|
--- |
|
license: cc-by-nc-sa-4.0 |
|
task_categories: |
|
- question-answering |
|
language: |
|
- zh |
|
pretty_name: WenMind Benchmark |
|
--- |
|
# WenMind Benchmark |
|
|
|
**NOTE** this README was copied from https://github.com/SCUT-DLVCLab/WenMind/blob/main/README.md |
|
|
|
- 2024/09/26 WenMind Benchmark paper has been accepted by NeurIPS 2024. |
|
|
|
WenMind is a comprehensive benchmark dedicated for evaluating Large Language Models (LLMs) in Chinese Classical Literature and Language Arts (CCLLA). WenMind covers the sub-domains of **Ancient Prose**, **Ancient Poetry**, and **Ancient Literary Culture**, comprising 4,875 question-answer pairs, spanning **42 fine-grained tasks** (as shown in the figure 1), **3 question formats** (Fill-in-the-Blank questions, Multiple-Choice questions and Question-and-Answer questions), and **2 evaluation scenarios** (domain-oriented and capability-oriented). |
|
|
|
<p align="center"> |
|
<img src="https://github.com/SCUT-DLVCLab/WenMind/blob/main/Images/WenMind_Overall.png?raw=true" width="800"/> |
|
<p> |
|
|
|
<p align="center"> |
|
<strong>Figure 1: Overview of WenMind Benchmark, which covers 3 sub-domains and 42 fine-gained tasks.</strong> |
|
<p> |
|
|
|
## Download |
|
|
|
You can obtain the complete WenMind evaluation dataset from **WenMind Benchmark folder** on GitHub. |
|
|
|
## Data Format |
|
``` |
|
{ |
|
"id": 2464, |
|
"domain": "ancient literary culture", |
|
"capability": "knowledge", |
|
"question_format": "QA", |
|
"coarse_grained_task_zh": "成语", |
|
"coarse_grained_task_en": "idiom", |
|
"fine_grained_task_zh": "成语解释", |
|
"fine_grained_task_en": "idiom explanation", |
|
"question": "解释下面成语的意思:\n暮去朝来", |
|
"answer": "黄昏过去,清晨又到来。形容时光流逝。" |
|
} |
|
``` |
|
|
|
The following is an explanation of the various fields in the data samples: |
|
|
|
- **`id`**: The unique identifier for the data sample, used to distinguish different samples. |
|
|
|
- **`domain`**: The domain to which the data sample belongs, including ancient prose, ancient poetry and ancient literary culture. |
|
|
|
- **`capability`**: The type of capability of the data sample, including knowledge, understanding and generation. |
|
|
|
- **`question_format`**: The format of the question, indicating the type of question in the sample, including FB, MCQ and QA. |
|
|
|
- **`coarse_grained_task_zh`**: The Chinese name of the coarse-grained task classification. Describes the coarse-grained task category of the sample, with a total of 26 categories. |
|
|
|
- **`coarse_grained_task_en`**: The English name of the coarse-grained task classification. Corresponds to **`coarse_grained_task_zh`**, describing the coarse-grained task category of the sample, with a total of 26 categories. |
|
|
|
- **`fine_grained_task_zh`**: The Chinese name of the fine-grained task classification. Describes the fine-grained task category of the sample, with a total of 42 categories. |
|
|
|
- **`fine_grained_task_en`**: The English name of the fine-grained task classification. Corresponds to **`fine_grained_task_zh`**, describing the fine-grained task category of the sample, with a total of 42 categories. |
|
|
|
- **`question`**: The actual content of the question. The question to be answered in the sample. |
|
|
|
- **`answer`**: The answer to the corresponding question. Provides a detailed response to the question. |
|
|
|
## Task List |
|
|
|
### T1-1: Inverted Sentence Structure (倒装句语序) |
|
- **Task Description**: Correct word order for inverted sentences. |
|
- **Capability**: Understanding |
|
- **Scale**: 18 |
|
|
|
### T1-2: Elliptical Sentence (省略句) |
|
- **Task Description**: Answer the omitted information in the elliptical sentence. |
|
- **Capability**: Understanding |
|
- **Scale**: 32 |
|
|
|
### T1-3: Inverted Sentence Types (倒装句类型) |
|
- **Task Description**: Identify the inversion type of inverted sentences. |
|
- **Capability**: Understanding |
|
- **Scale**: 7 |
|
|
|
### T1-4: Sentence Structure Identification (判断句式) |
|
- **Task Description**: Identify the sentence's syntactic type. |
|
- **Capability**: Understanding |
|
- **Scale**: 43 |
|
|
|
### T2: Classical Chinese to Modern Chinese (文白翻译) |
|
- **Task Description**: Translate classical Chinese into modern Chinese. |
|
- **Capability**: Understanding |
|
- **Scale**: 200 |
|
|
|
### T3: Modern Chinese to Classical Chinese (白文翻译) |
|
- **Task Description**: Translate modern Chinese into classical Chinese. |
|
- **Capability**: Understanding |
|
- **Scale**: 200 |
|
|
|
### T4: Named Entity Recognition (命名实体识别) |
|
- **Task Description**: Extract named entities from Classical Chinese sentences. |
|
- **Capability**: Understanding |
|
- **Scale**: 200 |
|
|
|
### T5: Punctuation (句读) |
|
- **Task Description**: Add punctuation to Classical Chinese sentences. |
|
- **Capability**: Understanding |
|
- **Scale**: 200 |
|
|
|
### T6: Topic Classification (主题分类) |
|
- **Task Description**: Select theme categories based on Classical Chinese sentences. |
|
- **Capability**: Understanding |
|
- **Scale**: 200 |
|
|
|
### T7: Word Explanation (字词解释) |
|
- **Task Description**: Explain the words and phrases in Classical Chinese sentences. |
|
- **Capability**: Understanding |
|
- **Scale**: 100 |
|
|
|
### T8: Reading Comprehension (阅读理解) |
|
- **Task Description**: Read Classical Chinese texts and answer related questions. |
|
- **Capability**: Understanding |
|
- **Scale**: 100 |
|
|
|
### T9: Function Words (虚词) |
|
- **Task Description**: Answer the usage of function words in classical Chinese sentences. |
|
- **Capability**: Understanding |
|
- **Scale**: 100 |
|
|
|
### T10: Homophones (通假字) |
|
- **Task Description**: Identify whether a character is a homophone. |
|
- **Capability**: Understanding |
|
- **Scale**: 200 |
|
|
|
### T11: Polysemy (单字多义) |
|
- **Task Description**: Distinguish between different meanings of the same character. |
|
- **Capability**: Understanding |
|
- **Scale**: 200 |
|
|
|
### T12: Classical Chinese Writing (文言文写作) |
|
- **Task Description**: Writing in classical Chinese. |
|
- **Capability**: Generation |
|
- **Scale**: 100 |
|
|
|
### T13-1: Appreciation Exam Questions (赏析真题) |
|
- **Task Description**: Answer appreciation questions based on ancient poetry. |
|
- **Capability**: Understanding |
|
- **Scale**: 150 |
|
|
|
### T13-2: Free Appreciation (自由赏析) |
|
- **Task Description**: Conduct a free and detailed analysis of ancient poetry. |
|
- **Capability**: Understanding |
|
- **Scale**: 100 |
|
|
|
### T14-1: Poetry Writing (诗创作) |
|
- **Task Description**: Compose a poem based on the theme. |
|
- **Capability**: Generation |
|
- **Scale**: 30 |
|
|
|
### T14-2: Ci Writing (词创作) |
|
- **Task Description**: Compose a ci based on the theme. |
|
- **Capability**: Generation |
|
- **Scale**: 50 |
|
|
|
### T14-3: Qu Writing (曲创作) |
|
- **Task Description**: Compose a qu based on the theme. |
|
- **Capability**: Generation |
|
- **Scale**: 20 |
|
|
|
### T15-1: Content Q&A (内容问答) |
|
- **Task Description**: Answer the complete content of ancient poetry according to the title and author. |
|
- **Capability**: Knowledge |
|
- **Scale**: 200 |
|
|
|
### T15-2: Title and Author Q&A (题目作者问答) |
|
- **Task Description**: Answer the title and author according to the content of ancient poetry. |
|
- **Capability**: Knowledge |
|
- **Scale**: 200 |
|
|
|
### T15-3: Write the Next Sentence (下句默写) |
|
- **Task Description**: Write the next sentence according to the previous sentence in the ancient poem. |
|
- **Capability**: Knowledge |
|
- **Scale**: 100 |
|
|
|
### T15-4: Write the Previous Sentence (上句默写) |
|
- **Task Description**: Write the previous sentence according to the next sentence in the ancient poem. |
|
- **Capability**: Knowledge |
|
- **Scale**: 100 |
|
|
|
### T15-5: Comprehension Dictation (理解性默写) |
|
- **Task Description**: Provide ancient poetry sentences that meet the requirements. |
|
- **Capability**: Knowledge |
|
- **Scale**: 30 |
|
|
|
### T15-6: Genre Judgment (判断体裁) |
|
- **Task Description**: Judge the genre of ancient poetry. |
|
- **Capability**: Knowledge |
|
- **Scale**: 120 |
|
|
|
### T16: Ancient Poetry Translation (古诗词翻译) |
|
- **Task Description**: Translate ancient poetry into modern Chinese. |
|
- **Capability**: Understanding |
|
- **Scale**: 200 |
|
|
|
### T17: Sentiment Classification (情感分类) |
|
- **Task Description**: Judge the sentiment contained in ancient poetry. |
|
- **Capability**: Understanding |
|
- **Scale**: 200 |
|
|
|
### T18: Ancient Poetry to English (古诗词英文翻译) |
|
- **Task Description**: Translate ancient poetry into English. |
|
- **Capability**: Understanding |
|
- **Scale**: 50 |
|
|
|
### T19: Poet Introduction (诗人介绍) |
|
- **Task Description**: Provide a detailed introduction of the poet. |
|
- **Capability**: Knowledge |
|
- **Scale**: 110 |
|
|
|
### T20: Analysis of Imagery (意象解析) |
|
- **Task Description**: Provide the meanings of the imagery. |
|
- **Capability**: Knowledge |
|
- **Scale**: 185 |
|
|
|
### T21-1: Couplet Following (接下联) |
|
- **Task Description**: Create the following couplet based on the previous one. |
|
- **Capability**: Generation |
|
- **Scale**: 100 |
|
|
|
### T21-2: Couplet Writing (主题创作) |
|
- **Task Description**: Write a couplet based on the theme. |
|
- **Capability**: Generation |
|
- **Scale**: 100 |
|
|
|
### T21-3: HengPi Writing (拟横批) |
|
- **Task Description**: Write HengPi based on the content of a couplet. |
|
- **Capability**: Generation |
|
- **Scale**: 100 |
|
|
|
### T22-1: Synonyms (近义词) |
|
- **Task Description**: Provide the synonym for the idiom. |
|
- **Capability**: Knowledge |
|
- **Scale**: 100 |
|
|
|
### T22-2: The Origin of Idiom (成语出处) |
|
- **Task Description**: Provide the source of the idiom. |
|
- **Capability**: Knowledge |
|
- **Scale**: 100 |
|
|
|
### T22-3: Idiom Finding (成语蕴含) |
|
- **Task Description**: Extract idioms from ancient Chinese sentences and provide their meanings. |
|
- **Capability**: Knowledge |
|
- **Scale**: 100 |
|
|
|
### T22-4: Idiom Explanation (解释含义) |
|
- **Task Description**: Provide the meaning of idioms. |
|
- **Capability**: Knowledge |
|
- **Scale**: 100 |
|
|
|
### T23: Riddle (谜语) |
|
- **Task Description**: Guess the answer based on clues or clever hints. |
|
- **Capability**: Knowledge |
|
- **Scale**: 100 |
|
|
|
### T24: Xiehouyu (歇后语) |
|
- **Task Description**: Complete the second half of the proverb based on the first half. |
|
- **Capability**: Knowledge |
|
- **Scale**: 100 |
|
|
|
### T25: Historical Chinese Phonology (古汉语音韵) |
|
- **Task Description**: Answer questions about ancient Chinese phonetics and rhymes. |
|
- **Capability**: Knowledge |
|
- **Scale**: 100 |
|
|
|
### T26: Knowledge of Sinology Q&A (国学常识问答) |
|
- **Task Description**: Answer questions about Sinology. |
|
- **Capability**: Knowledge |
|
- **Scale**: 130 |
|
|
|
## Data Construction |
|
|
|
The construction pipeline of WenMind includes data collection and data processing, as illustrated in Figure 2. |
|
|
|
<p align="center"> |
|
<img src="https://github.com/SCUT-DLVCLab/WenMind/blob/main/Images/Data_Construction.png?raw=true" width="550"/> |
|
<p> |
|
|
|
<p align="center"> |
|
<strong>Figure 2: Construction pipeline of WenMind Benchmark.</strong> |
|
<p> |
|
|
|
## Data Statistics |
|
|
|
Table 1 provides the statistics of the WenMind dataset. |
|
|
|
<div align="center"> |
|
|
|
**Table 1: The statistics of the WenMind Benchmark. "Q" represents "Question" and "A" represents "Answer".** |
|
|
|
<table> |
|
<thead> |
|
<tr> |
|
<th align="left"><strong>Domain</strong></th> |
|
<th align="center"><strong>Tasks</strong></th> |
|
<th align="center"><strong>#Q</strong></th> |
|
<th align="center"><strong>Max. #Q</strong></th> |
|
<th align="center"><strong>Min. #Q</strong></th> |
|
<th align="center"><strong>Avg. Q Tokens</strong></th> |
|
<th align="center"><strong>Avg. A Tokens</strong></th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr> |
|
<td align="left">Ancient Prose</td> |
|
<td align="center">15</td> |
|
<td align="center">1,900</td> |
|
<td align="center">200</td> |
|
<td align="center">7</td> |
|
<td align="center">107.51</td> |
|
<td align="center">62.12</td> |
|
</tr> |
|
<tr> |
|
<td align="left">Ancient Poetry</td> |
|
<td align="center">16</td> |
|
<td align="center">1,845</td> |
|
<td align="center">200</td> |
|
<td align="center">20</td> |
|
<td align="center">73.42</td> |
|
<td align="center">94.93</td> |
|
</tr> |
|
<tr> |
|
<td align="left">Ancient Literary Culture</td> |
|
<td align="center">11</td> |
|
<td align="center">1,130</td> |
|
<td align="center">100</td> |
|
<td align="center">100</td> |
|
<td align="center">26.68</td> |
|
<td align="center">14.26</td> |
|
</tr> |
|
<tr> |
|
<td align="left"><strong>Overall</strong></td> |
|
<td align="center">42</td> |
|
<td align="center">4,875</td> |
|
<td align="center">200</td> |
|
<td align="center">7</td> |
|
<td align="center">75.87</td> |
|
<td align="center">63.44</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
</div> |
|
|
|
## Inference |
|
|
|
### a. Obtain the model’s responses |
|
|
|
#### Open-source Model |
|
|
|
For open-source models, we perform inference locally, only requiring the model path and the output file path for the answers. |
|
|
|
``` |
|
--model_path The path to the model, defaults to loading from huggingface |
|
--output_path The file path for the model's answer output, defaults to {model_name}_result.json |
|
``` |
|
|
|
e.g. |
|
|
|
``` |
|
CUDA_VISIBLE_DEVICES=0,1 python Evaluation_Code/Inference/Test_Baichuan2-7B-Chat.py \ |
|
--model_path baichuan-inc/Baichuan2-7B-Chat \ |
|
--output_path Baichuan2-7B-Chat_result.json |
|
``` |
|
|
|
#### API Model |
|
|
|
For GPT-3.5 and GPT-4 models, provide two parameters: `api_base` and `api_key`. |
|
For ERNIE-3.5 and ERNIE-4.0 models, provide two parameters: `api_key` and `secret_key`. |
|
For Spark models, provide three parameters: `api_key`, `secret_key`, and `appid`. |
|
Refer to the official documentation of each API model for details. |
|
|
|
e.g. |
|
|
|
``` |
|
python Test_ERNIE-3.5-8K-0329.py \ |
|
--API_KEY {api_key} \ |
|
--SECRET_KEY {secret_key} \ |
|
--output_path {output_path} |
|
``` |
|
### b. Use ERNIE-3.5 to score the responses |
|
|
|
Step 1: Check whether the LLM response file is consistent with the format of the `JSON/LLM_Response_Examples.json` file. |
|
|
|
Step 2: Open the `Evaluation_Code/LLM_Scoring.py` file, input the `API_KEY` and `SECRET_KEY` for the scoring model ERNIE-3.5, replace `LLM_response_path` with the storage path of the LLM response file, replace `LLM_score_path` with the path where the scoring results will be saved, and replace `LLM_prompt_path` with the storage path of `JSON/Task_Score_Prompt.json`. |
|
|
|
Step 3: Run the following command to obtain the scoring results: |
|
|
|
``` |
|
python Evaluation_Code/LLM_Scoring.py |
|
``` |
|
|
|
### c. Calculate the model’s score |
|
|
|
Step 1: Check whether the scoring file is consistent with the format of the `JSON/LLM_Score_Examples.json` file. |
|
|
|
Step 2: Open the `Evaluation_Code/Calculate_Score.py` file and replace `LLM_score_path` with the storage path of the scoring file. |
|
|
|
Step 3: Run the following command to obtain the model's score: |
|
|
|
``` |
|
python Evaluation_Code/Calculate_Score.py |
|
``` |
|
## Evaluation Result |
|
|
|
<p align="center"> |
|
<strong>Table 2: Results of all evaluated models on different domains and capabilities.</strong> |
|
<p> |
|
<p align="center"> |
|
<img src="https://github.com/SCUT-DLVCLab/WenMind/blob/main/Images/Evaluation_Result.png?raw=true" width="750"/> |
|
<p> |
|
|
|
|
|
## Acknowledgement |
|
|
|
- [SCUT-C2MChn](https://github.com/Zongyuan-Jiang/C2MChn) |
|
- [WYWEB](https://github.com/baudzhou/WYWEB) |
|
- [Daizhige](https://github.com/garychowcmu/daizhigev20) |
|
- [ACLUE](https://github.com/isen-zhang/ACLUE) |
|
- [Websites-A Related to Ancient Poetry](http://ts300.5156edu.com/) |
|
- [Websites-B Related to Ancient Poetry](https://www.gushixuexi.com/) |
|
- [Sou Yun](https://www.sou-yun.cn/) |
|
- [THU-FSPC](https://github.com/THUNLP-AIPoet/Datasets) |
|
- [Han Dian](https://www.zdic.net/) |
|
|
|
## License |
|
|
|
 |
|
|
|
The work is licensed under a [MIT License](https://lbesson.mit-license.org/). |
|
|
|
 |
|
|
|
The WenMind benchmark is licensed under a [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License](https://creativecommons.org/licenses/by-nc-sa/4.0/). |