OAIZIB-CM / README.md
YongchengYAO's picture
Update README.md
01c1455 verified
metadata
license: cc-by-nc-4.0
task_categories:
  - image-segmentation
language:
  - en
tags:
  - medical
  - image
  - segmentation
  - MRI
  - knee
  - cartilage
pretty_name: oaizib-cm
size_categories:
  - n<1K

Data

Source link
Huggingface main
load_dataset-support
Zenodo here
Google Drive here
  • Huggingface Dataset Branch:
    • main: The main branch contains the same files as those in Zenodo and Google Drive
    • load_dataset-support: We added HF load_dataset() support in this branch (ref: intended usage 2)

About

This is the official release of OAIZIB-CM dataset

Changelog 🔥

  • [22 Mar, 2025] Add HF load_dataset() support in the load_dataset-support branch.
  • [27 Feb, 2025] Add the template and atlas CLAIR-Knee-103R
  • [26 Feb, 2025] Update compulsory citation (CartiMorph) for the dataset
  • [15 Feb, 2025] Update file imagesTs/oaizib_454_0000.nii.gz
  • [14 Feb, 2025] Identify corrupted files: case 454

Files

Images & Labels

  • imagesTr: training images (#404)
  • labelsTr: training segmentation masks (#404)
  • imagesTs: testing images (#103)
  • labelsTs: testing segmentation masks (#103)

Data Split & Info

  • subInfo_train: list of training data
  • subInfo_test: list of testing data
  • kneeSideInfo: a file containing knee side information, used in CartiMorph Toolbox

Intended Usage

1. Download Files from the main or load_dataset-support Branch

#!/bin/bash
pip install --upgrade huggingface-hub[cli]
huggingface-cli login --token $HF_TOKEN
# python
from huggingface_hub import snapshot_download
snapshot_download(repo_id="YongchengYAO/OAIZIB-CM", repo_type='dataset', local_dir="/your/local/folder")
# python
from huggingface_hub import snapshot_download
snapshot_download(repo_id="YongchengYAO/OAIZIB-CM", repo_type='dataset', revision="load_dataset-support", local_dir="/your/local/folder")

2. Load Dataset or IterableDataset from the load_dataset-support Branch ‼️

>>> from datasets import load_dataset

# Load Dataset
>>> dataset_test = load_dataset("YongchengYAO/OAIZIB-CM", revision="load_dataset-support", trust_remote_code=True, split="test")
>>> type(dataset_test)
<class 'datasets.arrow_dataset.Dataset'>

# Convert Dataset to IterableDataset: use .to_iterable_dataset()
>>> iterdataset_test = dataset_test.to_iterable_dataset()
>>> type(iterdataset_test)
<class 'datasets.iterable_dataset.IterableDataset'>

# Load IteravleDataset: add streaming=True
>>> iterdataset_train = load_dataset("YongchengYAO/OAIZIB-CM", revision="load_dataset-support", trust_remote_code=True, streaming=True, split="train")
>>> type(iterdataset_train)
<class 'datasets.iterable_dataset.IterableDataset'>

Segmentation Labels

labels_map = {
    "1": "Femur",
    "2": "Femoral Cartilage",
    "3": "Tibia",
    "4": "Medial Tibial Cartilage",
    "5": "Lateral Tibial Cartilage",
}

Citations

The dataset originates from these projects:

@article{YAO2024103035,
title = {CartiMorph: A framework for automated knee articular cartilage morphometrics},
journal = {Medical Image Analysis},
author = {Yongcheng Yao and Junru Zhong and Liping Zhang and Sheheryar Khan and Weitian Chen},
volume = {91},
pages = {103035},
year = {2024},
issn = {1361-8415},
doi = {https://doi.org/10.1016/j.media.2023.103035}
}
@InProceedings{10.1007/978-3-031-82007-6_16,
author="Yao, Yongcheng
and Chen, Weitian",
editor="Wu, Shandong
and Shabestari, Behrouz
and Xing, Lei",
title="Quantifying Knee Cartilage Shape and Lesion: From Image to Metrics",
booktitle="Applications of Medical Artificial Intelligence",
year="2025",
publisher="Springer Nature Switzerland",
address="Cham",
pages="162--172"
}

License

This dataset is released under the CC BY-NC 4.0 license.