Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
id
string
action
class label
camera
int64
subject
int64
idx
int64
label
string
link
string
A000C000S000SEQ000
0None
0
0
0
None
00000/A000C000S000SEQ000
A000C000S000SEQ001
0None
0
0
1
None
00000/A000C000S000SEQ001
A000C000S000SEQ002
0None
0
0
2
None
00000/A000C000S000SEQ002
A000C000S000SEQ004
0None
0
0
4
None
00000/A000C000S000SEQ004
A000C000S000SEQ005
0None
0
0
5
None
00000/A000C000S000SEQ005
A000C000S000SEQ006
0None
0
0
6
None
00000/A000C000S000SEQ006
A000C000S000SEQ007
0None
0
0
7
None
00000/A000C000S000SEQ007
A000C000S000SEQ008
0None
0
0
8
None
00000/A000C000S000SEQ008
A000C000S000SEQ009
0None
0
0
9
None
00000/A000C000S000SEQ009
A000C000S000SEQ010
0None
0
0
10
None
00000/A000C000S000SEQ010
A000C000S000SEQ011
0None
0
0
11
None
00000/A000C000S000SEQ011
A000C000S000SEQ012
0None
0
0
12
None
00000/A000C000S000SEQ012
A000C000S000SEQ013
0None
0
0
13
None
00000/A000C000S000SEQ013
A000C000S000SEQ016
0None
0
0
16
None
00000/A000C000S000SEQ016
A000C000S000SEQ017
0None
0
0
17
None
00000/A000C000S000SEQ017
A000C000S000SEQ018
0None
0
0
18
None
00000/A000C000S000SEQ018
A000C000S000SEQ019
0None
0
0
19
None
00000/A000C000S000SEQ019
A000C000S000SEQ020
0None
0
0
20
None
00000/A000C000S000SEQ020
A000C000S000SEQ023
0None
0
0
23
None
00000/A000C000S000SEQ023
A000C000S000SEQ024
0None
0
0
24
None
00000/A000C000S000SEQ024
A000C000S000SEQ025
0None
0
0
25
None
00000/A000C000S000SEQ025
A000C000S000SEQ026
0None
0
0
26
None
00000/A000C000S000SEQ026
A000C000S000SEQ027
0None
0
0
27
None
00000/A000C000S000SEQ027
A000C000S000SEQ029
0None
0
0
29
None
00000/A000C000S000SEQ029
A000C000S000SEQ030
0None
0
0
30
None
00000/A000C000S000SEQ030
A000C000S000SEQ031
0None
0
0
31
None
00000/A000C000S000SEQ031
A000C000S000SEQ032
0None
0
0
32
None
00000/A000C000S000SEQ032
A000C000S000SEQ033
0None
0
0
33
None
00000/A000C000S000SEQ033
A000C000S000SEQ034
0None
0
0
34
None
00000/A000C000S000SEQ034
A000C000S000SEQ035
0None
0
0
35
None
00000/A000C000S000SEQ035
A000C000S000SEQ036
0None
0
0
36
None
00000/A000C000S000SEQ036
A000C000S000SEQ037
0None
0
0
37
None
00000/A000C000S000SEQ037
A000C000S000SEQ038
0None
0
0
38
None
00000/A000C000S000SEQ038
A000C000S000SEQ039
0None
0
0
39
None
00000/A000C000S000SEQ039
A000C000S000SEQ040
0None
0
0
40
None
00000/A000C000S000SEQ040
A000C000S000SEQ042
0None
0
0
42
None
00000/A000C000S000SEQ042
A000C000S000SEQ044
0None
0
0
44
None
00000/A000C000S000SEQ044
A000C000S000SEQ045
0None
0
0
45
None
00000/A000C000S000SEQ045
A000C000S000SEQ046
0None
0
0
46
None
00000/A000C000S000SEQ046
A000C000S000SEQ047
0None
0
0
47
None
00000/A000C000S000SEQ047
A000C000S000SEQ048
0None
0
0
48
None
00000/A000C000S000SEQ048
A000C000S000SEQ049
0None
0
0
49
None
00000/A000C000S000SEQ049
A000C000S000SEQ050
0None
0
0
50
None
00000/A000C000S000SEQ050
A000C000S000SEQ051
0None
0
0
51
None
00000/A000C000S000SEQ051
A000C000S000SEQ052
0None
0
0
52
None
00000/A000C000S000SEQ052
A000C000S000SEQ053
0None
0
0
53
None
00000/A000C000S000SEQ053
A000C000S000SEQ055
0None
0
0
55
None
00000/A000C000S000SEQ055
A000C000S000SEQ056
0None
0
0
56
None
00000/A000C000S000SEQ056
A000C000S000SEQ057
0None
0
0
57
None
00000/A000C000S000SEQ057
A000C000S000SEQ058
0None
0
0
58
None
00000/A000C000S000SEQ058
A000C000S000SEQ059
0None
0
0
59
None
00000/A000C000S000SEQ059
A000C000S000SEQ060
0None
0
0
60
None
00000/A000C000S000SEQ060
A000C000S000SEQ061
0None
0
0
61
None
00000/A000C000S000SEQ061
A000C000S000SEQ062
0None
0
0
62
None
00000/A000C000S000SEQ062
A000C000S000SEQ065
0None
0
0
65
None
00000/A000C000S000SEQ065
A000C000S000SEQ066
0None
0
0
66
None
00000/A000C000S000SEQ066
A000C000S000SEQ067
0None
0
0
67
None
00000/A000C000S000SEQ067
A000C000S000SEQ070
0None
0
0
70
None
00000/A000C000S000SEQ070
A000C000S000SEQ071
0None
0
0
71
None
00000/A000C000S000SEQ071
A000C000S000SEQ076
0None
0
0
76
None
00000/A000C000S000SEQ076
A000C000S000SEQ077
0None
0
0
77
None
00000/A000C000S000SEQ077
A000C000S000SEQ082
0None
0
0
82
None
00000/A000C000S000SEQ082
A000C000S000SEQ087
0None
0
0
87
None
00000/A000C000S000SEQ087
A000C000S000SEQ089
0None
0
0
89
None
00000/A000C000S000SEQ089
A000C000S000SEQ092
0None
0
0
92
None
00000/A000C000S000SEQ092
A000C000S000SEQ093
0None
0
0
93
None
00000/A000C000S000SEQ093
A000C000S000SEQ095
0None
0
0
95
None
00000/A000C000S000SEQ095
A000C000S000SEQ098
0None
0
0
98
None
00000/A000C000S000SEQ098
A000C000S000SEQ099
0None
0
0
99
None
00000/A000C000S000SEQ099
A000C000S000SEQ101
0None
0
0
101
None
00000/A000C000S000SEQ101
A000C000S000SEQ104
0None
0
0
104
None
00000/A000C000S000SEQ104
A000C000S000SEQ108
0None
0
0
108
None
00000/A000C000S000SEQ108
A000C000S000SEQ110
0None
0
0
110
None
00000/A000C000S000SEQ110
A000C000S000SEQ115
0None
0
0
115
None
00000/A000C000S000SEQ115
A000C000S000SEQ118
0None
0
0
118
None
00000/A000C000S000SEQ118
A000C000S000SEQ121
0None
0
0
121
None
00000/A000C000S000SEQ121
A000C000S000SEQ126
0None
0
0
126
None
00000/A000C000S000SEQ126
A000C000S000SEQ128
0None
0
0
128
None
00000/A000C000S000SEQ128
A000C000S000SEQ131
0None
0
0
131
None
00000/A000C000S000SEQ131
A000C000S000SEQ135
0None
0
0
135
None
00000/A000C000S000SEQ135
A000C000S000SEQ140
0None
0
0
140
None
00000/A000C000S000SEQ140
A000C000S000SEQ146
0None
0
0
146
None
00000/A000C000S000SEQ146
A000C000S000SEQ153
0None
0
0
153
None
00000/A000C000S000SEQ153
A000C000S000SEQ161
0None
0
0
161
None
00000/A000C000S000SEQ161
A000C000S000SEQ170
0None
0
0
170
None
00000/A000C000S000SEQ170
A000C000S000SEQ180
0None
0
0
180
None
00000/A000C000S000SEQ180
A000C000S000SEQ191
0None
0
0
191
None
00000/A000C000S000SEQ191
A000C000S000SEQ203
0None
0
0
203
None
00000/A000C000S000SEQ203
A000C000S000SEQ216
0None
0
0
216
None
00000/A000C000S000SEQ216
A000C000S000SEQ230
0None
0
0
230
None
00000/A000C000S000SEQ230
A000C000S000SEQ245
0None
0
0
245
None
00000/A000C000S000SEQ245
A000C000S001SEQ000
0None
0
1
0
None
00000/A000C000S001SEQ000
A000C000S001SEQ001
0None
0
1
1
None
00000/A000C000S001SEQ001
A000C000S001SEQ002
0None
0
1
2
None
00000/A000C000S001SEQ002
A000C000S001SEQ003
0None
0
1
3
None
00000/A000C000S001SEQ003
A000C000S001SEQ005
0None
0
1
5
None
00000/A000C000S001SEQ005
A000C000S001SEQ007
0None
0
1
7
None
00000/A000C000S001SEQ007
A000C000S001SEQ008
0None
0
1
8
None
00000/A000C000S001SEQ008
A000C000S001SEQ009
0None
0
1
9
None
00000/A000C000S001SEQ009
A000C000S001SEQ012
0None
0
1
12
None
00000/A000C000S001SEQ012
End of preview. Expand in Data Studio
drawing

University of Technology Chemnitz, Germany
Department Robotics and Human Machine Interaction
Author: Robert Schulz

TUC-HRI Dataset Card

TUC-AR is an action recognition dataset, containing 10(+1) action categories for human machine interaction. This version contains video sequences, stored as images, frame by frame.

We introduce two validation types: random validation and cross-subject validation. This is the random validation dataset. For cross-subject validation, please use https://huggingface.co/datasets/SchulzR97/TUC-HRI-CS.

  • In random validation, a train and a validation split are obtained by randomly splitting the sequences while maintaining an allocation rate of approximately 80% train / 20% validation. This ensures that each action, subject, and camera, as well as the overall number of sequences, are distributed in this ratio among the splits. Thus, we obtained 17,263 train sequences and 4,220 validation sequences.
  • For cross-subject validation, subject 0 and 8 were chosen as validation subjects. All other subjects were assigned to the train split.

Dataset Details

  • RGB and depth input recorded by Intel RealSense D435 depth camera
  • 12 subjects
  • 11,031 sequences (train 8,893/ val 2,138)
  • 3 perspectives per scene
  • 10(+1) action classes
    Action Label
    A000 None
    A001 Waving
    A002 Pointing
    A003 Clapping
    A004 Follow
    A005 Walking
    A006 Stop
    A007 Turn
    A008 Jumping
    A009 Come here
    A010 Calm

How to Use this Dataset

  1. Install the RSProduction Machine Learning package (PyPi, GitHub)
pip install rsp-ml
  1. Use the HF datasat with rsp.ml.dataset.TUCHRI
from rsp.ml.dataset import TUCHRI
import rsp.ml.multi_transforms as multi_transforms
import torchvision.transforms as transforms

USE_DEPTH_DATA = True

class ToNumpy:
  def __call__(self, x):
    if isinstance(x, Image.Image):
      return np.array(x)
    elif isinstance(x, torch.Tensor):
      return x.permute(1, 2, 0).numpy()  # Tensor (C, H, W) -> (H, W, C)
    else:
      raise TypeError("Input must be a PIL.Image or torch.Tensor")

transform = transforms.Compose([
  transforms.Resize((600, 600)),
  transforms.ColorJitter(brightness=0.8, contrast=0.8, saturation=0.8, hue=0.5),
  transforms.RandomRotation(180, expand=True),
  transforms.CenterCrop((375, 500)),
  #transforms.RandomCrop(input_size),
  #transforms.ToTensor(),
  ToNumpy()
])
dtd_dataset = torchvision.datasets.DTD(download=True, split='val', transform=transform)

tranforms_train = multi_transforms.Compose([
  multi_transforms.ReplaceBackground(
      backgrounds = backgrounds,
      hsv_filter=[(69, 87, 139, 255, 52, 255)],
      p = 0.8
  ),
  multi_transforms.Resize((400, 400), auto_crop=False),
  multi_transforms.Color(0.1, p = 0.2),
  multi_transforms.Brightness(0.7, 1.3),
  multi_transforms.Satturation(0.7, 1.3),
  multi_transforms.RandomHorizontalFlip(),
  multi_transforms.GaussianNoise(0.002),
  multi_transforms.Rotate(max_angle=3),
  multi_transforms.Stack()
])
transforms_val = multi_transforms.Compose([
  multi_transforms.Resize((400, 400), auto_crop=False),
  multi_transforms.Stack()
])

ds_train = TUCHRI(
  phase='train',
  load_depth_data=True,
  sequence_length=30,
  num_classes=11,
  transforms=tranforms_train
)
ds_val = TUCHRI(
  phase='val',
  load_depth_data=True,
  sequence_length=30,
  num_classes=11,
  transforms=transforms_val
)

Dataset Card Contact

In case of any doubts about the dataset preprocessing and preparation, please contact TUC RHMi.

Downloads last month
91