|
import ast |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.sea_datasets.facqa.utils.facqa_utils import (getAnswerString, listToString) |
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
|
|
_CITATION = """ |
|
@inproceedings{purwarianti2007machine, |
|
title={A Machine Learning Approach for Indonesian Question Answering System}, |
|
author={Ayu Purwarianti, Masatoshi Tsuchiya, and Seiichi Nakagawa}, |
|
booktitle={Proceedings of Artificial Intelligence and Applications }, |
|
pages={573--578}, |
|
year={2007} |
|
} |
|
""" |
|
|
|
_LANGUAGES = ["ind"] |
|
_LOCAL = False |
|
|
|
_DATASETNAME = "facqa" |
|
|
|
_DESCRIPTION = """ |
|
FacQA: The goal of the FacQA dataset is to find the answer to a question from a provided short passage from a news article. |
|
Each row in the FacQA dataset consists of a question, a short passage, and a label phrase, which can be found inside the |
|
corresponding short passage. There are six categories of questions: date, location, name, |
|
organization, person, and quantitative. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/IndoNLP/indonlu" |
|
|
|
_LICENSE = "CC-BY-SA 4.0" |
|
|
|
_URLS = { |
|
_DATASETNAME: { |
|
"test": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/facqa_qa-factoid-itb/test_preprocess.csv", |
|
"train": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/facqa_qa-factoid-itb/train_preprocess.csv", |
|
"validation": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/facqa_qa-factoid-itb/valid_preprocess.csv", |
|
} |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class FacqaDataset(datasets.GeneratorBasedBuilder): |
|
"""FacQA dataset is a labeled dataset for indonesian question answering task""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="facqa_source", |
|
version=SOURCE_VERSION, |
|
description="FacQA source schema", |
|
schema="source", |
|
subset_id="facqa", |
|
), |
|
SEACrowdConfig( |
|
name="facqa_seacrowd_qa", |
|
version=SEACROWD_VERSION, |
|
description="FacQA Nusantara schema", |
|
schema="seacrowd_qa", |
|
subset_id="facqa", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "facqa_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"index": datasets.Value("int64"), |
|
"question": [datasets.Value("string")], |
|
"passage": [datasets.Value("string")], |
|
"seq_label": [datasets.Value("string")], |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_qa": |
|
features = schemas.qa_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS[_DATASETNAME] |
|
train_csv_path = Path(dl_manager.download_and_extract(urls["train"])) |
|
validation_csv_path = Path(dl_manager.download_and_extract(urls["validation"])) |
|
test_csv_path = Path(dl_manager.download_and_extract(urls["test"])) |
|
data_files = { |
|
"train": train_csv_path, |
|
"validation": validation_csv_path, |
|
"test": test_csv_path, |
|
} |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_files["train"], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": data_files["test"], |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": data_files["validation"], |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
df = pd.read_csv(filepath, sep=",", header="infer").reset_index() |
|
if self.config.schema == "source": |
|
for row in df.itertuples(): |
|
entry = {"index": row.index, "question": ast.literal_eval(row.question), "passage": ast.literal_eval(row.passage), "seq_label": ast.literal_eval(row.seq_label)} |
|
yield row.index, entry |
|
|
|
elif self.config.schema == "seacrowd_qa": |
|
for row in df.itertuples(): |
|
entry = { |
|
"id": str(row.index), |
|
"question_id": str(row.index), |
|
"document_id": str(row.index), |
|
"question": listToString(ast.literal_eval(row.question)), |
|
"type": "extractive", |
|
"choices": [], |
|
"context": listToString(ast.literal_eval(row.passage)), |
|
"answer": [getAnswerString(ast.literal_eval(row.passage), ast.literal_eval(row.seq_label))], |
|
"meta": {} |
|
} |
|
yield row.index, entry |
|
|