Dataset Viewer
Auto-converted to Parquet
id
stringlengths
18
18
action
class label
11 classes
camera
int64
0
5
subject
int64
1
11
idx
int64
0
247
label
stringclasses
11 values
link
stringlengths
24
24
A000C000S001SEQ000
0None
0
1
0
None
00000/A000C000S001SEQ000
A000C000S001SEQ001
0None
0
1
1
None
00000/A000C000S001SEQ001
A000C000S001SEQ002
0None
0
1
2
None
00000/A000C000S001SEQ002
A000C000S001SEQ003
0None
0
1
3
None
00000/A000C000S001SEQ003
A000C000S001SEQ004
0None
0
1
4
None
00000/A000C000S001SEQ004
A000C000S001SEQ005
0None
0
1
5
None
00000/A000C000S001SEQ005
A000C000S001SEQ006
0None
0
1
6
None
00000/A000C000S001SEQ006
A000C000S001SEQ007
0None
0
1
7
None
00000/A000C000S001SEQ007
A000C000S001SEQ008
0None
0
1
8
None
00000/A000C000S001SEQ008
A000C000S001SEQ009
0None
0
1
9
None
00000/A000C000S001SEQ009
A000C000S001SEQ010
0None
0
1
10
None
00000/A000C000S001SEQ010
A000C000S001SEQ011
0None
0
1
11
None
00000/A000C000S001SEQ011
A000C000S001SEQ012
0None
0
1
12
None
00000/A000C000S001SEQ012
A000C000S001SEQ013
0None
0
1
13
None
00000/A000C000S001SEQ013
A000C000S001SEQ014
0None
0
1
14
None
00000/A000C000S001SEQ014
A000C000S001SEQ015
0None
0
1
15
None
00000/A000C000S001SEQ015
A000C000S001SEQ016
0None
0
1
16
None
00000/A000C000S001SEQ016
A000C000S001SEQ017
0None
0
1
17
None
00000/A000C000S001SEQ017
A000C000S001SEQ018
0None
0
1
18
None
00000/A000C000S001SEQ018
A000C000S001SEQ019
0None
0
1
19
None
00000/A000C000S001SEQ019
A000C000S001SEQ020
0None
0
1
20
None
00000/A000C000S001SEQ020
A000C000S001SEQ021
0None
0
1
21
None
00000/A000C000S001SEQ021
A000C000S001SEQ022
0None
0
1
22
None
00000/A000C000S001SEQ022
A000C000S001SEQ023
0None
0
1
23
None
00000/A000C000S001SEQ023
A000C000S001SEQ024
0None
0
1
24
None
00000/A000C000S001SEQ024
A000C000S001SEQ025
0None
0
1
25
None
00000/A000C000S001SEQ025
A000C000S001SEQ026
0None
0
1
26
None
00000/A000C000S001SEQ026
A000C000S001SEQ027
0None
0
1
27
None
00000/A000C000S001SEQ027
A000C000S001SEQ028
0None
0
1
28
None
00000/A000C000S001SEQ028
A000C000S001SEQ029
0None
0
1
29
None
00000/A000C000S001SEQ029
A000C000S001SEQ030
0None
0
1
30
None
00000/A000C000S001SEQ030
A000C000S001SEQ031
0None
0
1
31
None
00000/A000C000S001SEQ031
A000C000S001SEQ032
0None
0
1
32
None
00000/A000C000S001SEQ032
A000C000S001SEQ033
0None
0
1
33
None
00000/A000C000S001SEQ033
A000C000S001SEQ034
0None
0
1
34
None
00000/A000C000S001SEQ034
A000C000S001SEQ035
0None
0
1
35
None
00000/A000C000S001SEQ035
A000C000S001SEQ036
0None
0
1
36
None
00000/A000C000S001SEQ036
A000C000S001SEQ037
0None
0
1
37
None
00000/A000C000S001SEQ037
A000C000S001SEQ038
0None
0
1
38
None
00000/A000C000S001SEQ038
A000C000S001SEQ039
0None
0
1
39
None
00000/A000C000S001SEQ039
A000C000S001SEQ040
0None
0
1
40
None
00000/A000C000S001SEQ040
A000C000S001SEQ041
0None
0
1
41
None
00000/A000C000S001SEQ041
A000C000S001SEQ042
0None
0
1
42
None
00000/A000C000S001SEQ042
A000C000S001SEQ043
0None
0
1
43
None
00000/A000C000S001SEQ043
A000C000S001SEQ044
0None
0
1
44
None
00000/A000C000S001SEQ044
A000C000S001SEQ045
0None
0
1
45
None
00000/A000C000S001SEQ045
A000C000S001SEQ046
0None
0
1
46
None
00000/A000C000S001SEQ046
A000C000S001SEQ047
0None
0
1
47
None
00000/A000C000S001SEQ047
A000C000S001SEQ048
0None
0
1
48
None
00000/A000C000S001SEQ048
A000C000S001SEQ049
0None
0
1
49
None
00000/A000C000S001SEQ049
A000C000S001SEQ050
0None
0
1
50
None
00000/A000C000S001SEQ050
A000C000S001SEQ051
0None
0
1
51
None
00000/A000C000S001SEQ051
A000C000S001SEQ052
0None
0
1
52
None
00000/A000C000S001SEQ052
A000C000S001SEQ053
0None
0
1
53
None
00000/A000C000S001SEQ053
A000C000S001SEQ054
0None
0
1
54
None
00000/A000C000S001SEQ054
A000C000S001SEQ055
0None
0
1
55
None
00000/A000C000S001SEQ055
A000C000S001SEQ056
0None
0
1
56
None
00000/A000C000S001SEQ056
A000C000S001SEQ057
0None
0
1
57
None
00000/A000C000S001SEQ057
A000C000S001SEQ058
0None
0
1
58
None
00000/A000C000S001SEQ058
A000C000S001SEQ059
0None
0
1
59
None
00000/A000C000S001SEQ059
A000C000S001SEQ060
0None
0
1
60
None
00000/A000C000S001SEQ060
A000C000S001SEQ061
0None
0
1
61
None
00000/A000C000S001SEQ061
A000C000S001SEQ062
0None
0
1
62
None
00000/A000C000S001SEQ062
A000C000S001SEQ063
0None
0
1
63
None
00000/A000C000S001SEQ063
A000C000S001SEQ064
0None
0
1
64
None
00000/A000C000S001SEQ064
A000C000S001SEQ065
0None
0
1
65
None
00000/A000C000S001SEQ065
A000C000S001SEQ066
0None
0
1
66
None
00000/A000C000S001SEQ066
A000C000S001SEQ067
0None
0
1
67
None
00000/A000C000S001SEQ067
A000C000S001SEQ068
0None
0
1
68
None
00000/A000C000S001SEQ068
A000C000S001SEQ069
0None
0
1
69
None
00000/A000C000S001SEQ069
A000C000S001SEQ070
0None
0
1
70
None
00000/A000C000S001SEQ070
A000C000S001SEQ071
0None
0
1
71
None
00000/A000C000S001SEQ071
A000C000S001SEQ072
0None
0
1
72
None
00000/A000C000S001SEQ072
A000C000S001SEQ073
0None
0
1
73
None
00000/A000C000S001SEQ073
A000C000S001SEQ074
0None
0
1
74
None
00000/A000C000S001SEQ074
A000C000S001SEQ075
0None
0
1
75
None
00000/A000C000S001SEQ075
A000C000S001SEQ076
0None
0
1
76
None
00000/A000C000S001SEQ076
A000C000S001SEQ077
0None
0
1
77
None
00000/A000C000S001SEQ077
A000C000S001SEQ078
0None
0
1
78
None
00000/A000C000S001SEQ078
A000C000S001SEQ079
0None
0
1
79
None
00000/A000C000S001SEQ079
A000C000S001SEQ080
0None
0
1
80
None
00000/A000C000S001SEQ080
A000C000S001SEQ081
0None
0
1
81
None
00000/A000C000S001SEQ081
A000C000S001SEQ082
0None
0
1
82
None
00000/A000C000S001SEQ082
A000C000S001SEQ083
0None
0
1
83
None
00000/A000C000S001SEQ083
A000C000S001SEQ084
0None
0
1
84
None
00000/A000C000S001SEQ084
A000C000S001SEQ085
0None
0
1
85
None
00000/A000C000S001SEQ085
A000C000S001SEQ086
0None
0
1
86
None
00000/A000C000S001SEQ086
A000C000S001SEQ087
0None
0
1
87
None
00000/A000C000S001SEQ087
A000C000S001SEQ088
0None
0
1
88
None
00000/A000C000S001SEQ088
A000C000S001SEQ089
0None
0
1
89
None
00000/A000C000S001SEQ089
A000C000S001SEQ090
0None
0
1
90
None
00000/A000C000S001SEQ090
A000C000S001SEQ091
0None
0
1
91
None
00000/A000C000S001SEQ091
A000C000S001SEQ092
0None
0
1
92
None
00000/A000C000S001SEQ092
A000C000S001SEQ093
0None
0
1
93
None
00000/A000C000S001SEQ093
A000C000S001SEQ094
0None
0
1
94
None
00000/A000C000S001SEQ094
A000C000S001SEQ095
0None
0
1
95
None
00000/A000C000S001SEQ095
A000C000S001SEQ096
0None
0
1
96
None
00000/A000C000S001SEQ096
A000C000S001SEQ097
0None
0
1
97
None
00000/A000C000S001SEQ097
A000C000S001SEQ098
0None
0
1
98
None
00000/A000C000S001SEQ098
A000C000S001SEQ099
0None
0
1
99
None
00000/A000C000S001SEQ099
End of preview. Expand in Data Studio
drawing

University of Technology Chemnitz, Germany
Department Robotics and Human Machine Interaction
Author: Robert Schulz

TUC-HRI Dataset Card

TUC-AR is an action recognition dataset, containing 10(+1) action categories for human machine interaction. This version contains video sequences, stored as images, frame by frame.

We introduce two validation types: random validation and cross-subject validation. This is the cross-subject validation dataset. For random validation, please use https://huggingface.co/datasets/SchulzR97/TUC-HRI.

  • In random validation, a train and a validation split are obtained by randomly splitting the sequences while maintaining an allocation rate of approximately 80% train / 20% validation. This ensures that each action, subject, and camera, as well as the overall number of sequences, are distributed in this ratio among the splits. Thus, we obtained 17,263 train sequences and 4,220 validation sequences.
  • For cross-subject validation, subject 0 and 8 were chosen as validation subjects. All other subjects were assigned to the train split.

Dataset Details

  • RGB and depth input recorded by Intel RealSense D435 depth camera
  • 12 subjects
  • 11,031 sequences (train 8,893/ val 2,138)
  • 3 perspectives per scene
  • 10(+1) action classes
    Action Label
    A000 None
    A001 Waving
    A002 Pointing
    A003 Clapping
    A004 Follow
    A005 Walking
    A006 Stop
    A007 Turn
    A008 Jumping
    A009 Come here
    A010 Calm

How to Use this Dataset

  1. Install the RSProduction Machine Learning package (PyPi, GitHub)
pip install rsp-ml
  1. Use the HF datasat with rsp.ml.dataset.TUCHRI
from rsp.ml.dataset import TUCHRI
import rsp.ml.multi_transforms as multi_transforms
import torchvision.transforms as transforms
USE_DEPTH_DATA = True
class ToNumpy:
  def __call__(self, x):
    if isinstance(x, Image.Image):
      return np.array(x)
    elif isinstance(x, torch.Tensor):
      return x.permute(1, 2, 0).numpy()  # Tensor (C, H, W) -> (H, W, C)
    else:
      raise TypeError("Input must be a PIL.Image or torch.Tensor")
transform = transforms.Compose([
  transforms.Resize((600, 600)),
  transforms.ColorJitter(brightness=0.8, contrast=0.8, saturation=0.8, hue=0.5),
  transforms.RandomRotation(180, expand=True),
  transforms.CenterCrop((375, 500)),
  #transforms.RandomCrop(input_size),
  #transforms.ToTensor(),
  ToNumpy()
])
dtd_dataset = torchvision.datasets.DTD(download=True, split='val', transform=transform)
tranforms_train = multi_transforms.Compose([
  multi_transforms.ReplaceBackground(
      backgrounds = backgrounds,
      hsv_filter=[(69, 87, 139, 255, 52, 255)],
      p = 0.8
  ),
  multi_transforms.Resize((400, 400), auto_crop=False),
  multi_transforms.Color(0.1, p = 0.2),
  multi_transforms.Brightness(0.7, 1.3),
  multi_transforms.Satturation(0.7, 1.3),
  multi_transforms.RandomHorizontalFlip(),
  multi_transforms.GaussianNoise(0.002),
  multi_transforms.Rotate(max_angle=3),
  multi_transforms.Stack()
])
transforms_val = multi_transforms.Compose([
  multi_transforms.Resize((400, 400), auto_crop=False),
  multi_transforms.Stack()
])
ds_train = TUCHRI(
  phase='train',
  load_depth_data=True,
  sequence_length=30,
  num_classes=11,
  transforms=tranforms_train
)
ds_val = TUCHRI(
  phase='val',
  load_depth_data=True,
  sequence_length=30,
  num_classes=11,
  transforms=transforms_val
)

Dataset Card Contact

In case of any doubts about the dataset preprocessing and preparation, please contact TUC RHMi.

Downloads last month
70