|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
|
|
_CITATION = "" |
|
_DATASETNAME = "asr_indocsc" |
|
_DESCRIPTION = """\ |
|
This open-source dataset consists of 4.54 hours of transcribed Indonesian |
|
conversational speech on certain topics, where seven conversations between two |
|
pairs of speakers were contained. Please create an account and be logged in on |
|
https://magichub.com to download the data. |
|
""" |
|
|
|
_HOMEPAGE = "https://magichub.com/datasets/indonesian-conversational-speech-corpus/" |
|
_LANGUAGES = ["ind"] |
|
_LICENSE = Licenses.CC_BY_NC_ND_4_0.value |
|
_LOCAL = False |
|
_URLS = { |
|
_DATASETNAME: "https://magichub.com/df/df.php?file_name=Indonesian_Conversational_Speech_Corpus.zip", |
|
} |
|
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class ASRIndocscDataset(datasets.GeneratorBasedBuilder): |
|
"""ASR-Indocsc consists transcribed Indonesian conversational speech on certain topics""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
SEACROWD_SCHEMA_NAME = "sptext" |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=_DATASETNAME, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"channel": datasets.Value("string"), |
|
"uttrans_id": datasets.Value("string"), |
|
"speaker_id": datasets.Value("string"), |
|
"topic": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"path": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
"speaker_gender": datasets.Value("string"), |
|
"speaker_age": datasets.Value("int64"), |
|
"speaker_region": datasets.Value("string"), |
|
"speaker_device": datasets.Value("string"), |
|
} |
|
) |
|
|
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
features = schemas.speech_text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
data_paths = { |
|
_DATASETNAME: Path(dl_manager.download_and_extract(_URLS[_DATASETNAME])), |
|
} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_paths[_DATASETNAME], |
|
"split": "train", |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
|
|
|
|
audioinfo_filepath = os.path.join(filepath, "AUDIOINFO.txt") |
|
with open(audioinfo_filepath, "r", encoding="utf-8") as audioinfo_file: |
|
audioinfo_data = audioinfo_file.readlines() |
|
audioinfo_data = audioinfo_data[1:] |
|
audioinfo_data = [s.strip("\n").split("\t") for s in audioinfo_data] |
|
|
|
|
|
|
|
spkinfo_filepath = os.path.join(filepath, "SPKINFO.txt") |
|
with open(spkinfo_filepath, "r", encoding="utf-8") as spkinfo_file: |
|
spkinfo_data = spkinfo_file.readlines() |
|
spkinfo_data = spkinfo_data[1:] |
|
spkinfo_data = [s.strip("\n").split("\t") for s in spkinfo_data] |
|
for i, s in enumerate(spkinfo_data): |
|
if s[2] == "M": |
|
s[2] = "male" |
|
elif s[2] == "F": |
|
s[2] = "female" |
|
else: |
|
s[2] = None |
|
|
|
spkinfo_dict = {s[1]: {"speaker_gender": s[2], "speaker_age": int(s[3]), "speaker_region": s[4], "speaker_device": s[5]} for s in spkinfo_data} |
|
|
|
num_sample = len(audioinfo_data) |
|
|
|
for i in range(num_sample): |
|
|
|
wav_path = os.path.join(filepath, "WAV", audioinfo_data[i][1]) |
|
|
|
transcription_path = os.path.join(filepath, "TXT", audioinfo_data[i][1].replace("wav", "txt")) |
|
with open(transcription_path, "r", encoding="utf-8") as transcription_file: |
|
transcription = transcription_file.readlines() |
|
|
|
transcription = [s.strip("\n").split("\t") for s in transcription] |
|
transcription = [s[-1] for s in transcription] |
|
text = " \n ".join(transcription) |
|
|
|
if self.config.schema == "source": |
|
example = { |
|
"id": audioinfo_data[i][1].strip(".wav"), |
|
"channel": audioinfo_data[i][0], |
|
"uttrans_id": audioinfo_data[i][1], |
|
"speaker_id": audioinfo_data[i][2], |
|
"topic": audioinfo_data[i][3], |
|
"text": text, |
|
"path": wav_path, |
|
"audio": wav_path, |
|
"speaker_gender": spkinfo_dict[audioinfo_data[i][2]]["speaker_gender"], |
|
"speaker_age": spkinfo_dict[audioinfo_data[i][2]]["speaker_age"], |
|
"speaker_region": spkinfo_dict[audioinfo_data[i][2]]["speaker_region"], |
|
"speaker_device": spkinfo_dict[audioinfo_data[i][2]]["speaker_device"], |
|
} |
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
example = { |
|
"id": audioinfo_data[i][1].strip(".wav"), |
|
"speaker_id": audioinfo_data[i][2], |
|
"path": wav_path, |
|
"audio": wav_path, |
|
"text": text, |
|
"metadata": {"speaker_age": spkinfo_dict[audioinfo_data[i][2]]["speaker_age"], "speaker_gender": spkinfo_dict[audioinfo_data[i][2]]["speaker_gender"]}, |
|
} |
|
|
|
yield i, example |
|
|