Datasets:
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
- found
language:
- ja
license:
- cc-by-sa-3.0
multilinguality:
- monolingual
paperswithcode_id: null
pretty_name: 'JaQuAD: Japanese Question Answering Dataset'
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- extractive-qa
Dataset Card for JaQuAD
Table of Contents
- Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Repository: https://github.com/SkelterLabsInc/JaQuAD
- Paper: JaQuAD: Japanese Question Answering Dataset for Machine Reading Comprehension
- Point of Contact: [email protected]
- Size of dataset files: 24.6 MB
- Size of the generated dataset: 48.6 MB
- Total amount of disk used: 73.2 MB
Dataset Summary
Japanese Question Answering Dataset (JaQuAD), released in 2022, is a human-annotated dataset created for Japanese Machine Reading Comprehension. JaQuAD is developed to provide a SQuAD-like QA dataset in Japanese. JaQuAD contains 39,696 question-answer pairs. Questions and answers are manually curated by human annotators. Contexts are collected from Japanese Wikipedia articles. Fine-tuning BERT-Japanese on JaQuAD achieves 78.92% for an F1 score and 63.38% for an exact match.
Supported Tasks
extractive-qa
: This dataset is intended to be used forextractive-qa
.
Languages
Japanese (ja
)
Dataset Structure
Data Instances
- Size of dataset files: 24.6 MB
- Size of the generated dataset: 48.6 MB
- Total amount of disk used: 73.2 MB
An example of 'validation':
{
"id": "de-001-00-000",
"title": "イタセンパラ",
"context": "イタセンパラ(板鮮腹、Acheilognathuslongipinnis)は、コイ科のタナゴ亜科タナゴ属に分類される淡水>魚の一種。\n別名はビワタナゴ(琵琶鱮、琵琶鰱)。",
"question": "ビワタナゴの正式名称は何?",
"question_type": "Multiple sentence reasoning",
"answers": {
"text": "イタセンパラ",
"answer_start": 0,
"answer_type": "Object",
},
},
Data Fields
id
: astring
feature.title
: astring
feature.context
: astring
feature.question
: astring
feature.question_type
: astring
feature.answers
: a dictionary feature containing:text
: astring
feature.answer_start
: aint32
feature.answer_type
: astring
feature.
Data Splitting
JaQuAD consists of three sets, train
, validation
, and test
. They were
created from disjoint sets of Wikipedia articles. The test
set is not publicly
released yet. The following table shows statistics for each set.
Set | Number of Articles | Number of Contexts | Number of Questions |
---|---|---|---|
Train | 691 | 9713 | 31748 |
Validation | 101 | 1431 | 3939 |
Test | 109 | 1479 | 4009 |
Dataset Creation
Curation Rationale
The JaQuAD dataset was created by Skelter Labs to provide a SQuAD-like QA dataset in Japanese. Questions are original and based on Japanese Wikipedia articles.
Source Data
The articles used for the contexts are from Japanese Wikipedia. 88.7% of articles are from the curated list of Japanese high-quality Wikipedia articles, e.g., featured articles and good articles.
Annotations
Wikipedia articles were scrapped and divided into one more multiple paragraphs as contexts. Annotations (questions and answer spans) are written by fluent Japanese speakers, including natives and non-natives. Annotators were given a context and asked to generate non-trivial questions about information in the context.
Personal and Sensitive Information
No personal or sensitive information is included in this dataset. Dataset annotators has been manually verified it.
Considerations for Using the Data
Users should consider that the articles are sampled from Wikipedia articles but not representative of all Wikipedia articles.
Social Impact of Dataset
The social biases of this dataset have not yet been investigated.
Discussion of Biases
The social biases of this dataset have not yet been investigated. Articles and questions have been selected for quality and diversity.
Other Known Limitations
The JaQuAD dataset has limitations as follows:
- Most of them are short answers.
- Assume that a question is answerable using the corresponding context.
This dataset is incomplete yet. If you find any errors in JaQuAD, please contact us.
Additional Information
Dataset Curators
Skelter Labs: https://skelterlabs.com/
Licensing Information
The JaQuAD dataset is licensed under the CC BY-SA 3.0 license.
Citation Information
@misc{so2022jaquad,
title={{JaQuAD: Japanese Question Answering Dataset for Machine Reading Comprehension}},
author={ByungHoon So and Kyuhong Byun and Kyungwon Kang and Seongjin Cho},
year={2022},
eprint={2202.01764},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Acknowledgements
This work was supported by TPU Research Cloud (TRC) program. For training models, we used cloud TPUs provided by TRC. We also thank annotators who generated JaQuAD.