File size: 8,862 Bytes
11707a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16b7891
 
 
11707a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16b7891
11707a8
 
 
16b7891
11707a8
16b7891
11707a8
 
16b7891
11707a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16b7891
11707a8
 
16b7891
 
 
 
11707a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16b7891
11707a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16b7891
11707a8
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from pathlib import Path
from typing import Dict, List, Tuple

import datasets

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks

_CITATION = """\
@inproceedings{sakti-tts-cocosda-2008,
    title = "Development of HMM-based Indonesian Speech Synthesis",
    author = "Sakti, Sakriani and Maia, Ranniery and Sakai, Shinsuke and Nakamura, Satoshi",
    booktitle = "Proc. Oriental COCOSDA",
    year = "2008",
    pages = "215--220"
    address = "Kyoto, Japan"
}

@inproceedings{sakti-tts-malindo-2010,
    title = "Quality and Intelligibility Assessment of Indonesian HMM-Based Speech Synthesis System",
    author = "Sakti, Sakriani and Sakai, Shinsuke and Isotani, Ryosuke and Kawai, Hisashi and Nakamura, Satoshi",
    booktitle = "Proc. MALINDO",
    year = "2010",
    pages = "51--57"
    address = "Jakarta, Indonesia"
}

@article{sakti-s2st-csl-2013,
    title = "{A-STAR}: Toward Tranlating Asian Spoken Languages",
    author = "Sakti, Sakriani and Paul, Michael and Finch, Andrew and Sakai, Shinsuke and Thang, Tat Vu, and Kimura, Noriyuki 
    and Hori, Chiori and Sumita, Eiichiro and Nakamura, Satoshi and Park, Jun and Wutiwiwatchai, Chai and Xu, Bo and Riza, Hammam 
    and Arora, Karunesh and Luong, Chi Mai and Li, Haizhou",
    journal = "Special issue on Speech-to-Speech Translation, Computer Speech and Language Journal",
    volume = "27",
    number ="2",
    pages = "509--527",
    year = "2013",
    publisher = "Elsevier"
}
"""

_DATASETNAME = "INDspeech_NEWS_TTS"
_LANGUAGES = ["ind"]

_DESCRIPTION = """\
INDspeech_NEWS_TTS is a speech dataset for developing an Indonesian text-to-speech synthesis system. The data was developed by Advanced Telecommunication Research Institute International (ATR) Japan under the the Asian speech translation advanced research (A-STAR) project [Sakti et al., 2013].
"""
_HOMEPAGE = "https://github.com/s-sakti/data_indsp_news_tts"

_LICENSE = "CC-BY-NC-SA 4.0"

_TRAIN_TASKS = {"120": "Orig_trainset_120min.lst", "60": "Orig_trainset_60min.lst", "30": "Orig_trainset_30min.lst", "12": "Orig_trainset_12min.lst", "ZR": "ZRChallenge_trainset.lst"}

_TEST_TASKS = {
    "MOS": "Orig_testset_MOS.lst",
    # "SUS": "Orig_testset_SUS.lst",
    "ZR": "ZRChallenge_testset.lst",
}

_URLS = {"lst_": "https://github.com/s-sakti/data_indsp_news_tts/raw/main/lst/", "speech_": "https://github.com/s-sakti/data_indsp_news_tts/raw/main/speech/", "text_": "https://github.com/s-sakti/data_indsp_news_tts/raw/main/text/orig_transcript"}

_SUPPORTED_TASKS = [Tasks.TEXT_TO_SPEECH]

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "2024.06.20"
_LOCAL = False


def seacrowd_config_constructor(schema, version, train_task, test_task):

    if schema != "source" and schema != "seacrowd_sptext":
        raise ValueError(f"Invalid schema: {schema}")

    return SEACrowdConfig(
        name="indspeech_news_tts_{tr_task}_{ts_task}_{schema}".format(schema=schema, tr_task=train_task, ts_task=test_task),
        version=datasets.Version(version),
        description="indspeech_news_tts {schema} schema for {tr_task} train and {ts_task} test task".format(schema=schema, tr_task=train_task, ts_task=test_task),
        schema=schema,
        subset_id="indspeech_news_tts_{tr_task}_{ts_task}".format(tr_task=train_task, ts_task=test_task),
    )


class INDspeechNEWSTTS(datasets.GeneratorBasedBuilder):
    """
    Tasks:
    Original = Train [120, 60, 30, 12], Test [MOS, SUS]
    ZR = Train, Test
    """

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

    BUILDER_CONFIGS = (
        [seacrowd_config_constructor("source", _SOURCE_VERSION, train, test) for train in ["12", "30", "60", "120"] for test in ["MOS"]]
        + [seacrowd_config_constructor("seacrowd_sptext", _SEACROWD_VERSION, train, test) for train in ["12", "30", "60", "120"] for test in ["MOS"]]
        + [seacrowd_config_constructor("source", _SOURCE_VERSION, "ZR", "ZR")]
        + [seacrowd_config_constructor("seacrowd_sptext", _SEACROWD_VERSION, "ZR", "ZR")]
    )

    DEFAULT_CONFIG_NAME = "indspeech_news_tts_120_MOS_source"

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "speaker_id": datasets.Value("string"),
                    "path": datasets.Value("string"),
                    "audio": datasets.Audio(sampling_rate=16_000),
                    "text": datasets.Value("string"),
                    "gender": datasets.Value("string"),
                }
            )
        elif self.config.schema == "seacrowd_sptext":
            features = schemas.speech_text_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""
        tr_task = self.config.name.split("_")[3]  # [12,30,60,120,ZR]
        ts_task = self.config.name.split("_")[4]  # [MOS, ZR]

        lst_train_dir = Path(dl_manager.download_and_extract(_URLS["lst_"] + _TRAIN_TASKS[tr_task]))
        lst_test_dir = Path(dl_manager.download_and_extract(_URLS["lst_"] + _TEST_TASKS[ts_task]))
        txt_dir = Path(dl_manager.download_and_extract(_URLS["text_"]))
        speech_dir = {"SPK00_" + str(spk).zfill(2) + "00": Path(dl_manager.download_and_extract(_URLS["speech_"] + "SPK00_" + str(spk).zfill(2) + "00.zip") + "/SPK00_" + str(spk).zfill(2) + "00") for spk in range(0, 21)}
        # print(os.listdir(speech_dir["SPK00_1500"]))

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # Whatever you put in gen_kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": {"samples": lst_train_dir, "text": txt_dir, "speech": speech_dir},
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": {"samples": lst_test_dir, "text": txt_dir, "speech": speech_dir},
                    "split": "test",
                },
            ),
        ]

    def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""

        samples = open(filepath["samples"], "r").read().splitlines()

        transcripts = {}
        with open(filepath["text"]) as file:
            for line in file:
                key, text = line.replace("\n", "").split("\t")
                transcripts[key] = text

        for key, id in enumerate(samples):
            spk_id, gender, speech_id = id.split("_")
            spk_group = speech_id[:2]

            if self.config.schema == "source":
                example = {
                    "id": id,
                    "speaker_id": spk_id,
                    "path": os.path.join(filepath["speech"]["SPK00_" + spk_group + "00"], id + ".wav"),
                    "audio": os.path.join(filepath["speech"]["SPK00_" + spk_group + "00"], id + ".wav"),
                    "text": transcripts[id],
                    "gender": gender,
                }
                yield key, example
            elif self.config.schema == "seacrowd_sptext":
                example = {
                    "id": str(id),
                    "speaker_id": spk_id,
                    "path": os.path.join(filepath["speech"]["SPK00_" + spk_group + "00"], id + ".wav"),
                    "audio": os.path.join(filepath["speech"]["SPK00_" + spk_group + "00"], id + ".wav"),
                    "text": transcripts[id],
                    "metadata": {
                        "speaker_age": None,
                        "speaker_gender": gender,
                    },
                }
                yield key, example