Upload 2 files
Browse files
download_datasets_in_wav_or_mp3_and_create_csv.ipynb
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"from datasets import load_dataset\n",
|
10 |
+
"import soundfile as sf, os, pandas as pd, re\n",
|
11 |
+
"from tqdm import tqdm\n",
|
12 |
+
"\n",
|
13 |
+
"dataset = load_dataset(\"mozilla-foundation/common_voice_17_0\", \"ja\", split=\"other\", trust_remote_code=True, streaming=True, token=\"\")\n",
|
14 |
+
"\n",
|
15 |
+
"name = \"other\"\n",
|
16 |
+
"ouput_dir = \"./datasets/CV17/\"\n",
|
17 |
+
"output_file = 'metadata.csv'\n",
|
18 |
+
"os.makedirs(ouput_dir + name, exist_ok=True)\n",
|
19 |
+
"folder_path = ouput_dir + name # Create a folder to store the audio and transcription files\n",
|
20 |
+
"\n",
|
21 |
+
"char = '[ 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890]'\n",
|
22 |
+
"special_characters = '[♬「」?!“%‘”~♪…?!゛#$%&()*+:;〈=〉@^_{|}~\"█♩♫』『.;:<>_()*&^$#@`, ]'\n",
|
23 |
+
"\n",
|
24 |
+
"dsa = (dataset\n",
|
25 |
+
" .filter(lambda sample: bool(sample[\"sentence\"]))\n",
|
26 |
+
" .filter(lambda sample: not re.search(char, sample[\"sentence\"]))\n",
|
27 |
+
" .filter(lambda sample: sample[\"down_votes\"] == 0)\n",
|
28 |
+
" )\n",
|
29 |
+
"\n",
|
30 |
+
"for i, sample in tqdm(enumerate(dsa)): # Process each sample in the filtered dataset\n",
|
31 |
+
" audio_sample = name + f'_{i}.wav' # or wav\n",
|
32 |
+
" audio_path = os.path.join(folder_path, audio_sample)\n",
|
33 |
+
" transcription_path = os.path.join(folder_path, output_file) # Path to save transcription file \n",
|
34 |
+
" if not os.path.exists(audio_path):\n",
|
35 |
+
" sf.write(audio_path, sample['audio']['array'], sample['audio']['sampling_rate'])\n",
|
36 |
+
" sample[\"audio_length\"] = len(sample[\"audio\"][\"array\"]) / sample[\"audio\"][\"sampling_rate\"] # Get audio length, remove if not needed\n",
|
37 |
+
" with open(transcription_path, 'a', encoding='utf-8') as transcription_file: # Save transcription file \n",
|
38 |
+
" transcription_file.write(audio_sample+\",\") # Save transcription file name \n",
|
39 |
+
" sample[\"sentence\"] = re.sub(special_characters,'', sample[\"sentence\"])\n",
|
40 |
+
" transcription_file.write(sample['sentence']) # Save transcription \n",
|
41 |
+
" transcription_file.write(str(\",\"+str(sample['audio_length']))) # Save audio length, remove if not needed\n",
|
42 |
+
" transcription_file.write('\\n') "
|
43 |
+
]
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"metadata": {
|
47 |
+
"kernelspec": {
|
48 |
+
"display_name": "Python 3",
|
49 |
+
"language": "python",
|
50 |
+
"name": "python3"
|
51 |
+
},
|
52 |
+
"language_info": {
|
53 |
+
"codemirror_mode": {
|
54 |
+
"name": "ipython",
|
55 |
+
"version": 3
|
56 |
+
},
|
57 |
+
"file_extension": ".py",
|
58 |
+
"mimetype": "text/x-python",
|
59 |
+
"name": "python",
|
60 |
+
"nbconvert_exporter": "python",
|
61 |
+
"pygments_lexer": "ipython3",
|
62 |
+
"version": "3.10.0"
|
63 |
+
}
|
64 |
+
},
|
65 |
+
"nbformat": 4,
|
66 |
+
"nbformat_minor": 2
|
67 |
+
}
|
extract_audio_sentences_from_mp4_line_by_line_and_create_csv.ipynb
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import pandas as pd\n",
|
10 |
+
"import os, io, re, sys, time, datetime, wave, contextlib, librosa\n",
|
11 |
+
"from glob import glob\n",
|
12 |
+
"import numpy as np\n",
|
13 |
+
"from moviepy.editor import *\n",
|
14 |
+
"import soundfile as sf\n",
|
15 |
+
"from pydub import AudioSegment\n",
|
16 |
+
"\n",
|
17 |
+
"def create_directories():\n",
|
18 |
+
" slice_path = './ready_for_slice'\n",
|
19 |
+
" if not os.path.exists(slice_path):\n",
|
20 |
+
" try:\n",
|
21 |
+
" os.mkdir(slice_path)\n",
|
22 |
+
" except OSError:\n",
|
23 |
+
" print('Creation of directory %s failed' %slice_path)\n",
|
24 |
+
" sliced_audio = './sliced_audio'\n",
|
25 |
+
" if not os.path.exists(sliced_audio):\n",
|
26 |
+
" try:\n",
|
27 |
+
" os.mkdir(sliced_audio)\n",
|
28 |
+
" except OSError:\n",
|
29 |
+
" print('Creation of directory %s failed' %sliced_audio)\n",
|
30 |
+
"\n",
|
31 |
+
" merged_csv_files = './merged_csv'\n",
|
32 |
+
" if not os.path.exists(merged_csv_files):\n",
|
33 |
+
" try:\n",
|
34 |
+
" os.mkdir(merged_csv_files)\n",
|
35 |
+
" except OSError:\n",
|
36 |
+
" print('Creation of directory %s failed' %merged_csv_files)\n",
|
37 |
+
"\n",
|
38 |
+
" final_csv_files = './final_csv'\n",
|
39 |
+
" if not os.path.exists(final_csv_files):\n",
|
40 |
+
" try:\n",
|
41 |
+
" os.mkdir(final_csv_files)\n",
|
42 |
+
" except OSError:\n",
|
43 |
+
" print('Creation of directory %s failed' %final_csv_files)\n",
|
44 |
+
" \n",
|
45 |
+
" audio = './audio'\n",
|
46 |
+
" if not os.path.exists(audio):\n",
|
47 |
+
" try:\n",
|
48 |
+
" os.mkdir(audio)\n",
|
49 |
+
" except OSError:\n",
|
50 |
+
" print('Creation of directory %s failed' %audio)\n",
|
51 |
+
" \n",
|
52 |
+
" srt_files = './srt_files'\n",
|
53 |
+
" if not os.path.exists(srt_files):\n",
|
54 |
+
" try:\n",
|
55 |
+
" os.mkdir(srt_files)\n",
|
56 |
+
" except OSError:\n",
|
57 |
+
" print('Creation of directory %s failed' %srt_files)\n",
|
58 |
+
"\n",
|
59 |
+
"def merge_csv(path):\n",
|
60 |
+
" print('Merging csv-files with transcriptions')\n",
|
61 |
+
" csv_combined = pd.DataFrame()\n",
|
62 |
+
" for entry in glob (path+'*.csv'):\n",
|
63 |
+
" df = pd.read_csv(entry)\n",
|
64 |
+
" csv_combined = csv_combined.append(df)\n",
|
65 |
+
"\n",
|
66 |
+
" csv_combined.to_csv('./merged_csv/Full_Transcript.csv', header=True, index=False, encoding='utf-8')\n",
|
67 |
+
" print('All csv-files merged')\n",
|
68 |
+
"\n",
|
69 |
+
"def change_encoding(srt):\n",
|
70 |
+
" with io.open(srt, 'r', encoding='utf-8') as f:\n",
|
71 |
+
" text = f.read()\n",
|
72 |
+
" # process Unicode text\n",
|
73 |
+
" with io.open(srt, 'w', encoding='utf-8') as f:\n",
|
74 |
+
" f.write(text)\n",
|
75 |
+
"\n",
|
76 |
+
"def convert_srt_to_csv(file):\n",
|
77 |
+
" with open(file, 'r', encoding='utf-8') as h:\n",
|
78 |
+
" sub = h.readlines() #returns list of all lines\n",
|
79 |
+
"\n",
|
80 |
+
" re_pattern = r'[0-9]{2}:[0-9]{2}:[0-9]{2},[0-9]{3} --> [0-9]{2}:[0-9]{2}:[0-9]{2},[0-9]{3}'\n",
|
81 |
+
" regex = re.compile(re_pattern)\n",
|
82 |
+
" # Get start times\n",
|
83 |
+
" times = list(filter(regex.search, sub))\n",
|
84 |
+
" end_times = [time.split('--> ')[1] for time in times] #returns a list\n",
|
85 |
+
" start_times = [time.split(' ')[0] for time in times] #returns a list\n",
|
86 |
+
"\n",
|
87 |
+
" # Get lines\n",
|
88 |
+
" lines = [[]]\n",
|
89 |
+
" for sentence in sub:\n",
|
90 |
+
" if re.match(re_pattern, sentence):\n",
|
91 |
+
" lines[-1].pop()\n",
|
92 |
+
" lines.append([])\n",
|
93 |
+
" else:\n",
|
94 |
+
" lines[-1].append(sentence)\n",
|
95 |
+
"\n",
|
96 |
+
" lines = lines[1:] #all text in lists\n",
|
97 |
+
"\n",
|
98 |
+
" column_names = ['id','start_times', 'end_times', 'sentence']\n",
|
99 |
+
" df_text = pd.DataFrame(columns=column_names)\n",
|
100 |
+
"\n",
|
101 |
+
" df_text['start_times'] = start_times\n",
|
102 |
+
" df_text['end_times'] = end_times\n",
|
103 |
+
" df_text['sentence'] = [\" \".join(i).replace('\\n', '') for i in lines]\n",
|
104 |
+
" df_text['end_times'] = df_text['end_times'].replace(r'\\n', '', regex=True)\n",
|
105 |
+
"\n",
|
106 |
+
" df_text['id'] = np.arange(len(df_text))\n",
|
107 |
+
" id_extension = os.path.basename(file).replace('.srt', '_')\n",
|
108 |
+
" id_extension = id_extension.replace(' ', '_')\n",
|
109 |
+
" id_extension = id_extension.replace('-', '_')\n",
|
110 |
+
" id_extension = id_extension.replace('.', '_')\n",
|
111 |
+
" id_extension = id_extension.replace('__', '_')\n",
|
112 |
+
" id_extension = id_extension.replace('___', '_')\n",
|
113 |
+
" df_text['id'] = id_extension + df_text['id'].map(str)\n",
|
114 |
+
" file_extension = id_extension[:-1]\n",
|
115 |
+
"\n",
|
116 |
+
" def convert_to_ms(time):\n",
|
117 |
+
" h_ms = int(time[:2])*3600000\n",
|
118 |
+
" m_ms = int(time[3:5])*60000\n",
|
119 |
+
" s_ms = int(time[6:8])*1000\n",
|
120 |
+
" ms = int(time[9:12])\n",
|
121 |
+
" ms_total = h_ms + m_ms + s_ms + ms\n",
|
122 |
+
" return(ms_total)\n",
|
123 |
+
"\n",
|
124 |
+
" def conv_int(start):\n",
|
125 |
+
" new_start = int(start)\n",
|
126 |
+
" return(new_start)\n",
|
127 |
+
"\n",
|
128 |
+
" df_text['start_times'] = df_text['start_times'].apply(convert_to_ms)\n",
|
129 |
+
" df_text['end_times'] = df_text['end_times'].apply(convert_to_ms)\n",
|
130 |
+
" df_text['start_times'] = df_text['start_times'].apply(conv_int)\n",
|
131 |
+
" df_text.to_csv('./ready_for_slice/' + file_extension + '.csv', index=False, header=True, encoding='utf-8-sig')\n",
|
132 |
+
"\n",
|
133 |
+
"def wmv_to_wav(entry):\n",
|
134 |
+
" video = VideoFileClip(entry)\n",
|
135 |
+
" audio = video.audio\n",
|
136 |
+
" filename = os.path.basename(entry)\n",
|
137 |
+
" filename = filename.replace(' ', '_')\n",
|
138 |
+
" filename = filename.replace('-', '_')\n",
|
139 |
+
" filename = filename.replace('.', '_')\n",
|
140 |
+
" filename = filename.replace('__', '_')\n",
|
141 |
+
" filename = filename.replace('___', '_')\n",
|
142 |
+
" filename = filename[:-4] + '.wav'\n",
|
143 |
+
" audio.write_audiofile('./audio/' +filename)\n",
|
144 |
+
"\n",
|
145 |
+
"def mp4_to_wav(entry):\n",
|
146 |
+
" video = VideoFileClip(entry)\n",
|
147 |
+
" #extract audio from video\n",
|
148 |
+
" audio = video.audio\n",
|
149 |
+
" filename = os.path.basename(entry)\n",
|
150 |
+
" filename = filename.replace(' ', '_')\n",
|
151 |
+
" filename = filename.replace('-', '_')\n",
|
152 |
+
" filename = filename.replace('.', '_')\n",
|
153 |
+
" filename = filename.replace('__', '_')\n",
|
154 |
+
" filename = filename.replace('___', '_')\n",
|
155 |
+
" filename = filename[:-4] + '.wav'\n",
|
156 |
+
" #filename = filename[:-4]+'.wav'\n",
|
157 |
+
" #filename = filename[:10] + '_' + filename[-9:]\n",
|
158 |
+
" audio.write_audiofile('./audio/' +filename)\n",
|
159 |
+
"\n",
|
160 |
+
"def pre_process_audio(audio_path):\n",
|
161 |
+
" path_audio_processed = './ready_for_slice/'\n",
|
162 |
+
" if not os.path.exists(path_audio_processed):\n",
|
163 |
+
" try:\n",
|
164 |
+
" os.mkdir(path_audio_processed)\n",
|
165 |
+
" except OSError:\n",
|
166 |
+
" print('Creation of directory %s failed' %path_audio_processed)\n",
|
167 |
+
" else:\n",
|
168 |
+
" print('Successfully created the directory %s' %path_audio_processed)\n",
|
169 |
+
" start_sub = time.time()\n",
|
170 |
+
" n = 0\n",
|
171 |
+
" print('Downsampling wav files...')\n",
|
172 |
+
" for file in os.listdir(audio_path):\n",
|
173 |
+
" if(file.endswith('.wav')):\n",
|
174 |
+
" try:\n",
|
175 |
+
" nameSolo_1 = file.rsplit('.', 1)[0]\n",
|
176 |
+
" y, s = librosa.load(audio_path + file, sr=16000) # Downsample 44.1kHz to 8kHz\n",
|
177 |
+
" sf.write(path_audio_processed + nameSolo_1 + '.wav', y, s)\n",
|
178 |
+
" n = n+1\n",
|
179 |
+
" print('File ', n , ' completed:', nameSolo_1)\n",
|
180 |
+
" except EOFError as error:\n",
|
181 |
+
" next\n",
|
182 |
+
"\n",
|
183 |
+
" s = 0\n",
|
184 |
+
" print('Changing bit pro sample...')\n",
|
185 |
+
" for file in os.listdir(path_audio_processed):\n",
|
186 |
+
" if(file.endswith('.wav')):\n",
|
187 |
+
" try:\n",
|
188 |
+
" nameSolo_2 = file.rsplit('.', 1)[0]\n",
|
189 |
+
" #nameSolo_2 = nameSolo_2.replace('')\n",
|
190 |
+
" data, samplerate = sf.read(path_audio_processed + file)\n",
|
191 |
+
" sf.write(path_audio_processed + nameSolo_2 + '.wav', data, samplerate, subtype='PCM_16')\n",
|
192 |
+
" s = s + 1\n",
|
193 |
+
" print('File ' , s , ' completed')\n",
|
194 |
+
" except EOFError as error:\n",
|
195 |
+
" next\n",
|
196 |
+
"\n",
|
197 |
+
" end_sub = time.time()\n",
|
198 |
+
" print('The script took ', end_sub-start_sub, ' seconds to run')\n",
|
199 |
+
" \n",
|
200 |
+
"def create_DS_csv (path):\n",
|
201 |
+
" print('Extracting filepath and -size for every .wav file in ./sliced_audio')\n",
|
202 |
+
" data = pd.DataFrame(columns=['file_name', 'duration'])\n",
|
203 |
+
" df = pd.DataFrame(columns=['file_name', 'duration'])\n",
|
204 |
+
"\n",
|
205 |
+
" for entry in glob(path +'*.wav'):\n",
|
206 |
+
" filename = os.path.basename(entry)\n",
|
207 |
+
" with contextlib.closing(wave.open(entry, 'rb')) as f:\n",
|
208 |
+
" frames = f.getnframes()\n",
|
209 |
+
" rate = f.getframerate()\n",
|
210 |
+
" duration = frames / float(rate)\n",
|
211 |
+
" df['file_name'] = [filename]\n",
|
212 |
+
" df['duration'] = [duration]\n",
|
213 |
+
" data = data.append(df)\n",
|
214 |
+
" data.to_csv('./merged_csv/Filepath_Filesize.csv', header=True, index=False, encoding='utf-8')\n",
|
215 |
+
"\n",
|
216 |
+
"def split_files(item, wav_item):\n",
|
217 |
+
" song = AudioSegment.from_wav(wav_item)\n",
|
218 |
+
" df = pd.read_csv(item)\n",
|
219 |
+
"\n",
|
220 |
+
" def audio_split(df):\n",
|
221 |
+
" split = song[df['start_times']:df['end_times']]\n",
|
222 |
+
" split.export('./sliced_audio/' + df['id'] + '.wav', format ='wav')\n",
|
223 |
+
"\n",
|
224 |
+
" df.apply(audio_split, axis=1)\n",
|
225 |
+
"\n",
|
226 |
+
"def merge_transcripts_and_wav_files(transcript_path, DS_csv):\n",
|
227 |
+
" df_final = pd.DataFrame()\n",
|
228 |
+
" df_transcripts = pd.read_csv(transcript_path)\n",
|
229 |
+
" df_files = pd.read_csv(DS_csv)\n",
|
230 |
+
" def remove_path(path):\n",
|
231 |
+
" path = path.split('/')[-1]\n",
|
232 |
+
" return path\n",
|
233 |
+
" df_files['id'] = df_files['file_name'].apply(remove_path)\n",
|
234 |
+
" #filter out duration of less than 10 seconds\n",
|
235 |
+
" def convert(duration):\n",
|
236 |
+
" time = float(duration)\n",
|
237 |
+
" return time\n",
|
238 |
+
" df_files['duration'] = df_files['duration'].apply(convert)\n",
|
239 |
+
" df_files = df_files[df_files['duration']<10.00]\n",
|
240 |
+
" #drop unnecessary columns\n",
|
241 |
+
" df_transcripts.drop(['start_times','end_times'], axis=1, inplace=True)\n",
|
242 |
+
" df_files.drop(['duration'], axis=1, inplace=True)\n",
|
243 |
+
" df_files['id'] = df_files['id'].replace('.wav', '', regex=True)\n",
|
244 |
+
" #merge on column id\n",
|
245 |
+
" df_final = pd.merge(df_transcripts, df_files, on='id')\n",
|
246 |
+
" df_final.drop(['id'], axis=1, inplace=True)\n",
|
247 |
+
" #rearrange columns\n",
|
248 |
+
" df_final = df_final[['file_name', 'sentence']]\n",
|
249 |
+
" df_final.to_csv('./final_csv/metadata.csv', header=True, index=False, encoding='utf-8')\n",
|
250 |
+
" \n",
|
251 |
+
" create_directories()\n",
|
252 |
+
" \n",
|
253 |
+
"print(\"Put your video or audio files into the audio folder and srt files into the srt_files folder when you're ready...\")"
|
254 |
+
]
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"cell_type": "code",
|
258 |
+
"execution_count": null,
|
259 |
+
"metadata": {},
|
260 |
+
"outputs": [],
|
261 |
+
"source": [
|
262 |
+
"start_time = time.time()\n",
|
263 |
+
"srt_path = './srt_files'\n",
|
264 |
+
"audio_path = './audio/'\n",
|
265 |
+
"srt_counter = len(glob('./srt_files/' + '*.srt'))\n",
|
266 |
+
"\n",
|
267 |
+
"#Extracting information from srt-files to csv\n",
|
268 |
+
"print('Extracting information from srt_file(s) to csv_files')\n",
|
269 |
+
"for file in glob('./srt_files/*.srt'):\n",
|
270 |
+
" convert_srt_to_csv(file)\n",
|
271 |
+
"print('%s-file(s) converted and saved as csv-files to ./csv' %srt_counter)\n",
|
272 |
+
"print('---------------------------------------------------------------------')\n",
|
273 |
+
"\n",
|
274 |
+
"#extract audio (wav) from mp4\n",
|
275 |
+
"for entry in glob('./audio/*.mp4'):\n",
|
276 |
+
" mp4_to_wav(entry)\n",
|
277 |
+
"print('MP4 to WAV convert complete')\n",
|
278 |
+
"print('---------------------------------------------------------------------')\n",
|
279 |
+
"\n",
|
280 |
+
"\n",
|
281 |
+
"#Pre-process audio for folder in which wav files are stored\n",
|
282 |
+
"pre_process_audio(audio_path)\n",
|
283 |
+
"print('Pre-processing of audio files is complete.')\n",
|
284 |
+
"print('---------------------------------------------------------------------')\n",
|
285 |
+
"\n",
|
286 |
+
"print('Slicing audio according to start- and end_times of transcript_csvs...')\n",
|
287 |
+
"for item in glob('./ready_for_slice/*.csv'):\n",
|
288 |
+
" wav_item = item.replace('.csv','.wav')\n",
|
289 |
+
" if os.path.exists(wav_item):\n",
|
290 |
+
" split_files(item, wav_item)\n",
|
291 |
+
" else:\n",
|
292 |
+
" next\n",
|
293 |
+
"wav_counter = len(glob('./sliced_audio/' + '*.wav'))\n",
|
294 |
+
"print('Slicing complete. {} files in dir \"sliced_audio\"'.format(wav_counter))\n",
|
295 |
+
"print('---------------------------------------------------------------------')\n",
|
296 |
+
"\n",
|
297 |
+
"create_DS_csv('./sliced_audio/')\n",
|
298 |
+
"\n",
|
299 |
+
"#now join all seperate csv files\n",
|
300 |
+
"merge_csv('./ready_for_slice/')\n",
|
301 |
+
"print('Merged csv with all transcriptions created.')\n",
|
302 |
+
"print('---------------------------------------------------------------------')\n",
|
303 |
+
"transcript_path = './merged_csv/Full_Transcript.csv'\n",
|
304 |
+
"DS_path = './merged_csv/Filepath_Filesize.csv'\n",
|
305 |
+
"merge_transcripts_and_wav_files(transcript_path, DS_path)"
|
306 |
+
]
|
307 |
+
}
|
308 |
+
],
|
309 |
+
"metadata": {
|
310 |
+
"kernelspec": {
|
311 |
+
"display_name": "Python 3",
|
312 |
+
"language": "python",
|
313 |
+
"name": "python3"
|
314 |
+
},
|
315 |
+
"language_info": {
|
316 |
+
"codemirror_mode": {
|
317 |
+
"name": "ipython",
|
318 |
+
"version": 3
|
319 |
+
},
|
320 |
+
"file_extension": ".py",
|
321 |
+
"mimetype": "text/x-python",
|
322 |
+
"name": "python",
|
323 |
+
"nbconvert_exporter": "python",
|
324 |
+
"pygments_lexer": "ipython3",
|
325 |
+
"version": "3.10.0"
|
326 |
+
}
|
327 |
+
},
|
328 |
+
"nbformat": 4,
|
329 |
+
"nbformat_minor": 2
|
330 |
+
}
|