vivqa / vivqa.py
holylovenia's picture
Upload vivqa.py with huggingface_hub
b7475cd verified
# coding=utf-8
import json
import os
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
import pandas as pd
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@inproceedings{tran2021vivqa,
title={ViVQA: Vietnamese visual question answering},
author={Tran, Khanh Quoc and Nguyen, An Trong and Le, An Tran-Hoai and Van Nguyen, Kiet},
booktitle={Proceedings of the 35th Pacific Asia Conference on Language, Information and Computation},
pages={683--691},
year={2021}
}
"""
_DATASETNAME = "vivqa"
_DESCRIPTION = """\
Vietnamese Visual Question Answering (ViVQA) consist of 10328 images and 15000 question-answer
pairs in Vietnamese for evaluating Vietnamese VQA models. This dataset is built based on 10328 randomly
selected images from MS COCO dataset. The question-answer pairs were based on the COCO-QA dataset that
was automatically translated from English to Vietnamese.
"""
_HOMEPAGE = "https://github.com/kh4nh12/ViVQA"
_LANGUAGES = ["vie"]
_LICENSE = Licenses.UNKNOWN.value
_LOCAL = False
_URLS = {
"viviq": {"train": "https://raw.githubusercontent.com/kh4nh12/ViVQA/main/train.csv",
"test": "https://raw.githubusercontent.com/kh4nh12/ViVQA/main/test.csv"},
"cocodata": {
"coco2014_train_val_annots": "http://images.cocodataset.org/annotations/annotations_trainval2014.zip",
"coco2014_train_images": "http://images.cocodataset.org/zips/train2014.zip",
"coco2014_val_images": "http://images.cocodataset.org/zips/val2014.zip",
},
}
_SUPPORTED_TASKS = [Tasks.VISUAL_QUESTION_ANSWERING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class VivQADataset(datasets.GeneratorBasedBuilder):
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_imqa",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema="seacrowd_imqa",
subset_id=f"{_DATASETNAME}",
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"img_id": datasets.Value("string"),
"question": datasets.Value("string"),
"answer": datasets.Value("string"),
"type": datasets.Value("string"),
"coco_url": datasets.Value("string"),
"flickr_url": datasets.Value("string"),
"img_name": datasets.Value("string"),
"coco_license": datasets.Value("int32"),
"coco_width": datasets.Value("int32"),
"coco_height": datasets.Value("int32"),
"coco_date_captured": datasets.Value("string"),
"image_path": datasets.Value("string"),
}
)
elif self.config.schema == "seacrowd_imqa":
features = schemas.imqa_features
features["meta"] = {
"coco_img_id": datasets.Value("string"),
"type": datasets.Value("string"),
"flickr_url": datasets.Value("string"),
"coco_url": datasets.Value("string"),
"img_name": datasets.Value("string"),
"coco_license": datasets.Value("int32"),
"coco_width": datasets.Value("int32"),
"coco_height": datasets.Value("int32"),
"coco_date_captured": datasets.Value("string"),
"image_path": datasets.Value("string"),
}
else:
raise ValueError(f"No schema matched for {self.config.schema}")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS["viviq"]
data_dir = dl_manager.download_and_extract(urls)
cocodata = dl_manager.download_and_extract(_URLS["cocodata"])
Coco_Dict = self._get_image_detail(cocodata)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir["train"],
"split": "train",
"coco_dict": Coco_Dict,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_dir["test"],
"split": "test",
"coco_dict": Coco_Dict,
},
),
]
def _get_image_detail(self, coco_dir) -> Dict:
coco2014_train_val_annots = os.path.join(coco_dir["coco2014_train_val_annots"], "annotations")
train_ann_2014_path = os.path.join(coco2014_train_val_annots, "captions_train2014.json")
val_ann_2014_path = os.path.join(coco2014_train_val_annots, "captions_val2014.json")
coco_dict_val = {itm["id"]: itm for itm in json.load(open(val_ann_2014_path, "r"))["images"]}
coco_dict_train = {itm["id"]: itm for itm in json.load(open(train_ann_2014_path, "r"))["images"]}
coco_train_path = os.path.join(coco_dir["coco2014_train_images"], "train2014")
coco_val_path = os.path.join(coco_dir["coco2014_val_images"], "val2014")
coco_dict = {"train": coco_dict_train, "val": coco_dict_val, "coco_train_path": coco_train_path, "coco_val_path": coco_val_path}
return coco_dict
def _generate_examples(self, filepath: Path, split: str, coco_dict: Dict = None) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
raw_examples = pd.read_csv(filepath)
coco_train_ref = coco_dict["train"]
coco_val_ref = coco_dict["val"]
coco_ref = {**coco_train_ref, **coco_val_ref}
coco_train_path = coco_dict["coco_train_path"]
coco_val_path = coco_dict["coco_val_path"]
for eid, exam in raw_examples.iterrows():
assert len(exam) == 5
exam_id, exam_quest, exam_answer, exam_img_id, exam_type = exam
coco_info = coco_ref[exam_img_id]
flickr_url = coco_info["flickr_url"]
img_name = coco_info["file_name"]
coco_url = coco_info["coco_url"]
coco_license = coco_info["license"]
coco_width = coco_info["width"]
coco_height = coco_info["height"]
coco_date_captured = coco_info["date_captured"]
coco_path = coco_train_path if exam_img_id in coco_train_ref else coco_val_path
image_path = os.path.join(coco_path, img_name)
if self.config.schema == "source":
yield eid, {
"img_id": str(exam_img_id),
"question": exam_quest,
"answer": exam_answer,
"type": exam_type,
"coco_url": coco_url,
"flickr_url": flickr_url,
"img_name": img_name,
"coco_license": coco_license,
"coco_width": coco_width,
"coco_height": coco_height,
"coco_date_captured": coco_date_captured,
"image_path": image_path,
}
elif self.config.schema == "seacrowd_imqa":
example = {
"id": str(eid),
"question_id": str(exam_id),
"document_id": str(eid),
"questions": [exam_quest],
"type": None,
"choices": None,
"context": None,
"answer": [exam_answer],
"image_paths": [image_path],
"meta": {
"coco_img_id": str(exam_img_id),
"type": exam_type,
"flickr_url": flickr_url,
"coco_url": coco_url,
"img_name": img_name,
"coco_license": coco_license,
"coco_width": coco_width,
"coco_height": coco_height,
"coco_date_captured": coco_date_captured,
"image_path": image_path,
},
}
yield eid, example