Datasets:

Languages:
Indonesian
ArXiv:
File size: 8,830 Bytes
4d6d3c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94f0378
 
 
 
4d6d3c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94f0378
4d6d3c6
 
 
 
94f0378
4d6d3c6
 
 
 
94f0378
4d6d3c6
 
 
 
 
 
94f0378
 
 
4d6d3c6
94f0378
4d6d3c6
 
 
 
 
94f0378
4d6d3c6
 
 
 
 
 
94f0378
 
4d6d3c6
 
94f0378
4d6d3c6
 
 
94f0378
4d6d3c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94f0378
4d6d3c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94f0378
4d6d3c6
 
 
 
 
 
 
 
 
 
94f0378
4d6d3c6
 
94f0378
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from itertools import chain, repeat
from pathlib import Path
from typing import Dict, List, Tuple

import datasets

from seacrowd.utils import schemas
from seacrowd.utils.common_parser import load_ud_data, load_ud_data_as_seacrowd_kb
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks

_CITATION = """\
@conference{2f8c7438a7f44f6b85b773586cff54e8,
    title = "A gold standard dependency treebank for Indonesian",
    author = "Ika Alfina and Arawinda Dinakaramani and Fanany, {Mohamad Ivan} and Heru Suhartanto",
    note = "Publisher Copyright: {\textcopyright} 2019 Proceedings of the 33rd Pacific Asia Conference on Language, Information and Computation, PACLIC 2019. All rights reserved.; \
33rd Pacific Asia Conference on Language, Information and Computation, PACLIC 2019 ; Conference date: 13-09-2019 Through 15-09-2019",
    year = "2019",
    month = jan,
    day = "1",
    language = "English",
    pages = "1--9",
}

@article{DBLP:journals/corr/abs-2011-00677,
    author    = {Fajri Koto and
                 Afshin Rahimi and
                 Jey Han Lau and
                 Timothy Baldwin},
    title     = {IndoLEM and IndoBERT: {A} Benchmark Dataset and Pre-trained Language
                 Model for Indonesian {NLP}},
    journal   = {CoRR},
    volume    = {abs/2011.00677},
    year      = {2020},
    url       = {https://arxiv.org/abs/2011.00677},
    eprinttype = {arXiv},
    eprint    = {2011.00677},
    timestamp = {Fri, 06 Nov 2020 15:32:47 +0100},
    biburl    = {https://dblp.org/rec/journals/corr/abs-2011-00677.bib},
    bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""

_LANGUAGES = ["ind"]  # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LOCAL = False

_DATASETNAME = "indolem_ud_id_pud"

_DESCRIPTION = """\
1 of 8 sub-datasets of IndoLEM, a comprehensive dataset encompassing 7 NLP tasks (Koto et al., 2020).
This dataset is part of [Parallel Universal Dependencies (PUD)](http://universaldependencies.org/conll17/) project.
This is based on the first corrected version by Alfina et al. (2019), contains 1,000 sentences.
"""

_HOMEPAGE = "https://indolem.github.io/"

_LICENSE = "Creative Commons Attribution 4.0"

_FOLDS = list(range(5))
_DEFAULT_FOLD = _FOLDS[0]
_URLS = {
    f"{_DATASETNAME}_{fold}": {
        "train": f"https://raw.githubusercontent.com/indolem/indolem/main/dependency_parsing/UD_Indonesian_PUD/folds/train{fold}.conllu",
        "validation": f"https://raw.githubusercontent.com/indolem/indolem/main/dependency_parsing/UD_Indonesian_PUD/folds/dev{fold}.conllu",
        "test": f"https://raw.githubusercontent.com/indolem/indolem/main/dependency_parsing/UD_Indonesian_PUD/folds/test{fold}.conllu",
    }
    for fold in _FOLDS
}

_SUPPORTED_TASKS = [Tasks.DEPENDENCY_PARSING]

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "2024.06.20"


class IndolemUDIDPUDDataset(datasets.GeneratorBasedBuilder):
    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

    BUILDER_CONFIGS = list(
        chain(
            (
                SEACrowdConfig(
                    name=f"{_DATASETNAME}_source",
                    version=SOURCE_VERSION,
                    description=f"{_DATASETNAME} default fold ('{_DEFAULT_FOLD}') of source schema",
                    schema="source",
                    subset_id=f"{_DATASETNAME}_{_DEFAULT_FOLD}",
                ),
                SEACrowdConfig(
                    name=f"{_DATASETNAME}_seacrowd_kb",
                    version=SEACROWD_VERSION,
                    description=f"{_DATASETNAME} default fold ('{_DEFAULT_FOLD}') of Nusantara KB schema",
                    schema="seacrowd_kb",
                    subset_id=f"{_DATASETNAME}_{_DEFAULT_FOLD}",
                ),
            ),
            *(
                (
                    SEACrowdConfig(
                        name=f"{_DATASETNAME}_{fold}_source",
                        version=ver_src,
                        description=f"{_DATASETNAME} fold '{fold}' of source schema",
                        schema="source",
                        subset_id=f"{_DATASETNAME}_{fold}",
                    ),
                    SEACrowdConfig(
                        name=f"{_DATASETNAME}_{fold}_seacrowd_kb",
                        version=ver_nusa,
                        description=f"{_DATASETNAME} fold '{fold}' of Nusantara KB schema",
                        schema="seacrowd_kb",
                        subset_id=f"{_DATASETNAME}_{fold}",
                    ),
                )
                for fold, ver_src, ver_nusa in zip(_FOLDS, repeat(SOURCE_VERSION), repeat(SEACROWD_VERSION))
            ),
        )
    )

    DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == "source":
            features = datasets.Features(
                {
                    # metadata
                    "sent_id": datasets.Value("string"),
                    "text": datasets.Value("string"),
                    "text_en": datasets.Value("string"),
                    # tokens
                    "id": [datasets.Value("string")],
                    "form": [datasets.Value("string")],
                    "lemma": [datasets.Value("string")],
                    "upos": [datasets.Value("string")],  # Alternatively, use ClassLabel (https://huggingface.co/datasets/universal_dependencies/blob/main/universal_dependencies.py#L1211)
                    "xpos": [datasets.Value("string")],
                    "feats": [datasets.Value("string")],
                    "head": [datasets.Value("string")],
                    "deprel": [datasets.Value("string")],
                    "deps": [datasets.Value("string")],
                    "misc": [datasets.Value("string")],
                }
            )

        elif self.config.schema == "seacrowd_kb":
            features = schemas.kb_features

        else:
            raise NotImplementedError(f"Schema '{self.config.schema}' is not defined.")

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""
        urls = _URLS[self.config.subset_id]
        data_dir = dl_manager.download(urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": data_dir["train"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": data_dir["test"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": data_dir["validation"],
                },
            ),
        ]

    def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""
        # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`

        try:
            generator_fn = {
                "source": load_ud_data,
                "seacrowd_kb": load_ud_data_as_seacrowd_kb,
            }[self.config.schema]
        except KeyError:
            raise NotImplementedError(f"Schema '{self.config.schema}' is not defined.")

        for key, example in enumerate(generator_fn(filepath)):
            yield key, example


# if __name__ == "__main__":
#     datasets.load_dataset(__file__, name=f"indolem_ud_id_pud_source")
#     datasets.load_dataset(__file__, name=f"indolem_ud_id_pud_seacrowd_kb")
#     for fold in _FOLDS:
#         datasets.load_dataset(__file__, name=f"indolem_ud_id_pud_{fold}_source")
#         datasets.load_dataset(__file__, name=f"indolem_ud_id_pud_{fold}_seacrowd_kb")