|
|
|
import json |
|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{tran2021vivqa, |
|
title={ViVQA: Vietnamese visual question answering}, |
|
author={Tran, Khanh Quoc and Nguyen, An Trong and Le, An Tran-Hoai and Van Nguyen, Kiet}, |
|
booktitle={Proceedings of the 35th Pacific Asia Conference on Language, Information and Computation}, |
|
pages={683--691}, |
|
year={2021} |
|
} |
|
""" |
|
_DATASETNAME = "vivqa" |
|
_DESCRIPTION = """\ |
|
Vietnamese Visual Question Answering (ViVQA) consist of 10328 images and 15000 question-answer |
|
pairs in Vietnamese for evaluating Vietnamese VQA models. This dataset is built based on 10328 randomly |
|
selected images from MS COCO dataset. The question-answer pairs were based on the COCO-QA dataset that |
|
was automatically translated from English to Vietnamese. |
|
""" |
|
_HOMEPAGE = "https://github.com/kh4nh12/ViVQA" |
|
_LANGUAGES = ["vie"] |
|
_LICENSE = Licenses.UNKNOWN.value |
|
_LOCAL = False |
|
_URLS = { |
|
"viviq": {"train": "https://raw.githubusercontent.com/kh4nh12/ViVQA/main/train.csv", |
|
"test": "https://raw.githubusercontent.com/kh4nh12/ViVQA/main/test.csv"}, |
|
"cocodata": { |
|
"coco2014_train_val_annots": "http://images.cocodataset.org/annotations/annotations_trainval2014.zip", |
|
"coco2014_train_images": "http://images.cocodataset.org/zips/train2014.zip", |
|
"coco2014_val_images": "http://images.cocodataset.org/zips/val2014.zip", |
|
}, |
|
} |
|
_SUPPORTED_TASKS = [Tasks.VISUAL_QUESTION_ANSWERING] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class VivQADataset(datasets.GeneratorBasedBuilder): |
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_imqa", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema="seacrowd_imqa", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"img_id": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"answer": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"coco_url": datasets.Value("string"), |
|
"flickr_url": datasets.Value("string"), |
|
"img_name": datasets.Value("string"), |
|
"coco_license": datasets.Value("int32"), |
|
"coco_width": datasets.Value("int32"), |
|
"coco_height": datasets.Value("int32"), |
|
"coco_date_captured": datasets.Value("string"), |
|
"image_path": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_imqa": |
|
features = schemas.imqa_features |
|
features["meta"] = { |
|
"coco_img_id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"flickr_url": datasets.Value("string"), |
|
"coco_url": datasets.Value("string"), |
|
"img_name": datasets.Value("string"), |
|
"coco_license": datasets.Value("int32"), |
|
"coco_width": datasets.Value("int32"), |
|
"coco_height": datasets.Value("int32"), |
|
"coco_date_captured": datasets.Value("string"), |
|
"image_path": datasets.Value("string"), |
|
} |
|
else: |
|
raise ValueError(f"No schema matched for {self.config.schema}") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS["viviq"] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
cocodata = dl_manager.download_and_extract(_URLS["cocodata"]) |
|
Coco_Dict = self._get_image_detail(cocodata) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir["train"], |
|
"split": "train", |
|
"coco_dict": Coco_Dict, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": data_dir["test"], |
|
"split": "test", |
|
"coco_dict": Coco_Dict, |
|
}, |
|
), |
|
] |
|
|
|
def _get_image_detail(self, coco_dir) -> Dict: |
|
coco2014_train_val_annots = os.path.join(coco_dir["coco2014_train_val_annots"], "annotations") |
|
train_ann_2014_path = os.path.join(coco2014_train_val_annots, "captions_train2014.json") |
|
val_ann_2014_path = os.path.join(coco2014_train_val_annots, "captions_val2014.json") |
|
coco_dict_val = {itm["id"]: itm for itm in json.load(open(val_ann_2014_path, "r"))["images"]} |
|
coco_dict_train = {itm["id"]: itm for itm in json.load(open(train_ann_2014_path, "r"))["images"]} |
|
coco_train_path = os.path.join(coco_dir["coco2014_train_images"], "train2014") |
|
coco_val_path = os.path.join(coco_dir["coco2014_val_images"], "val2014") |
|
coco_dict = {"train": coco_dict_train, "val": coco_dict_val, "coco_train_path": coco_train_path, "coco_val_path": coco_val_path} |
|
|
|
return coco_dict |
|
|
|
def _generate_examples(self, filepath: Path, split: str, coco_dict: Dict = None) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
raw_examples = pd.read_csv(filepath) |
|
coco_train_ref = coco_dict["train"] |
|
coco_val_ref = coco_dict["val"] |
|
coco_ref = {**coco_train_ref, **coco_val_ref} |
|
coco_train_path = coco_dict["coco_train_path"] |
|
coco_val_path = coco_dict["coco_val_path"] |
|
|
|
for eid, exam in raw_examples.iterrows(): |
|
assert len(exam) == 5 |
|
exam_id, exam_quest, exam_answer, exam_img_id, exam_type = exam |
|
coco_info = coco_ref[exam_img_id] |
|
flickr_url = coco_info["flickr_url"] |
|
img_name = coco_info["file_name"] |
|
coco_url = coco_info["coco_url"] |
|
coco_license = coco_info["license"] |
|
coco_width = coco_info["width"] |
|
coco_height = coco_info["height"] |
|
coco_date_captured = coco_info["date_captured"] |
|
coco_path = coco_train_path if exam_img_id in coco_train_ref else coco_val_path |
|
image_path = os.path.join(coco_path, img_name) |
|
|
|
if self.config.schema == "source": |
|
yield eid, { |
|
"img_id": str(exam_img_id), |
|
"question": exam_quest, |
|
"answer": exam_answer, |
|
"type": exam_type, |
|
"coco_url": coco_url, |
|
"flickr_url": flickr_url, |
|
"img_name": img_name, |
|
"coco_license": coco_license, |
|
"coco_width": coco_width, |
|
"coco_height": coco_height, |
|
"coco_date_captured": coco_date_captured, |
|
"image_path": image_path, |
|
} |
|
|
|
elif self.config.schema == "seacrowd_imqa": |
|
example = { |
|
"id": str(eid), |
|
"question_id": str(exam_id), |
|
"document_id": str(eid), |
|
"questions": [exam_quest], |
|
"type": None, |
|
"choices": None, |
|
"context": None, |
|
"answer": [exam_answer], |
|
"image_paths": [image_path], |
|
"meta": { |
|
"coco_img_id": str(exam_img_id), |
|
"type": exam_type, |
|
"flickr_url": flickr_url, |
|
"coco_url": coco_url, |
|
"img_name": img_name, |
|
"coco_license": coco_license, |
|
"coco_width": coco_width, |
|
"coco_height": coco_height, |
|
"coco_date_captured": coco_date_captured, |
|
"image_path": image_path, |
|
}, |
|
} |
|
|
|
yield eid, example |
|
|