|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
from scipy.io import loadmat |
|
|
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import (SCHEMA_TO_FEATURES, TASK_TO_SCHEMA, |
|
Licenses, Tasks) |
|
|
|
_CITATION = """\ |
|
@article{Pino2021, |
|
title = {Optical character recognition system for Baybayin scripts using support vector machine}, |
|
volume = {7}, |
|
ISSN = {2376-5992}, |
|
url = {http://dx.doi.org/10.7717/peerj-cs.360}, |
|
DOI = {10.7717/peerj-cs.360}, |
|
journal = {PeerJ Computer Science}, |
|
publisher = {PeerJ}, |
|
author = {Pino, Rodney and Mendoza, Renier and Sambayan, Rachelle}, |
|
year = {2021}, |
|
month = feb, |
|
pages = {e360} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "baybayin" |
|
|
|
_DESCRIPTION = """\ |
|
The Baybayin dataset contains binary images of Baybayin characters, Latin |
|
characters, and 4 character symbols of Baybayin diacritics in MATLAB format. It |
|
consisted of 17000 images for Baybayin (1000 per character), 18200 images for |
|
Latin (700 per character), and 2000 images for Baybayin diacritics (500 per |
|
symbol). Each character image is strictly center-fitted with a size 56x56 |
|
pixels. This dataset was initially used to discriminate Latin script from |
|
Baybayin script in character recognition. |
|
|
|
This is local dataset, please download the dataset from the `_HOMEPAGE` URL. |
|
""" |
|
|
|
_HOMEPAGE = "https://www.kaggle.com/datasets/rodneypino/baybayin-and-latin-binary-images-in-mat-format" |
|
|
|
_LANGUAGES = ["tgl"] |
|
_SUBSETS = ["baybayin", "latin", "diacritic"] |
|
|
|
_LICENSE = Licenses.CC_BY_4_0.value |
|
|
|
_LOCAL = True |
|
|
|
_URLS = {} |
|
|
|
_SUPPORTED_TASKS = [Tasks.OPTICAL_CHARACTER_RECOGNITION] |
|
_SEACROWD_SCHEMA = f"seacrowd_{TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower()}" |
|
|
|
_SOURCE_VERSION = "4.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class BaybayinDataset(datasets.GeneratorBasedBuilder): |
|
"""Binary images of Baybayin and Latin characters, and 4 character symbols of Baybayin diacritics""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [] |
|
for subset in _SUBSETS: |
|
BUILDER_CONFIGS += [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{subset}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} {subset} source schema", |
|
schema="source", |
|
subset_id=subset, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{subset}_{_SEACROWD_SCHEMA}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} {subset} SEACrowd schema", |
|
schema=_SEACROWD_SCHEMA, |
|
subset_id=subset, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_{_SUBSETS[0]}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"image": datasets.Array2D(shape=(56, 56), dtype="uint8"), |
|
"character": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == _SEACROWD_SCHEMA: |
|
features = SCHEMA_TO_FEATURES[TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]]] |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
if self.config.data_dir is None: |
|
raise ValueError("This is a local dataset. Please pass the `data_dir` kwarg (where the .pdf is located) to load_dataset.") |
|
else: |
|
data_dir = Path(self.config.data_dir) |
|
|
|
subset_path = { |
|
"baybayin": "Baybayin/Baybayin.mat", |
|
"latin": "Latin/Latin.mat", |
|
"diacritic": "Baybayin Diacritics/Baybayin_Diacritics.mat", |
|
} |
|
|
|
mat_file = data_dir / subset_path[self.config.subset_id] |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"mat_file": mat_file, |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, mat_file: Path) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
try: |
|
from PIL import Image |
|
except ImportError as err: |
|
raise ImportError("You need to install PIL (`pip install pillow`) to store the image from MATLAB structs to .png files.") from err |
|
|
|
raw_data = loadmat(str(mat_file)) |
|
contained_data = raw_data[str(mat_file.stem)][0, 0] |
|
|
|
characters = list(contained_data.dtype.fields.keys()) |
|
data = {char: contained_data[char] for char in characters} |
|
|
|
if self.config.schema == "source": |
|
key = 0 |
|
for char, char_data in data.items(): |
|
for i in range(char_data.shape[0]): |
|
image = char_data[i].reshape((56, 56)) |
|
yield key, { |
|
"image": image, |
|
"character": char, |
|
} |
|
key += 1 |
|
|
|
elif self.config.schema == _SEACROWD_SCHEMA: |
|
key = 0 |
|
for char, char_data in data.items(): |
|
|
|
image_dir = mat_file.parent / char |
|
image_dir.mkdir(exist_ok=True) |
|
|
|
image_paths = [] |
|
for i in range(char_data.shape[0]): |
|
image = (char_data[i].reshape((56, 56)) * 255).astype("uint8") |
|
image_path = str(image_dir / f"{char}_{i}.png") |
|
|
|
|
|
Image.fromarray(image).save(image_path) |
|
image_paths.append(image_path) |
|
|
|
yield key, {"id": str(key), "image_paths": image_paths, "texts": char, "metadata": None} |
|
key += 1 |
|
|