Commit
·
9501e26
1
Parent(s):
afdf9b8
Upload facqa.py with huggingface_hub
Browse files
facqa.py
ADDED
|
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import ast
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
from typing import Dict, List, Tuple
|
| 4 |
+
|
| 5 |
+
import datasets
|
| 6 |
+
import pandas as pd
|
| 7 |
+
|
| 8 |
+
from nusacrowd.nusa_datasets.facqa.utils.facqa_utils import (getAnswerString, listToString)
|
| 9 |
+
from nusacrowd.utils import schemas
|
| 10 |
+
from nusacrowd.utils.configs import NusantaraConfig
|
| 11 |
+
from nusacrowd.utils.constants import Tasks
|
| 12 |
+
|
| 13 |
+
_CITATION = """
|
| 14 |
+
@inproceedings{purwarianti2007machine,
|
| 15 |
+
title={A Machine Learning Approach for Indonesian Question Answering System},
|
| 16 |
+
author={Ayu Purwarianti, Masatoshi Tsuchiya, and Seiichi Nakagawa},
|
| 17 |
+
booktitle={Proceedings of Artificial Intelligence and Applications },
|
| 18 |
+
pages={573--578},
|
| 19 |
+
year={2007}
|
| 20 |
+
}
|
| 21 |
+
"""
|
| 22 |
+
|
| 23 |
+
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
| 24 |
+
_LOCAL = False
|
| 25 |
+
|
| 26 |
+
_DATASETNAME = "facqa"
|
| 27 |
+
|
| 28 |
+
_DESCRIPTION = """
|
| 29 |
+
FacQA: The goal of the FacQA dataset is to find the answer to a question from a provided short passage from a news article.
|
| 30 |
+
Each row in the FacQA dataset consists of a question, a short passage, and a label phrase, which can be found inside the
|
| 31 |
+
corresponding short passage. There are six categories of questions: date, location, name,
|
| 32 |
+
organization, person, and quantitative.
|
| 33 |
+
"""
|
| 34 |
+
|
| 35 |
+
_HOMEPAGE = "https://github.com/IndoNLP/indonlu"
|
| 36 |
+
|
| 37 |
+
_LICENSE = "CC-BY-SA 4.0"
|
| 38 |
+
|
| 39 |
+
_URLS = {
|
| 40 |
+
_DATASETNAME: {
|
| 41 |
+
"test": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/facqa_qa-factoid-itb/test_preprocess.csv",
|
| 42 |
+
"train": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/facqa_qa-factoid-itb/train_preprocess.csv",
|
| 43 |
+
"validation": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/facqa_qa-factoid-itb/valid_preprocess.csv",
|
| 44 |
+
}
|
| 45 |
+
}
|
| 46 |
+
|
| 47 |
+
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING]
|
| 48 |
+
|
| 49 |
+
_SOURCE_VERSION = "1.0.0"
|
| 50 |
+
|
| 51 |
+
_NUSANTARA_VERSION = "1.0.0"
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
class FacqaDataset(datasets.GeneratorBasedBuilder):
|
| 55 |
+
"""FacQA dataset is a labeled dataset for indonesian question answering task"""
|
| 56 |
+
|
| 57 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
| 58 |
+
NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION)
|
| 59 |
+
|
| 60 |
+
BUILDER_CONFIGS = [
|
| 61 |
+
NusantaraConfig(
|
| 62 |
+
name="facqa_source",
|
| 63 |
+
version=SOURCE_VERSION,
|
| 64 |
+
description="FacQA source schema",
|
| 65 |
+
schema="source",
|
| 66 |
+
subset_id="facqa",
|
| 67 |
+
),
|
| 68 |
+
NusantaraConfig(
|
| 69 |
+
name="facqa_nusantara_qa",
|
| 70 |
+
version=NUSANTARA_VERSION,
|
| 71 |
+
description="FacQA Nusantara schema",
|
| 72 |
+
schema="nusantara_qa",
|
| 73 |
+
subset_id="facqa",
|
| 74 |
+
),
|
| 75 |
+
]
|
| 76 |
+
|
| 77 |
+
DEFAULT_CONFIG_NAME = "facqa_source"
|
| 78 |
+
|
| 79 |
+
def _info(self) -> datasets.DatasetInfo:
|
| 80 |
+
if self.config.schema == "source":
|
| 81 |
+
features = datasets.Features(
|
| 82 |
+
{
|
| 83 |
+
"index": datasets.Value("int64"),
|
| 84 |
+
"question": [datasets.Value("string")],
|
| 85 |
+
"passage": [datasets.Value("string")],
|
| 86 |
+
"seq_label": [datasets.Value("string")],
|
| 87 |
+
}
|
| 88 |
+
)
|
| 89 |
+
elif self.config.schema == "nusantara_qa":
|
| 90 |
+
features = schemas.qa_features
|
| 91 |
+
|
| 92 |
+
return datasets.DatasetInfo(
|
| 93 |
+
description=_DESCRIPTION,
|
| 94 |
+
features=features,
|
| 95 |
+
homepage=_HOMEPAGE,
|
| 96 |
+
license=_LICENSE,
|
| 97 |
+
citation=_CITATION,
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
| 101 |
+
"""Returns SplitGenerators."""
|
| 102 |
+
urls = _URLS[_DATASETNAME]
|
| 103 |
+
train_csv_path = Path(dl_manager.download_and_extract(urls["train"]))
|
| 104 |
+
validation_csv_path = Path(dl_manager.download_and_extract(urls["validation"]))
|
| 105 |
+
test_csv_path = Path(dl_manager.download_and_extract(urls["test"]))
|
| 106 |
+
data_files = {
|
| 107 |
+
"train": train_csv_path,
|
| 108 |
+
"validation": validation_csv_path,
|
| 109 |
+
"test": test_csv_path,
|
| 110 |
+
}
|
| 111 |
+
return [
|
| 112 |
+
datasets.SplitGenerator(
|
| 113 |
+
name=datasets.Split.TRAIN,
|
| 114 |
+
gen_kwargs={
|
| 115 |
+
"filepath": data_files["train"],
|
| 116 |
+
"split": "train",
|
| 117 |
+
},
|
| 118 |
+
),
|
| 119 |
+
datasets.SplitGenerator(
|
| 120 |
+
name=datasets.Split.TEST,
|
| 121 |
+
gen_kwargs={
|
| 122 |
+
"filepath": data_files["test"],
|
| 123 |
+
"split": "test",
|
| 124 |
+
},
|
| 125 |
+
),
|
| 126 |
+
datasets.SplitGenerator(
|
| 127 |
+
name=datasets.Split.VALIDATION,
|
| 128 |
+
gen_kwargs={
|
| 129 |
+
"filepath": data_files["validation"],
|
| 130 |
+
"split": "dev",
|
| 131 |
+
},
|
| 132 |
+
),
|
| 133 |
+
]
|
| 134 |
+
|
| 135 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
| 136 |
+
"""Yields examples as (key, example) tuples."""
|
| 137 |
+
df = pd.read_csv(filepath, sep=",", header="infer").reset_index()
|
| 138 |
+
if self.config.schema == "source":
|
| 139 |
+
for row in df.itertuples():
|
| 140 |
+
entry = {"index": row.index, "question": ast.literal_eval(row.question), "passage": ast.literal_eval(row.passage), "seq_label": ast.literal_eval(row.seq_label)}
|
| 141 |
+
yield row.index, entry
|
| 142 |
+
|
| 143 |
+
elif self.config.schema == "nusantara_qa":
|
| 144 |
+
for row in df.itertuples():
|
| 145 |
+
entry = {
|
| 146 |
+
"id": str(row.index),
|
| 147 |
+
"question_id": str(row.index),
|
| 148 |
+
"document_id": str(row.index),
|
| 149 |
+
"question": listToString(ast.literal_eval(row.question)),
|
| 150 |
+
"type": "extractive",
|
| 151 |
+
"choices": [],
|
| 152 |
+
"context": listToString(ast.literal_eval(row.passage)),
|
| 153 |
+
"answer": [getAnswerString(ast.literal_eval(row.passage), ast.literal_eval(row.seq_label))],
|
| 154 |
+
}
|
| 155 |
+
yield row.index, entry
|