Sin2pi commited on
Commit
a5cf7b3
·
verified ·
1 Parent(s): 747a93e

Delete code_to_extract_audio_from_any_mp4_line_by_line_from_srt_file.ipynb

Browse files
code_to_extract_audio_from_any_mp4_line_by_line_from_srt_file.ipynb DELETED
@@ -1,330 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "metadata": {},
7
- "outputs": [],
8
- "source": [
9
- "import pandas as pd\n",
10
- "import os, io, re, sys, time, datetime, wave, contextlib, librosa\n",
11
- "from glob import glob\n",
12
- "import numpy as np\n",
13
- "from moviepy.editor import *\n",
14
- "import soundfile as sf\n",
15
- "from pydub import AudioSegment\n",
16
- "\n",
17
- "def create_directories():\n",
18
- " slice_path = './ready_for_slice'\n",
19
- " if not os.path.exists(slice_path):\n",
20
- " try:\n",
21
- " os.mkdir(slice_path)\n",
22
- " except OSError:\n",
23
- " print('Creation of directory %s failed' %slice_path)\n",
24
- " sliced_audio = './sliced_audio'\n",
25
- " if not os.path.exists(sliced_audio):\n",
26
- " try:\n",
27
- " os.mkdir(sliced_audio)\n",
28
- " except OSError:\n",
29
- " print('Creation of directory %s failed' %sliced_audio)\n",
30
- "\n",
31
- " merged_csv_files = './merged_csv'\n",
32
- " if not os.path.exists(merged_csv_files):\n",
33
- " try:\n",
34
- " os.mkdir(merged_csv_files)\n",
35
- " except OSError:\n",
36
- " print('Creation of directory %s failed' %merged_csv_files)\n",
37
- "\n",
38
- " final_csv_files = './final_csv'\n",
39
- " if not os.path.exists(final_csv_files):\n",
40
- " try:\n",
41
- " os.mkdir(final_csv_files)\n",
42
- " except OSError:\n",
43
- " print('Creation of directory %s failed' %final_csv_files)\n",
44
- " \n",
45
- " audio = './audio'\n",
46
- " if not os.path.exists(audio):\n",
47
- " try:\n",
48
- " os.mkdir(audio)\n",
49
- " except OSError:\n",
50
- " print('Creation of directory %s failed' %audio)\n",
51
- " \n",
52
- " srt_files = './srt_files'\n",
53
- " if not os.path.exists(srt_files):\n",
54
- " try:\n",
55
- " os.mkdir(srt_files)\n",
56
- " except OSError:\n",
57
- " print('Creation of directory %s failed' %srt_files)\n",
58
- "\n",
59
- "def merge_csv(path):\n",
60
- " print('Merging csv-files with transcriptions')\n",
61
- " csv_combined = pd.DataFrame()\n",
62
- " for entry in glob (path+'*.csv'):\n",
63
- " df = pd.read_csv(entry)\n",
64
- " csv_combined = csv_combined.append(df)\n",
65
- "\n",
66
- " csv_combined.to_csv('./merged_csv/Full_Transcript.csv', header=True, index=False, encoding='utf-8')\n",
67
- " print('All csv-files merged')\n",
68
- "\n",
69
- "def change_encoding(srt):\n",
70
- " with io.open(srt, 'r', encoding='utf-8') as f:\n",
71
- " text = f.read()\n",
72
- " # process Unicode text\n",
73
- " with io.open(srt, 'w', encoding='utf-8') as f:\n",
74
- " f.write(text)\n",
75
- "\n",
76
- "def convert_srt_to_csv(file):\n",
77
- " with open(file, 'r', encoding='utf-8') as h:\n",
78
- " sub = h.readlines() #returns list of all lines\n",
79
- "\n",
80
- " re_pattern = r'[0-9]{2}:[0-9]{2}:[0-9]{2},[0-9]{3} --> [0-9]{2}:[0-9]{2}:[0-9]{2},[0-9]{3}'\n",
81
- " regex = re.compile(re_pattern)\n",
82
- " # Get start times\n",
83
- " times = list(filter(regex.search, sub))\n",
84
- " end_times = [time.split('--> ')[1] for time in times] #returns a list\n",
85
- " start_times = [time.split(' ')[0] for time in times] #returns a list\n",
86
- "\n",
87
- " # Get lines\n",
88
- " lines = [[]]\n",
89
- " for sentence in sub:\n",
90
- " if re.match(re_pattern, sentence):\n",
91
- " lines[-1].pop()\n",
92
- " lines.append([])\n",
93
- " else:\n",
94
- " lines[-1].append(sentence)\n",
95
- "\n",
96
- " lines = lines[1:] #all text in lists\n",
97
- "\n",
98
- " column_names = ['id','start_times', 'end_times', 'sentence']\n",
99
- " df_text = pd.DataFrame(columns=column_names)\n",
100
- "\n",
101
- " df_text['start_times'] = start_times\n",
102
- " df_text['end_times'] = end_times\n",
103
- " df_text['sentence'] = [\" \".join(i).replace('\\n', '') for i in lines]\n",
104
- " df_text['end_times'] = df_text['end_times'].replace(r'\\n', '', regex=True)\n",
105
- "\n",
106
- " df_text['id'] = np.arange(len(df_text))\n",
107
- " id_extension = os.path.basename(file).replace('.srt', '_')\n",
108
- " id_extension = id_extension.replace(' ', '_')\n",
109
- " id_extension = id_extension.replace('-', '_')\n",
110
- " id_extension = id_extension.replace('.', '_')\n",
111
- " id_extension = id_extension.replace('__', '_')\n",
112
- " id_extension = id_extension.replace('___', '_')\n",
113
- " df_text['id'] = id_extension + df_text['id'].map(str)\n",
114
- " file_extension = id_extension[:-1]\n",
115
- "\n",
116
- " def convert_to_ms(time):\n",
117
- " h_ms = int(time[:2])*3600000\n",
118
- " m_ms = int(time[3:5])*60000\n",
119
- " s_ms = int(time[6:8])*1000\n",
120
- " ms = int(time[9:12])\n",
121
- " ms_total = h_ms + m_ms + s_ms + ms\n",
122
- " return(ms_total)\n",
123
- "\n",
124
- " def conv_int(start):\n",
125
- " new_start = int(start)\n",
126
- " return(new_start)\n",
127
- "\n",
128
- " df_text['start_times'] = df_text['start_times'].apply(convert_to_ms)\n",
129
- " df_text['end_times'] = df_text['end_times'].apply(convert_to_ms)\n",
130
- " df_text['start_times'] = df_text['start_times'].apply(conv_int)\n",
131
- " df_text.to_csv('./ready_for_slice/' + file_extension + '.csv', index=False, header=True, encoding='utf-8-sig')\n",
132
- "\n",
133
- "def wmv_to_wav(entry):\n",
134
- " video = VideoFileClip(entry)\n",
135
- " audio = video.audio\n",
136
- " filename = os.path.basename(entry)\n",
137
- " filename = filename.replace(' ', '_')\n",
138
- " filename = filename.replace('-', '_')\n",
139
- " filename = filename.replace('.', '_')\n",
140
- " filename = filename.replace('__', '_')\n",
141
- " filename = filename.replace('___', '_')\n",
142
- " filename = filename[:-4] + '.wav'\n",
143
- " audio.write_audiofile('./audio/' +filename)\n",
144
- "\n",
145
- "def mp4_to_wav(entry):\n",
146
- " video = VideoFileClip(entry)\n",
147
- " #extract audio from video\n",
148
- " audio = video.audio\n",
149
- " filename = os.path.basename(entry)\n",
150
- " filename = filename.replace(' ', '_')\n",
151
- " filename = filename.replace('-', '_')\n",
152
- " filename = filename.replace('.', '_')\n",
153
- " filename = filename.replace('__', '_')\n",
154
- " filename = filename.replace('___', '_')\n",
155
- " filename = filename[:-4] + '.wav'\n",
156
- " #filename = filename[:-4]+'.wav'\n",
157
- " #filename = filename[:10] + '_' + filename[-9:]\n",
158
- " audio.write_audiofile('./audio/' +filename)\n",
159
- "\n",
160
- "def pre_process_audio(audio_path):\n",
161
- " path_audio_processed = './ready_for_slice/'\n",
162
- " if not os.path.exists(path_audio_processed):\n",
163
- " try:\n",
164
- " os.mkdir(path_audio_processed)\n",
165
- " except OSError:\n",
166
- " print('Creation of directory %s failed' %path_audio_processed)\n",
167
- " else:\n",
168
- " print('Successfully created the directory %s' %path_audio_processed)\n",
169
- " start_sub = time.time()\n",
170
- " n = 0\n",
171
- " print('Downsampling wav files...')\n",
172
- " for file in os.listdir(audio_path):\n",
173
- " if(file.endswith('.wav')):\n",
174
- " try:\n",
175
- " nameSolo_1 = file.rsplit('.', 1)[0]\n",
176
- " y, s = librosa.load(audio_path + file, sr=16000) # Downsample 44.1kHz to 8kHz\n",
177
- " sf.write(path_audio_processed + nameSolo_1 + '.wav', y, s)\n",
178
- " n = n+1\n",
179
- " print('File ', n , ' completed:', nameSolo_1)\n",
180
- " except EOFError as error:\n",
181
- " next\n",
182
- "\n",
183
- " s = 0\n",
184
- " print('Changing bit pro sample...')\n",
185
- " for file in os.listdir(path_audio_processed):\n",
186
- " if(file.endswith('.wav')):\n",
187
- " try:\n",
188
- " nameSolo_2 = file.rsplit('.', 1)[0]\n",
189
- " #nameSolo_2 = nameSolo_2.replace('')\n",
190
- " data, samplerate = sf.read(path_audio_processed + file)\n",
191
- " sf.write(path_audio_processed + nameSolo_2 + '.wav', data, samplerate, subtype='PCM_16')\n",
192
- " s = s + 1\n",
193
- " print('File ' , s , ' completed')\n",
194
- " except EOFError as error:\n",
195
- " next\n",
196
- "\n",
197
- " end_sub = time.time()\n",
198
- " print('The script took ', end_sub-start_sub, ' seconds to run')\n",
199
- " \n",
200
- "def create_DS_csv (path):\n",
201
- " print('Extracting filepath and -size for every .wav file in ./sliced_audio')\n",
202
- " data = pd.DataFrame(columns=['file_name', 'duration'])\n",
203
- " df = pd.DataFrame(columns=['file_name', 'duration'])\n",
204
- "\n",
205
- " for entry in glob(path +'*.wav'):\n",
206
- " filename = os.path.basename(entry)\n",
207
- " with contextlib.closing(wave.open(entry, 'rb')) as f:\n",
208
- " frames = f.getnframes()\n",
209
- " rate = f.getframerate()\n",
210
- " duration = frames / float(rate)\n",
211
- " df['file_name'] = [filename]\n",
212
- " df['duration'] = [duration]\n",
213
- " data = data.append(df)\n",
214
- " data.to_csv('./merged_csv/Filepath_Filesize.csv', header=True, index=False, encoding='utf-8')\n",
215
- "\n",
216
- "def split_files(item, wav_item):\n",
217
- " song = AudioSegment.from_wav(wav_item)\n",
218
- " df = pd.read_csv(item)\n",
219
- "\n",
220
- " def audio_split(df):\n",
221
- " split = song[df['start_times']:df['end_times']]\n",
222
- " split.export('./sliced_audio/' + df['id'] + '.wav', format ='wav')\n",
223
- "\n",
224
- " df.apply(audio_split, axis=1)\n",
225
- "\n",
226
- "def merge_transcripts_and_wav_files(transcript_path, DS_csv):\n",
227
- " df_final = pd.DataFrame()\n",
228
- " df_transcripts = pd.read_csv(transcript_path)\n",
229
- " df_files = pd.read_csv(DS_csv)\n",
230
- " def remove_path(path):\n",
231
- " path = path.split('/')[-1]\n",
232
- " return path\n",
233
- " df_files['id'] = df_files['file_name'].apply(remove_path)\n",
234
- " #filter out duration of less than 10 seconds\n",
235
- " def convert(duration):\n",
236
- " time = float(duration)\n",
237
- " return time\n",
238
- " df_files['duration'] = df_files['duration'].apply(convert)\n",
239
- " df_files = df_files[df_files['duration']<10.00]\n",
240
- " #drop unnecessary columns\n",
241
- " df_transcripts.drop(['start_times','end_times'], axis=1, inplace=True)\n",
242
- " df_files.drop(['duration'], axis=1, inplace=True)\n",
243
- " df_files['id'] = df_files['id'].replace('.wav', '', regex=True)\n",
244
- " #merge on column id\n",
245
- " df_final = pd.merge(df_transcripts, df_files, on='id')\n",
246
- " df_final.drop(['id'], axis=1, inplace=True)\n",
247
- " #rearrange columns\n",
248
- " df_final = df_final[['file_name', 'sentence']]\n",
249
- " df_final.to_csv('./final_csv/metadata.csv', header=True, index=False, encoding='utf-8')\n",
250
- " \n",
251
- " create_directories()\n",
252
- " \n",
253
- "print(\"Put your video or audio files into the audio folder and srt files into the srt_files folder when you're ready...\")"
254
- ]
255
- },
256
- {
257
- "cell_type": "code",
258
- "execution_count": null,
259
- "metadata": {},
260
- "outputs": [],
261
- "source": [
262
- "start_time = time.time()\n",
263
- "srt_path = './srt_files'\n",
264
- "audio_path = './audio/'\n",
265
- "srt_counter = len(glob('./srt_files/' + '*.srt'))\n",
266
- "\n",
267
- "#Extracting information from srt-files to csv\n",
268
- "print('Extracting information from srt_file(s) to csv_files')\n",
269
- "for file in glob('./srt_files/*.srt'):\n",
270
- " convert_srt_to_csv(file)\n",
271
- "print('%s-file(s) converted and saved as csv-files to ./csv' %srt_counter)\n",
272
- "print('---------------------------------------------------------------------')\n",
273
- "\n",
274
- "#extract audio (wav) from mp4\n",
275
- "for entry in glob('./audio/*.mp4'):\n",
276
- " mp4_to_wav(entry)\n",
277
- "print('MP4 to WAV convert complete')\n",
278
- "print('---------------------------------------------------------------------')\n",
279
- "\n",
280
- "\n",
281
- "#Pre-process audio for folder in which wav files are stored\n",
282
- "pre_process_audio(audio_path)\n",
283
- "print('Pre-processing of audio files is complete.')\n",
284
- "print('---------------------------------------------------------------------')\n",
285
- "\n",
286
- "print('Slicing audio according to start- and end_times of transcript_csvs...')\n",
287
- "for item in glob('./ready_for_slice/*.csv'):\n",
288
- " wav_item = item.replace('.csv','.wav')\n",
289
- " if os.path.exists(wav_item):\n",
290
- " split_files(item, wav_item)\n",
291
- " else:\n",
292
- " next\n",
293
- "wav_counter = len(glob('./sliced_audio/' + '*.wav'))\n",
294
- "print('Slicing complete. {} files in dir \"sliced_audio\"'.format(wav_counter))\n",
295
- "print('---------------------------------------------------------------------')\n",
296
- "\n",
297
- "create_DS_csv('./sliced_audio/')\n",
298
- "\n",
299
- "#now join all seperate csv files\n",
300
- "merge_csv('./ready_for_slice/')\n",
301
- "print('Merged csv with all transcriptions created.')\n",
302
- "print('---------------------------------------------------------------------')\n",
303
- "transcript_path = './merged_csv/Full_Transcript.csv'\n",
304
- "DS_path = './merged_csv/Filepath_Filesize.csv'\n",
305
- "merge_transcripts_and_wav_files(transcript_path, DS_path)"
306
- ]
307
- }
308
- ],
309
- "metadata": {
310
- "kernelspec": {
311
- "display_name": "Python 3",
312
- "language": "python",
313
- "name": "python3"
314
- },
315
- "language_info": {
316
- "codemirror_mode": {
317
- "name": "ipython",
318
- "version": 3
319
- },
320
- "file_extension": ".py",
321
- "mimetype": "text/x-python",
322
- "name": "python",
323
- "nbconvert_exporter": "python",
324
- "pygments_lexer": "ipython3",
325
- "version": "3.10.0"
326
- }
327
- },
328
- "nbformat": 4,
329
- "nbformat_minor": 2
330
- }