชุญุช ููŠู‡ ููŠ ุงู„ูƒุชุงุจ ุจุชู„ุงู‚ูŠ ู‡ุฐู‡ู‡ุง ุฃุฎุฑ ู„ุจู„ุงุณ ููŠ
453
00:50:24,200 --> 00:50:30,760
ุงู„ุฌุฏูˆู„ ุฃุณูู„ู‡ ุฃุฎุฑ ูˆุงุญุฏุฉุฃูŠุด ุจูŠู‚ูˆู„ ุงู„ู†ุธุฑูŠุฉุŸ ุจูŠู‚ูˆู„ ู„ูŠ
454
00:50:30,760 --> 00:50:36,020
ู…ุง ูŠุฃุชูŠ f of t ู‡ูŠ ุงู„ function ุจุญูŠุซ ู„ุงุจู„ุณุฉ ู„ f of t
455
00:50:36,020 --> 00:50:41,340
ูˆ ู„ุงุจู„ุณุฉ ุงู„ู…ุดุชู‚ุฉ exist ุงู† ุญุฏุซ ุฐู„ูƒ ูŠุนู†ูŠ ุงูŠู‡ ุจู‚ุฏุฑ
456
00:50:41,340 --> 00:50:45,640
ุงุฌูŠุจ ู„ุงุจู„ุณุฉ ู„ู„ู…ุดุชู‚ุฉ ุจุฏู„ุงู„ุฉ ู„ุงุจู„ุณุฉ ู„ู„ุฏุงู„ุฉ ูƒูŠูุŸ
457
00:50:45,640 --> 00:50:51,000
ูƒุงู„ุชุงู„ูŠ ุจู‚ูˆู„ s ููŠ ู„ุงุจู„ุณุฉ ู„ f of t ู†ุงู‚ุต ุงู„ f of
458
00:50:51,000 --> 00:50:56,270
zeroุฃูˆ ุงู„ F of T ู„ plus ุงู„ู„ูŠ ู‡ุจู‚ู‰ ุนุจู‘ุฑู‡ ุนู†ู‡ ุจุตูŠุบุฉ
459
00:50:56,270 --> 00:51:02,430
X of S ูŠุนู†ูŠ ู‡ุฐู‡ ุฃู…ุงู†ุงุช function ูƒู„ู‡ุง ููŠ S capital
460
00:51:02,430 --> 00:51:08,190
X of S ูˆ ู‡ู†ุง ู†ุงู‚ุต ุงู„ F of Zero ู„ูˆ ุนู†ุฏูŠ ุงู„ู…ุดุชู‚ุฉ
461
00:51:08,190 --> 00:51:12,350
ุงู„ุซุงู†ูŠุฉ ูˆ ุจุฏูŠ ุฃุฌูŠุจู„ู‡ุง ู„ plus ูŠุจู‚ู‰ ุจุงุจุฏุฃ ุงู„ S ุงู„ุฃุณ
462
00:51:12,350 --> 00:51:17,940
ุชุงุจุนู‡ ู‡ู†ุง ูƒุฏู‡ ูƒุงู†ู„ุฃู† ุงู„ู…ุดุชู‚ุฉ ูˆุงุญุฏ ู‡ู†ุง ู…ุดุชู‚ุฉ ุชุงู†ูŠุฉ
463
00:51:17,940 --> 00:51:22,640
ุจุฏุฃุช ุจ S ุชุฑุจูŠุน S ุจุนุฏู‡ุง ุชุนุฏู‰ ู…ู† ุงู„ S ุจุตูŠุฑ S of Zero
464
00:51:22,640 --> 00:51:27,660
ูŠุจู‚ู‰ S ุชุฑุจูŠุน ู„ plus F of T ู†ุงู‚ุต ุงู„ S ููŠ F of Zero
465
00:51:27,660 --> 00:51:34,380
ู†ุงู‚ุต F prime of Zeroูˆู‡ูƒุฐุง ุงู„ุงู† ู„ูˆ ุฌูŠู†ุง ู†ุนู…ู…ู‡ุง ูŠุจู‚ู‰
466
00:51:34,380 --> 00:51:40,300
ุงู„ plus ุงู„ู…ุดุชู‚ ู‚ุงู†ูˆู†ูŠุฉ ู„ F ู‡ูˆ S to the power N ู‡ุฐุง
467
00:51:40,300 --> 00:51:44,620
derivative ูˆู‡ุฐุง ุฃุณ ููŠ X to the power S ูƒ function
468
00:51:44,620 --> 00:51:49,700
ู†ุงู‚ุต ุงู„ S ุจุฏู‡ ูŠู†ุฌุณ ุงู„ุฃุณ ุชุจุนู‡ุง ูˆุงุญุฏ ููŠ ุงู„ F of Zero
469
00:51:49,700 --> 00:51:54,300
ู†ุงู‚ุต ุงู„ S ุงู„ N ุจุฏู‡ ูŠู†ุฌุณ ูˆุงุญุฏ ู‡ู†ุง ุนู† ุงู„ู„ูŠ ุฌุงุจู„ู‡ูู‰
470
00:51:54,300 --> 00:51:58,800
ุงู„ F prime of 0 ู†ุธู„ ู…ุงุดูŠ ู„ุบุงูŠุฉ ู…ุง ู†ูˆุตู„ S ูˆ S ูˆุงุญุฏ
471
00:51:58,800 --> 00:52:05,600
ุงู„ู…ุดุชู‚ุฉ N ู†ู‚ุต ุงุชู†ูŠู† ู†ู‚ุต ุงู„ F N minus ุงู„ one ุนู†ุฏ Z
472
00:52:05,600 --> 00:52:10,340
ุงู„ู…ุฑุฉ ุงู„ู‚ุงุฏู…ุฉ ุงู† ุดุงุก ุงู„ู„ู‡ ุจุฏู†ุง ู†ุงุฎุฏ ุงู…ุซู„ุฉ ุนู„ู‰ ูƒูŠู
473
00:52:10,340 --> 00:52:15,540
ู†ุญูŠู„ ู…ุนุงุฏู„ุฉ ุชูุงุถู„ูŠุฉ ุจูˆุงุณุทุฉ Laplace transform
474
00:52:15,540 --> 00:52:20,360
ูˆุจุงุณุชุฎุฏุงู… ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ ุงู† ุดุงุก ุงู„ู„ู‡ ุชุนุงู„ู‰ ุงุนุทูŠูƒูˆุง
475
00:52:20,360 --> 00:52:20,580
ุงู„ุนููˆ