Datasets:
File size: 9,085 Bytes
b7475cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
# coding=utf-8
import json
import os
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
import pandas as pd
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@inproceedings{tran2021vivqa,
title={ViVQA: Vietnamese visual question answering},
author={Tran, Khanh Quoc and Nguyen, An Trong and Le, An Tran-Hoai and Van Nguyen, Kiet},
booktitle={Proceedings of the 35th Pacific Asia Conference on Language, Information and Computation},
pages={683--691},
year={2021}
}
"""
_DATASETNAME = "vivqa"
_DESCRIPTION = """\
Vietnamese Visual Question Answering (ViVQA) consist of 10328 images and 15000 question-answer
pairs in Vietnamese for evaluating Vietnamese VQA models. This dataset is built based on 10328 randomly
selected images from MS COCO dataset. The question-answer pairs were based on the COCO-QA dataset that
was automatically translated from English to Vietnamese.
"""
_HOMEPAGE = "https://github.com/kh4nh12/ViVQA"
_LANGUAGES = ["vie"]
_LICENSE = Licenses.UNKNOWN.value
_LOCAL = False
_URLS = {
"viviq": {"train": "https://raw.githubusercontent.com/kh4nh12/ViVQA/main/train.csv",
"test": "https://raw.githubusercontent.com/kh4nh12/ViVQA/main/test.csv"},
"cocodata": {
"coco2014_train_val_annots": "http://images.cocodataset.org/annotations/annotations_trainval2014.zip",
"coco2014_train_images": "http://images.cocodataset.org/zips/train2014.zip",
"coco2014_val_images": "http://images.cocodataset.org/zips/val2014.zip",
},
}
_SUPPORTED_TASKS = [Tasks.VISUAL_QUESTION_ANSWERING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class VivQADataset(datasets.GeneratorBasedBuilder):
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_imqa",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema="seacrowd_imqa",
subset_id=f"{_DATASETNAME}",
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"img_id": datasets.Value("string"),
"question": datasets.Value("string"),
"answer": datasets.Value("string"),
"type": datasets.Value("string"),
"coco_url": datasets.Value("string"),
"flickr_url": datasets.Value("string"),
"img_name": datasets.Value("string"),
"coco_license": datasets.Value("int32"),
"coco_width": datasets.Value("int32"),
"coco_height": datasets.Value("int32"),
"coco_date_captured": datasets.Value("string"),
"image_path": datasets.Value("string"),
}
)
elif self.config.schema == "seacrowd_imqa":
features = schemas.imqa_features
features["meta"] = {
"coco_img_id": datasets.Value("string"),
"type": datasets.Value("string"),
"flickr_url": datasets.Value("string"),
"coco_url": datasets.Value("string"),
"img_name": datasets.Value("string"),
"coco_license": datasets.Value("int32"),
"coco_width": datasets.Value("int32"),
"coco_height": datasets.Value("int32"),
"coco_date_captured": datasets.Value("string"),
"image_path": datasets.Value("string"),
}
else:
raise ValueError(f"No schema matched for {self.config.schema}")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS["viviq"]
data_dir = dl_manager.download_and_extract(urls)
cocodata = dl_manager.download_and_extract(_URLS["cocodata"])
Coco_Dict = self._get_image_detail(cocodata)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir["train"],
"split": "train",
"coco_dict": Coco_Dict,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_dir["test"],
"split": "test",
"coco_dict": Coco_Dict,
},
),
]
def _get_image_detail(self, coco_dir) -> Dict:
coco2014_train_val_annots = os.path.join(coco_dir["coco2014_train_val_annots"], "annotations")
train_ann_2014_path = os.path.join(coco2014_train_val_annots, "captions_train2014.json")
val_ann_2014_path = os.path.join(coco2014_train_val_annots, "captions_val2014.json")
coco_dict_val = {itm["id"]: itm for itm in json.load(open(val_ann_2014_path, "r"))["images"]}
coco_dict_train = {itm["id"]: itm for itm in json.load(open(train_ann_2014_path, "r"))["images"]}
coco_train_path = os.path.join(coco_dir["coco2014_train_images"], "train2014")
coco_val_path = os.path.join(coco_dir["coco2014_val_images"], "val2014")
coco_dict = {"train": coco_dict_train, "val": coco_dict_val, "coco_train_path": coco_train_path, "coco_val_path": coco_val_path}
return coco_dict
def _generate_examples(self, filepath: Path, split: str, coco_dict: Dict = None) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
raw_examples = pd.read_csv(filepath)
coco_train_ref = coco_dict["train"]
coco_val_ref = coco_dict["val"]
coco_ref = {**coco_train_ref, **coco_val_ref}
coco_train_path = coco_dict["coco_train_path"]
coco_val_path = coco_dict["coco_val_path"]
for eid, exam in raw_examples.iterrows():
assert len(exam) == 5
exam_id, exam_quest, exam_answer, exam_img_id, exam_type = exam
coco_info = coco_ref[exam_img_id]
flickr_url = coco_info["flickr_url"]
img_name = coco_info["file_name"]
coco_url = coco_info["coco_url"]
coco_license = coco_info["license"]
coco_width = coco_info["width"]
coco_height = coco_info["height"]
coco_date_captured = coco_info["date_captured"]
coco_path = coco_train_path if exam_img_id in coco_train_ref else coco_val_path
image_path = os.path.join(coco_path, img_name)
if self.config.schema == "source":
yield eid, {
"img_id": str(exam_img_id),
"question": exam_quest,
"answer": exam_answer,
"type": exam_type,
"coco_url": coco_url,
"flickr_url": flickr_url,
"img_name": img_name,
"coco_license": coco_license,
"coco_width": coco_width,
"coco_height": coco_height,
"coco_date_captured": coco_date_captured,
"image_path": image_path,
}
elif self.config.schema == "seacrowd_imqa":
example = {
"id": str(eid),
"question_id": str(exam_id),
"document_id": str(eid),
"questions": [exam_quest],
"type": None,
"choices": None,
"context": None,
"answer": [exam_answer],
"image_paths": [image_path],
"meta": {
"coco_img_id": str(exam_img_id),
"type": exam_type,
"flickr_url": flickr_url,
"coco_url": coco_url,
"img_name": img_name,
"coco_license": coco_license,
"coco_width": coco_width,
"coco_height": coco_height,
"coco_date_captured": coco_date_captured,
"image_path": image_path,
},
}
yield eid, example
|