Datasets:

Modalities:
Text
Formats:
json
Languages:
Chinese
Libraries:
Datasets
pandas
License:
File size: 15,806 Bytes
77a2688
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92d8acf
77a2688
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92d8acf
77a2688
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92d8acf
77a2688
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
---
license: cc-by-nc-sa-4.0
task_categories:
- question-answering
language:
- zh
pretty_name: WenMind Benchmark
---
# WenMind Benchmark

**NOTE** this README was copied from https://github.com/SCUT-DLVCLab/WenMind/blob/main/README.md

- 2024/09/26 WenMind Benchmark paper has been accepted by NeurIPS 2024.

WenMind is a comprehensive benchmark dedicated for evaluating Large Language Models (LLMs) in Chinese Classical Literature and Language Arts (CCLLA). WenMind covers the sub-domains of **Ancient Prose**, **Ancient Poetry**, and **Ancient Literary Culture**, comprising 4,875 question-answer pairs, spanning **42 fine-grained tasks** (as shown in the figure 1), **3 question formats** (Fill-in-the-Blank questions, Multiple-Choice questions and Question-and-Answer questions), and **2 evaluation scenarios** (domain-oriented and capability-oriented).

<p align="center">
    <img src="https://github.com/SCUT-DLVCLab/WenMind/blob/main/Images/WenMind_Overall.png?raw=true" width="800"/>
<p>

<p align="center">
    <strong>Figure 1: Overview of WenMind Benchmark, which covers 3 sub-domains and 42 fine-gained tasks.</strong>
<p>
  
## Download

You can obtain the complete WenMind evaluation dataset from **WenMind Benchmark folder** on GitHub.

## Data Format
```
  {
    "id": 2464,
    "domain": "ancient literary culture",
    "capability": "knowledge",
    "question_format": "QA",
    "coarse_grained_task_zh": "成语",
    "coarse_grained_task_en": "idiom",
    "fine_grained_task_zh": "成语解释",
    "fine_grained_task_en": "idiom explanation",
    "question": "解释下面成语的意思:\n暮去朝来",
    "answer": "黄昏过去,清晨又到来。形容时光流逝。"
  }
```

The following is an explanation of the various fields in the data samples:

- **`id`**: The unique identifier for the data sample, used to distinguish different samples.

- **`domain`**: The domain to which the data sample belongs, including ancient prose, ancient poetry and ancient literary culture.

- **`capability`**: The type of capability of the data sample, including knowledge, understanding and generation.

- **`question_format`**: The format of the question, indicating the type of question in the sample, including FB, MCQ and QA.

- **`coarse_grained_task_zh`**: The Chinese name of the coarse-grained task classification. Describes the coarse-grained task category of the sample, with a total of 26 categories.

- **`coarse_grained_task_en`**: The English name of the coarse-grained task classification. Corresponds to **`coarse_grained_task_zh`**, describing the coarse-grained task category of the sample, with a total of 26 categories.

- **`fine_grained_task_zh`**: The Chinese name of the fine-grained task classification. Describes the fine-grained task category of the sample, with a total of 42 categories.

- **`fine_grained_task_en`**: The English name of the fine-grained task classification. Corresponds to **`fine_grained_task_zh`**, describing the fine-grained task category of the sample, with a total of 42 categories.

- **`question`**: The actual content of the question. The question to be answered in the sample.

- **`answer`**: The answer to the corresponding question. Provides a detailed response to the question.

## Task List

### T1-1: Inverted Sentence Structure (倒装句语序)
- **Task Description**: Correct word order for inverted sentences.
- **Capability**: Understanding
- **Scale**: 18

### T1-2: Elliptical Sentence (省略句)
- **Task Description**: Answer the omitted information in the elliptical sentence.
- **Capability**: Understanding
- **Scale**: 32

### T1-3: Inverted Sentence Types (倒装句类型)
- **Task Description**: Identify the inversion type of inverted sentences.
- **Capability**: Understanding
- **Scale**: 7

### T1-4: Sentence Structure Identification (判断句式)
- **Task Description**: Identify the sentence's syntactic type.
- **Capability**: Understanding
- **Scale**: 43

### T2: Classical Chinese to Modern Chinese (文白翻译)
- **Task Description**: Translate classical Chinese into modern Chinese.
- **Capability**: Understanding
- **Scale**: 200

### T3: Modern Chinese to Classical Chinese (白文翻译)
- **Task Description**: Translate modern Chinese into classical Chinese.
- **Capability**: Understanding
- **Scale**: 200

### T4: Named Entity Recognition (命名实体识别)
- **Task Description**: Extract named entities from Classical Chinese sentences.
- **Capability**: Understanding
- **Scale**: 200

### T5: Punctuation (句读)
- **Task Description**: Add punctuation to Classical Chinese sentences.
- **Capability**: Understanding
- **Scale**: 200

### T6: Topic Classification (主题分类)
- **Task Description**: Select theme categories based on Classical Chinese sentences.
- **Capability**: Understanding
- **Scale**: 200

### T7: Word Explanation (字词解释)
- **Task Description**: Explain the words and phrases in Classical Chinese sentences.
- **Capability**: Understanding
- **Scale**: 100

### T8: Reading Comprehension (阅读理解)
- **Task Description**: Read Classical Chinese texts and answer related questions.
- **Capability**: Understanding
- **Scale**: 100

### T9: Function Words (虚词)
- **Task Description**: Answer the usage of function words in classical Chinese sentences.
- **Capability**: Understanding
- **Scale**: 100

### T10: Homophones (通假字)
- **Task Description**: Identify whether a character is a homophone.
- **Capability**: Understanding
- **Scale**: 200

### T11: Polysemy (单字多义)
- **Task Description**: Distinguish between different meanings of the same character.
- **Capability**: Understanding
- **Scale**: 200

### T12: Classical Chinese Writing (文言文写作)
- **Task Description**: Writing in classical Chinese.
- **Capability**: Generation
- **Scale**: 100

### T13-1: Appreciation Exam Questions (赏析真题)
- **Task Description**: Answer appreciation questions based on ancient poetry.
- **Capability**: Understanding
- **Scale**: 150

### T13-2: Free Appreciation (自由赏析)
- **Task Description**: Conduct a free and detailed analysis of ancient poetry.
- **Capability**: Understanding
- **Scale**: 100

### T14-1: Poetry Writing (诗创作)
- **Task Description**: Compose a poem based on the theme.
- **Capability**: Generation
- **Scale**: 30

### T14-2: Ci Writing (词创作)
- **Task Description**: Compose a ci based on the theme.
- **Capability**: Generation
- **Scale**: 50

### T14-3: Qu Writing (曲创作)
- **Task Description**: Compose a qu based on the theme.
- **Capability**: Generation
- **Scale**: 20

### T15-1: Content Q&A (内容问答)
- **Task Description**: Answer the complete content of ancient poetry according to the title and author.
- **Capability**: Knowledge
- **Scale**: 200

### T15-2: Title and Author Q&A (题目作者问答)
- **Task Description**: Answer the title and author according to the content of ancient poetry.
- **Capability**: Knowledge
- **Scale**: 200

### T15-3: Write the Next Sentence (下句默写)
- **Task Description**: Write the next sentence according to the previous sentence in the ancient poem.
- **Capability**: Knowledge
- **Scale**: 100

### T15-4: Write the Previous Sentence (上句默写)
- **Task Description**: Write the previous sentence according to the next sentence in the ancient poem.
- **Capability**: Knowledge
- **Scale**: 100

### T15-5: Comprehension Dictation (理解性默写)
- **Task Description**: Provide ancient poetry sentences that meet the requirements.
- **Capability**: Knowledge
- **Scale**: 30

### T15-6: Genre Judgment (判断体裁)
- **Task Description**: Judge the genre of ancient poetry.
- **Capability**: Knowledge
- **Scale**: 120

### T16: Ancient Poetry Translation (古诗词翻译)
- **Task Description**: Translate ancient poetry into modern Chinese.
- **Capability**: Understanding
- **Scale**: 200

### T17: Sentiment Classification (情感分类)
- **Task Description**: Judge the sentiment contained in ancient poetry.
- **Capability**: Understanding
- **Scale**: 200

### T18: Ancient Poetry to English (古诗词英文翻译)
- **Task Description**: Translate ancient poetry into English.
- **Capability**: Understanding
- **Scale**: 50

### T19: Poet Introduction (诗人介绍)
- **Task Description**: Provide a detailed introduction of the poet.
- **Capability**: Knowledge
- **Scale**: 110

### T20: Analysis of Imagery (意象解析)
- **Task Description**: Provide the meanings of the imagery.
- **Capability**: Knowledge
- **Scale**: 185

### T21-1: Couplet Following (接下联)
- **Task Description**: Create the following couplet based on the previous one.
- **Capability**: Generation
- **Scale**: 100

### T21-2: Couplet Writing (主题创作)
- **Task Description**: Write a couplet based on the theme.
- **Capability**: Generation
- **Scale**: 100

### T21-3: HengPi Writing (拟横批)
- **Task Description**: Write HengPi based on the content of a couplet.
- **Capability**: Generation
- **Scale**: 100

### T22-1: Synonyms (近义词)
- **Task Description**: Provide the synonym for the idiom.
- **Capability**: Knowledge
- **Scale**: 100

### T22-2: The Origin of Idiom (成语出处)
- **Task Description**: Provide the source of the idiom.
- **Capability**: Knowledge
- **Scale**: 100

### T22-3: Idiom Finding (成语蕴含)
- **Task Description**: Extract idioms from ancient Chinese sentences and provide their meanings.
- **Capability**: Knowledge
- **Scale**: 100

### T22-4: Idiom Explanation (解释含义)
- **Task Description**: Provide the meaning of idioms.
- **Capability**: Knowledge
- **Scale**: 100

### T23: Riddle (谜语)
- **Task Description**: Guess the answer based on clues or clever hints.
- **Capability**: Knowledge
- **Scale**: 100

### T24: Xiehouyu (歇后语)
- **Task Description**: Complete the second half of the proverb based on the first half.
- **Capability**: Knowledge
- **Scale**: 100

### T25: Historical Chinese Phonology (古汉语音韵)
- **Task Description**: Answer questions about ancient Chinese phonetics and rhymes.
- **Capability**: Knowledge
- **Scale**: 100

### T26: Knowledge of Sinology Q&A (国学常识问答)
- **Task Description**: Answer questions about Sinology.
- **Capability**: Knowledge
- **Scale**: 130

## Data Construction

The construction pipeline of WenMind includes data collection and data processing, as illustrated in Figure 2.

<p align="center">
    <img src="https://github.com/SCUT-DLVCLab/WenMind/blob/main/Images/Data_Construction.png?raw=true" width="550"/>
<p>

<p align="center">
    <strong>Figure 2: Construction pipeline of WenMind Benchmark.</strong>
<p>

## Data Statistics

Table 1 provides the statistics of the WenMind dataset.

<div align="center">

**Table 1: The statistics of the WenMind Benchmark. "Q" represents "Question" and "A" represents "Answer".**

<table>
  <thead>
    <tr>
      <th align="left"><strong>Domain</strong></th>
      <th align="center"><strong>Tasks</strong></th>
      <th align="center"><strong>#Q</strong></th>
      <th align="center"><strong>Max. #Q</strong></th>
      <th align="center"><strong>Min. #Q</strong></th>
      <th align="center"><strong>Avg. Q Tokens</strong></th>
      <th align="center"><strong>Avg. A Tokens</strong></th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td align="left">Ancient Prose</td>
      <td align="center">15</td>
      <td align="center">1,900</td>
      <td align="center">200</td>
      <td align="center">7</td>
      <td align="center">107.51</td>
      <td align="center">62.12</td>
    </tr>
    <tr>
      <td align="left">Ancient Poetry</td>
      <td align="center">16</td>
      <td align="center">1,845</td>
      <td align="center">200</td>
      <td align="center">20</td>
      <td align="center">73.42</td>
      <td align="center">94.93</td>
    </tr>
    <tr>
      <td align="left">Ancient Literary Culture</td>
      <td align="center">11</td>
      <td align="center">1,130</td>
      <td align="center">100</td>
      <td align="center">100</td>
      <td align="center">26.68</td>
      <td align="center">14.26</td>
    </tr>
    <tr>
      <td align="left"><strong>Overall</strong></td>
      <td align="center">42</td>
      <td align="center">4,875</td>
      <td align="center">200</td>
      <td align="center">7</td>
      <td align="center">75.87</td>
      <td align="center">63.44</td>
    </tr>
  </tbody>
</table>

</div>

## Inference

### a. Obtain the model’s responses

#### Open-source Model

For open-source models, we perform inference locally, only requiring the model path and the output file path for the answers.

```
--model_path The path to the model, defaults to loading from huggingface
--output_path The file path for the model's answer output, defaults to {model_name}_result.json
```

e.g.

```
CUDA_VISIBLE_DEVICES=0,1 python Evaluation_Code/Inference/Test_Baichuan2-7B-Chat.py \  
    --model_path baichuan-inc/Baichuan2-7B-Chat \  
    --output_path Baichuan2-7B-Chat_result.json
```

#### API Model

For GPT-3.5 and GPT-4 models, provide two parameters: `api_base` and `api_key`.  
For ERNIE-3.5 and ERNIE-4.0 models, provide two parameters: `api_key` and `secret_key`.  
For Spark models, provide three parameters: `api_key`, `secret_key`, and `appid`.  
Refer to the official documentation of each API model for details.  

e.g.

```
python Test_ERNIE-3.5-8K-0329.py \
    --API_KEY {api_key} \
    --SECRET_KEY {secret_key} \
    --output_path {output_path}
```
### b. Use ERNIE-3.5 to score the responses

Step 1: Check whether the LLM response file is consistent with the format of the `JSON/LLM_Response_Examples.json` file.

Step 2: Open the `Evaluation_Code/LLM_Scoring.py` file, input the `API_KEY` and `SECRET_KEY` for the scoring model ERNIE-3.5, replace `LLM_response_path` with the storage path of the LLM response file, replace `LLM_score_path` with the path where the scoring results will be saved, and replace `LLM_prompt_path` with the storage path of `JSON/Task_Score_Prompt.json`.

Step 3: Run the following command to obtain the scoring results:

```
python Evaluation_Code/LLM_Scoring.py 
```

### c. Calculate the model’s score

Step 1: Check whether the scoring file is consistent with the format of the `JSON/LLM_Score_Examples.json` file.

Step 2: Open the `Evaluation_Code/Calculate_Score.py` file and replace `LLM_score_path` with the storage path of the scoring file.

Step 3: Run the following command to obtain the model's score:

```
python Evaluation_Code/Calculate_Score.py 
```
## Evaluation Result

<p align="center">
    <strong>Table 2: Results of all evaluated models on different domains and capabilities.</strong>
<p>
<p align="center">
    <img src="https://github.com/SCUT-DLVCLab/WenMind/blob/main/Images/Evaluation_Result.png?raw=true" width="750"/>
<p>


## Acknowledgement

- [SCUT-C2MChn](https://github.com/Zongyuan-Jiang/C2MChn)
- [WYWEB](https://github.com/baudzhou/WYWEB)
- [Daizhige](https://github.com/garychowcmu/daizhigev20)
- [ACLUE](https://github.com/isen-zhang/ACLUE)
- [Websites-A Related to Ancient Poetry](http://ts300.5156edu.com/)
- [Websites-B Related to Ancient Poetry](https://www.gushixuexi.com/)
- [Sou Yun](https://www.sou-yun.cn/)
- [THU-FSPC](https://github.com/THUNLP-AIPoet/Datasets)
- [Han Dian](https://www.zdic.net/)

## License

![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)

The work is licensed under a [MIT License](https://lbesson.mit-license.org/).

![License: CC BY-NC-SA 4.0](https://img.shields.io/badge/License-CC%20BY--NC--SA%204.0-lightgrey.svg)

The WenMind benchmark is licensed under a [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License](https://creativecommons.org/licenses/by-nc-sa/4.0/).