Datasets:

Languages:
Indonesian
ArXiv:
License:
File size: 7,841 Bytes
f4f21c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import os
from pathlib import Path
from typing import Dict, List, Tuple

import datasets

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks

# no bibtex citation
_CITATION = ""
_DATASETNAME = "asr_indocsc"
_DESCRIPTION = """\
This open-source dataset consists of 4.54 hours of transcribed Indonesian
conversational speech on certain topics, where seven conversations between two
pairs of speakers were contained. Please create an account and be logged in on
https://magichub.com to download the data.
"""

_HOMEPAGE = "https://magichub.com/datasets/indonesian-conversational-speech-corpus/"
_LANGUAGES = ["ind"]
_LICENSE = Licenses.CC_BY_NC_ND_4_0.value
_LOCAL = False
_URLS = {
    _DATASETNAME: "https://magichub.com/df/df.php?file_name=Indonesian_Conversational_Speech_Corpus.zip",
}
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION]

_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"


class ASRIndocscDataset(datasets.GeneratorBasedBuilder):
    """ASR-Indocsc consists transcribed Indonesian conversational speech on certain topics"""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

    SEACROWD_SCHEMA_NAME = "sptext"

    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name=f"{_DATASETNAME}_source",
            version=SOURCE_VERSION,
            description=f"{_DATASETNAME} source schema",
            schema="source",
            subset_id=_DATASETNAME,
        ),
        SEACrowdConfig(
            name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}",
            version=SEACROWD_VERSION,
            description=f"{_DATASETNAME} SEACrowd schema",
            schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
            subset_id=_DATASETNAME,
        ),
    ]

    DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "channel": datasets.Value("string"),
                    "uttrans_id": datasets.Value("string"),
                    "speaker_id": datasets.Value("string"),
                    "topic": datasets.Value("string"),
                    "text": datasets.Value("string"),
                    "path": datasets.Value("string"),
                    "audio": datasets.Audio(sampling_rate=16_000),
                    "speaker_gender": datasets.Value("string"),
                    "speaker_age": datasets.Value("int64"),
                    "speaker_region": datasets.Value("string"),
                    "speaker_device": datasets.Value("string"),
                }
            )

        elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
            features = schemas.speech_text_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""

        data_paths = {
            _DATASETNAME: Path(dl_manager.download_and_extract(_URLS[_DATASETNAME])),
        }

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": data_paths[_DATASETNAME],
                    "split": "train",
                },
            )
        ]

    def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""

        # read AUDIOINFO file
        # columns: channel, uttrans_id, speaker_id, topic
        audioinfo_filepath = os.path.join(filepath, "AUDIOINFO.txt")
        with open(audioinfo_filepath, "r", encoding="utf-8") as audioinfo_file:
            audioinfo_data = audioinfo_file.readlines()
        audioinfo_data = audioinfo_data[1:]  # remove header
        audioinfo_data = [s.strip("\n").split("\t") for s in audioinfo_data]

        # read SPKINFO file
        # columns: channel, speaker_id, gender, age, region, device
        spkinfo_filepath = os.path.join(filepath, "SPKINFO.txt")
        with open(spkinfo_filepath, "r", encoding="utf-8") as spkinfo_file:
            spkinfo_data = spkinfo_file.readlines()
        spkinfo_data = spkinfo_data[1:]  # remove header
        spkinfo_data = [s.strip("\n").split("\t") for s in spkinfo_data]
        for i, s in enumerate(spkinfo_data):
            if s[2] == "M":
                s[2] = "male"
            elif s[2] == "F":
                s[2] = "female"
            else:
                s[2] = None
        # dictionary of metadata of each speaker
        spkinfo_dict = {s[1]: {"speaker_gender": s[2], "speaker_age": int(s[3]), "speaker_region": s[4], "speaker_device": s[5]} for s in spkinfo_data}

        num_sample = len(audioinfo_data)

        for i in range(num_sample):
            # wav file
            wav_path = os.path.join(filepath, "WAV", audioinfo_data[i][1])
            # transcription file
            transcription_path = os.path.join(filepath, "TXT", audioinfo_data[i][1].replace("wav", "txt"))
            with open(transcription_path, "r", encoding="utf-8") as transcription_file:
                transcription = transcription_file.readlines()
            # remove redundant speaker info from transcription file
            transcription = [s.strip("\n").split("\t") for s in transcription]
            transcription = [s[-1] for s in transcription]
            text = " \n ".join(transcription)

            if self.config.schema == "source":
                example = {
                    "id": audioinfo_data[i][1].strip(".wav"),
                    "channel": audioinfo_data[i][0],
                    "uttrans_id": audioinfo_data[i][1],
                    "speaker_id": audioinfo_data[i][2],
                    "topic": audioinfo_data[i][3],
                    "text": text,
                    "path": wav_path,
                    "audio": wav_path,
                    "speaker_gender": spkinfo_dict[audioinfo_data[i][2]]["speaker_gender"],
                    "speaker_age": spkinfo_dict[audioinfo_data[i][2]]["speaker_age"],
                    "speaker_region": spkinfo_dict[audioinfo_data[i][2]]["speaker_region"],
                    "speaker_device": spkinfo_dict[audioinfo_data[i][2]]["speaker_device"],
                }
            elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
                example = {
                    "id": audioinfo_data[i][1].strip(".wav"),
                    "speaker_id": audioinfo_data[i][2],
                    "path": wav_path,
                    "audio": wav_path,
                    "text": text,
                    "metadata": {"speaker_age": spkinfo_dict[audioinfo_data[i][2]]["speaker_age"], "speaker_gender": spkinfo_dict[audioinfo_data[i][2]]["speaker_gender"]},
                }

            yield i, example