Delete urbantreecanopyindurham2dataset.py
Browse files
urbantreecanopyindurham2dataset.py
DELETED
@@ -1,164 +0,0 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
"""UrbanTreeCanopyInDurham2Dataset
|
3 |
-
|
4 |
-
Automatically generated by Colaboratory.
|
5 |
-
|
6 |
-
Original file is located at
|
7 |
-
https://colab.research.google.com/drive/1X59zPtI7ydiX10ZnfjsNGvnKNTXgwrWs
|
8 |
-
"""
|
9 |
-
|
10 |
-
from datasets import DatasetInfo, Features, Value, load_dataset, BuilderConfig, DatasetBuilder
|
11 |
-
import csv
|
12 |
-
import json
|
13 |
-
import os
|
14 |
-
from typing import List
|
15 |
-
import datasets
|
16 |
-
import logging
|
17 |
-
from datasets import DownloadManager, SplitGenerator, Split
|
18 |
-
import zipfile
|
19 |
-
import pandas as pd
|
20 |
-
import geopandas as gpd
|
21 |
-
import tempfile
|
22 |
-
import shutil
|
23 |
-
import plotly.express as px
|
24 |
-
from datasets import GeneratorBasedBuilder
|
25 |
-
|
26 |
-
class UrbanTreeCanopyInDurham2Dataset(GeneratorBasedBuilder):
|
27 |
-
|
28 |
-
def _info(self):
|
29 |
-
return DatasetInfo(
|
30 |
-
description="Urban_Tree_Canopy_in_Durham2",
|
31 |
-
features=Features(
|
32 |
-
{
|
33 |
-
"objectid": Value("int32"),
|
34 |
-
"streetaddr": Value("string"),
|
35 |
-
"city_x": Value("string"),
|
36 |
-
"zipcode_x": Value("string"),
|
37 |
-
"species_x": Value("string"),
|
38 |
-
"commonname_x": Value("string"),
|
39 |
-
"plantingda": datasets.Value("timestamp[us]"),
|
40 |
-
"diameterin_x": Value("float"),
|
41 |
-
"heightft_x": Value("float"),
|
42 |
-
"condition_x": Value("string"),
|
43 |
-
"program_x": Value("string"),
|
44 |
-
"matureheig": Value("float"),
|
45 |
-
"created_da": datasets.Value("timestamp[us]"),
|
46 |
-
"last_edi_1": datasets.Value("timestamp[us]"),
|
47 |
-
"geometry_x": Value("string"),
|
48 |
-
"x": Value("float"),
|
49 |
-
"y": Value("float"),
|
50 |
-
"coremoved_": Value("float"),
|
51 |
-
"coremove_1": Value("float"),
|
52 |
-
"o3removed_": Value("float"),
|
53 |
-
"o3remove_1": Value("float"),
|
54 |
-
"no2removed": Value("float"),
|
55 |
-
"no2remov_1": Value("float"),
|
56 |
-
"so2removed": Value("float"),
|
57 |
-
"so2remov_1": Value("float"),
|
58 |
-
"pm10remove": Value("float"),
|
59 |
-
"pm10remo_1": Value("float"),
|
60 |
-
"pm25remove": Value("float"),
|
61 |
-
"o2producti": Value("float"),
|
62 |
-
}
|
63 |
-
),
|
64 |
-
supervised_keys=None,
|
65 |
-
homepage="https://github.com/AuraMa111/Urban_Tree_Canopy_in_Durham",
|
66 |
-
citation="A citation or reference to the source of the dataset.",
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
def _split_generators(self, dl_manager):
|
72 |
-
csv_url = "https://drive.google.com/uc?export=download&id=18HmgMbtbntWsvAySoZr4nV1KNu-i7GCy"
|
73 |
-
geojson_url = "https://drive.google.com/uc?export=download&id=1jpFVanNGy7L5tVO-Z_nltbBXKvrcAoDo"
|
74 |
-
|
75 |
-
# Extract the file ID from the SHP Google Drive sharing URL and construct a direct download link
|
76 |
-
shp_file_id = "1DYcug0xiWYlsKZorbbEcrjZWEAB0y4MY"
|
77 |
-
shp_url = f"https://drive.google.com/uc?export=download&id={shp_file_id}"
|
78 |
-
|
79 |
-
# Use dl_manager to download the files
|
80 |
-
csv_path = dl_manager.download_and_extract(csv_url)
|
81 |
-
shp_path = dl_manager.download_and_extract(shp_url)
|
82 |
-
geojson_path = dl_manager.download_and_extract(geojson_url)
|
83 |
-
|
84 |
-
# Assuming the paths are directories, construct the full paths to the files
|
85 |
-
csv_file_path = os.path.join(csv_path, 'Trees_%26_Planting_Sites.csv')
|
86 |
-
shp_file_path = os.path.join(shp_path, 'GS_TreeInventory.shp') # Adjust if necessary
|
87 |
-
geojson_file_path = os.path.join(geojson_path, 'Trees_%26_Planting_Sites.geojson')
|
88 |
-
|
89 |
-
# Now you can return the paths for use in your data processing
|
90 |
-
return [
|
91 |
-
datasets.SplitGenerator(
|
92 |
-
name=datasets.Split.TRAIN,
|
93 |
-
gen_kwargs={
|
94 |
-
"csv_path": csv_file_path,
|
95 |
-
"shp_path": shp_file_path,
|
96 |
-
"geojson_path": geojson_file_path,
|
97 |
-
},
|
98 |
-
),
|
99 |
-
]
|
100 |
-
|
101 |
-
def _generate_examples(self, csv_path, shp_path, geojson_path):
|
102 |
-
"""Yields examples as (key, example) tuples."""
|
103 |
-
|
104 |
-
# Load the datasets
|
105 |
-
csv_df = pd.read_csv(csv_path)
|
106 |
-
shp_gdf = gpd.read_file(shp_path)
|
107 |
-
with open(geojson_path, 'r') as f:
|
108 |
-
geojson_data = json.load(f)
|
109 |
-
geojson_gdf = gpd.GeoDataFrame.from_features(geojson_data["features"])
|
110 |
-
|
111 |
-
# Standardize column names
|
112 |
-
csv_df.columns = csv_df.columns.str.lower().str.replace(' ', '_')
|
113 |
-
shp_gdf.columns = shp_gdf.columns.str.lower().str.replace(' ', '_')
|
114 |
-
geojson_gdf.columns = geojson_gdf.columns.str.lower().str.replace(' ', '_')
|
115 |
-
|
116 |
-
# Convert 'objectid' to int
|
117 |
-
csv_df['objectid'] = csv_df['objectid'].astype(int)
|
118 |
-
shp_gdf['objectid'] = shp_gdf['objectid'].astype(int)
|
119 |
-
geojson_gdf['objectid'] = geojson_gdf['objectid'].astype(int)
|
120 |
-
|
121 |
-
# Merge the dataframes on 'objectid'
|
122 |
-
combined_gdf = shp_gdf.merge(csv_df, on='objectid', how='inner')
|
123 |
-
combined_gdf = combined_gdf.merge(geojson_gdf, on='objectid', how='inner')
|
124 |
-
combined_gdf=combined_gdf[["objectid", "streetaddr", "city_x", "zipcode_x",
|
125 |
-
"species_x", "commonname_x", "plantingda", "diameterin_x",
|
126 |
-
"heightft_x", "condition_x", "program_x", "matureheig",
|
127 |
-
"created_da", "last_edi_1", "geometry_x",
|
128 |
-
"x", "y",
|
129 |
-
"coremoved_", "coremove_1",
|
130 |
-
"o3removed_", "o3remove_1",
|
131 |
-
"no2removed", "no2remov_1",
|
132 |
-
"so2removed", "so2remov_1",
|
133 |
-
"pm10remove", "pm10remo_1",
|
134 |
-
"pm25remove", "o2producti",
|
135 |
-
]]
|
136 |
-
|
137 |
-
# Yield the combined data
|
138 |
-
for idx, row in combined_gdf.iterrows():
|
139 |
-
# Yield each row as an example, using the index as the key
|
140 |
-
yield idx, row.to_dict()
|
141 |
-
|
142 |
-
@staticmethod
|
143 |
-
def plot_spatial_distribution(combined_gdf, lat_col='x', lon_col='y', color_col='species_x', hover_col='species_x'):
|
144 |
-
# Calculate the mean latitude and longitude for the center of the map
|
145 |
-
center_lat = combined_gdf[lat_col].mean()
|
146 |
-
center_lon = combined_gdf[lon_col].mean()
|
147 |
-
|
148 |
-
# Create a scatter mapbox plot
|
149 |
-
fig = px.scatter_mapbox(combined_gdf,
|
150 |
-
lat=lat_col,
|
151 |
-
lon=lon_col,
|
152 |
-
color=color_col,
|
153 |
-
hover_name=hover_col,
|
154 |
-
center={"lat": center_lat, "lon": center_lon},
|
155 |
-
zoom=10,
|
156 |
-
height=600,
|
157 |
-
width=800)
|
158 |
-
|
159 |
-
# Set the mapbox style to "open-street-map"
|
160 |
-
fig.update_layout(mapbox_style="open-street-map")
|
161 |
-
|
162 |
-
# Display the figure
|
163 |
-
fig.show()
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|