Ziyuan111 commited on
Commit
0cfd76f
1 Parent(s): e341938

Upload urbantreecanopyindurham2dataset.py

Browse files
Files changed (1) hide show
  1. urbantreecanopyindurham2dataset.py +164 -0
urbantreecanopyindurham2dataset.py ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """UrbanTreeCanopyInDurham2Dataset
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1X59zPtI7ydiX10ZnfjsNGvnKNTXgwrWs
8
+ """
9
+
10
+ from datasets import DatasetInfo, Features, Value, load_dataset, BuilderConfig, DatasetBuilder
11
+ import csv
12
+ import json
13
+ import os
14
+ from typing import List
15
+ import datasets
16
+ import logging
17
+ from datasets import DownloadManager, SplitGenerator, Split
18
+ import zipfile
19
+ import pandas as pd
20
+ import geopandas as gpd
21
+ import tempfile
22
+ import shutil
23
+ import plotly.express as px
24
+ from datasets import GeneratorBasedBuilder
25
+
26
+ class UrbanTreeCanopyInDurham2Dataset(GeneratorBasedBuilder):
27
+
28
+ def _info(self):
29
+ return DatasetInfo(
30
+ description="Urban_Tree_Canopy_in_Durham2",
31
+ features=Features(
32
+ {
33
+ "objectid": Value("int32"),
34
+ "streetaddr": Value("string"),
35
+ "city_x": Value("string"),
36
+ "zipcode_x": Value("string"),
37
+ "species_x": Value("string"),
38
+ "commonname_x": Value("string"),
39
+ "plantingda": datasets.Value("timestamp[us]"),
40
+ "diameterin_x": Value("float"),
41
+ "heightft_x": Value("float"),
42
+ "condition_x": Value("string"),
43
+ "program_x": Value("string"),
44
+ "matureheig": Value("float"),
45
+ "created_da": datasets.Value("timestamp[us]"),
46
+ "last_edi_1": datasets.Value("timestamp[us]"),
47
+ "geometry_x": Value("string"),
48
+ "x": Value("float"),
49
+ "y": Value("float"),
50
+ "coremoved_": Value("float"),
51
+ "coremove_1": Value("float"),
52
+ "o3removed_": Value("float"),
53
+ "o3remove_1": Value("float"),
54
+ "no2removed": Value("float"),
55
+ "no2remov_1": Value("float"),
56
+ "so2removed": Value("float"),
57
+ "so2remov_1": Value("float"),
58
+ "pm10remove": Value("float"),
59
+ "pm10remo_1": Value("float"),
60
+ "pm25remove": Value("float"),
61
+ "o2producti": Value("float"),
62
+ }
63
+ ),
64
+ supervised_keys=None,
65
+ homepage="https://github.com/AuraMa111/Urban_Tree_Canopy_in_Durham",
66
+ citation="A citation or reference to the source of the dataset.",
67
+ )
68
+
69
+
70
+
71
+ def _split_generators(self, dl_manager):
72
+ csv_url = "https://drive.google.com/uc?export=download&id=18HmgMbtbntWsvAySoZr4nV1KNu-i7GCy"
73
+ geojson_url = "https://drive.google.com/uc?export=download&id=1jpFVanNGy7L5tVO-Z_nltbBXKvrcAoDo"
74
+
75
+ # Extract the file ID from the SHP Google Drive sharing URL and construct a direct download link
76
+ shp_file_id = "1DYcug0xiWYlsKZorbbEcrjZWEAB0y4MY"
77
+ shp_url = f"https://drive.google.com/uc?export=download&id={shp_file_id}"
78
+
79
+ # Use dl_manager to download the files
80
+ csv_path = dl_manager.download_and_extract(csv_url)
81
+ shp_path = dl_manager.download_and_extract(shp_url)
82
+ geojson_path = dl_manager.download_and_extract(geojson_url)
83
+
84
+ # Assuming the paths are directories, construct the full paths to the files
85
+ csv_file_path = os.path.join(csv_path, 'Trees_%26_Planting_Sites.csv')
86
+ shp_file_path = os.path.join(shp_path, 'GS_TreeInventory.shp') # Adjust if necessary
87
+ geojson_file_path = os.path.join(geojson_path, 'Trees_%26_Planting_Sites.geojson')
88
+
89
+ # Now you can return the paths for use in your data processing
90
+ return [
91
+ datasets.SplitGenerator(
92
+ name=datasets.Split.TRAIN,
93
+ gen_kwargs={
94
+ "csv_path": csv_file_path,
95
+ "shp_path": shp_file_path,
96
+ "geojson_path": geojson_file_path,
97
+ },
98
+ ),
99
+ ]
100
+
101
+ def _generate_examples(self, csv_path, shp_path, geojson_path):
102
+ """Yields examples as (key, example) tuples."""
103
+
104
+ # Load the datasets
105
+ csv_df = pd.read_csv(csv_path)
106
+ shp_gdf = gpd.read_file(shp_path)
107
+ with open(geojson_path, 'r') as f:
108
+ geojson_data = json.load(f)
109
+ geojson_gdf = gpd.GeoDataFrame.from_features(geojson_data["features"])
110
+
111
+ # Standardize column names
112
+ csv_df.columns = csv_df.columns.str.lower().str.replace(' ', '_')
113
+ shp_gdf.columns = shp_gdf.columns.str.lower().str.replace(' ', '_')
114
+ geojson_gdf.columns = geojson_gdf.columns.str.lower().str.replace(' ', '_')
115
+
116
+ # Convert 'objectid' to int
117
+ csv_df['objectid'] = csv_df['objectid'].astype(int)
118
+ shp_gdf['objectid'] = shp_gdf['objectid'].astype(int)
119
+ geojson_gdf['objectid'] = geojson_gdf['objectid'].astype(int)
120
+
121
+ # Merge the dataframes on 'objectid'
122
+ combined_gdf = shp_gdf.merge(csv_df, on='objectid', how='inner')
123
+ combined_gdf = combined_gdf.merge(geojson_gdf, on='objectid', how='inner')
124
+ combined_gdf=combined_gdf[["objectid", "streetaddr", "city_x", "zipcode_x",
125
+ "species_x", "commonname_x", "plantingda", "diameterin_x",
126
+ "heightft_x", "condition_x", "program_x", "matureheig",
127
+ "created_da", "last_edi_1", "geometry_x",
128
+ "x", "y",
129
+ "coremoved_", "coremove_1",
130
+ "o3removed_", "o3remove_1",
131
+ "no2removed", "no2remov_1",
132
+ "so2removed", "so2remov_1",
133
+ "pm10remove", "pm10remo_1",
134
+ "pm25remove", "o2producti",
135
+ ]]
136
+
137
+ # Yield the combined data
138
+ for idx, row in combined_gdf.iterrows():
139
+ # Yield each row as an example, using the index as the key
140
+ yield idx, row.to_dict()
141
+
142
+ @staticmethod
143
+ def plot_spatial_distribution(combined_gdf, lat_col='x', lon_col='y', color_col='species_x', hover_col='species_x'):
144
+ # Calculate the mean latitude and longitude for the center of the map
145
+ center_lat = combined_gdf[lat_col].mean()
146
+ center_lon = combined_gdf[lon_col].mean()
147
+
148
+ # Create a scatter mapbox plot
149
+ fig = px.scatter_mapbox(combined_gdf,
150
+ lat=lat_col,
151
+ lon=lon_col,
152
+ color=color_col,
153
+ hover_name=hover_col,
154
+ center={"lat": center_lat, "lon": center_lon},
155
+ zoom=10,
156
+ height=600,
157
+ width=800)
158
+
159
+ # Set the mapbox style to "open-street-map"
160
+ fig.update_layout(mapbox_style="open-street-map")
161
+
162
+ # Display the figure
163
+ fig.show()
164
+