Datasets:
Tasks:
Video Classification
Formats:
json
Languages:
English
Size:
10K - 100K
Tags:
computer vision
machine learning
video understanding
classification
human-machine-interaction
human-robot-interaction
License:
Dataset Viewer
Search is not available for this dataset
id
string | action
class label | camera
int64 | subject
int64 | idx
int64 | label
string | link
string |
---|---|---|---|---|---|---|
A000C000S000SEQ000 | 0None
| 0 | 0 | 0 | None | 00000/A000C000S000SEQ000 |
A000C000S000SEQ001 | 0None
| 0 | 0 | 1 | None | 00000/A000C000S000SEQ001 |
A000C000S000SEQ002 | 0None
| 0 | 0 | 2 | None | 00000/A000C000S000SEQ002 |
A000C000S000SEQ004 | 0None
| 0 | 0 | 4 | None | 00000/A000C000S000SEQ004 |
A000C000S000SEQ005 | 0None
| 0 | 0 | 5 | None | 00000/A000C000S000SEQ005 |
A000C000S000SEQ006 | 0None
| 0 | 0 | 6 | None | 00000/A000C000S000SEQ006 |
A000C000S000SEQ007 | 0None
| 0 | 0 | 7 | None | 00000/A000C000S000SEQ007 |
A000C000S000SEQ008 | 0None
| 0 | 0 | 8 | None | 00000/A000C000S000SEQ008 |
A000C000S000SEQ009 | 0None
| 0 | 0 | 9 | None | 00000/A000C000S000SEQ009 |
A000C000S000SEQ010 | 0None
| 0 | 0 | 10 | None | 00000/A000C000S000SEQ010 |
A000C000S000SEQ011 | 0None
| 0 | 0 | 11 | None | 00000/A000C000S000SEQ011 |
A000C000S000SEQ012 | 0None
| 0 | 0 | 12 | None | 00000/A000C000S000SEQ012 |
A000C000S000SEQ013 | 0None
| 0 | 0 | 13 | None | 00000/A000C000S000SEQ013 |
A000C000S000SEQ016 | 0None
| 0 | 0 | 16 | None | 00000/A000C000S000SEQ016 |
A000C000S000SEQ017 | 0None
| 0 | 0 | 17 | None | 00000/A000C000S000SEQ017 |
A000C000S000SEQ018 | 0None
| 0 | 0 | 18 | None | 00000/A000C000S000SEQ018 |
A000C000S000SEQ019 | 0None
| 0 | 0 | 19 | None | 00000/A000C000S000SEQ019 |
A000C000S000SEQ020 | 0None
| 0 | 0 | 20 | None | 00000/A000C000S000SEQ020 |
A000C000S000SEQ023 | 0None
| 0 | 0 | 23 | None | 00000/A000C000S000SEQ023 |
A000C000S000SEQ024 | 0None
| 0 | 0 | 24 | None | 00000/A000C000S000SEQ024 |
A000C000S000SEQ025 | 0None
| 0 | 0 | 25 | None | 00000/A000C000S000SEQ025 |
A000C000S000SEQ026 | 0None
| 0 | 0 | 26 | None | 00000/A000C000S000SEQ026 |
A000C000S000SEQ027 | 0None
| 0 | 0 | 27 | None | 00000/A000C000S000SEQ027 |
A000C000S000SEQ029 | 0None
| 0 | 0 | 29 | None | 00000/A000C000S000SEQ029 |
A000C000S000SEQ030 | 0None
| 0 | 0 | 30 | None | 00000/A000C000S000SEQ030 |
A000C000S000SEQ031 | 0None
| 0 | 0 | 31 | None | 00000/A000C000S000SEQ031 |
A000C000S000SEQ032 | 0None
| 0 | 0 | 32 | None | 00000/A000C000S000SEQ032 |
A000C000S000SEQ033 | 0None
| 0 | 0 | 33 | None | 00000/A000C000S000SEQ033 |
A000C000S000SEQ034 | 0None
| 0 | 0 | 34 | None | 00000/A000C000S000SEQ034 |
A000C000S000SEQ035 | 0None
| 0 | 0 | 35 | None | 00000/A000C000S000SEQ035 |
A000C000S000SEQ036 | 0None
| 0 | 0 | 36 | None | 00000/A000C000S000SEQ036 |
A000C000S000SEQ037 | 0None
| 0 | 0 | 37 | None | 00000/A000C000S000SEQ037 |
A000C000S000SEQ038 | 0None
| 0 | 0 | 38 | None | 00000/A000C000S000SEQ038 |
A000C000S000SEQ039 | 0None
| 0 | 0 | 39 | None | 00000/A000C000S000SEQ039 |
A000C000S000SEQ040 | 0None
| 0 | 0 | 40 | None | 00000/A000C000S000SEQ040 |
A000C000S000SEQ042 | 0None
| 0 | 0 | 42 | None | 00000/A000C000S000SEQ042 |
A000C000S000SEQ044 | 0None
| 0 | 0 | 44 | None | 00000/A000C000S000SEQ044 |
A000C000S000SEQ045 | 0None
| 0 | 0 | 45 | None | 00000/A000C000S000SEQ045 |
A000C000S000SEQ046 | 0None
| 0 | 0 | 46 | None | 00000/A000C000S000SEQ046 |
A000C000S000SEQ047 | 0None
| 0 | 0 | 47 | None | 00000/A000C000S000SEQ047 |
A000C000S000SEQ048 | 0None
| 0 | 0 | 48 | None | 00000/A000C000S000SEQ048 |
A000C000S000SEQ049 | 0None
| 0 | 0 | 49 | None | 00000/A000C000S000SEQ049 |
A000C000S000SEQ050 | 0None
| 0 | 0 | 50 | None | 00000/A000C000S000SEQ050 |
A000C000S000SEQ051 | 0None
| 0 | 0 | 51 | None | 00000/A000C000S000SEQ051 |
A000C000S000SEQ052 | 0None
| 0 | 0 | 52 | None | 00000/A000C000S000SEQ052 |
A000C000S000SEQ053 | 0None
| 0 | 0 | 53 | None | 00000/A000C000S000SEQ053 |
A000C000S000SEQ055 | 0None
| 0 | 0 | 55 | None | 00000/A000C000S000SEQ055 |
A000C000S000SEQ056 | 0None
| 0 | 0 | 56 | None | 00000/A000C000S000SEQ056 |
A000C000S000SEQ057 | 0None
| 0 | 0 | 57 | None | 00000/A000C000S000SEQ057 |
A000C000S000SEQ058 | 0None
| 0 | 0 | 58 | None | 00000/A000C000S000SEQ058 |
A000C000S000SEQ059 | 0None
| 0 | 0 | 59 | None | 00000/A000C000S000SEQ059 |
A000C000S000SEQ060 | 0None
| 0 | 0 | 60 | None | 00000/A000C000S000SEQ060 |
A000C000S000SEQ061 | 0None
| 0 | 0 | 61 | None | 00000/A000C000S000SEQ061 |
A000C000S000SEQ062 | 0None
| 0 | 0 | 62 | None | 00000/A000C000S000SEQ062 |
A000C000S000SEQ065 | 0None
| 0 | 0 | 65 | None | 00000/A000C000S000SEQ065 |
A000C000S000SEQ066 | 0None
| 0 | 0 | 66 | None | 00000/A000C000S000SEQ066 |
A000C000S000SEQ067 | 0None
| 0 | 0 | 67 | None | 00000/A000C000S000SEQ067 |
A000C000S000SEQ070 | 0None
| 0 | 0 | 70 | None | 00000/A000C000S000SEQ070 |
A000C000S000SEQ071 | 0None
| 0 | 0 | 71 | None | 00000/A000C000S000SEQ071 |
A000C000S000SEQ076 | 0None
| 0 | 0 | 76 | None | 00000/A000C000S000SEQ076 |
A000C000S000SEQ077 | 0None
| 0 | 0 | 77 | None | 00000/A000C000S000SEQ077 |
A000C000S000SEQ082 | 0None
| 0 | 0 | 82 | None | 00000/A000C000S000SEQ082 |
A000C000S000SEQ087 | 0None
| 0 | 0 | 87 | None | 00000/A000C000S000SEQ087 |
A000C000S000SEQ089 | 0None
| 0 | 0 | 89 | None | 00000/A000C000S000SEQ089 |
A000C000S000SEQ092 | 0None
| 0 | 0 | 92 | None | 00000/A000C000S000SEQ092 |
A000C000S000SEQ093 | 0None
| 0 | 0 | 93 | None | 00000/A000C000S000SEQ093 |
A000C000S000SEQ095 | 0None
| 0 | 0 | 95 | None | 00000/A000C000S000SEQ095 |
A000C000S000SEQ098 | 0None
| 0 | 0 | 98 | None | 00000/A000C000S000SEQ098 |
A000C000S000SEQ099 | 0None
| 0 | 0 | 99 | None | 00000/A000C000S000SEQ099 |
A000C000S000SEQ101 | 0None
| 0 | 0 | 101 | None | 00000/A000C000S000SEQ101 |
A000C000S000SEQ104 | 0None
| 0 | 0 | 104 | None | 00000/A000C000S000SEQ104 |
A000C000S000SEQ108 | 0None
| 0 | 0 | 108 | None | 00000/A000C000S000SEQ108 |
A000C000S000SEQ110 | 0None
| 0 | 0 | 110 | None | 00000/A000C000S000SEQ110 |
A000C000S000SEQ115 | 0None
| 0 | 0 | 115 | None | 00000/A000C000S000SEQ115 |
A000C000S000SEQ118 | 0None
| 0 | 0 | 118 | None | 00000/A000C000S000SEQ118 |
A000C000S000SEQ121 | 0None
| 0 | 0 | 121 | None | 00000/A000C000S000SEQ121 |
A000C000S000SEQ126 | 0None
| 0 | 0 | 126 | None | 00000/A000C000S000SEQ126 |
A000C000S000SEQ128 | 0None
| 0 | 0 | 128 | None | 00000/A000C000S000SEQ128 |
A000C000S000SEQ131 | 0None
| 0 | 0 | 131 | None | 00000/A000C000S000SEQ131 |
A000C000S000SEQ135 | 0None
| 0 | 0 | 135 | None | 00000/A000C000S000SEQ135 |
A000C000S000SEQ140 | 0None
| 0 | 0 | 140 | None | 00000/A000C000S000SEQ140 |
A000C000S000SEQ146 | 0None
| 0 | 0 | 146 | None | 00000/A000C000S000SEQ146 |
A000C000S000SEQ153 | 0None
| 0 | 0 | 153 | None | 00000/A000C000S000SEQ153 |
A000C000S000SEQ161 | 0None
| 0 | 0 | 161 | None | 00000/A000C000S000SEQ161 |
A000C000S000SEQ170 | 0None
| 0 | 0 | 170 | None | 00000/A000C000S000SEQ170 |
A000C000S000SEQ180 | 0None
| 0 | 0 | 180 | None | 00000/A000C000S000SEQ180 |
A000C000S000SEQ191 | 0None
| 0 | 0 | 191 | None | 00000/A000C000S000SEQ191 |
A000C000S000SEQ203 | 0None
| 0 | 0 | 203 | None | 00000/A000C000S000SEQ203 |
A000C000S000SEQ216 | 0None
| 0 | 0 | 216 | None | 00000/A000C000S000SEQ216 |
A000C000S000SEQ230 | 0None
| 0 | 0 | 230 | None | 00000/A000C000S000SEQ230 |
A000C000S000SEQ245 | 0None
| 0 | 0 | 245 | None | 00000/A000C000S000SEQ245 |
A000C000S001SEQ000 | 0None
| 0 | 1 | 0 | None | 00000/A000C000S001SEQ000 |
A000C000S001SEQ001 | 0None
| 0 | 1 | 1 | None | 00000/A000C000S001SEQ001 |
A000C000S001SEQ002 | 0None
| 0 | 1 | 2 | None | 00000/A000C000S001SEQ002 |
A000C000S001SEQ003 | 0None
| 0 | 1 | 3 | None | 00000/A000C000S001SEQ003 |
A000C000S001SEQ005 | 0None
| 0 | 1 | 5 | None | 00000/A000C000S001SEQ005 |
A000C000S001SEQ007 | 0None
| 0 | 1 | 7 | None | 00000/A000C000S001SEQ007 |
A000C000S001SEQ008 | 0None
| 0 | 1 | 8 | None | 00000/A000C000S001SEQ008 |
A000C000S001SEQ009 | 0None
| 0 | 1 | 9 | None | 00000/A000C000S001SEQ009 |
A000C000S001SEQ012 | 0None
| 0 | 1 | 12 | None | 00000/A000C000S001SEQ012 |
End of preview. Expand
in Data Studio

University of Technology Chemnitz, Germany
Department Robotics and Human Machine Interaction
Author: Robert Schulz
TUC-HRI Dataset Card
TUC-AR is an action recognition dataset, containing 10(+1) action categories for human machine interaction. This version contains video sequences, stored as images, frame by frame.
We introduce two validation types: random validation and cross-subject validation. This is the random validation dataset. For cross-subject validation, please use https://huggingface.co/datasets/SchulzR97/TUC-HRI-CS.
- In random validation, a train and a validation split are obtained by randomly splitting the sequences while maintaining an allocation rate of approximately 80% train / 20% validation. This ensures that each action, subject, and camera, as well as the overall number of sequences, are distributed in this ratio among the splits. Thus, we obtained 17,263 train sequences and 4,220 validation sequences.
- For cross-subject validation, subject 0 and 8 were chosen as validation subjects. All other subjects were assigned to the train split.
Dataset Details
- RGB and depth input recorded by Intel RealSense D435 depth camera
- 12 subjects
- 11,031 sequences (train 8,893/ val 2,138)
- 3 perspectives per scene
- 10(+1) action classes
Action Label A000 None A001 Waving A002 Pointing A003 Clapping A004 Follow A005 Walking A006 Stop A007 Turn A008 Jumping A009 Come here A010 Calm
How to Use this Dataset
pip install rsp-ml
- Use the HF datasat with
rsp.ml.dataset.TUCHRI
from rsp.ml.dataset import TUCHRI
import rsp.ml.multi_transforms as multi_transforms
import torchvision.transforms as transforms
USE_DEPTH_DATA = True
class ToNumpy:
def __call__(self, x):
if isinstance(x, Image.Image):
return np.array(x)
elif isinstance(x, torch.Tensor):
return x.permute(1, 2, 0).numpy() # Tensor (C, H, W) -> (H, W, C)
else:
raise TypeError("Input must be a PIL.Image or torch.Tensor")
transform = transforms.Compose([
transforms.Resize((600, 600)),
transforms.ColorJitter(brightness=0.8, contrast=0.8, saturation=0.8, hue=0.5),
transforms.RandomRotation(180, expand=True),
transforms.CenterCrop((375, 500)),
#transforms.RandomCrop(input_size),
#transforms.ToTensor(),
ToNumpy()
])
dtd_dataset = torchvision.datasets.DTD(download=True, split='val', transform=transform)
tranforms_train = multi_transforms.Compose([
multi_transforms.ReplaceBackground(
backgrounds = backgrounds,
hsv_filter=[(69, 87, 139, 255, 52, 255)],
p = 0.8
),
multi_transforms.Resize((400, 400), auto_crop=False),
multi_transforms.Color(0.1, p = 0.2),
multi_transforms.Brightness(0.7, 1.3),
multi_transforms.Satturation(0.7, 1.3),
multi_transforms.RandomHorizontalFlip(),
multi_transforms.GaussianNoise(0.002),
multi_transforms.Rotate(max_angle=3),
multi_transforms.Stack()
])
transforms_val = multi_transforms.Compose([
multi_transforms.Resize((400, 400), auto_crop=False),
multi_transforms.Stack()
])
ds_train = TUCHRI(
phase='train',
load_depth_data=True,
sequence_length=30,
num_classes=11,
transforms=tranforms_train
)
ds_val = TUCHRI(
phase='val',
load_depth_data=True,
sequence_length=30,
num_classes=11,
transforms=transforms_val
)
Dataset Card Contact
In case of any doubts about the dataset preprocessing and preparation, please contact TUC RHMi.
- Downloads last month
- 91