File size: 5,793 Bytes
9501e26
 
 
 
 
 
 
25ea5b4
 
 
 
9501e26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25ea5b4
9501e26
 
 
 
 
 
25ea5b4
9501e26
 
25ea5b4
9501e26
 
 
 
 
 
25ea5b4
 
 
9501e26
25ea5b4
9501e26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25ea5b4
9501e26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25ea5b4
9501e26
 
 
 
 
 
 
 
 
 
25ea5b4
9501e26
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import ast
from pathlib import Path
from typing import Dict, List, Tuple

import datasets
import pandas as pd

from seacrowd.sea_datasets.facqa.utils.facqa_utils import (getAnswerString, listToString)
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks

_CITATION = """
@inproceedings{purwarianti2007machine,
  title={A Machine Learning Approach for Indonesian Question Answering System},
  author={Ayu Purwarianti, Masatoshi Tsuchiya, and Seiichi Nakagawa},
  booktitle={Proceedings of Artificial Intelligence and Applications },
  pages={573--578},
  year={2007}
}
"""

_LANGUAGES = ["ind"]  # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LOCAL = False

_DATASETNAME = "facqa"

_DESCRIPTION = """
FacQA: The goal of the FacQA dataset is to find the answer to a question from a provided short passage from a news article.
Each row in the FacQA dataset consists of a question, a short passage, and a label phrase, which can be found inside the
corresponding short passage. There are six categories of questions: date, location, name,
organization, person, and quantitative.
"""

_HOMEPAGE = "https://github.com/IndoNLP/indonlu"

_LICENSE = "CC-BY-SA 4.0"

_URLS = {
    _DATASETNAME: {
        "test": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/facqa_qa-factoid-itb/test_preprocess.csv",
        "train": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/facqa_qa-factoid-itb/train_preprocess.csv",
        "validation": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/facqa_qa-factoid-itb/valid_preprocess.csv",
    }
}

_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING]

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "2024.06.20"


class FacqaDataset(datasets.GeneratorBasedBuilder):
    """FacQA dataset is a labeled dataset for indonesian question answering task"""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name="facqa_source",
            version=SOURCE_VERSION,
            description="FacQA source schema",
            schema="source",
            subset_id="facqa",
        ),
        SEACrowdConfig(
            name="facqa_seacrowd_qa",
            version=SEACROWD_VERSION,
            description="FacQA Nusantara schema",
            schema="seacrowd_qa",
            subset_id="facqa",
        ),
    ]

    DEFAULT_CONFIG_NAME = "facqa_source"

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "index": datasets.Value("int64"),
                    "question": [datasets.Value("string")],
                    "passage": [datasets.Value("string")],
                    "seq_label": [datasets.Value("string")],
                }
            )
        elif self.config.schema == "seacrowd_qa":
            features = schemas.qa_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""
        urls = _URLS[_DATASETNAME]
        train_csv_path = Path(dl_manager.download_and_extract(urls["train"]))
        validation_csv_path = Path(dl_manager.download_and_extract(urls["validation"]))
        test_csv_path = Path(dl_manager.download_and_extract(urls["test"]))
        data_files = {
            "train": train_csv_path,
            "validation": validation_csv_path,
            "test": test_csv_path,
        }
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": data_files["train"],
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": data_files["test"],
                    "split": "test",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": data_files["validation"],
                    "split": "dev",
                },
            ),
        ]

    def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""
        df = pd.read_csv(filepath, sep=",", header="infer").reset_index()
        if self.config.schema == "source":
            for row in df.itertuples():
                entry = {"index": row.index, "question": ast.literal_eval(row.question), "passage": ast.literal_eval(row.passage), "seq_label": ast.literal_eval(row.seq_label)}
                yield row.index, entry

        elif self.config.schema == "seacrowd_qa":
            for row in df.itertuples():
                entry = {
                    "id": str(row.index),
                    "question_id": str(row.index),
                    "document_id": str(row.index),
                    "question": listToString(ast.literal_eval(row.question)),
                    "type": "extractive",
                    "choices": [],
                    "context": listToString(ast.literal_eval(row.passage)),
                    "answer": [getAnswerString(ast.literal_eval(row.passage), ast.literal_eval(row.seq_label))],
                    "meta": {}
                }
                yield row.index, entry