|
--- |
|
dataset_info: |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: text |
|
dtype: string |
|
splits: |
|
- name: test |
|
num_bytes: 1024849819 |
|
num_examples: 10000 |
|
download_size: 1018358664 |
|
dataset_size: 1024849819 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: test |
|
path: data/test-* |
|
license: mit |
|
language: |
|
- en |
|
tags: |
|
- art |
|
size_categories: |
|
- 1K<n<10K |
|
task_categories: |
|
- visual-question-answering |
|
- question-answering |
|
- text-to-image |
|
--- |
|
|
|
|
|
|
|
|
|
|
|
## Dataset Description |
|
|
|
The **Products-10k BLIP CAPTIONS** dataset consists of 10000 images of various products along with their automatically generated captions. The captions are generated using the BLIP (Bootstrapping Language-Image Pre-training) model. This dataset aims to aid in tasks related to image captioning, visual recognition, and product classification. |
|
|
|
## Dataset Summary |
|
|
|
- **Dataset Name**: Products-10k |
|
- **Generated Captions Model**: Salesforce/blip-image-captioning-large |
|
- **Number of Images**: 10,000 |
|
- **Image Formats**: JPEG, PNG |
|
- **Captioning Prompt**: "Photography of" |
|
- **Source**: The images are sourced from a variety of product categories. |
|
|
|
## Dataset Structure |
|
|
|
The dataset is structured as follows: |
|
|
|
- **image**: Contains the product images in RGB format. |
|
- **text**: Contains the generated captions for each product image. |
|
|
|
|
|
## Usage |
|
|
|
You can load and use this dataset with the Hugging Face `datasets` library as follows: |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset("VikramSingh178/Products-10k_sample-BLIP-captions", split="train") |
|
|
|
# Display an example |
|
example = dataset[0] |
|
image = example["image"] |
|
caption = example["text"] |
|
image.show() |
|
print("Caption:", caption) |
|
``` |
|
|
|
|
|
|
|
``` |
|
author = {Yalong Bai, Yuxiang Chen, Wei Yu, Linfang Wang, Wei Zhang}, |
|
title = {Products-10K: A Large-scale Product Recognition Dataset}, |
|
journal = {arXiv}, |
|
year = {2024}, |
|
url = {https://arxiv.org/abs/2008.10545} |
|
``` |