|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from itertools import chain, repeat |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.common_parser import load_ud_data, load_ud_data_as_seacrowd_kb |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
|
|
_CITATION = """\ |
|
@conference{2f8c7438a7f44f6b85b773586cff54e8, |
|
title = "A gold standard dependency treebank for Indonesian", |
|
author = "Ika Alfina and Arawinda Dinakaramani and Fanany, {Mohamad Ivan} and Heru Suhartanto", |
|
note = "Publisher Copyright: {\textcopyright} 2019 Proceedings of the 33rd Pacific Asia Conference on Language, Information and Computation, PACLIC 2019. All rights reserved.; \ |
|
33rd Pacific Asia Conference on Language, Information and Computation, PACLIC 2019 ; Conference date: 13-09-2019 Through 15-09-2019", |
|
year = "2019", |
|
month = jan, |
|
day = "1", |
|
language = "English", |
|
pages = "1--9", |
|
} |
|
|
|
@article{DBLP:journals/corr/abs-2011-00677, |
|
author = {Fajri Koto and |
|
Afshin Rahimi and |
|
Jey Han Lau and |
|
Timothy Baldwin}, |
|
title = {IndoLEM and IndoBERT: {A} Benchmark Dataset and Pre-trained Language |
|
Model for Indonesian {NLP}}, |
|
journal = {CoRR}, |
|
volume = {abs/2011.00677}, |
|
year = {2020}, |
|
url = {https://arxiv.org/abs/2011.00677}, |
|
eprinttype = {arXiv}, |
|
eprint = {2011.00677}, |
|
timestamp = {Fri, 06 Nov 2020 15:32:47 +0100}, |
|
biburl = {https://dblp.org/rec/journals/corr/abs-2011-00677.bib}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |
|
""" |
|
|
|
_LANGUAGES = ["ind"] |
|
_LOCAL = False |
|
|
|
_DATASETNAME = "indolem_ud_id_pud" |
|
|
|
_DESCRIPTION = """\ |
|
1 of 8 sub-datasets of IndoLEM, a comprehensive dataset encompassing 7 NLP tasks (Koto et al., 2020). |
|
This dataset is part of [Parallel Universal Dependencies (PUD)](http://universaldependencies.org/conll17/) project. |
|
This is based on the first corrected version by Alfina et al. (2019), contains 1,000 sentences. |
|
""" |
|
|
|
_HOMEPAGE = "https://indolem.github.io/" |
|
|
|
_LICENSE = "Creative Commons Attribution 4.0" |
|
|
|
_FOLDS = list(range(5)) |
|
_DEFAULT_FOLD = _FOLDS[0] |
|
_URLS = { |
|
f"{_DATASETNAME}_{fold}": { |
|
"train": f"https://raw.githubusercontent.com/indolem/indolem/main/dependency_parsing/UD_Indonesian_PUD/folds/train{fold}.conllu", |
|
"validation": f"https://raw.githubusercontent.com/indolem/indolem/main/dependency_parsing/UD_Indonesian_PUD/folds/dev{fold}.conllu", |
|
"test": f"https://raw.githubusercontent.com/indolem/indolem/main/dependency_parsing/UD_Indonesian_PUD/folds/test{fold}.conllu", |
|
} |
|
for fold in _FOLDS |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.DEPENDENCY_PARSING] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class IndolemUDIDPUDDataset(datasets.GeneratorBasedBuilder): |
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = list( |
|
chain( |
|
( |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} default fold ('{_DEFAULT_FOLD}') of source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}_{_DEFAULT_FOLD}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_kb", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} default fold ('{_DEFAULT_FOLD}') of Nusantara KB schema", |
|
schema="seacrowd_kb", |
|
subset_id=f"{_DATASETNAME}_{_DEFAULT_FOLD}", |
|
), |
|
), |
|
*( |
|
( |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{fold}_source", |
|
version=ver_src, |
|
description=f"{_DATASETNAME} fold '{fold}' of source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}_{fold}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{fold}_seacrowd_kb", |
|
version=ver_nusa, |
|
description=f"{_DATASETNAME} fold '{fold}' of Nusantara KB schema", |
|
schema="seacrowd_kb", |
|
subset_id=f"{_DATASETNAME}_{fold}", |
|
), |
|
) |
|
for fold, ver_src, ver_nusa in zip(_FOLDS, repeat(SOURCE_VERSION), repeat(SEACROWD_VERSION)) |
|
), |
|
) |
|
) |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
|
|
"sent_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"text_en": datasets.Value("string"), |
|
|
|
"id": [datasets.Value("string")], |
|
"form": [datasets.Value("string")], |
|
"lemma": [datasets.Value("string")], |
|
"upos": [datasets.Value("string")], |
|
"xpos": [datasets.Value("string")], |
|
"feats": [datasets.Value("string")], |
|
"head": [datasets.Value("string")], |
|
"deprel": [datasets.Value("string")], |
|
"deps": [datasets.Value("string")], |
|
"misc": [datasets.Value("string")], |
|
} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_kb": |
|
features = schemas.kb_features |
|
|
|
else: |
|
raise NotImplementedError(f"Schema '{self.config.schema}' is not defined.") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS[self.config.subset_id] |
|
data_dir = dl_manager.download(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir["train"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": data_dir["test"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": data_dir["validation"], |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
|
|
try: |
|
generator_fn = { |
|
"source": load_ud_data, |
|
"seacrowd_kb": load_ud_data_as_seacrowd_kb, |
|
}[self.config.schema] |
|
except KeyError: |
|
raise NotImplementedError(f"Schema '{self.config.schema}' is not defined.") |
|
|
|
for key, example in enumerate(generator_fn(filepath)): |
|
yield key, example |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|