Datasets:
metadata
license: cc-by-nc-4.0
task_categories:
- image-segmentation
language:
- en
tags:
- medical
- image
- segmentation
- MRI
- knee
- cartilage
pretty_name: oaizib-cm
size_categories:
- n<1K
Data
Source | link |
---|---|
Huggingface | main |
load_dataset-support | |
Zenodo | here |
Google Drive | here |
- Huggingface Dataset Branch:
main
: The main branch contains the same files as those in Zenodo and Google Driveload_dataset-support
: We added HFload_dataset()
support in this branch (ref: intended usage 2)
About
This is the official release of OAIZIB-CM dataset
- OAIZIB-CM is based on the OAIZIB dataset
- In OAIZIB-CM, tibial cartilage is split into medial and lateral tibial cartilages.
- OAIZIB-CM includes CLAIR-Knee-103R, consisting of
- a template image learned from 103 MR images of subjects without radiographic OA
- corresponding 5-ROI segmentation mask for cartilages and bones
- corresponding 20-ROI atlas for articular cartilages
- It is compulsory to cite the paper if you use the dataset
Changelog 🔥
- [22 Mar, 2025] Add HF
load_dataset()
support in theload_dataset-support
branch. - [27 Feb, 2025] Add the template and atlas CLAIR-Knee-103R
- [26 Feb, 2025] Update compulsory citation (CartiMorph) for the dataset
- [15 Feb, 2025] Update file
imagesTs/oaizib_454_0000.nii.gz
- [14 Feb, 2025] Identify corrupted files: case 454
Files
Images & Labels
- imagesTr: training images (#404)
- labelsTr: training segmentation masks (#404)
- imagesTs: testing images (#103)
- labelsTs: testing segmentation masks (#103)
Data Split & Info
subInfo_train
: list of training datasubInfo_test
: list of testing datakneeSideInfo
: a file containing knee side information, used in CartiMorph Toolbox
Intended Usage
1. Download Files from the main
or load_dataset-support
Branch
#!/bin/bash
pip install --upgrade huggingface-hub[cli]
huggingface-cli login --token $HF_TOKEN
# python
from huggingface_hub import snapshot_download
snapshot_download(repo_id="YongchengYAO/OAIZIB-CM", repo_type='dataset', local_dir="/your/local/folder")
# python
from huggingface_hub import snapshot_download
snapshot_download(repo_id="YongchengYAO/OAIZIB-CM", repo_type='dataset', revision="load_dataset-support", local_dir="/your/local/folder")
2. Load Dataset
or IterableDataset
from the load_dataset-support
Branch ‼️
>>> from datasets import load_dataset
# Load Dataset
>>> dataset_test = load_dataset("YongchengYAO/OAIZIB-CM", revision="load_dataset-support", trust_remote_code=True, split="test")
>>> type(dataset_test)
<class 'datasets.arrow_dataset.Dataset'>
# Convert Dataset to IterableDataset: use .to_iterable_dataset()
>>> iterdataset_test = dataset_test.to_iterable_dataset()
>>> type(iterdataset_test)
<class 'datasets.iterable_dataset.IterableDataset'>
# Load IteravleDataset: add streaming=True
>>> iterdataset_train = load_dataset("YongchengYAO/OAIZIB-CM", revision="load_dataset-support", trust_remote_code=True, streaming=True, split="train")
>>> type(iterdataset_train)
<class 'datasets.iterable_dataset.IterableDataset'>
Segmentation Labels
labels_map = {
"1": "Femur",
"2": "Femoral Cartilage",
"3": "Tibia",
"4": "Medial Tibial Cartilage",
"5": "Lateral Tibial Cartilage",
}
Citations
The dataset originates from these projects:
- CartiMorph: https://github.com/YongchengYAO/CartiMorph
- CartiMorph Toolbox:
@article{YAO2024103035,
title = {CartiMorph: A framework for automated knee articular cartilage morphometrics},
journal = {Medical Image Analysis},
author = {Yongcheng Yao and Junru Zhong and Liping Zhang and Sheheryar Khan and Weitian Chen},
volume = {91},
pages = {103035},
year = {2024},
issn = {1361-8415},
doi = {https://doi.org/10.1016/j.media.2023.103035}
}
@InProceedings{10.1007/978-3-031-82007-6_16,
author="Yao, Yongcheng
and Chen, Weitian",
editor="Wu, Shandong
and Shabestari, Behrouz
and Xing, Lei",
title="Quantifying Knee Cartilage Shape and Lesion: From Image to Metrics",
booktitle="Applications of Medical Artificial Intelligence",
year="2025",
publisher="Springer Nature Switzerland",
address="Cham",
pages="162--172"
}
License
This dataset is released under the CC BY-NC 4.0
license.