File size: 6,844 Bytes
001fc91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from scipy.io import loadmat
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import (SCHEMA_TO_FEATURES, TASK_TO_SCHEMA,
Licenses, Tasks)
_CITATION = """\
@article{Pino2021,
title = {Optical character recognition system for Baybayin scripts using support vector machine},
volume = {7},
ISSN = {2376-5992},
url = {http://dx.doi.org/10.7717/peerj-cs.360},
DOI = {10.7717/peerj-cs.360},
journal = {PeerJ Computer Science},
publisher = {PeerJ},
author = {Pino, Rodney and Mendoza, Renier and Sambayan, Rachelle},
year = {2021},
month = feb,
pages = {e360}
}
"""
_DATASETNAME = "baybayin"
_DESCRIPTION = """\
The Baybayin dataset contains binary images of Baybayin characters, Latin
characters, and 4 character symbols of Baybayin diacritics in MATLAB format. It
consisted of 17000 images for Baybayin (1000 per character), 18200 images for
Latin (700 per character), and 2000 images for Baybayin diacritics (500 per
symbol). Each character image is strictly center-fitted with a size 56x56
pixels. This dataset was initially used to discriminate Latin script from
Baybayin script in character recognition.
This is local dataset, please download the dataset from the `_HOMEPAGE` URL.
"""
_HOMEPAGE = "https://www.kaggle.com/datasets/rodneypino/baybayin-and-latin-binary-images-in-mat-format"
_LANGUAGES = ["tgl"]
_SUBSETS = ["baybayin", "latin", "diacritic"]
_LICENSE = Licenses.CC_BY_4_0.value
_LOCAL = True # kaggle dataset need to register to download
_URLS = {}
_SUPPORTED_TASKS = [Tasks.OPTICAL_CHARACTER_RECOGNITION]
_SEACROWD_SCHEMA = f"seacrowd_{TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower()}" # imtext
_SOURCE_VERSION = "4.0.0"
_SEACROWD_VERSION = "2024.06.20"
class BaybayinDataset(datasets.GeneratorBasedBuilder):
"""Binary images of Baybayin and Latin characters, and 4 character symbols of Baybayin diacritics"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = []
for subset in _SUBSETS:
BUILDER_CONFIGS += [
SEACrowdConfig(
name=f"{_DATASETNAME}_{subset}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} {subset} source schema",
schema="source",
subset_id=subset,
),
SEACrowdConfig(
name=f"{_DATASETNAME}_{subset}_{_SEACROWD_SCHEMA}",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} {subset} SEACrowd schema",
schema=_SEACROWD_SCHEMA,
subset_id=subset,
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_{_SUBSETS[0]}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"image": datasets.Array2D(shape=(56, 56), dtype="uint8"),
"character": datasets.Value("string"),
}
)
elif self.config.schema == _SEACROWD_SCHEMA:
features = SCHEMA_TO_FEATURES[TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]]] # image_text_features()
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
if self.config.data_dir is None:
raise ValueError("This is a local dataset. Please pass the `data_dir` kwarg (where the .pdf is located) to load_dataset.")
else:
data_dir = Path(self.config.data_dir)
subset_path = {
"baybayin": "Baybayin/Baybayin.mat",
"latin": "Latin/Latin.mat",
"diacritic": "Baybayin Diacritics/Baybayin_Diacritics.mat",
}
mat_file = data_dir / subset_path[self.config.subset_id]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"mat_file": mat_file,
},
)
]
def _generate_examples(self, mat_file: Path) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
try:
from PIL import Image
except ImportError as err:
raise ImportError("You need to install PIL (`pip install pillow`) to store the image from MATLAB structs to .png files.") from err
raw_data = loadmat(str(mat_file))
contained_data = raw_data[str(mat_file.stem)][0, 0]
characters = list(contained_data.dtype.fields.keys())
data = {char: contained_data[char] for char in characters}
if self.config.schema == "source":
key = 0
for char, char_data in data.items():
for i in range(char_data.shape[0]):
image = char_data[i].reshape((56, 56))
yield key, {
"image": image,
"character": char,
}
key += 1
elif self.config.schema == _SEACROWD_SCHEMA:
key = 0
for char, char_data in data.items():
# prepare path for saving images
image_dir = mat_file.parent / char
image_dir.mkdir(exist_ok=True)
image_paths = []
for i in range(char_data.shape[0]):
image = (char_data[i].reshape((56, 56)) * 255).astype("uint8")
image_path = str(image_dir / f"{char}_{i}.png")
# save image
Image.fromarray(image).save(image_path)
image_paths.append(image_path)
yield key, {"id": str(key), "image_paths": image_paths, "texts": char, "metadata": None}
key += 1
|