POPP-line / README.md
alexis-imbert's picture
Update README.md
def0af6 verified
|
raw
history blame
2.07 kB
---
license: mit
language:
- fr
task_categories:
- image-to-text
pretty_name: POPP
dataset_info:
features:
- name: image
dtype: image
- name: text
dtype: string
splits:
- name: train
num_examples: 3834
- name: validation
num_examples: 479
- name: test
num_examples: 478
dataset_size: 4791
tags:
- atr
- htr
- ocr
- historical
- handwritten
---
# POPP - line level
## Table of Contents
- [POPP - line level](#popp-line-level)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
## Dataset Description
- **Homepage:** [POPP](https://popp.hypotheses.org/)
- **Source:** [GitHub](https://github.com/Shulk97/POPP-datasets/tree/master/Belleville)
- **Paper:** [Recognition and Information Extraction in Historical Handwritten Tables: Toward Understanding Early 20th Century Paris Census](https://link.springer.com/chapter/10.1007/978-3-031-06555-2_10)
- **Point of Contact:** [TEKLIA](https://teklia.com)
## Dataset Summary
The POPP dataset includes French civil census from Paris from the early 20th century.
Note that all images are resized to a fixed height of 128 pixels.
### Languages
All the documents in the dataset are written in French.
## Dataset Structure
### Data Instances
```
{
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=4300x128 at 0x1A800E8E190,
'text': 'Joly Ernest 88 Indre M par Employé Roblot!18377'
}
```
### Data Fields
- `image`: a PIL.Image.Image object containing the image. Note that when accessing the image column (using dataset[0]["image"]), the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the "image" column, i.e. dataset[0]["image"] should always be preferred over dataset["image"][0].
- `text`: the label transcription of the image.