holylovenia
commited on
Commit
·
11707a8
1
Parent(s):
479aedc
Upload indspeech_news_tts.py with huggingface_hub
Browse files- indspeech_news_tts.py +209 -0
indspeech_news_tts.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import os
|
17 |
+
from pathlib import Path
|
18 |
+
from typing import Dict, List, Tuple
|
19 |
+
|
20 |
+
import datasets
|
21 |
+
|
22 |
+
from nusacrowd.utils import schemas
|
23 |
+
from nusacrowd.utils.configs import NusantaraConfig
|
24 |
+
from nusacrowd.utils.constants import Tasks
|
25 |
+
|
26 |
+
_CITATION = """\
|
27 |
+
@inproceedings{sakti-tts-cocosda-2008,
|
28 |
+
title = "Development of HMM-based Indonesian Speech Synthesis",
|
29 |
+
author = "Sakti, Sakriani and Maia, Ranniery and Sakai, Shinsuke and Nakamura, Satoshi",
|
30 |
+
booktitle = "Proc. Oriental COCOSDA",
|
31 |
+
year = "2008",
|
32 |
+
pages = "215--220"
|
33 |
+
address = "Kyoto, Japan"
|
34 |
+
}
|
35 |
+
|
36 |
+
@inproceedings{sakti-tts-malindo-2010,
|
37 |
+
title = "Quality and Intelligibility Assessment of Indonesian HMM-Based Speech Synthesis System",
|
38 |
+
author = "Sakti, Sakriani and Sakai, Shinsuke and Isotani, Ryosuke and Kawai, Hisashi and Nakamura, Satoshi",
|
39 |
+
booktitle = "Proc. MALINDO",
|
40 |
+
year = "2010",
|
41 |
+
pages = "51--57"
|
42 |
+
address = "Jakarta, Indonesia"
|
43 |
+
}
|
44 |
+
|
45 |
+
@article{sakti-s2st-csl-2013,
|
46 |
+
title = "{A-STAR}: Toward Tranlating Asian Spoken Languages",
|
47 |
+
author = "Sakti, Sakriani and Paul, Michael and Finch, Andrew and Sakai, Shinsuke and Thang, Tat Vu, and Kimura, Noriyuki
|
48 |
+
and Hori, Chiori and Sumita, Eiichiro and Nakamura, Satoshi and Park, Jun and Wutiwiwatchai, Chai and Xu, Bo and Riza, Hammam
|
49 |
+
and Arora, Karunesh and Luong, Chi Mai and Li, Haizhou",
|
50 |
+
journal = "Special issue on Speech-to-Speech Translation, Computer Speech and Language Journal",
|
51 |
+
volume = "27",
|
52 |
+
number ="2",
|
53 |
+
pages = "509--527",
|
54 |
+
year = "2013",
|
55 |
+
publisher = "Elsevier"
|
56 |
+
}
|
57 |
+
"""
|
58 |
+
|
59 |
+
_DATASETNAME = "INDspeech_NEWS_TTS"
|
60 |
+
_LANGUAGES = ["ind"]
|
61 |
+
|
62 |
+
_DESCRIPTION = """\
|
63 |
+
INDspeech_NEWS_TTS is a speech dataset for developing an Indonesian text-to-speech synthesis system. The data was developed by Advanced Telecommunication Research Institute International (ATR) Japan under the the Asian speech translation advanced research (A-STAR) project [Sakti et al., 2013].
|
64 |
+
"""
|
65 |
+
_HOMEPAGE = "https://github.com/s-sakti/data_indsp_news_tts"
|
66 |
+
|
67 |
+
_LICENSE = "CC-BY-NC-SA 4.0"
|
68 |
+
|
69 |
+
_TRAIN_TASKS = {"120": "Orig_trainset_120min.lst", "60": "Orig_trainset_60min.lst", "30": "Orig_trainset_30min.lst", "12": "Orig_trainset_12min.lst", "ZR": "ZRChallenge_trainset.lst"}
|
70 |
+
|
71 |
+
_TEST_TASKS = {
|
72 |
+
"MOS": "Orig_testset_MOS.lst",
|
73 |
+
# "SUS": "Orig_testset_SUS.lst",
|
74 |
+
"ZR": "ZRChallenge_testset.lst",
|
75 |
+
}
|
76 |
+
|
77 |
+
_URLS = {"lst_": "https://github.com/s-sakti/data_indsp_news_tts/raw/main/lst/", "speech_": "https://github.com/s-sakti/data_indsp_news_tts/raw/main/speech/", "text_": "https://github.com/s-sakti/data_indsp_news_tts/raw/main/text/orig_transcript"}
|
78 |
+
|
79 |
+
_SUPPORTED_TASKS = [Tasks.TEXT_TO_SPEECH]
|
80 |
+
|
81 |
+
_SOURCE_VERSION = "1.0.0"
|
82 |
+
|
83 |
+
_NUSANTARA_VERSION = "1.0.0"
|
84 |
+
_LOCAL = False
|
85 |
+
|
86 |
+
|
87 |
+
def nusantara_config_constructor(schema, version, train_task, test_task):
|
88 |
+
|
89 |
+
if schema != "source" and schema != "nusantara_sptext":
|
90 |
+
raise ValueError(f"Invalid schema: {schema}")
|
91 |
+
|
92 |
+
return NusantaraConfig(
|
93 |
+
name="indspeech_news_tts_{tr_task}_{ts_task}_{schema}".format(schema=schema, tr_task=train_task, ts_task=test_task),
|
94 |
+
version=datasets.Version(version),
|
95 |
+
description="indspeech_news_tts {schema} schema for {tr_task} train and {ts_task} test task".format(schema=schema, tr_task=train_task, ts_task=test_task),
|
96 |
+
schema=schema,
|
97 |
+
subset_id="indspeech_news_tts_{tr_task}_{ts_task}".format(tr_task=train_task, ts_task=test_task),
|
98 |
+
)
|
99 |
+
|
100 |
+
|
101 |
+
class INDspeechNEWSTTS(datasets.GeneratorBasedBuilder):
|
102 |
+
"""
|
103 |
+
Tasks:
|
104 |
+
Original = Train [120, 60, 30, 12], Test [MOS, SUS]
|
105 |
+
ZR = Train, Test
|
106 |
+
"""
|
107 |
+
|
108 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
109 |
+
NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION)
|
110 |
+
|
111 |
+
BUILDER_CONFIGS = (
|
112 |
+
[nusantara_config_constructor("source", _SOURCE_VERSION, train, test) for train in ["12", "30", "60", "120"] for test in ["MOS"]]
|
113 |
+
+ [nusantara_config_constructor("nusantara_sptext", _NUSANTARA_VERSION, train, test) for train in ["12", "30", "60", "120"] for test in ["MOS"]]
|
114 |
+
+ [nusantara_config_constructor("source", _SOURCE_VERSION, "ZR", "ZR")]
|
115 |
+
+ [nusantara_config_constructor("nusantara_sptext", _NUSANTARA_VERSION, "ZR", "ZR")]
|
116 |
+
)
|
117 |
+
|
118 |
+
DEFAULT_CONFIG_NAME = "indspeech_news_tts_120_MOS_source"
|
119 |
+
|
120 |
+
def _info(self) -> datasets.DatasetInfo:
|
121 |
+
if self.config.schema == "source":
|
122 |
+
features = datasets.Features(
|
123 |
+
{
|
124 |
+
"id": datasets.Value("string"),
|
125 |
+
"speaker_id": datasets.Value("string"),
|
126 |
+
"path": datasets.Value("string"),
|
127 |
+
"audio": datasets.Audio(sampling_rate=16_000),
|
128 |
+
"text": datasets.Value("string"),
|
129 |
+
"gender": datasets.Value("string"),
|
130 |
+
}
|
131 |
+
)
|
132 |
+
elif self.config.schema == "nusantara_sptext":
|
133 |
+
features = schemas.speech_text_features
|
134 |
+
|
135 |
+
return datasets.DatasetInfo(
|
136 |
+
description=_DESCRIPTION,
|
137 |
+
features=features,
|
138 |
+
homepage=_HOMEPAGE,
|
139 |
+
license=_LICENSE,
|
140 |
+
citation=_CITATION,
|
141 |
+
)
|
142 |
+
|
143 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
144 |
+
"""Returns SplitGenerators."""
|
145 |
+
tr_task = self.config.name.split("_")[3] # [12,30,60,120,ZR]
|
146 |
+
ts_task = self.config.name.split("_")[4] # [MOS, ZR]
|
147 |
+
|
148 |
+
lst_train_dir = Path(dl_manager.download_and_extract(_URLS["lst_"] + _TRAIN_TASKS[tr_task]))
|
149 |
+
lst_test_dir = Path(dl_manager.download_and_extract(_URLS["lst_"] + _TEST_TASKS[ts_task]))
|
150 |
+
txt_dir = Path(dl_manager.download_and_extract(_URLS["text_"]))
|
151 |
+
speech_dir = {"SPK00_" + str(spk).zfill(2) + "00": Path(dl_manager.download_and_extract(_URLS["speech_"] + "SPK00_" + str(spk).zfill(2) + "00.zip") + "/SPK00_" + str(spk).zfill(2) + "00") for spk in range(0, 21)}
|
152 |
+
# print(os.listdir(speech_dir["SPK00_1500"]))
|
153 |
+
|
154 |
+
return [
|
155 |
+
datasets.SplitGenerator(
|
156 |
+
name=datasets.Split.TRAIN,
|
157 |
+
# Whatever you put in gen_kwargs will be passed to _generate_examples
|
158 |
+
gen_kwargs={
|
159 |
+
"filepath": {"samples": lst_train_dir, "text": txt_dir, "speech": speech_dir},
|
160 |
+
"split": "train",
|
161 |
+
},
|
162 |
+
),
|
163 |
+
datasets.SplitGenerator(
|
164 |
+
name=datasets.Split.TEST,
|
165 |
+
gen_kwargs={
|
166 |
+
"filepath": {"samples": lst_test_dir, "text": txt_dir, "speech": speech_dir},
|
167 |
+
"split": "test",
|
168 |
+
},
|
169 |
+
),
|
170 |
+
]
|
171 |
+
|
172 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
173 |
+
"""Yields examples as (key, example) tuples."""
|
174 |
+
|
175 |
+
samples = open(filepath["samples"], "r").read().splitlines()
|
176 |
+
|
177 |
+
transcripts = {}
|
178 |
+
with open(filepath["text"]) as file:
|
179 |
+
for line in file:
|
180 |
+
key, text = line.replace("\n", "").split("\t")
|
181 |
+
transcripts[key] = text
|
182 |
+
|
183 |
+
for key, id in enumerate(samples):
|
184 |
+
spk_id, gender, speech_id = id.split("_")
|
185 |
+
spk_group = speech_id[:2]
|
186 |
+
|
187 |
+
if self.config.schema == "source":
|
188 |
+
example = {
|
189 |
+
"id": id,
|
190 |
+
"speaker_id": spk_id,
|
191 |
+
"path": os.path.join(filepath["speech"]["SPK00_" + spk_group + "00"], id + ".wav"),
|
192 |
+
"audio": os.path.join(filepath["speech"]["SPK00_" + spk_group + "00"], id + ".wav"),
|
193 |
+
"text": transcripts[id],
|
194 |
+
"gender": gender,
|
195 |
+
}
|
196 |
+
yield key, example
|
197 |
+
elif self.config.schema == "nusantara_sptext":
|
198 |
+
example = {
|
199 |
+
"id": str(id),
|
200 |
+
"speaker_id": spk_id,
|
201 |
+
"path": os.path.join(filepath["speech"]["SPK00_" + spk_group + "00"], id + ".wav"),
|
202 |
+
"audio": os.path.join(filepath["speech"]["SPK00_" + spk_group + "00"], id + ".wav"),
|
203 |
+
"text": transcripts[id],
|
204 |
+
"metadata": {
|
205 |
+
"speaker_age": None,
|
206 |
+
"speaker_gender": gender,
|
207 |
+
},
|
208 |
+
}
|
209 |
+
yield key, example
|