blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
2deca391a42294fa9a1e3b7a3e7a081a8a035d51
93a016fe0430c57ca6cbe4a1064b0451130f113a
/63. Unique Paths II/Solution1.py
efbd9db5396aff210c1df27060e0a1a1beb5b21d
[]
no_license
ChenPH0522/LeetCode
fcca5eaa707c25a1d60d22dc16fe0d46ab7aba12
0b0911851bad871b1da66fa5b8731b96bf9c313a
refs/heads/master
2020-04-16T21:51:17.845752
2019-03-18T01:41:36
2019-03-18T01:41:36
165,942,768
0
0
null
null
null
null
UTF-8
Python
false
false
1,260
py
# 2019.2.20 class Solution(object): def uniquePathsWithObstacles(self, obstacleGrid): """ :type obstacleGrid: List[List[int]] :rtype: int """ # initialize nr = len(obstacleGrid) if nr == 0: return 0 nc = len(obstacleGrid[0]) if nc == 0: return 0 f = [ [0] * (nc) for _ in range(nr) ] if obstacleGrid[0][0] == 0: f[0][0] = 1 else: f[0][0] = 0 flag = obstacleGrid[0][0] for r in range(1, nr): if (not flag) and (obstacleGrid[r][0] != 1): f[r][0] = 1 else: flag = 1 f[r][0] = 0 flag = obstacleGrid[0][0] for c in range(1, nc): if (not flag) and (obstacleGrid[0][c] != 1): f[0][c] = 1 else: flag = 1 f[0][c] = 0 # update for r in range(1, nr): for c in range(1, nc): if obstacleGrid[r][c] == 1: f[r][c] = 0 else: f[r][c] = f[r-1][c] + f[r][c-1] return f[-1][-1]
85b509b27de898050b210a48965adbce12130a4a
38dd9d9b5b4887c29a8ab7a4fff2017fdfa79217
/08. RESTful API Web/02. Sentence Corrector/app/util/spellcheck.py
440b76813468da2ac4519fea63ac9ca28cd5920b
[]
no_license
ZippoCode/SAR
f7defb01273451a06aae2af0885b4ac87b3ccff9
63ab4789a80af5927153e110d80af8a8c05449bb
refs/heads/master
2020-04-06T09:45:20.392836
2018-11-13T09:40:38
2018-11-13T09:41:00
138,259,857
0
0
null
null
null
null
UTF-8
Python
false
false
2,241
py
import unirest import re import string import random from app_secrets import mashape_key regex = re.compile('[%s]' % re.escape(string.punctuation)) DEFAULT_KEY = "https://montanaflynn-spellcheck.p.mashape.com/check/?text=" def get_dict_spellcheck(text): """ Effettua una GET sulle API si Spellcheck. Restituisce un dizionario che contiene: - La frase originale - La frase suggerita - Un dizionario che contiene la coppia 'Parola errata' : 'Lista di correzioni' - La lista delle possibili frasi corrette In particolare, le frasi vengono 'pulite' dalla punteggiatura :param text: :return: dict """ # Pulizia testo text = "%s%s" % (text[0].upper(), text[1:].lower()) text = regex.sub(' ', text) text = re.sub(' +', ' ', text) response = unirest.get(DEFAULT_KEY + text, headers={ "X-Mashape-Key": mashape_key, "Accept": "application/json" }) if response.code != 200: return None original = response.body['original'] suggestion = response.body['suggestion'] # Costruzione del Dizionario dict_corrections = {} response_corrections = response.body['corrections'] phrase_suggestion = list() for word_original in response_corrections: list_word_corrections = list() for correction in response_corrections[word_original]: list_word_corrections.append(correction.title()) phrase_suggestion.append(original.replace(word_original, correction.upper())) dict_corrections[word_original.title()] = list_word_corrections # Costruzione della frase suggerita con le parole modificate original_correct = original for wo, ws in zip(original_correct.split(), suggestion.split()): if wo != ws: original_correct = original_correct.replace(wo, ws.upper()) phrase_suggestion.append(original_correct) random.shuffle(phrase_suggestion) response_dict = { "Original": original, "Suggestion": suggestion, 'Phrase Suggestion': phrase_suggestion, "Corrections": dict_corrections } return response_dict
9933352045d96cc5d2c27b9f4a3be54ce25e1fbe
cd79b051f67fb014a9494749598e37e1585a5af0
/task1.py
9a2a9c2862e63e447fa8faeab9fc8390ab6e7cb0
[]
no_license
gskirankumar6/lab-6
598be50745ebb0712484190c0f8165ee04bd829a
2ba746c9653846fc1e12a9fdf79a2a4c42e3480c
refs/heads/master
2021-05-10T13:51:30.333294
2018-01-22T21:27:59
2018-01-22T21:27:59
118,494,011
0
0
null
null
null
null
UTF-8
Python
false
false
228
py
import math class point(): x=0 y=0 p1=point() p2=point() p2.x=1 p2.y=2 def distance_between_points(p1,p2): distance=math.sqrt((p1.x-p2.x)**2+(p2.y-p1.y)**2) return distance print(distance_between_points(p1,p2))
69a05928de9ed76446b23f57b1dc1340e6eaaaef
f3b233e5053e28fa95c549017bd75a30456eb50c
/bace_input/L3A/3A-3N_wat_20Abox/set_1ns_equi_m.py
e4ea2818a930af0f9347d9ab3c2a65bf3ce26e2e
[]
no_license
AnguseZhang/Input_TI
ddf2ed40ff1c0aa24eea3275b83d4d405b50b820
50ada0833890be9e261c967d00948f998313cb60
refs/heads/master
2021-05-25T15:02:38.858785
2020-02-18T16:57:04
2020-02-18T16:57:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
923
py
import os dir = '/mnt/scratch/songlin3/run/bace/L3A/wat_20Abox/ti_one-step/3A_3N/' filesdir = dir + 'files/' temp_equiin = filesdir + 'temp_equi_m.in' temp_pbs = filesdir + 'temp_1ns_equi_m.pbs' lambd = [ 0.00922, 0.04794, 0.11505, 0.20634, 0.31608, 0.43738, 0.56262, 0.68392, 0.79366, 0.88495, 0.95206, 0.99078] for j in lambd: os.system("rm -r %6.5f" %(j)) os.system("mkdir %6.5f" %(j)) os.chdir("%6.5f" %(j)) os.system("rm *") workdir = dir + "%6.5f" %(j) + '/' #equiin eqin = workdir + "%6.5f_equi_m.in" %(j) os.system("cp %s %s" %(temp_equiin, eqin)) os.system("sed -i 's/XXX/%6.5f/g' %s" %(j, eqin)) #PBS pbs = workdir + "%6.5f_1ns_equi.pbs" %(j) os.system("cp %s %s" %(temp_pbs, pbs)) os.system("sed -i 's/XXX/%6.5f/g' %s" %(j, pbs)) #top os.system("cp ../3A-3N_merged.prmtop .") os.system("cp ../0.5_equi_0_3.rst .") #submit pbs os.system("qsub %s" %(pbs)) os.chdir(dir)
f6841ab723b264264e63b0292554b13c38cc0029
5dcb58862de8905a8ea254ce229686b40ab869c6
/python/laba8_modules/graph.py
2a9eba10310e0fc57d24ed517b55a5d969465a22
[]
no_license
neverkor/labi
30785d7a6b4b06fb6b233223a5ef12c4e6e689e3
58f60671d0147158d5d91dc29b3a751e413aec5f
refs/heads/master
2022-03-04T14:20:48.182091
2019-10-07T13:55:27
2019-10-07T13:55:27
120,272,727
0
0
null
null
null
null
UTF-8
Python
false
false
545
py
import data import matplotlib.pyplot as plt # Графическое изображение (не обязательно, так нагляднее) def graphic(): circle = plt.Circle((data.centr_x, data.centr_y), data.radius, color='blue', fill=False) fig, ax = plt.subplots() ax.add_artist(circle) ax.axis("equal") plt.xlim(-50, 50) plt.ylim(-50, 50) plt.scatter(data.x, data.y, s=0.5, color='red') plt.scatter(data.os_x, data.os_y, s=1, color='black') plt.show() data.os_x = [] data.os_y = data.y
58757ab16287a0e8fe9e579352191ef57f453aed
46fd19b150edec1ee25b3f809ffc385708024a15
/Jewels_And_Stones.py
b312caf6a4bc0e57ec815a8206569adb6e1df08c
[]
no_license
vrushti-mody/Leetcode-Solutions
a5e16b7f6e786a023b1a7db8895f905119e4aa2e
194b7c29e31e80d7589e83e00cf100ce743871c4
refs/heads/master
2022-11-21T21:43:29.875987
2020-07-29T10:48:40
2020-07-29T10:48:40
279,860,314
1
0
null
null
null
null
UTF-8
Python
false
false
772
py
# You're given strings J representing the types of stones that are jewels, and S representing the stones you have. Each character in S is a type of stone you have. You want to know how many of the stones you have are also jewels. # The letters in J are guaranteed distinct, and all characters in J and S are letters. Letters are case sensitive, so "a" is considered a different type of stone from "A". class Solution: def numJewelsInStones(self, J: str, S: str) -> int: j=0 i=0 count=0 while i<len(S): if j==len(J): j=0 i=i+1 elif S[i]==J[j]: i=i+1 j=0 count=count+1 else: j=j+1 return count
22a8528b7f3e90d3daa6100e399bbe178244f3b3
a0df0314a9e934e26daf0fe3dee6a88b7e91e53d
/langs/spanish/subselect_PROP.py
ac65d507dc3a458ceb6d5edbc3364e516e78e737
[ "MIT" ]
permissive
bplank/ud-conversion-tools
13e3f2093ed04873092db5c3a73349d601d554ce
1818df8f47822564d4bf0ae954ebfb405902dd02
refs/heads/master
2023-05-30T00:58:49.090074
2023-05-07T12:17:18
2023-05-07T12:17:18
258,237,683
1
2
MIT
2023-05-07T12:17:19
2020-04-23T14:48:50
Python
UTF-8
Python
false
false
799
py
import nltk, re stoplist = list(nltk.corpus.stopwords.words())+ "& bajo al".split(" ") romans = re.compile("^M{0,4}(CM|CD|D?C{0,3})(XC|XL|L?X{0,3})(IX|IV|V?I{0,3})$") for line in open("PROPNlist").readlines(): line = line.strip() freq, word, POS, underscore = line.split() newPOS = "PROPN" newfeats = "_" newlabel = "_" if word.lower() in stoplist: #print(word) newPOS = "STOP" elif "'" in word and len(word) < 4: #print(word) newPOS = "STOP" # elif set(word).intersection(set(["0","1","2","3","4","5","6","7","8","9"])): # print(word) # elif romans.search(word): # print(word) if newPOS != POS: outline = "\t".join([freq, word, POS, underscore, newPOS, newfeats, newlabel]) print(outline)
38aa1cecef456e46672f644af502b036e9857c79
58cf4e5a576b2baf7755ae19d410bf8afc2f3709
/leetcode-solutions/P1718Lexicographically_valid_sequence.py
c9d06c89c6e96e5f0b886e1ffc39ed7c4e203f95
[]
no_license
srihariprasad-r/leet-code
78284beac34a4d84dde9f8cd36503496b618fdf7
fc4f1455bafd1496eb5469a509be8638b75155c1
refs/heads/master
2023-08-16T20:24:09.474931
2023-08-07T14:23:36
2023-08-07T14:23:36
231,920,275
0
0
null
null
null
null
UTF-8
Python
false
false
1,267
py
class Solution(object): def constructDistancedSequence(self, n): """ :type n: int :rtype: List[int] """ visited = set() def backtrack(idx): if idx == el: return True if ans[idx] != 0: return backtrack(idx+1) else: for num in range(n, 0, -1): if num == 1: if num not in visited: ans[idx] = num visited.add(num) if backtrack(idx+1): return True ans[idx] = 0 visited.remove(num) else: if num not in visited and idx + num < len(ans) and ans[idx+num] == 0: ans[idx] = ans[idx+num] = num visited.add(num) if backtrack(idx+1): return True ans[idx] = ans[idx+num] = 0 visited.remove(num) return False el = 1 + (n-1) * 2 ans = [0] * el backtrack(0) return ans
d5c24aad7f699753b6f6b9dd0785c1360a3c4486
7670d3ab993875f935e7cd40e522e5a44d6acb87
/EMSController/EMSBroker/serializers.py
5738d594d66ced2ac449b9e868a3e608e5dd7574
[]
no_license
sr-kulkarni/Eirene
b2a2057a55505d27cb3a268d60408a275e2cd7f5
1d074811a23bac1fa451e37d8eaa87328ed87c5f
refs/heads/master
2021-01-10T03:38:42.465389
2016-03-21T04:47:37
2016-03-21T04:47:37
47,056,373
0
0
null
null
null
null
UTF-8
Python
false
false
373
py
from rest_framework import serializers from EMSBroker.models import Service, ServiceHelper class ServiceSerializer(serializers.ModelSerializer): class Meta: model = Service fields = ('name','address',) class ServiceHelperSerializer(serializers.ModelSerializer): class Meta: model = ServiceHelper fields = ('service','specifics',)
069aa72a031f9524c83c56938ef67ba5540f6609
19d801b2248c1f277fbffeac0b44c7508ed1dd9a
/python/cours1/2_4_1_quotes.py
b8f9b3ab8030336ad60bd1227f16ac9875ee41ea
[]
no_license
eminet666/eminet_tutoriels
92a24bc820cc3637727f0c5a9fdfc9c90d9450be
f5220caaf5c37b22f3cd667533f922e34deac245
refs/heads/main
2023-07-31T06:18:37.657750
2021-09-09T19:56:20
2021-09-09T19:56:20
356,902,861
0
0
null
null
null
null
UTF-8
Python
false
false
360
py
# -*- coding: utf8 -*- quotes = [ "Ecoutez-moi, Monsieur Shakespeare, nous avons beau être ou ne pas être, nous sommes !", "On doit pouvoir choisir entre s'écouter parler et se faire entendre." ] characters = [ "alvin et les Chipmunks", "Babar", "betty boop", "calimero", "casper", "le chat potté", "Kirikou" ]
c5da38cf828ee2e7f9f04fe2a3062059242b45d0
1c7fa268ee031395806f38d52b6a7282ba5a4633
/hr_python/collections/medium/WordOrder.py
f5ae2f7799e2749511ce13812c98aa411f7532da
[]
no_license
murugesan-narayan/hr_python
d2f562ecd2aa6c4eef4aab8363d5d040447ed727
86542342fc77cf7c95ebd08e5142186410f6385d
refs/heads/master
2022-04-12T14:59:16.293611
2020-03-24T14:25:30
2020-03-24T14:25:30
249,729,320
0
0
null
null
null
null
UTF-8
Python
false
false
217
py
from collections import OrderedDict if __name__ == '__main__': od = OrderedDict() for i in range(int(input())): w = input() od[w] = od.get(w, 0) + 1 print(len(od)) print(*od.values())
25d05a6156015393e9e10755b75e63847b9ff2d4
89d1f88b63723cb9c90bb50d947c6c9b0ef8909c
/code/YESR/make_filelist.py
657d2eec43b383d52c8d6fe0e36dd562d3f71735
[]
no_license
yexuehua/Cell_SR
9240138a387d4b7e64348869e3167772584a052d
25f5dcdc821ae11da22fdbf87bf389bcfacc01f4
refs/heads/master
2023-03-05T01:49:04.120027
2021-02-15T12:30:34
2021-02-15T12:30:34
264,704,131
0
0
null
null
null
null
UTF-8
Python
false
false
612
py
import pandas as pd import os import numpy as np top_path = r"C:\Users\212774000\Documents\python\gitclone\SR\Cell_SR\data" lr_names = os.listdir(os.path.join(top_path,"overlay256")) lr_names.sort(key=lambda x:int(x[:-12])) lr_lists = [os.path.join("overlay256",i) for i in lr_names] hr_names = os.listdir(os.path.join(top_path,"overlay512")) hr_names.sort(key=lambda x:int(x[:-12])) hr_lists = [os.path.join("overlay512",i) for i in hr_names] df = pd.DataFrame({"overlay256":lr_lists, "overlay512":hr_lists}) df.to_csv("data.csv") ndf = pd.read_csv("data.csv") print(list(ndf["overlay256"]))
649c8bdf219d3d84de1f29cd783c3241ea33cbc8
c205aaf81190afcd78c20434f95af890cf05eb55
/100-199/141-linked-list-cycle.py
b7397c42245bf96c9920d356d2e841c285153683
[]
no_license
StdioA/LeetCode
94be861978952364549dcb64d6effbcc05952449
2b0ed54a5bfc3496a6234afc8568bb7ec8bd9c5d
refs/heads/master
2021-09-18T20:55:51.402776
2021-09-08T11:45:24
2021-09-08T11:45:24
52,870,730
0
0
null
null
null
null
UTF-8
Python
false
false
512
py
# coding: utf-8 # Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None from made_list import ListNode class Solution: # @param head, a ListNode # @return a boolean def hasCycle(self, head): nodes = {} cur = head while cur: if nodes.get(id(cur),None): return True else: nodes[id(cur)] = True cur = cur.next return False
324bc5c67b22e80c45f9991b08b6e18b97fed42e
3203738cdab38847dbf396411b1ea6d0140de539
/venv/bin/pip2.7
2accc2ba9901fa0063695a5f935ef5c42932705f
[]
no_license
ChenPaulYu/rpi-video-example
7e000dd1dd88f90a49430507c7407f2ae2bcb077
37fd455c57b6a921617ad1d97437daf426cd8461
refs/heads/master
2021-04-15T07:32:17.841990
2018-03-26T10:49:40
2018-03-26T10:49:40
126,814,753
0
0
null
null
null
null
UTF-8
Python
false
false
223
7
#!/var/www/lab_app/venv/bin/python2 # -*- coding: utf-8 -*- import re import sys from pip import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
35d63f1643bbb28b4a418dc38659f9d3048320b8
57e4571b018e59b307c52dda8b21920d3817747e
/simplesocial/groups/urls.py
adec226988e5c7fa2d9cb797f871307fe4726951
[]
no_license
rajatsaini736/simple_social
f39031e829fc1ff58eb547c4b4dacd1404fe6aab
3334cd09e8eb2c40179c3891f4750b039ba8a66e
refs/heads/master
2020-03-22T20:35:39.410307
2018-07-11T18:19:16
2018-07-11T18:19:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
433
py
from django.conf.urls import url from . import views app_name = 'groups' urlpatterns = [ url(r'^$',views.ListGroups.as_view(),name='all'), url(r'^new/$',views.CreateGroup.as_view(),name='create'), url(r'^posts/in/(?P<slug>[-\w]+)/$',views.SingleGroup.as_view(),name='single'), url(r'^join/(?P<slug>[-\w]+)/$'views.JoinGroup.as_view(),name='join'), url(r'^leave/(?P<slug>[-\w]+)/$',views.LeaveGroup.as_view(),name='leave'), ]
50c21f40e005535778798626eec9e021586efbda
25f22d78a376389ff0f825ce1ef9d985de85b422
/venv/lib/python3.6/tokenize.py
e055e11934aee4f85b4022182011d69cb11b8a53
[]
no_license
DelanoJo/flask_page
59ebb7ec6d71debe74f1b19c3d0f4eb9c0ceeece
1eb96ea99a69ed207593626903bc59eb3f9c7ce5
refs/heads/master
2020-12-30T16:41:06.036540
2017-05-11T19:01:38
2017-05-11T19:01:38
91,010,257
0
0
null
null
null
null
UTF-8
Python
false
false
56
py
/Users/delanojohnson/anaconda3/lib/python3.6/tokenize.py
b43237a959e7f5df821a1de7944f76ab53d41fbe
13aa5daad57fcb5458e4788779602fe64dd53b3c
/reconect user in conf/test.py
dada1e6b1a5a1852b405a879c371cfae265e35fd
[]
no_license
QAkharkivTC/Server
c2a1f7ce5ef0e6074d301f8a36f66e8a43e7ce5e
eb6bab434c461bd66b2db2850116aa13b9931df7
refs/heads/main
2023-08-31T21:49:45.648597
2021-10-24T20:05:11
2021-10-24T20:05:11
394,217,298
0
0
null
null
null
null
UTF-8
Python
false
false
6,664
py
import json import requests import time import urllib3 import certifi import ssl import re #test data user = 'artem_7' server_name = 'aa111.trueconf.name' ip = '10.130.2.209' token = '2PReau6pERNRhbHZcd1Q6I2Y1Mlnd7C3' cid = 'chat' login_admim = 'tc' password_admin = 'qweASD123' def invite_partisipant(user, server_name, ip, cid, token): ssl._create_default_https_context = ssl._create_unverified_context urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) url = 'https://'+ip+'/api/v3.3/conferences/'+cid+'/invite?access_token='+token+'' headers = {'content-type': 'application/json'} payload = {"participants":[""+user+"@"+server_name+""]} response = requests.post(url, data=json.dumps(payload), headers=headers, verify=False) #debug if response.status_code == 200: print('invite '+user) else: print('"invite_partisipant" dosen\'t work') print(response.status_code) print(response.text) def get_stream_id(ip, cid, token): ssl._create_default_https_context = ssl._create_unverified_context urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) url = 'https://'+ip+'/api/v4/conferences/?access_token='+token+'&state=running&page_size=1000' headers = {'content-type': 'application/json'} response = requests.get(url, headers=headers, verify=False) media = json.loads(response.text) for i in range(len(media['conferences'])): if media['conferences'][i]['id'] == str(cid): stream_id = media['conferences'][i]['session_id'] else: pass #print(stream_id) stream_id = re.sub('[@]','%40',stream_id) stream_id = re.sub('[#]','%23',stream_id) #print(stream_id) #debug if response.status_code != 200: print('something was wrong: see in "get_stream_id"') print(response.text) print(response.status_code) else: pass return stream_id def get_instans_partisipant(user, cid, ip, token, login_admim, password_admin): ssl._create_default_https_context = ssl._create_unverified_context urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) headers = {'content-type': 'application/json'} data = {"username":login_admim,"password":password_admin} url = 'https://'+ip+'/guest/auth/login/' response = requests.post(url, headers=headers, data=data, verify=False) response.status_code #print(response.cookies) test = response.cookies #print(test) for cookie in response.cookies: #print(cookie.__dict__) coockies_1 = cookie.__dict__['value'] #coockies = test['value'] #print(coockies) call_id = user+'@'+server_name stream_id = get_stream_id(ip, cid, token) cookies = {'PHPSESSID':''+coockies_1+''} headers = {'content-type': 'application/json'} url = 'https://'+ip+'/draft/v1/streams/'+stream_id+'/participants/' response = requests.get(url, headers=headers, cookies=cookies, verify=False) print(response.status_code) print(response.text) media = json.loads(response.text) for i in range(len(media['data']['participants'])): if media['data']['participants'][i]['call_id'] == call_id: instans = media['data']['participants'][i]['participant_id'] else: pass #debug if response.status_code != 200: print('something was wrong: see in "get_instans_partisipant"') print(response.text) print(response.status_code) print(len(media['data']['participants'])) else: #print(instans) pass return instans def remove_partisipant(ip, cid, user, server_name, token, login_admim, password_admin): ssl._create_default_https_context = ssl._create_unverified_context urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) stream_id = get_stream_id(ip, cid, token) remove_user = user+'@'+server_name instans = get_instans_partisipant(user, cid, ip, token, login_admim, password_admin) instans = re.sub('[@]','%40',instans) instans = re.sub('[/]','%2F',instans) cookies_value = get_cookies(ip, login_admim, password_admin) cookies = {'PHPSESSID':''+cookies_value+''} # ea573dbe280b4235ac1f3c8fb16bb36d headers = {'content-type': 'application/json'} url = 'https://'+ip+'/draft/v1/streams/'+stream_id+'/participants/'+instans+'/' response = requests.delete(url, headers=headers, cookies=cookies, verify=False) response.status_code #debug if response.status_code == 200: print('user ' + user + ' was removed') else: print(response.status_code) print(response.text) def get_cookies(ip, cid, user, server_name, token, login_admim, password_admin): ssl._create_default_https_context = ssl._create_unverified_context urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) headers = {'content-type': 'application/json'} data = {"username":login_admim,"password":password_admin} url = 'https://'+ip+'/guest/auth/login/' response = requests.post(url, headers=headers, data=data, verify=False) response.status_code #print(response.cookies) test = response.cookies #print(test) for cookie in response.cookies: #print(cookie.__dict__) coockies_11 = cookie.__dict__['value'] #coockies = test['value'] #print(coockies) stream_id = get_stream_id(ip, cid, token) remove_user = user+'@'+server_name instans = get_instans_partisipant(user, cid, ip, token, login_admim, password_admin) instans = re.sub('[@]','%40',instans) instans = re.sub('[/]','%2F',instans) cookies = {'PHPSESSID':''+coockies_11+''} # ea573dbe280b4235ac1f3c8fb16bb36d headers = {'content-type': 'application/json'} url = 'https://'+ip+'/draft/v1/streams/'+stream_id+'/participants/'+instans+'/' response = requests.delete(url, headers=headers, cookies=cookies, verify=False) response.status_code #debug if response.status_code == 200: print('user ' + user + ' was removed') else: print(response.status_code) print(response.text) return coockies get_cookies(ip, cid, user, server_name, token, login_admim, password_admin)
5260df6b703ce981378e8ce7186a7d59f0aa27dd
74a0372356b332098a29dde176d3ea0dc9d2ee9d
/koalixcrm/crm/product/unit_transform.py
0249658ed77853e7ee6410bae24f7f4c8019a238
[ "BSD-3-Clause" ]
permissive
Shikhar10000/koalixcrm
6fd1d6d3e341af108d1eb090c9a00a7f815edd32
6d0230a0f192bb7126c42db59ecfc4369a765a7a
refs/heads/master
2022-06-19T10:31:00.524875
2020-05-09T18:46:43
2020-05-09T18:46:43
262,627,556
1
0
BSD-3-Clause
2020-05-09T17:53:09
2020-05-09T17:53:08
null
UTF-8
Python
false
false
1,950
py
# -*- coding: utf-8 -*- from django.db import models from django.contrib import admin from django.utils.translation import ugettext as _ class UnitTransform(models.Model): from_unit = models.ForeignKey('Unit', verbose_name=_("From Unit"), blank=False, null=False, related_name="db_reltransfromfromunit") to_unit = models.ForeignKey('Unit', verbose_name=_("To Unit"), blank=False, null=False, related_name="db_reltransfromtounit") product_type = models.ForeignKey('ProductType', blank=False, null=False, verbose_name=_("Product Type")) factor = models.DecimalField(verbose_name=_("Factor between From and To Unit"), blank=False, null=False, max_digits=17, decimal_places=2,) def transform(self, unit): if self.from_unit == unit: return self.to_unit else: return None def get_transform_factor(self): return self.factor def __str__(self): return "From " + self.from_unit.short_name + " to " + self.to_unit.short_name class Meta: app_label = "crm" verbose_name = _('Unit Transform') verbose_name_plural = _('Unit Transforms') class UnitTransformInlineAdminView(admin.TabularInline): model = UnitTransform extra = 1 classes = ['collapse'] fieldsets = ( ('', { 'fields': ('from_unit', 'to_unit', 'factor',) }), ) allow_add = True
2ba3413d40aec8e567953a35086628cad4676329
4dda19ac20fb8dcf1abd5495a323fceec02d6c74
/depth_analyzer.py
e0f3f0cc2dfb3f2ff56e7feb8cfb9d97e2c4ec8a
[]
no_license
AndreSlavescu/Stereo-Vision-Depth-Analyzer
cc6832905e9581c314f5a82f54accd3421207a2a
e915b3e38dcb96fe5b1153563053bf961fa791dd
refs/heads/main
2023-04-10T22:37:57.580173
2021-05-05T01:16:38
2021-05-05T01:16:38
357,052,381
6
0
null
null
null
null
UTF-8
Python
false
false
6,647
py
#!/usr/bin/env python3 import cv2 import depthai as dai import matplotlib.pyplot as plt from collections import deque class DataPlot: def __init__(self, max_entries=20): self.axis_x = deque(maxlen=max_entries) self.axis_y = deque(maxlen=max_entries) self.max_entries = max_entries self.buf1 = deque(maxlen=5) self.buf2 = deque(maxlen=5) def add(self, x, y): self.axis_x.append(x) self.axis_y.append(y) class RealtimePlot: def __init__(self, axes): self.axes = axes self.lineplot, = axes.plot([], [], "ro-") def plot(self, dataPlot): self.lineplot.set_data(dataPlot.axis_x, dataPlot.axis_y) self.axes.set_xlim(min(dataPlot.axis_x), max(dataPlot.axis_x)) ymin = 0 ymax = max(dataPlot.axis_y) + 10 self.axes.set_ylim(ymin, ymax) self.axes.relim(); stepSize = 0.01 # Start defining a pipeline pipeline = dai.Pipeline() # Define a source - two mono (grayscale) cameras monoLeft = pipeline.createMonoCamera() monoRight = pipeline.createMonoCamera() stereo = pipeline.createStereoDepth() spatialLocationCalculator = pipeline.createSpatialLocationCalculator() xoutDepth = pipeline.createXLinkOut() xoutSpatialData = pipeline.createXLinkOut() xinSpatialCalcConfig = pipeline.createXLinkIn() xoutDepth.setStreamName("depth") xoutSpatialData.setStreamName("spatialData") xinSpatialCalcConfig.setStreamName("spatialCalcConfig") # MonoCamera monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P) monoLeft.setBoardSocket(dai.CameraBoardSocket.LEFT) monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P) monoRight.setBoardSocket(dai.CameraBoardSocket.RIGHT) outputDepth = True outputRectified = False lrcheck = False subpixel = False # StereoDepth stereo.setOutputDepth(outputDepth) stereo.setOutputRectified(outputRectified) stereo.setConfidenceThreshold(255) stereo.setLeftRightCheck(lrcheck) stereo.setSubpixel(subpixel) monoLeft.out.link(stereo.left) monoRight.out.link(stereo.right) spatialLocationCalculator.passthroughDepth.link(xoutDepth.input) stereo.depth.link(spatialLocationCalculator.inputDepth) topLeft = dai.Point2f(0.5, 0.5) bottomRight = dai.Point2f(0.6, 0.6) spatialLocationCalculator.setWaitForConfigInput(False) config = dai.SpatialLocationCalculatorConfigData() config.depthThresholds.lowerThreshold = 100 config.depthThresholds.upperThreshold = 10000 config.roi = dai.Rect(topLeft, bottomRight) spatialLocationCalculator.initialConfig.addROI(config) spatialLocationCalculator.out.link(xoutSpatialData.input) xinSpatialCalcConfig.out.link(spatialLocationCalculator.inputConfig) # Pipeline is defined, now we can connect to the device with dai.Device(pipeline) as device: device.startPipeline() # Output queue will be used to get the depth frames from the outputs defined above depthQueue = device.getOutputQueue(name="depth", maxSize=4, blocking=False) spatialCalcQueue = device.getOutputQueue(name="spatialData", maxSize=4, blocking=False) spatialCalcConfigInQueue = device.getInputQueue("spatialCalcConfig") color = (0, 255, 0) print("Use WASD keys to move ROI!") fig, axes = plt.subplots() plt.title('Plotting Data') data = DataPlot(); dataPlotting = RealtimePlot(axes) count = 0 while True: count += 1 inDepth = depthQueue.get() # Blocking call, will wait until a new data has arrived inDepthAvg = spatialCalcQueue.get() # Blocking call, will wait until a new data has arrived depthFrame = inDepth.getFrame() depthFrameColor = cv2.normalize(depthFrame, None, 255, 0, cv2.NORM_INF, cv2.CV_8UC1) depthFrameColor = cv2.equalizeHist(depthFrameColor) depthFrameColor = cv2.applyColorMap(depthFrameColor, cv2.COLORMAP_HOT) spatialData = inDepthAvg.getSpatialLocations() print("spatial data len", len(spatialData)) for depthData in spatialData: roi = depthData.config.roi roi = roi.denormalize(width=depthFrameColor.shape[1], height=depthFrameColor.shape[0]) xmin = int(roi.topLeft().x) ymin = int(roi.topLeft().y) xmax = int(roi.bottomRight().x) ymax = int(roi.bottomRight().y) fontType = cv2.FONT_HERSHEY_TRIPLEX cv2.rectangle(depthFrameColor, (xmin, ymin), (xmax, ymax), color, 2) cv2.putText(depthFrameColor, f"X: {int(depthData.spatialCoordinates.x)} mm", (xmin + 10, ymax + 20), fontType, 0.5, color) cv2.putText(depthFrameColor, f"Y: {int(depthData.spatialCoordinates.y)} mm", (xmin + 10, ymax + 35), fontType, 0.5, color) cv2.putText(depthFrameColor, f"Z: {int(depthData.spatialCoordinates.z)} mm", (xmin + 10, ymax + 50), fontType, 0.5, color) data.add(count, int(depthData.spatialCoordinates.z)) dataPlotting.plot(data) plt.pause(0.001) cv2.imshow("depth", depthFrameColor) newConfig = False key = cv2.waitKey(1) if key == ord('q'): break elif key == ord('w'): if topLeft.y - stepSize >= 0: topLeft.y -= stepSize bottomRight.y -= stepSize newConfig = True elif key == ord('a'): if topLeft.x - stepSize >= 0: topLeft.x -= stepSize bottomRight.x -= stepSize newConfig = True elif key == ord('s'): if bottomRight.y + stepSize <= 1: topLeft.y += stepSize bottomRight.y += stepSize newConfig = True elif key == ord('d'): if bottomRight.x + stepSize <= 1: topLeft.x += stepSize bottomRight.x += stepSize newConfig = True elif key == ord('e'): topLeft.x += 0.01 topLeft.y += 0.01 bottomRight.x -= 0.01 bottomRight.y -= 0.01 newConfig = True elif key == ord('r'): topLeft.x -= 0.01 topLeft.y -= 0.01 bottomRight.x += 0.01 bottomRight.y += 0.01 newConfig = True if newConfig: config.roi = dai.Rect(topLeft, bottomRight) cfg = dai.SpatialLocationCalculatorConfig() cfg.addROI(config) spatialCalcConfigInQueue.send(cfg)
bcfd5af36d4792ba100793bf21ba608c5053a457
053b436a21874cb35d5376f7c45d046d80e08e04
/Chapter 9 Excercise 2.py
a62ca54f3d25297e349701d28ddff78b6083b112
[]
no_license
braeden-smith/Chapter-8-9-10
4b34f813e1c6f8fc0c7ca1c87062d96e4c851dc9
c8d575dcc941f8dd121074096a37d0966e52fc33
refs/heads/master
2021-05-02T09:15:24.292906
2018-02-09T18:05:35
2018-02-09T18:05:35
120,820,485
0
0
null
null
null
null
UTF-8
Python
false
false
695
py
#Braeden Smith Chapter 9 Excercise 2 # Exercise 2 # Write a program that categorizes each mail message by which day of the week the # commit was done. To do this look for lines that start with “From”, # then look for the third word and keep a running count of each of the days of the week. # At the end of the program print out the contents of your dictionary (order does not matter). weekdays = {} table = [] with open('mboxshort.txt') as f: for line in f: table = line.split() if len(table) > 3 and line.startswith('From'): day = table[2] if day not in weekdays: weekdays[day] = 1 else: weekdays[day] += 1 print(weekdays)
fbe81a7e2f5b2e9010815422bc4c7d0db403fb9b
1ffc799602225024bc8adccbd6988478c9ce434f
/mags_raw_to_processed_fast_forward.py
e727f0b5c6299c9152fe8bacf336d2ee13722531
[ "Apache-2.0" ]
permissive
Thomas-Hirsch/airflow-dags
8adf63ebca05bf24d2f787e0a478f5ca5d14dcd5
37b1e9a44dbfd508c1f6b86c712d699bfdff4ca2
refs/heads/master
2020-04-21T09:05:22.364622
2019-03-19T12:31:25
2019-03-19T12:31:25
169,438,103
0
0
Apache-2.0
2019-03-19T13:31:08
2019-02-06T16:33:38
Python
UTF-8
Python
false
false
2,600
py
from datetime import datetime, timedelta import airflow from airflow import DAG from airflow.contrib.operators.kubernetes_pod_operator import KubernetesPodOperator from airflow.utils.dates import days_ago TAR_PROCESS_SCRIPT = "tar_raw_to_process.py" DB_REBUILD_SCRIPT = "rebuild_databases.py" DB_VERSION = 'v1' DBS_TO_REBUILD = 'mags_processed' # HOCAS_RAW_FOLDER = "" # HOCAS_PYTHON_SCRIPT_NAME = "hocas_raw_to_process.py" MAGS_IMAGE = "593291632749.dkr.ecr.eu-west-1.amazonaws.com/airflow-magistrates-data-engineering:v0.0.7" MAGS_ROLE = "airflow_mags_data_processor" task_args = { "depends_on_past": False, "email_on_failure": True, "owner": "isichei", "email": ["[email protected]"], } # Catch-up on dates before today-REUPDATE_LAST_N_DAYS days dag = DAG( "mags_data_raw_to_processed_fast_forward", default_args=task_args, description="Process mags data (HOCAS and TAR) running all preprocessing in parallel", start_date=datetime.now(), schedule_interval=None, ) tasks = {} file_land_timestamps = [ "file_land_timestamp=1541030400", "file_land_timestamp=1541116800", "file_land_timestamp=1541203200", "file_land_timestamp=1541289600", "file_land_timestamp=1541376000", "file_land_timestamp=1541462400", "file_land_timestamp=1541548800", "file_land_timestamp=1541635200", "file_land_timestamp=1541721600" ] task_id = "rebuild-athena-schemas" tasks[task_id] = KubernetesPodOperator( dag=dag, namespace="airflow", image=MAGS_IMAGE, env_vars={ "PYTHON_SCRIPT_NAME": DB_REBUILD_SCRIPT, "DB_VERSION": DB_VERSION, "DBS_TO_REBUILD" : DBS_TO_REBUILD }, arguments=["{{ ds }}"], labels={"app": dag.dag_id}, name=task_id, in_cluster=True, task_id=task_id, get_logs=True, annotations={"iam.amazonaws.com/role": MAGS_ROLE}, ) # Run each set of paths in parallel and set rebuild of databases downstream for i, flt in enumerate(file_land_timestamps) : task_id = f"process-tar-{i}" tasks[task_id] = KubernetesPodOperator( dag=dag, namespace="airflow", image=MAGS_IMAGE, env_vars={ "PYTHON_SCRIPT_NAME": TAR_PROCESS_SCRIPT, "DB_VERSION": DB_VERSION, "S3_RELATIVE_FOLDER_PATHS": flt, }, arguments=["{{ ds }}"], labels={"app": dag.dag_id}, name=task_id, in_cluster=True, task_id=task_id, get_logs=True, annotations={"iam.amazonaws.com/role": MAGS_ROLE}, ) # Set dependencies tasks[task_id] >> tasks["rebuild-athena-schemas"]
450436a24d35b4f202b9f4b0862ca5a54129f0c6
e7ab780aeae5a6910eb0b7f23d204ae6b6d4b93b
/case/dataTable/scriptCreteTable.py
01854fce4d6f2253fd1d256142c0a4012c9ccef2
[]
no_license
wmengchen/hufu_ui
59dd60cc48bffc5685a2e82235d98496cf6972a9
324497bb9f1c4461d8d80cd956e24317a6565e60
refs/heads/master
2023-01-14T04:39:52.260732
2020-11-17T02:34:58
2020-11-17T02:34:58
276,246,935
0
0
null
null
null
null
UTF-8
Python
false
false
3,141
py
#!/usr/bin/python # -*- coding: UTF-8 -*- # @date: 2020/7/23 15:07 # @name: scriptCreteTable # @author:menghuan.wmc import ddt,unittest,sys,os,re sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) from comm.element import Element from comm.readExcel import ReadExcel from comm import login from config import setting from selenium.webdriver.common.keys import Keys from comm.sql import Dbconnect import time from selenium.webdriver.common.action_chains import ActionChains import configparser as cparser cf = cparser.ConfigParser() cf.read(setting.Test_config,encoding='utf-8') username = cf.get('test_admin','username') password = cf.get('test_admin','password') sheetName = 'scriptCreteTable' date = time.strftime('%Y_%m_%d',time.localtime(time.time())) testData = ReadExcel(setting.Test_case,sheetName).read_data() @ddt.ddt class ScriptCreteTable(unittest.TestCase): def setUp(self): print('--------测试开始--------') self.login = login.Login() self.login.login(username, password) self.driver = self.login.browser pass @ddt.data(*testData) def test_ScriptCreteTable(self,data): print('---------{}---------'.format(data['case_name'])) Element(self.driver,'project','Projectfind_click').wait_send_keys(date+data["project_name"]) Element(self.driver,'project','Projectfind_click').send_keys(Keys.ENTER) time.sleep(1) Element(self.driver,'project','enterProject_click').wait_click() time.sleep(1) Element(self.driver,'dataAssert','dataAssert_click').wait_click() Element(self.driver,'dataTable','dataTable_click').wait_click() Element(self.driver,'dataTable','dataTablescriptcreateTable_click').wait_click() Element(self.driver,'dataTable','dataTableScript_inputclick').wait_click() ActionChains(self.driver).send_keys(data["script"]).perform() time.sleep(1) Element(self.driver,'dataTable','dataTableScript_cancelclick').wait_click() time.sleep(2) Element(self.driver, 'dataTable', 'dataTablescriptcreateTable_click').wait_click() time.sleep(1) Element(self.driver, 'dataTable', 'dataTableScript_inputclick').wait_click() ActionChains(self.driver).send_keys(data["script"]).perform() time.sleep(1) Element(self.driver,'dataTable','dataTableScript_saveclick').wait_click() Element(self.driver, 'dataTable', 'dataTableScript_saveclick').wait_not_click() time.sleep(1) Element(self.driver,'dataTable','dataTablefind_click').wait_send_keys(data["table_name"]) time.sleep(1) content = Element(self.driver,'dataTable','dataTablefind_totalclick').get_text_value() self.check_result(content) def check_result(self,content): number = re.findall(r"\d+\.?\d*", content) print("number:",number[0]) s = number[0] print("s的值是",s) assert int(s) == 1 def tearDown(self): print('--------测试结束--------') self.login.logout() if __name__=="__main__": unittest.main()
6d4d355c0b0481060525524ea626bc594a5bbb5b
f3693916a8b118bf139364604dac3f51235ed613
/functional/Components/Permissions/ManageConfiguration/Clients/Clients_POST/test_TC_42284_Clients_POST_Admin_Create_Flag_Set_To_False_1.py
89199af884dce34566d2d26a0c8dc211f7f1fe2f
[]
no_license
muktabehera/QE
e7d62284889d8241d22506f6ee20547f1cfe6db1
3fedde591568e35f7b80c5bf6cd6732f8eeab4f8
refs/heads/master
2021-03-31T02:19:15.369562
2018-03-13T02:45:10
2018-03-13T02:45:10
124,984,177
0
0
null
null
null
null
UTF-8
Python
false
false
36,133
py
# -*- coding: UTF-8 -*- """PFE Component Tests - Clients. * TC-42284 - Clients POST: Verify that Create button is not displayed on 'Proximities zones' page under Intelligent Content Routing menu for user with "Manage Configuration" permission, while "Config admin can create" flag is set to false within the token expiration time. Equivalent test CURL command: curl -H "Host: <client_host>" -k -H "Authorization: Bearer <valid_token>" -X POST -d @<JSON_data_file> -H "Content-Type: application/json" "<PF_host>://<client_host>/clients" Same, with test data: curl -H "Host: <client_host>" -k -H "Authorization: Bearer <valid_token>" -X POST -d @<JSON_data_file> -H "Content-Type: application/json" "<PF_host>://<client_host>/clients" JSON data sent to PathFinder in this test: {'id': 'auto_client', 'matchingRule': {'groups': [{'groups': [], 'operator': 'ALL', 'rules': [{'contextField': 'remoteAddress', 'contextFieldKey': None, 'contextFieldType': 'String', 'expressionType': 'Single', 'matchValue': '172.0.0.0/8', 'operator': 'IPMATCH'}, {'contextField': 'remoteHost', 'contextFieldKey': None, 'contextFieldType': 'String', 'expressionType': 'Single', 'matchValue': 'qed.com', 'operator': 'EQ'}, {'contextField': 'serverHost', 'contextFieldKey': None, 'contextFieldType': 'String', 'expressionType': 'Single', 'matchValue': '172.30.3.174', 'operator': 'EQ'}, {'contextField': 'serverPort', 'contextFieldKey': None, 'contextFieldType': 'String', 'expressionType': 'Single', 'matchValue': 8080, 'operator': 'EQ'}, {'contextField': 'operatingSystem', 'contextFieldKey': None, 'contextFieldType': 'String', 'expressionType': 'Single', 'matchValue': 'WINDOWS_8', 'operator': 'OSMATCH'}, {'contextField': 'browser', 'contextFieldKey': None, 'contextFieldType': 'String', 'expressionType': 'Single', 'matchValue': 'IE', 'operator': 'BROWSERMATCH'}, {'contextField': 'headerMap', 'contextFieldKey': 'headergroup', 'contextFieldType': 'String', 'expressionType': 'Map', 'matchValue': 'headergroup', 'operator': 'EQ'}, {'contextField': 'queryParamMap', 'contextFieldKey': 'query1', 'contextFieldType': 'String', 'expressionType': 'Map', 'matchValue': 'query1', 'operator': 'EQ'}, {'contextField': 'tags', 'contextFieldKey': '1234', 'contextFieldType': 'String', 'expressionType': 'Map', 'matchValue': '1234', 'operator': 'EQ'}]}], 'operator': 'ALL', 'rules': [{'contextField': 'remoteAddress', 'contextFieldKey': None, 'contextFieldType': 'String', 'expressionType': 'Single', 'matchValue': '172.0.0.0/8', 'operator': 'IPMATCH'}, {'contextField': 'remoteHost', 'contextFieldKey': None, 'contextFieldType': 'String', 'expressionType': 'Single', 'matchValue': 'qed.com', 'operator': 'EQ'}, {'contextField': 'serverHost', 'contextFieldKey': None, 'contextFieldType': 'String', 'expressionType': 'Single', 'matchValue': '172.30.3.174', 'operator': 'EQ'}, {'contextField': 'operatingSystem', 'contextFieldKey': None, 'contextFieldType': 'String', 'expressionType': 'Single', 'matchValue': 'BLACKBERRY', 'operator': 'OSMATCH'}, {'contextField': 'browser', 'contextFieldKey': None, 'contextFieldType': 'String', 'expressionType': 'Single', 'matchValue': 'IE10', 'operator': 'BROWSERMATCH'}, {'contextField': 'headerMap', 'contextFieldKey': 'header', 'contextFieldType': 'String', 'expressionType': 'Map', 'matchValue': 'header', 'operator': 'EQ'}, {'contextField': 'queryParamMap', 'contextFieldKey': 'query', 'contextFieldType': 'String', 'expressionType': 'Map', 'matchValue': 'query', 'operator': 'EQ'}, {'contextField': 'tags', 'contextFieldKey': 'tag', 'contextFieldType': 'String', 'expressionType': 'Map', 'matchValue': 'tag', 'operator': 'EQ'}, {'contextField': 'serverPort', 'contextFieldKey': None, 'contextFieldType': 'String', 'expressionType': 'Single', 'matchValue': 8080, 'operator': 'EQ'}]}, 'name': 'POST: Auto Client', 'sourceSelectionRule': [{'groups': [{'groups': [], 'operator': 'ALL', 'rules': [{'contextField': 'bitrateKbps', 'contextFieldKey': None, 'contextFieldType': 'String', 'expressionType': 'Single', 'matchValue': 523, 'operator': 'EQ'}, {'contextField': 'heightPx', 'contextFieldKey': None, 'contextFieldType': 'String', 'expressionType': 'Single', 'matchValue': 456, 'operator': 'EQ'}, {'contextField': 'mimetype', 'contextFieldKey': None, 'contextFieldType': 'String', 'expressionType': 'Single', 'matchValue': 'video/mp4', 'operator': 'MIMEMATCH'}, {'contextField': 'tags', 'contextFieldKey': '456', 'contextFieldType': 'String', 'expressionType': 'Map', 'matchValue': '456', 'operator': 'EQ'}, {'contextField': 'widthPx', 'contextFieldKey': None, 'contextFieldType': 'String', 'expressionType': 'Single', 'matchValue': 200, 'operator': 'EQ'}]}], 'operator': 'ALL', 'rules': [{'contextField': 'bitrateKbps', 'contextFieldKey': None, 'contextFieldType': 'String', 'expressionType': 'Single', 'matchValue': 256, 'operator': 'EQ'}, {'contextField': 'heightPx', 'contextFieldKey': None, 'contextFieldType': 'String', 'expressionType': 'Single', 'matchValue': 563, 'operator': 'EQ'}, {'contextField': 'mimetype', 'contextFieldKey': None, 'contextFieldType': 'String', 'expressionType': 'Single', 'matchValue': 'application/x-mpegURL', 'operator': 'MIMEMATCH'}, {'contextField': 'tags', 'contextFieldKey': '124', 'contextFieldType': 'String', 'expressionType': 'Map', 'matchValue': '124', 'operator': 'EQ'}, {'contextField': 'widthPx', 'contextFieldKey': None, 'contextFieldType': 'String', 'expressionType': 'Single', 'matchValue': 250, 'operator': 'EQ'}]}]} """ import pytest from qe_common import * logger = init_logger() @pytest.mark.draft # remove this after script passed unit tests successfuly @pytest.mark.components @pytest.allure.story('Clients') @pytest.allure.feature('POST') class Test_PFE_Components(object): """PFE Clients test cases.""" @pytest.allure.link('https://jira.qumu.com/browse/TC-42284') @pytest.mark.Clients @pytest.mark.POST def test_TC_42284_POST_Clients_Admin_Create_Flag_Set_To_False(self, context): """TC-42284 - Clients-POST Verify that Create button is not displayed on 'Proximities zones' page under Intelligent Content Routing menu for user with "Manage Configuration" permission, while "Config admin can create" flag is set to false within the token expiration time.""" # Define a test step with pytest.allure.step("""Verify that Create button is not displayed on 'Proximities zones' page under Intelligent Content Routing menu for user with "Manage Configuration" permission, while "Config admin can create" flag is set to false within the token expiration time."""): ### Positive test example # Test case configuration clientDetails = context.sc.ClientDetails( id='auto_client', matchingRule={ 'operator': 'ALL', 'rules': [{ 'expressionType': 'Single', 'contextField': 'remoteAddress', 'operator': 'IPMATCH', 'contextFieldType': 'String', 'matchValue': '172.0.0.0/8', 'contextFieldKey': None }, { 'expressionType': 'Single', 'contextField': 'remoteHost', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': 'qed.com', 'contextFieldKey': None }, { 'expressionType': 'Single', 'contextField': 'serverHost', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': '172.30.3.174', 'contextFieldKey': None }, { 'expressionType': 'Single', 'contextField': 'operatingSystem', 'operator': 'OSMATCH', 'contextFieldType': 'String', 'matchValue': 'BLACKBERRY', 'contextFieldKey': None }, { 'expressionType': 'Single', 'contextField': 'browser', 'operator': 'BROWSERMATCH', 'contextFieldType': 'String', 'matchValue': 'IE10', 'contextFieldKey': None }, { 'expressionType': 'Map', 'contextField': 'headerMap', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': 'header', 'contextFieldKey': 'header' }, { 'expressionType': 'Map', 'contextField': 'queryParamMap', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': 'query', 'contextFieldKey': 'query' }, { 'expressionType': 'Map', 'contextField': 'tags', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': 'tag', 'contextFieldKey': 'tag' }, { 'expressionType': 'Single', 'contextField': 'serverPort', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': 8080, 'contextFieldKey': None }], 'groups': [{ 'operator': 'ALL', 'rules': [{ 'expressionType': 'Single', 'contextField': 'remoteAddress', 'operator': 'IPMATCH', 'contextFieldType': 'String', 'matchValue': '172.0.0.0/8', 'contextFieldKey': None }, { 'expressionType': 'Single', 'contextField': 'remoteHost', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': 'qed.com', 'contextFieldKey': None }, { 'expressionType': 'Single', 'contextField': 'serverHost', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': '172.30.3.174', 'contextFieldKey': None }, { 'expressionType': 'Single', 'contextField': 'serverPort', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': 8080, 'contextFieldKey': None }, { 'expressionType': 'Single', 'contextField': 'operatingSystem', 'operator': 'OSMATCH', 'contextFieldType': 'String', 'matchValue': 'WINDOWS_8', 'contextFieldKey': None }, { 'expressionType': 'Single', 'contextField': 'browser', 'operator': 'BROWSERMATCH', 'contextFieldType': 'String', 'matchValue': 'IE', 'contextFieldKey': None }, { 'expressionType': 'Map', 'contextField': 'headerMap', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': 'headergroup', 'contextFieldKey': 'headergroup' }, { 'expressionType': 'Map', 'contextField': 'queryParamMap', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': 'query1', 'contextFieldKey': 'query1' }, { 'expressionType': 'Map', 'contextField': 'tags', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': '1234', 'contextFieldKey': '1234' }], 'groups': [] }] }, name='POST: Auto Client', sourceSelectionRule=[{ 'operator': 'ALL', 'rules': [{ 'expressionType': 'Single', 'contextField': 'bitrateKbps', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': 256, 'contextFieldKey': None }, { 'expressionType': 'Single', 'contextField': 'heightPx', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': 563, 'contextFieldKey': None }, { 'expressionType': 'Single', 'contextField': 'mimetype', 'operator': 'MIMEMATCH', 'contextFieldType': 'String', 'matchValue': 'application/x-mpegURL', 'contextFieldKey': None }, { 'expressionType': 'Map', 'contextField': 'tags', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': '124', 'contextFieldKey': '124' }, { 'expressionType': 'Single', 'contextField': 'widthPx', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': 250, 'contextFieldKey': None }], 'groups': [{ 'operator': 'ALL', 'rules': [{ 'expressionType': 'Single', 'contextField': 'bitrateKbps', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': 523, 'contextFieldKey': None }, { 'expressionType': 'Single', 'contextField': 'heightPx', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': 456, 'contextFieldKey': None }, { 'expressionType': 'Single', 'contextField': 'mimetype', 'operator': 'MIMEMATCH', 'contextFieldType': 'String', 'matchValue': 'video/mp4', 'contextFieldKey': None }, { 'expressionType': 'Map', 'contextField': 'tags', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': '456', 'contextFieldKey': '456' }, { 'expressionType': 'Single', 'contextField': 'widthPx', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': 200, 'contextFieldKey': None }], 'groups': [] }] }]) # createEntity the Clients. # The `check` call validates return code # and some of the swagger schema. # Most schema checks are disabled. response = check( context.cl.Clients.createEntity( body=clientDetails ) ) ### Can add tests here to validate the response content with pytest.allure.step("""Verify that Create button is not displayed on 'Proximities zones' page under Intelligent Content Routing menu for user with "Manage Configuration" permission, while "Config admin can create" flag is set to false within the token expiration time."""): ### Negative test example # Test case configuration clientDetails = context.sc.ClientDetails( id='auto_client', matchingRule={ 'operator': 'ALL', 'rules': [{ 'expressionType': 'Single', 'contextField': 'remoteAddress', 'operator': 'IPMATCH', 'contextFieldType': 'String', 'matchValue': '172.0.0.0/8', 'contextFieldKey': None }, { 'expressionType': 'Single', 'contextField': 'remoteHost', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': 'qed.com', 'contextFieldKey': None }, { 'expressionType': 'Single', 'contextField': 'serverHost', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': '172.30.3.174', 'contextFieldKey': None }, { 'expressionType': 'Single', 'contextField': 'operatingSystem', 'operator': 'OSMATCH', 'contextFieldType': 'String', 'matchValue': 'BLACKBERRY', 'contextFieldKey': None }, { 'expressionType': 'Single', 'contextField': 'browser', 'operator': 'BROWSERMATCH', 'contextFieldType': 'String', 'matchValue': 'IE10', 'contextFieldKey': None }, { 'expressionType': 'Map', 'contextField': 'headerMap', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': 'header', 'contextFieldKey': 'header' }, { 'expressionType': 'Map', 'contextField': 'queryParamMap', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': 'query', 'contextFieldKey': 'query' }, { 'expressionType': 'Map', 'contextField': 'tags', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': 'tag', 'contextFieldKey': 'tag' }, { 'expressionType': 'Single', 'contextField': 'serverPort', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': 8080, 'contextFieldKey': None }], 'groups': [{ 'operator': 'ALL', 'rules': [{ 'expressionType': 'Single', 'contextField': 'remoteAddress', 'operator': 'IPMATCH', 'contextFieldType': 'String', 'matchValue': '172.0.0.0/8', 'contextFieldKey': None }, { 'expressionType': 'Single', 'contextField': 'remoteHost', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': 'qed.com', 'contextFieldKey': None }, { 'expressionType': 'Single', 'contextField': 'serverHost', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': '172.30.3.174', 'contextFieldKey': None }, { 'expressionType': 'Single', 'contextField': 'serverPort', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': 8080, 'contextFieldKey': None }, { 'expressionType': 'Single', 'contextField': 'operatingSystem', 'operator': 'OSMATCH', 'contextFieldType': 'String', 'matchValue': 'WINDOWS_8', 'contextFieldKey': None }, { 'expressionType': 'Single', 'contextField': 'browser', 'operator': 'BROWSERMATCH', 'contextFieldType': 'String', 'matchValue': 'IE', 'contextFieldKey': None }, { 'expressionType': 'Map', 'contextField': 'headerMap', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': 'headergroup', 'contextFieldKey': 'headergroup' }, { 'expressionType': 'Map', 'contextField': 'queryParamMap', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': 'query1', 'contextFieldKey': 'query1' }, { 'expressionType': 'Map', 'contextField': 'tags', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': '1234', 'contextFieldKey': '1234' }], 'groups': [] }] }, name='POST: Auto Client', sourceSelectionRule=[{ 'operator': 'ALL', 'rules': [{ 'expressionType': 'Single', 'contextField': 'bitrateKbps', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': 256, 'contextFieldKey': None }, { 'expressionType': 'Single', 'contextField': 'heightPx', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': 563, 'contextFieldKey': None }, { 'expressionType': 'Single', 'contextField': 'mimetype', 'operator': 'MIMEMATCH', 'contextFieldType': 'String', 'matchValue': 'application/x-mpegURL', 'contextFieldKey': None }, { 'expressionType': 'Map', 'contextField': 'tags', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': '124', 'contextFieldKey': '124' }, { 'expressionType': 'Single', 'contextField': 'widthPx', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': 250, 'contextFieldKey': None }], 'groups': [{ 'operator': 'ALL', 'rules': [{ 'expressionType': 'Single', 'contextField': 'bitrateKbps', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': 523, 'contextFieldKey': None }, { 'expressionType': 'Single', 'contextField': 'heightPx', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': 456, 'contextFieldKey': None }, { 'expressionType': 'Single', 'contextField': 'mimetype', 'operator': 'MIMEMATCH', 'contextFieldType': 'String', 'matchValue': 'video/mp4', 'contextFieldKey': None }, { 'expressionType': 'Map', 'contextField': 'tags', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': '456', 'contextFieldKey': '456' }, { 'expressionType': 'Single', 'contextField': 'widthPx', 'operator': 'EQ', 'contextFieldType': 'String', 'matchValue': 200, 'contextFieldKey': None }], 'groups': [] }] }]) # prepare the request, so we can modify it request = context.cl.Clients.createEntity( body=clientDetails ) ### Invalid JSON Error injection example ### Errors that result in valid JSON can be configured above. ### Otherwise, uncomment the code below (request.future....) # Get the generated payload and corrupt the metric # request.future.request.data = request.future.request.data.replace( # '"metric": 1,', '"metric":,' # ) # createEntity the Clients, and check we got the error we expect try: client, response = check( request, quiet=True, returnResponse=True ) except (HTTPBadRequest, HTTPForbidden) as e: # 400, 403 error get_error_message(e) | expect.any( should.start_with('may not be empty'), should.start_with('Invalid page parameter specified'), should.contain('Invalid Authorization Token') ) else: raise Exception( "Expected error message, got {} status code instead.".format( response.status_code))
8116929850f819d2d6e3998cffe99660ffe4a130
838457ddaffd69fe1b6f1754884a938b73f5996f
/ar.py
cb84479e94f25b6362a81c74b00dfc0809911dae
[]
no_license
ociepkam/MISK
eb813501084b56b3b2a702b269a7b6254641d781
622299326af3fa944800ac2ea76e4a42a71f569f
refs/heads/master
2020-12-25T08:36:50.101904
2016-06-07T13:34:36
2016-06-07T13:34:36
60,355,714
0
0
null
null
null
null
UTF-8
Python
false
false
247
py
class Square: def __init__(self, x, y, wood, fire, humidity, square_size): self.x = x self.y = y self.wood = wood self.fire = fire self.humidity = humidity self.square_size = square_size
581220800a7ae91d87aec06578cf5db8869815c6
f6020796383233cbb992a9e55d7659d2a4b75174
/EXPENSE-ENV/bin/pasteurize
7ab611cbfc8fbd333f8dfcba7bfa71f7b48d7bb7
[ "MIT" ]
permissive
ADL175/expense_tracker_401d6
1420e03c68349c526cb7b12466c1e67e274976f3
2827cda2ca154ce70a9b1879c198f1ec94ebd121
refs/heads/master
2021-01-23T01:26:22.415883
2017-05-31T15:49:16
2017-05-31T15:49:16
92,872,053
0
0
null
2017-05-31T15:49:17
2017-05-30T20:12:10
Python
UTF-8
Python
false
false
464
#!/Users/davidlim/Desktop/Project/401_python/wk3/expense_tracker_401d6/EXPENSE-ENV/bin/python3 # EASY-INSTALL-ENTRY-SCRIPT: 'future==0.16.0','console_scripts','pasteurize' __requires__ = 'future==0.16.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('future==0.16.0', 'console_scripts', 'pasteurize')() )
52426587ad4df18dd187e5edfcd235f5002b9f89
a423e93de507af4edbfe09d9b082a6c0e05bc30d
/main.py
c52331f61323dbd18df3dc50973d5bb52738acec
[]
no_license
mibre2/PythonStockCandlestickChart
ffca3fdc8f8559a5da023ce206a174204769b15a
a733c8b01751feeee4051b4dd28969caa28b8f1f
refs/heads/master
2023-03-19T00:09:27.123249
2021-03-14T23:20:28
2021-03-14T23:20:28
347,778,647
1
0
null
null
null
null
UTF-8
Python
false
false
973
py
import datetime as dt import pandas_datareader as web import matplotlib.pyplot as plt import matplotlib.dates as mdates from mplfinance.original_flavor import candlestick_ohlc # Define Time Frame start = dt.datetime(2021, 1, 4) # Start of 2021 end = dt.datetime.now() # Present TIME # Load Data ticker = input('Input ticker symbol: ') # Prompts user for input of ticker symbol data = web.DataReader(ticker, 'yahoo', start, end) # Restructure data data = data[['Open', 'High', 'Low', 'Close']] data.reset_index(inplace=True) data['Date'] = data['Date'].map(mdates.date2num) # Visualization ax = plt.subplot() ax.grid(True) ax.set_axisbelow(True) ax.set_title(ticker + ' Share Price'.format(ticker), color='white') ax.set_facecolor('black') ax.figure.set_facecolor('#121212') ax.tick_params(axis='x', colors='white') ax.tick_params(axis='y', colors='white') ax.xaxis_date() candlestick_ohlc(ax, data.values, width=0.5, colorup='#008000') plt.show()
5632ec92f87da31b038a9178cbd330bca059d3cb
6f801f3e71c934a7a41dfdcbb83acffcba7ee2a4
/lib/pantone.py
bf3689ab31758fa26e881005b87e265b7774d214
[ "MIT", "GPL-1.0-or-later" ]
permissive
alyberty/we-love-colors
149d9f3d652fa9617b88829eb2845c150b7050c1
47883048b651601db64b4ad44950ba28ec88ae2b
refs/heads/master
2020-07-27T23:57:08.603352
2019-09-19T17:25:37
2019-09-19T17:25:37
209,248,991
0
0
MIT
2019-09-18T07:44:48
2019-09-18T07:44:48
null
UTF-8
Python
false
false
12,728
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ## # Imports # For more information, see https://www.python.org/dev/peps/pep-0008/#imports ## import os import json from urllib.request import urlopen from bs4 import BeautifulSoup from palette import Palette from lib.helpers.nat_sort import natural_sort class Pantone(Palette): # Dictionary holding fetched colors (raw) sets = { 'graphic-design': [], 'fashion-design': [], 'product-design': [], } # Identifier identifier = 'pantone' # Copyright notices copyright = { 'xml': '\n PANTONE® and related trademarks are the property of\n Pantone LLC (https://www.pantone.com), a division of X-Rite, a Danaher company\n ', 'gpl': '##\n# PANTONE® and related trademarks are the property of\n# Pantone LLC (https://www.pantone.com), a division of X-Rite, a Danaher company\n##\n' } def __init__(self): super().__init__() ## # Fetches PANTONE® colors # # Valid `set_name` parameter: # - 'graphic-design', currently 15870 colors (pp 1-32) # - 'fashion-design', currently 2443 colors (pp 1-14) # - 'product-design', currently 4967 colors (pp 1-10) ## def fetch(self, set_name, firstPage, lastPage): # One baseURL to rule them all base_url = 'https://www.numerosamente.it/pantone-list/' # Translating set_name to valid URL path name via `dict.get()` set_url = { 'graphic-design': 'graphic-designers/', 'fashion-design': 'fashion-and-interior-designers/', 'product-design': 'industrial-designers/', } # Looping through URLs & scraping color information from HTML tables for i in range(firstPage, lastPage + 1): html = urlopen(base_url + set_url.get(set_name) + str(i)) soup = BeautifulSoup(html, 'lxml') print('Loading page ' + str(i) + ' .. done') for remoteElement in soup.findAll('tr')[1:]: color = {} color['code'] = remoteElement.findAll('td')[0].text color['rgb'] = remoteElement.findAll('td')[1].text color['hex'] = remoteElement.findAll('td')[2].text color['name'] = remoteElement.findAll('td')[3].text # Checking if a fetched element already exists .. found_same_name = False for localElement in self.sets[set_name]: if color['name'] != '' and color['name'] == localElement['name']: found_same_name = True # .. if not, adding it is da real MVP if not found_same_name: self.sets[set_name].append(color) print('Loading ' + color['code'] + ' in set "' + set_name + '" .. done') ## # Fetches all PANTONE® colors at once ## def fetch_all(self): self.fetch('graphic-design', 1, 32) self.fetch('fashion-design', 1, 14) self.fetch('product-design', 1, 10) ## # Creates JSON files for Dulux® color sets ## def create_json(self, input_filename=''): if input_filename == '': input_filename = self.identifier # Dictionary holding fetched colors (processed) sets_processed = { ## # Pantone Color Systems - Graphics # Pantone Matching System - PMS # For more information, see https://www.pantone.com/color-systems/for-graphic-design # or visit their shop: https://www.pantone.com/graphics ## 'graphic-design': { # TODO: Solid/Spot Colors (Coated & Uncoated) - Link? 'C': [], 'U': [], ## # CMYK Color Guide (Coated & Uncoated) # https://www.pantone.com/products/graphics/cmyk-coated-uncoated ## 'PC': [], 'PU': [], ## # Color Bridge Set (Coated & Uncoated) # https://www.pantone.com/products/graphics/color-bridge-coated-uncoated ## 'CP': [], # https://www.pantone.com/products/graphics/color-bridge-coated 'UP': [], # https://www.pantone.com/products/graphics/color-bridge-uncoated ## # Extended Gamut Coated Guide # https://www.pantone.com/products/graphics/extended-gamut-coated-guide ## 'XGC': [], ## # Pastels & Neons (Coated & Uncoated) # https://www.pantone.com/products/graphics/pastels-neons ## # Neons 'NC': [], 'NU': [], # Pastels 'PAC': [], 'PAU': [], ## # Metallics (Coated) # https://www.pantone.com/products/graphics/metallics-guide ## 'MC': [], }, ## # Pantone Color Systems - Fashion # Fashion, Home + Interiors - FHI # For more information, see https://www.pantone.com/color-systems/for-fashion-design # or visit their shop: https://www.pantone.com/fashion-home-interiors ## 'fashion-design': { # TODO: 'Textile Paper eXtended' 'TPX': [], # TODO: 'Textile Paper Green' 'TPG': [], # TODO: 'Textile Cotton eXtended' 'TCX': [], ## # Nylon Brights Set # https://www.pantone.com/products/fashion-home-interiors/nylon-brights-set ## 'TN': [], ## # Pantone SkinTone™ Guide # https://www.pantone.com/products/fashion-home-interiors/pantone-skintone-guide ## 'SP': [], }, ## # Pantone Color Systems - Product # Plastic Standards # For more information, see https://www.pantone.com/color-systems/for-product-design # or visit the shop: https://www.pantone.com/plastics ## 'product-design': { 'PQ': [], # https://www.pantone.com/color-intelligence/articles/technical/did-you-know-pantone-plastics-standards-explained # TODO: 'Textile Cotton eXtended' 'TCX': [], }, 'custom-palettes': { 'color-of-the-year': [] # IDEA: Palettes created around CotY } } # Lists holding base pastels base_pastels = [ 'Yellow 0131', 'Red 0331', 'Magenta 0521', 'Violet 0631', 'Blue 0821', 'Green 0921', 'Black 0961', ] base_pastels_coated = [color + ' C' for color in base_pastels] base_pastels_uncoated = [color + ' U' for color in base_pastels] ## # List holding codes for PANTONE®'s 'Color of the Year' (CotY) since 2000 # https://www.pantone.com/color-intelligence/color-of-the-year/color-of-the-year-2019 ## colors_of_the_year = [ '15-4020', # 2000: Cerulean Blue '17-2031', # 2001: Fuchsia Rose '19-1664', # 2002: True Red '14-4811', # 2003: Aqua Sky '17-1456', # 2004: Tigerlily '15-5217', # 2005: Blue Turquoise '13-1106', # 2006: Sand Dollar '19-1557', # 2007: Chili Pepper '18-3943', # 2008: Blue Iris '14-0848', # 2009: Mimosa '15-5519', # 2010: Turquoise '18-2120', # 2011: Honeysuckle '17-1463', # 2012: Tangerine Tango '17-5641', # 2013: Emerald '18-3224', # 2014: Radiant Orchid '18-1438', # 2015: Marsala '15-3919', # 2016: Serenity '13-1520', # 2016: Rose Quartz '15-0343', # 2017: Greenery '18-3838', # 2018: Ultra Violet '16-1546', # 2019: Living Coral ] with open(self.json_path + '/' + input_filename + '.json', 'r') as file: data = json.load(file) # Looping through PANTONE® color sets for set, colors in data.items(): subset = sets_processed[set] # Extracting each PANTONE® color subset for i, color in enumerate(colors): code = color['code'] if code[0:7] in colors_of_the_year: code = code[0:7] color['year'] = 2000 + colors_of_the_year.index(code) sets_processed['custom-palettes']['color-of-the-year'].append(color) if code[0:2] == 'P ': if code[-2:] == ' C': subset['PC'].append(color) if code[-2:] == ' U': subset['PU'].append(color) else: if code[-2:] == ' C': if len(code) == 5: if ('801 C' <= code <= '814 C') or ('901 C' <= code <= '942 C'): subset['NC'].append(color) continue if '871 C' <= code <= '877 C': subset['MC'].append(color) continue if len(code) == 6: if ('8001 C' <= code <= '8965 C'): subset['MC'].append(color) continue if ('9020 C' <= code <= '9603 C') or (code in base_pastels_coated): subset['PAC'].append(color) continue if len(code) == 7 and ('10101 C' <= code <= '10399 C'): subset['MC'].append(color) continue subset['C'].append(color) if code[-2:] == ' U': if len(code) == 5: if ('801 U' <= code <= '814 U') or ('901 U' <= code <= '942 U'): subset['NU'].append(color) continue if '871 U' <= code <= '877 U': # TODO: There are no uncoated Metallics, deleting rather than skipping? continue if (len(code) == 6 and ('9020 U' <= code <= '9603 U')) or (code in base_pastels_uncoated): subset['PAU'].append(color) continue subset['U'].append(color) if code[-3:] == ' CP': subset['CP'].append(color) if code[-3:] == ' UP': subset['UP'].append(color) if code[-3:] == 'XGC': subset['XGC'].append(color) if code[-3:] == 'TCX': subset['TCX'].append(color) if code[-3:] == 'TPG': subset['TPG'].append(color) if code[-3:] == 'TPX': subset['TPX'].append(color) if code[-3:] == ' TN': subset['TN'].append(color) if code[-3:] == ' SP': subset['SP'].append(color) if code[0:3] == 'PQ-': subset['PQ'].append(color) for set, subsets in sets_processed.items(): if len(subsets) == 0: break # Creating subdirectories file_path = self.json_path + '/' + set os.makedirs(file_path, exist_ok=True) for subset, colors in subsets.items(): # Applying natural sort order to all PANTONE® 'Graphics' colors if set == 'graphic-design': natural_sort(colors, 'code') if set == 'custom-palettes': colors.sort(key=lambda k: k['year']) if subset == 'color-of-the-year': subset = 'CotY' json_path = file_path + '/' + subset + '_' + str(len(colors)) + '-colors.json' # Dumping Pantone® color sets with open(json_path, 'w') as file: file.write(json.dumps(colors, indent=4)) print('Generating %s .. done' % json_path)
dd74d8fa5aa418703d42a9054b81922bd2acbdfa
061bbd366dfce18a6703ea8b42af9856c16304c2
/baysian_neural_decoding/baysian_neural_decoding/latency.py
09ac7bca84bdf0fa6e966cb73c67fa30fbd56240
[ "MIT" ]
permissive
badralbanna/Insanally2017
671f991df3c70a54ae6b8a4bb47e761d27b19491
cd77550ec6f25961f236bc31600189d26d05dc19
refs/heads/master
2021-01-02T09:10:41.415077
2019-02-20T14:44:00
2019-02-20T14:44:00
99,155,119
2
2
null
null
null
null
UTF-8
Python
false
false
499
py
import numpy ##################### # Finding Latencies # ##################### def first_spike_latency(response, log=False, **kwargs): if len(response) > 0: time = [response[response > 0][0]] else: time = [] if not log: return(numpy.array(time), numpy.array(time)) else: return(numpy.log10(numpy.array(time)), numpy.array(time)) ############################ # Estimating Probabilities # ############################ # Use set_bw and KDE wrapper
252f1a6776995a522d5b7f0d6c852580ebd19803
2a22fc2d2b05ac1cc871777a1ac97f38fed2aea9
/utils/focalloss.py
5895b2bc0e526683a33885b46956fa5d7ba7615c
[]
no_license
tbornt/text_classification_pytorch
a3bcd7e7d3037608dad51105919663ba36a348a0
d2dd5d948489629b1aacc3cfd6f6201e516175b3
refs/heads/master
2023-02-24T20:13:19.143752
2018-11-27T02:25:22
2018-11-27T02:25:22
156,794,961
16
1
null
2023-02-15T20:19:06
2018-11-09T01:54:54
Python
UTF-8
Python
false
false
2,199
py
import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class FocalLoss(nn.Module): r""" This criterion is a implemenation of Focal Loss, which is proposed in Focal Loss for Dense Object Detection. Loss(x, class) = - \alpha (1-softmax(x)[class])^gamma \log(softmax(x)[class]) The losses are averaged across observations for each minibatch. Args: alpha(1D Tensor, Variable) : the scalar factor for this criterion gamma(float, double) : gamma > 0; reduces the relative loss for well-classified examples (p > .5), putting more focus on hard, misclassified examples size_average(bool): By default, the losses are averaged over observations for each minibatch. However, if the field size_average is set to False, the losses are instead summed for each minibatch. """ def __init__(self, class_num, alpha=None, gamma=2, size_average=True): super(FocalLoss, self).__init__() if alpha is None: self.alpha = Variable(torch.ones(class_num, 1)) else: if isinstance(alpha, Variable): self.alpha = alpha else: self.alpha = Variable(alpha) self.gamma = gamma self.class_num = class_num self.size_average = size_average def forward(self, inputs, targets): N = inputs.size(0) C = inputs.size(1) P = F.softmax(inputs) class_mask = inputs.data.new(N, C).fill_(0) class_mask = Variable(class_mask) ids = targets.view(-1, 1) class_mask.scatter_(1, ids.data, 1.) if inputs.is_cuda and not self.alpha.is_cuda: self.alpha = self.alpha.cuda() alpha = self.alpha[ids.data.view(-1)] probs = (P*class_mask).sum(1).view(-1, 1) log_p = probs.log() batch_loss = -alpha*(torch.pow((1-probs), self.gamma))*log_p if self.size_average: loss = batch_loss.mean() else: loss = batch_loss.sum() return loss
c456ffedaa816a4036a4f62abdf89c0116d62451
b24ab5f07fc60de448662ef4b213f5bac499a93e
/Player.py
d4d5eb2cc6b57acb71030d58e6a514c1d479be3a
[]
no_license
RhevanP/HangmanPYQT5
67d6bbe05dff8d4e23b1053b46a83e424ca2ceee
a760f6f4217a8ccac2bc47151abf2629cfd1f6a2
refs/heads/main
2023-02-05T15:13:37.770544
2020-12-28T12:16:13
2020-12-28T12:16:13
325,003,631
0
0
null
null
null
null
UTF-8
Python
false
false
445
py
# -*- coding: utf-8 -*- """ Created on Sat Dec 26 16:23:24 2020 @author: antho """ class Player() : def __init__(self) : self.lifeMax = 6 self.currentLife = self.lifeMax self.userInput = [] self.lostGame = False def loosingLife(self) : self.currentLife -= 1 self.Lost() def Lost(self) : if self.currentLife == 0: self.lostGame = True
f6f969236282077c72f14344524d390376e73ef6
0ed5a6f1b3f30c39b93886d6bad3fc202ac48260
/stock.py
7bea686dc1f26f47041705845af17755bed5e193
[]
no_license
Hawkgirl/nse
4c4b595f93ccd861bceb7f9813d95ae37d12da9d
72b52c2c3dbbf3906e872ae33e6e24d3eb573b3b
refs/heads/master
2020-04-05T07:46:03.023140
2018-11-12T10:36:37
2018-11-12T10:36:37
156,687,919
0
0
null
null
null
null
UTF-8
Python
false
false
754
py
class stock(): def __init__(self, *arg, **kwargs): if 'name' in kwargs: self._name=kwargs['name'] if 'ltp' in kwargs: self._ltp=kwargs['ltp'] if 'high52' in kwargs: self._high52=kwargs['high52'] if 'tradevalue' in kwargs: self._tradevalue=kwargs['tradevalue']/10000000 @property def name(self): return self._name @property def ltp(self): return self._ltp @property def high52(self): return self._high52 @property def tradevalue(self): return self._tradevalue @property def high52gap(self): if self.ltp == 0: return 0 if self.high52 == self.ltp : return 0 val = (((float(self.high52 - self.ltp))/float(self.ltp)) * 100) return round(val, 2)
64cacb4092c260debe1654e1c4e577df432fe9ac
ccbdc11e15ee36a9a36ee75af8ce7ab41e2ca45f
/reciver.py
c4a7198d9b15c9da38b65b6e242015af536fcf7e
[]
no_license
musk03an22/arth
36e482328cca01c35cc83ba2f04ab36a0aa71d0f
22a9be1693fa611c9216b9bc656be28639c30ff7
refs/heads/main
2023-05-19T02:34:40.768872
2021-06-13T18:20:35
2021-06-13T18:20:35
376,076,326
0
0
null
null
null
null
UTF-8
Python
false
false
856
py
import socket,cv2, pickle,struct # create socket client_socket = socket.socket(socket.AF_INET,socket.SOCK_STREAM) host_ip = '192.168.56.1' # erver ip port = 9999 client_socket.connect((host_ip,port)) data = b"" payload_size = struct.calcsize("Q") while True: while len(data) < payload_size: packet = client_socket.recv(4*1024) if not packet: break data+=packet packed_msg_size = data[:payload_size] data = data[payload_size:] msg_size = struct.unpack("Q",packed_msg_size)[0] while len(data) < msg_size: data += client_socket.recv(4*1024) frame_data = data[:msg_size] data = data[msg_size:] frame = pickle.loads(frame_data) cv2.imshow("RECEIVING VIDEO",frame) key = cv2.waitKey(1) & 0xFF if key == ord('q'): break client_socket.close()
addfdf28434227d4c5d4be3ceb9ead15bad88b04
27de4db430ebd3264ce4bf148a4a9062f95541d7
/jedi/long_file/hdf5_functions.py
e50164fc87326fa5fb747225f82d392c8ec76cf8
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
broadinstitute/jedi-public
1afb499bb9c927b630945bca7f20e3df2baa0842
bce10d7e1a89e666ec4c77a1e3448f684dc21daf
refs/heads/master
2023-08-17T15:48:49.325910
2021-09-28T22:30:50
2021-09-28T22:30:50
409,325,595
5
0
null
null
null
null
UTF-8
Python
false
false
6,626
py
import json import logging import os from collections import defaultdict from dataclasses import dataclass from enum import Enum from typing import Dict, List, Optional, Callable, Any, Iterator, TypeVar, Set, Iterable import h5py import numpy as np import pandas as pd Instance = h5py.Group BASELINE = 'baseline' BASELINE_AGE = '' # NB: replace with field name for baseline age AGE = 'age' YEAR_UNIT_PD = 'y' WEEK_UNIT_PD = 'W' DAY_UNIT_PD = 'D' ID = 'id' logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) class FieldType(Enum): string = 'string' float = 'float' int = 'int' age = 'age' T = TypeVar('T') DEFAULT_SUFFIX = 'no_filter' @dataclass(frozen=True) class Field: name: str # the name of the field, e.g. Date_Age type: FieldType file_type: str units: str = None column_suffix: Optional[str] = DEFAULT_SUFFIX # should be provided if there is a filter or function filter: Optional[Callable[[T], bool]] = None # if filter applied to field's value is False, instance is skipped function: Optional[Callable[[T], Any]] = None # function applied to field's value def __str__(self) -> str: return '.'.join([x for x in [self.file_type, self.name, self.column_suffix] if x is not None]) def __post_init__(self): if self.filter is not None or self.function is not None: # If you have a filter or function, you cannot use the default suffix assert self.column_suffix != DEFAULT_SUFFIX def str_from_instance(field_name: str, instance) -> Optional[str]: if field_name in instance: return instance[field_name][()] def float_from_instance(field_name: str, instance) -> Optional[float]: if field_name in instance: return float(instance[field_name][0]) def int_from_instance(field_name: str, instance) -> Optional[int]: if field_name in instance: return int(instance[field_name][0]) def age_from_instance(field_name: str, instance) -> Optional[int]: if field_name in instance: return pd.to_timedelta(instance[field_name][()]) def field_from_instance(field: Field, instance) -> Any: """If field is not in the instance, will return None""" if field.type == FieldType.float: return float_from_instance(field.name, instance) if field.type == FieldType.string: return str_from_instance(field.name, instance) if field.type == FieldType.int: return int_from_instance(field.name, instance) if field.type == FieldType.age: return age_from_instance(field.name, instance) else: raise NotImplementedError(f'Field type {field.type} cannot be read from hd5.') def instances_from_hd5(hd5: h5py.File, file_type: str) -> Iterator: if file_type not in hd5: return for instance in hd5[file_type]: yield hd5[file_type][instance] def split_file_types(fields: List[Field]) -> Dict[str, List[Field]]: file_type_to_field = defaultdict(list) for field in fields: file_type_to_field[field.file_type].append(field) return file_type_to_field def data_frame_from_hd5(hd5_paths: Iterable[h5py.File], fields: List[Field], id: int, critical_fields: Optional[Set[Field]] = None) -> Optional[pd.DataFrame]: if critical_fields is None: critical_fields = set() file_type_to_field = split_file_types(fields) rows = [] for file_type, file_type_fields in file_type_to_field.items(): column_names = list(map(str, file_type_fields)) if len(column_names) > len(set(column_names)): raise ValueError( f'For file type {file_type}, there are duplicate field names in {column_names}.' f'Overlapping columns will overwrite each other.' ) for hd5_path in hd5_paths: with h5py.File(hd5_path, 'r') as hd5: instances = instances_from_hd5(hd5, file_type) rows += list( _data_from_instances(instances, file_type_fields, set(file_type_fields) & critical_fields, id)) if not rows: return df = pd.DataFrame(rows) df.index = pd.to_timedelta(df[AGE]) del df[AGE] df = df.dropna(how='all') if df.empty: return df[ID] = os.path.splitext(os.path.basename(hd5_paths[0]))[0] for field in fields: if str(field) not in df: df[str(field)] = np.nan return df.sort_index() def _data_from_instances(instances: Iterator[Instance], fields: List[Field], critical_fields: Set[Field], id: int) \ -> Dict[str, Any]: """ Yields dictionaries {AGE: age, field_1: value_1, ..., field_n: value_n} Assumes all fields have file types that match the instances """ critical_fields_empty = len(critical_fields) == 0 age_field_name = FILE_TYPE_TO_AGE_FIELD[fields[0].file_type].name baseline_field_name = _baseline_field(fields[0].file_type).name for instance in instances: # If critical_fields empty, assume any field is sufficient to yield an instance contains_critical = critical_fields_empty age = age_from_instance(age_field_name, instance) if pd.isnull(age): # require age continue baseline = age_from_instance(baseline_field_name, instance) field_to_value = {AGE: age, BASELINE: baseline} for field in fields: value = field_from_instance(field, instance) if value is None or (field.filter is not None and not field.filter(value)): continue if field.function is not None: try: value = field.function(value) except Exception as err: error_dict = {"id": id, "file": field.file_type, "field": field.name, "error": str(err)} logger.warning(json.dumps(error_dict)) # Once a critical value is found set contains_critical to True and keep it True contains_critical = contains_critical or (value and field in critical_fields) field_to_value[str(field)] = value else: # happens if for loop completes with all fields found if contains_critical: yield field_to_value FILE_TYPE_TO_AGE_FIELD: Dict[str, Field] = { # mappings from file types to Fields representing age fields # e.g. # file_type_name: Field(age_field_name, FieldType.age, file_type=file_type_name) } def _baseline_field(file_type): return Field(BASELINE_AGE, FieldType.age, file_type=file_type)
6933106ff0df2eb00e3c7ef2da963992e0091811
3b5b326e0cf9b4e65ed12c104b5ff07f49c9ef52
/introdução-web/Oficina/servico_carro.py
411ff0351b8fbb772bd397e2ab46b996bbdb6226
[]
no_license
lcgandolfi/DevWeb
641569306bad78b441b86ca0e2dcccd115130682
76c7558ade526f9faa39750555458cb67cc03179
refs/heads/master
2023-07-14T17:20:53.457506
2021-09-02T23:40:21
2021-09-02T23:40:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
167
py
class ServicosAutomovel: def __init__(self,servicos ,automovel,data): self.servicos = servicos self.automovel = automovel self.data = data
2785105a509415ffd42a0b2ee22247d42f05b027
dd5e84730c1e834a542dd41d287000b74d5927d8
/scripts/20_plot_results.py
e74521b059e0c473945f9c2a9969388af93e3ad3
[ "MIT" ]
permissive
chrisroadmap/loaded-dice
d464b719a612a199fcebcfa01a95ee3073b13570
76c05460c483a745014b46acbf77b776c1c21204
refs/heads/main
2023-08-31T19:15:05.970381
2023-08-18T10:08:19
2023-08-18T10:08:19
508,031,466
1
1
MIT
2023-07-17T13:42:09
2022-06-27T19:07:42
Python
UTF-8
Python
false
false
9,980
py
import os import matplotlib.pyplot as pl from matplotlib.lines import Line2D from matplotlib.ticker import ScalarFormatter from matplotlib.patches import Patch import numpy as np import pandas as pd from fair.energy_balance_model import EnergyBalanceModel from fair.forcing.ghg import meinshausen2020 pl.rcParams['figure.figsize'] = (11.9/2.54, 11.9/2.54) pl.rcParams['font.size'] = 7 #20 pl.rcParams['font.family'] = 'Arial' pl.rcParams['ytick.direction'] = 'in' pl.rcParams['ytick.minor.visible'] = True pl.rcParams['ytick.major.right'] = True pl.rcParams['ytick.right'] = True pl.rcParams['xtick.direction'] = 'in' pl.rcParams['xtick.minor.visible'] = True pl.rcParams['xtick.major.top'] = True pl.rcParams['xtick.top'] = True pl.rcParams['axes.spines.top'] = True pl.rcParams['axes.spines.bottom'] = True pl.rcParams['figure.dpi'] = 150 here = os.path.dirname(os.path.realpath(__file__)) os.makedirs(os.path.join(here, '..', 'figures'), exist_ok=True) ensemble_size=1001 df_configs = pd.read_csv(os.path.join(here, '..', 'data_input', 'fair-2.1.0', 'calibrated_constrained_parameters.csv'), index_col=0) configs = df_configs.index ecs = np.zeros(1001) tcr = np.zeros(1001) for i, config in enumerate(configs): ebm = EnergyBalanceModel( ocean_heat_capacity = df_configs.loc[config, 'c1':'c3'], ocean_heat_transfer = df_configs.loc[config, 'kappa1':'kappa3'], deep_ocean_efficacy = df_configs.loc[config, 'epsilon'], gamma_autocorrelation = df_configs.loc[config, 'gamma'], forcing_4co2 = df_configs.loc[config, 'F_4xCO2'], timestep=3, stochastic_run=False, ) ebm.emergent_parameters() ecs[i], tcr[i] = (ebm.ecs, ebm.tcr) yunit = { 'CO2_FFI_emissions': 'GtCO$_2$ yr$^{-1}$', 'CO2_total_emissions': 'GtCO$_2$ yr$^{-1}$', 'CO2_concentration': 'ppm', 'temperature': '°C relative to 1850-1900', 'social_cost_of_carbon': '\$(2020) tCO$_2^{-1}$', 'radiative_forcing': 'W m$^{-2}$' } title = { 'CO2_FFI_emissions': '(a) CO$_2$ fossil emissions', 'CO2_total_emissions': '(a) CO$_2$ emissions', 'CO2_concentration': '(b) CO$_2$ concentrations', 'temperature': '(b) Surface temperature', 'social_cost_of_carbon': 'Social cost of carbon', 'radiative_forcing': '(c) Effective radiative forcing' } ylim = { 'CO2_FFI_emissions': (-20, 55), 'CO2_total_emissions': (-20, 55), 'CO2_concentration': (300, 750), 'temperature': (0.5, 4), 'social_cost_of_carbon': (0, 4000), 'radiative_forcing': (0, 7) } labels = { 'dice': 'DICE-2016R "optimal"', 'dice_disc2pct': "Rennert et al.", 'dice_below2deg': "Well-below 2°C", 'dice_1p5deglowOS': "1.5°C overshoot" } colors = { 'dice': "#003f5c", 'dice_disc2pct': "#1b98e0", 'dice_below2deg': "#bc5090", 'dice_1p5deglowOS': "#ffa600" } outputs = {} np.set_printoptions(precision=3) for scenario in ['dice', 'dice_disc2pct', 'dice_below2deg', 'dice_1p5deglowOS']: outputs[scenario] = {} for variable in ['net_zero_year', 'CO2_concentration', 'temperature', 'social_cost_of_carbon', 'CO2_FFI_emissions', 'CO2_total_emissions', 'radiative_forcing']: df = pd.read_csv(os.path.join(here, '..', 'data_output', 'results', f'{scenario}__{variable}.csv'), index_col=0) outputs[scenario][variable] = df[:].T.values print(scenario) print('CO2 FFI emissions 2101', np.nanpercentile(outputs[scenario]['CO2_FFI_emissions'][26, :], (5, 16, 33, 50, 67, 84, 95))) # CO2 fossil emissions 2100 print('CO2 FFI emissions 2050', np.nanpercentile(outputs[scenario]['CO2_FFI_emissions'][9, :], (5, 16, 33, 50, 67, 84, 95))) # CO2 fossil emissions 2100 print('CO2 total emissions 2101', np.nanpercentile(outputs[scenario]['CO2_total_emissions'][26, :], (5, 16, 33, 50, 67, 84, 95))) # CO2 fossil emissions 2100 print('CO2 total emissions 2050', np.nanpercentile(outputs[scenario]['CO2_total_emissions'][9, :], (5, 16, 33, 50, 67, 84, 95))) # CO2 fossil emissions 2100 print('SCC 2023', np.nanpercentile(outputs[scenario]['social_cost_of_carbon'][0, :], (5, 16, 33, 50, 67, 84, 95))) # social cost of carbon 2020 print('temperature 2101', np.nanpercentile(outputs[scenario]['temperature'][26, :], (5, 16, 33, 50, 67, 84, 95))) # temperature 2100 print('temperature peak', np.nanpercentile(np.max(outputs[scenario]['temperature'], axis=0), (5, 16, 33, 50, 67, 84, 95))) # peak temperature print('forcing 2101', np.nanpercentile(outputs[scenario]['radiative_forcing'][26, :], (5, 16, 33, 50, 67, 84, 95))) # radiative forcing 2100 print('net zero year ', np.nanpercentile(outputs[scenario]['net_zero_year'][:], (5, 16, 33, 50, 67, 84, 95))) # net zero year print() # Headline plot with three scenarios fig, ax = pl.subplots(2,2) for i, variable in enumerate(['CO2_total_emissions', 'temperature', 'radiative_forcing']): for scenario in ['dice', 'dice_below2deg', 'dice_1p5deglowOS']: ax[i//2,i%2].fill_between( np.arange(2023, 2134, 3), np.nanpercentile(outputs[scenario][variable][:37, :], 5, axis=1), np.nanpercentile(outputs[scenario][variable][:37, :], 95, axis=1), color=colors[scenario], alpha=0.2, lw=0 ) ax[i//2,i%2].fill_between( np.arange(2023, 2134, 3), np.nanpercentile(outputs[scenario][variable][:37, :], 16, axis=1), np.nanpercentile(outputs[scenario][variable][:37, :], 84, axis=1), color=colors[scenario], alpha=0.2, lw=0 ) ax[i//2,i%2].plot( np.arange(2023, 2134, 3), np.nanmedian(outputs[scenario][variable][:37, :], axis=1), color=colors[scenario], label=labels[scenario], ) ax[i//2,i%2].set_xlim(2023,2125) ax[i//2,i%2].set_title(title[variable]) ax[i//2,i%2].set_ylabel(yunit[variable]) ax[i//2,i%2].set_ylim(ylim[variable]) ax[i//2,i%2].set_xticks(np.arange(2025, 2130, 25)) if i==0: ax[i//2,i%2].axhline(0, ls=':', color='k') ax[i//2,i%2].axvline(2100, ls=':', color='k') ax[1,0].legend(fontsize=6, frameon=False) fig.tight_layout() for scenario in ['dice', 'dice_below2deg', 'dice_1p5deglowOS']: ax[1,1].hist( outputs[scenario]['social_cost_of_carbon'][0, :], alpha=0.5, label=labels[scenario], color=colors[scenario], density=True, bins=np.logspace(-1, 4, 101), log=True ) ax[1,1].set_xscale('log') pl.rcParams['xtick.minor.visible'] = True ax[1,1].set_xlim(6, 10000) ax[1,1].set_title("(d) Social cost of carbon in 2023") ax[1,1].set_xlabel("(2020\$)") ax[1,1].set_ylabel("Density") ax[1,1].set_yticklabels([]) ax[1,1].xaxis.set_major_formatter(ScalarFormatter()) line_this = Line2D([0], [0], label='Median', color='k') u68_this = Patch(facecolor='k', lw=0, alpha=0.4, label='16-84% range') u90_this = Patch(facecolor='k', lw=0, alpha=0.2, label='5-95% range') ax[0,1].legend(handles=[line_this, u68_this, u90_this], fontsize=6, frameon=False, loc='upper left') fig.tight_layout() pl.savefig(os.path.join(here, '..', 'figures', f'projections_scc_ecs.png')) pl.savefig(os.path.join(here, '..', 'figures', f'projections_scc_ecs.pdf')) pl.show() # Add in 2pct discount case (four scenarios) fig, ax = pl.subplots(2,2) for i, variable in enumerate(['CO2_total_emissions', 'temperature', 'radiative_forcing']): for scenario in ['dice', 'dice_disc2pct', 'dice_below2deg', 'dice_1p5deglowOS']: ax[i//2,i%2].fill_between( np.arange(2023, 2134, 3), np.nanpercentile(outputs[scenario][variable][:37, :], 5, axis=1), np.nanpercentile(outputs[scenario][variable][:37, :], 95, axis=1), color=colors[scenario], alpha=0.2, lw=0 ) # ax[i//2,i%2].fill_between( # np.arange(2023, 2134, 3), # np.nanpercentile(outputs[scenario][variable][:37, :], 16, axis=1), # np.nanpercentile(outputs[scenario][variable][:37, :], 84, axis=1), # color=colors[scenario], # alpha=0.2, # lw=0 # ) ax[i//2,i%2].plot( np.arange(2023, 2134, 3), np.nanmedian(outputs[scenario][variable][:37, :], axis=1), color=colors[scenario], label=labels[scenario], ) ax[i//2,i%2].set_xlim(2023,2125) ax[i//2,i%2].set_title(title[variable]) ax[i//2,i%2].set_ylabel(yunit[variable]) ax[i//2,i%2].set_ylim(ylim[variable]) ax[i//2,i%2].set_xticks(np.arange(2025, 2130, 25)) if i==0: ax[i//2,i%2].axhline(0, ls=':', color='k') ax[i//2,i%2].axvline(2100, ls=':', color='k') ax[1,0].legend(fontsize=6, frameon=False, loc='upper left') fig.tight_layout() for scenario in ['dice', 'dice_disc2pct', 'dice_below2deg', 'dice_1p5deglowOS']: ax[1,1].hist( outputs[scenario]['social_cost_of_carbon'][0, :], alpha=0.5, label=labels[scenario], color=colors[scenario], density=True, bins=np.logspace(-1, 4, 101), log=True ) ax[1,1].set_xscale('log') pl.rcParams['xtick.minor.visible'] = True ax[1,1].set_xlim(6, 10000) ax[1,1].set_title("(d) Social cost of carbon in 2023") ax[1,1].set_xlabel("(2020\$)") ax[1,1].set_ylabel("Density") ax[1,1].set_yticklabels([]) ax[1,1].xaxis.set_major_formatter(ScalarFormatter()) line_this = Line2D([0], [0], label='Median', color='k') # u68_this = Patch(facecolor='k', lw=0, alpha=0.4, label='16-84% range') u90_this = Patch(facecolor='k', lw=0, alpha=0.2, label='5-95% range') ax[0,1].legend(handles=[line_this, u90_this], fontsize=6, frameon=False, loc='upper left') fig.tight_layout() pl.savefig(os.path.join(here, '..', 'figures', f'projections_scc_ecs_fourscen.png')) pl.savefig(os.path.join(here, '..', 'figures', f'projections_scc_ecs_fourscen.pdf')) pl.show()
16fab1befc0dde26d0fd57cc24fb39addc400dd5
2b5e1cdb4129558ec959d9af4a07f4febb37b9ef
/launcherByPython
5dd3716e8fb410734a2f37aea7405764731a2529
[]
no_license
Madaerpao/tlbbLauncher
c17fad6f4650eb7f2240979a307ff016b9a1f12b
f8293afc309cd31c29341cc8cee40abad0424728
refs/heads/main
2023-04-05T00:24:45.785501
2021-04-14T06:50:21
2021-04-14T06:50:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,245
#!bin/bash/python3 # -*- coding=utf-8 -*- import socket import threading import subprocess def sock_close(conn): try: conn.close() except: pass # 转发 def transport(src, dst): try: recp = src.recv(1024) sname = src.getsockname()[0] dname = dst.getsockname()[0] while recp: print(f"[{sname} to {dname}]> " + recp.hex()) dst.send(recp) recp = src.recv(1024) except: pass print(f'[{sname} to {dname}] End...') sock_close(src) sock_close(dst) # 侦听 def accept_serv(remote_addr, sock_server): while True: conn, addr = sock_server.accept() print(f"Accept connection from {addr[0]}:{addr[1]}") tSock = socket.socket() tSock.connect(remote_addr) threading.Thread(target=transport, args=(conn, tSock)).start() threading.Thread(target=transport, args=(tSock, conn)).start() if __name__ == '__main__': # tlbb/server/config/serverinfo.ini [server1] port0 login_addr = ('ip of your game server', 0) # tlbb/server/config/serverinfo.ini [server0] port0 game_addr = ('ip of your game server', 0) game_path = r'游戏根目录' # 设置两个监听 socket1 = socket.socket(socket.AF_INET, socket.SOCK_STREAM, socket.IPPROTO_TCP) socket1.bind(('127.0.0.1', 0)) socket1.listen() lip1, lport1 = socket1.getsockname() socket2 = socket.socket(socket.AF_INET, socket.SOCK_STREAM, socket.IPPROTO_TCP) socket2.bind(('127.0.0.1', game_addr[1])) socket2.listen() lip2, lport2 = socket2.getsockname() # 启动程序 with open(game_path + r"\Patch\LoginServer.txt", 'w') as file: text = "VERSION 1\n\nSERVER_BEGIN\n" + \ "我的天龙,我的天龙,1,201,3,1,0,天龙八部," + f"{lip1}:{lport1},"*4 + "2\nSERVER_END\n" file.write(text) subprocess.Popen(game_path + r"\Bin\Game.exe -fl C0A80108 3039 12D82B") # 开始侦听 t_login = threading.Thread(target=accept_serv, args=(login_addr, socket1)) t_game = threading.Thread(target=accept_serv, args=(game_addr, socket2)) t_login.start() t_game.start() t_login.join() t_game.join() print("End of Program")
2cb12d91c5ce732999eb89bd21d0e22224d089b4
61c9c7c3eadec0a0432dba387e7466df6759d914
/paws/operations/ARRAYS/ArrayYMean.py
02299936494860b72b61d12092ff1ee04e701804
[ "LicenseRef-scancode-unknown-license-reference", "BSD-2-Clause", "BSD-3-Clause", "LicenseRef-scancode-other-permissive" ]
permissive
rwalroth/paws
6f0a397daaeec9805c9223b64d177d010415b23b
bd591b0c0e7e9f0163ef5bbfce53ff51cee95532
refs/heads/master
2020-07-05T10:20:44.051138
2019-10-01T21:13:35
2019-10-01T21:13:35
202,622,126
1
0
null
2019-08-15T22:57:31
2019-08-15T22:57:31
null
UTF-8
Python
false
false
849
py
from collections import OrderedDict import numpy as np from ..Operation import Operation inputs = OrderedDict(x_y_arrays=[]) outputs = OrderedDict(x_ymean=None) class ArrayYMean(Operation): """ Average the second column of one or more n-by-2 arrays """ def __init__(self): super(ArrayYMean, self).__init__(inputs,outputs) self.input_doc['x_y_arrays'] = 'list of n-by-2 arrays' self.output_doc['x_ymean'] = 'n-by-2 array of x and mean(y)' def run(self): x_y_arrays = self.inputs['x_y_arrays'] x_ymean = None if len(x_y_arrays) > 0: x_ymean = np.zeros(x_y_arrays[0].shape) x_ymean[:,0] = x_y_arrays[0][:,0] x_ymean[:,1] = np.mean([xy[:,1] for xy in x_y_arrays],axis=0) self.outputs['x_ymean'] = x_ymean return self.outputs
ad1ce5baf8ce68b999f340a1a33a2c306518ee2e
38549f01416081db6880038608c32b5e23a20be5
/Day_24/python_files/day24_emotion_analyzer.py
e7d25e5cc1103874b4115f90123c1dc0ab00e860
[ "MIT" ]
permissive
DuckBoss/VAIL-Training
51da4d2919ea3eeb477dddf3dd8e017af9d885dc
de219465e9484cee619c915b37d544dc86add0cb
refs/heads/main
2023-03-23T07:39:17.580327
2021-03-05T09:20:22
2021-03-05T09:20:22
336,456,326
0
0
null
2021-02-19T06:11:47
2021-02-06T04:37:39
Jupyter Notebook
UTF-8
Python
false
false
2,513
py
# -*- coding: utf-8 -*- """day24_emotion_analyzer.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/16BJQSbiJlWOhNCAcESRbgLLtzCoac2WR ### Import required libraries - """ import librosa import glob import librosa.display import numpy as np import pandas as pd import matplotlib.pyplot as plt import tensorflow as tf from matplotlib.pyplot import specgram import tensorflow.keras from tensorflow.keras.models import load_model from tensorflow.keras.optimizers import RMSprop from sklearn.metrics import confusion_matrix from sklearn.preprocessing import LabelEncoder import os """### Import the testing data (wav file) -""" data, sampling_rate = librosa.load('/content/output10.wav') plt.figure(figsize=(15, 5)) librosa.display.waveplot(data, sr=sampling_rate) """### Load the trained model -""" # Import the model from the h5 file # loaded_model = load_model('/content/Emotion_Voice_Detection_Model.h5') # loaded_model.summary() # loading json and creating model from tensorflow.keras.models import model_from_json with open('/content/model.json', 'r') as json_file: loaded_model_json = json_file.read() loaded_model = model_from_json(loaded_model_json) # load weights into new model loaded_model.load_weights("/content/Emotion_Voice_Detection_Model.h5") opt = RMSprop(lr=0.00001, decay=1e-6) loaded_model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy']) print("Loaded model from disk") """### Read and prepare audio data from the file -""" #livedf= pd.DataFrame(columns=['feature']) X, sample_rate = librosa.load('/content/output10.wav', res_type='kaiser_fast', duration=2.5,sr=22050*2,offset=0.5) sample_rate = np.array(sample_rate) mfccs = np.mean(librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=13),axis=0) featurelive = mfccs livedf2 = pd.DataFrame(data=featurelive) livedf2 = livedf2.stack().to_frame().T print(livedf2) """### Make a prediction -""" twodim= np.expand_dims(livedf2, axis=2) livepreds = loaded_model.predict(twodim, batch_size=32, verbose=1) livepreds """### Convert the prediction into a readable format -""" prediction_classes = ["female_angry", "female_calm", "female_fearful", "female_happy", "female_sad", "male_angry", "male_calm", "male_fearful", "male_happy", "male_sad"] livepreds1=livepreds.argmax(axis=1) liveabc = livepreds1.astype(int).flatten() print(f"Predicted emotion: {prediction_classes[liveabc[0]]}")
5fb9e7ffdd9447e5cce93082ccc561665d782ba7
87966dabac9acf0170e873cf8ce75e81e45374a0
/Lab8/Hryshchuk-2-1-8/__init__(python_rest).py
bfb005c28dc557e337697b1cf618e14c7cc9c250
[ "MIT" ]
permissive
triod315/SysProgLabworks
d7fdf75024413c76519950881680617a507ea966
c9f98e8d3d507b738334f459bb76924fb280196d
refs/heads/master
2020-05-31T01:35:58.940293
2019-06-20T17:54:59
2019-06-20T17:54:59
190,051,560
1
1
null
null
null
null
UTF-8
Python
false
false
1,486
py
from flask import Flask, request, json import os import sys import smtplib from email.mime.text import MIMEText from email.header import Header from datetime import datetime import requests app = Flask(__name__) DB_FILE_NAME = '/user/src/app/shared_folder/users.txt' # curl -X GET localhost:5000/users/IsLoginFree?login=admin2 @app.route('/users/IsLoginFree', methods = ['GET']) def isLoginFree(): if not os.path.exists(DB_FILE_NAME): return json.dumps(True) with open(DB_FILE_NAME) as f: content = [x.strip() for x in f.readlines()] return json.dumps(request.args.get('login') not in content) # curl -X POST localhost:5000/users/AddLogin -d "{\"login\": \"admin\"}" -H "Content-Type: application/json; charset=UTF-8" @app.route('/users/AddLogin', methods = ['POST']) def addLogin(): login = str(json.loads(request.data)['login']) if os.path.exists(DB_FILE_NAME): with open(DB_FILE_NAME) as f: content = [x.strip() for x in f.readlines()] if login in content: return 'This login already exists', 400 with open(DB_FILE_NAME, 'a' if os.path.exists(DB_FILE_NAME) else 'w') as f: f.write(login + '\n') return json.dumps(login) @app.route('/users/checkFile', methods = ['POST']) def checkFile(): source=str(json.loads(request.data)['url']) try: page=requests.get(source) page.encoding='utf-8' httpCode=page.status_code except: httpCode=0 return json.dumps(httpCode)
262470f846c7e0deb175e5ed89df29920e2ed718
49ee9dacfab0e4bfc7750f3b81bd8ddfa8bd14b3
/djangoProject/apps/blog/dev_migrations/0030_auto_20201201_1124.py
0f4759bcb5e2401b4926ec2a84e9da054bd16a6e
[]
no_license
QingChang1204/djangoProject
97c069d08cb2d4959b862fbb546440e349d21c27
559be0cfba1477a3d110d776523c4ccddafb1cf7
refs/heads/master
2023-01-19T04:56:18.447895
2020-12-02T15:11:42
2020-12-02T15:11:42
286,429,741
0
0
null
null
null
null
UTF-8
Python
false
false
351
py
# Generated by Django 3.1.2 on 2020-12-01 11:24 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('blog', '0029_auto_20201201_1120'), ] operations = [ migrations.AlterUniqueTogether( name='tagship', unique_together={('article', 'tag')}, ), ]
0114f117a6d559f858e8d3b6a931cd7f002e046e
9075d5a2b228de748227a36e1a9c5fa279d1a444
/Desktop/Desktop/Semester5/AppliedScience/Python Programming/Week 06 Lecture/Lecture 06 Total Code/week06_05_MovieList.py
3af85012fb33a9884b2493fb844f065d405dff33
[]
no_license
fatihkgm/mobileApplication-react-fench-id
986dfd3ddac217a8b0aee0c658c03f3a11af4094
78ead5874e15d8c2a6fac803c31ec52fbadc38ec
refs/heads/master
2023-01-23T04:16:27.109957
2020-10-16T04:57:51
2020-10-16T04:57:51
314,138,623
0
0
null
null
null
null
UTF-8
Python
false
false
1,569
py
FILENAME = "movies.txt" def write_movies(movies): with open(FILENAME, "w") as file: for movie in movies: file.write(movie + "\n") def read_movies(): movies = [] with open(FILENAME) as file: for line in file: line = line.replace("\n", "") movies.append(line) return movies def list_movies(movies): for i in range(len(movies)): movie = movies[i] print(str(i + 1) + ". " + movie) print() def add_movie(movies): movie = input("Movie: ") movies.append(movie) write_movies(movies) print(movie + " was added.\n") def delete_movie(movies): index = int(input("Number: ")) movie = movies.pop(index - 1) write_movies(movies) print(movie + " was deleted.\n") def display_menu(): print("The Movie List program") print() print("COMMAND MENU") print("list - List all movies") print("add - Add a movie") print("del - Delete a movie") print("exit - Exit program") print() def main(): display_menu() movies = read_movies() while True: command = input("Command: ") if command == "list": list_movies(movies) elif command == "add": add_movie(movies) elif command == "del": delete_movie(movies) elif command == "exit": print("Bye!") break else: print("Not a valid command. Please try again.") if __name__ == "__main__": main()
37ecc6de058f4da68843c1d9b4ecac697bb48148
46a468301f12494091fff124d1e4541f9f080c62
/src/algorithms/DynamicProgramming/lis.py
1f06338cd6ceee7e041ec3a8d6c13788b90f34a9
[]
no_license
anuragsarkar97/hailey
46c9d4328e80e3c99e7d98fa2f89599d4aec79c8
a6b3dc0576ad8839ce1f4def0e1c1758b8857b2a
refs/heads/master
2020-04-19T08:59:01.764133
2020-03-20T05:43:41
2020-03-20T05:43:41
168,096,003
0
1
null
2020-02-13T07:40:06
2019-01-29T05:37:59
Python
UTF-8
Python
false
false
249
py
def lis_dp(a): dp = [0]*len(a) dp[0] = 1 for i in range(1, len(a)): for j in range(i): if a[i] > a[j] and dp[i] < dp[j] + 1: dp[i] = 1 + dp[j] print(dp) return max(dp) a = [4,3,1,4,2,5,6,7] print(lis_dp(a))
43d8f41a6cdd21d994e2ceb228e8dbd6514dbf75
27c9eb81a68dba24c1f13457025fe9578eb782ca
/app/modeladmins/accounts_transfer.py
8f8dff0c5a9c681d9d6f12b9ba47200bf8924b4e
[]
no_license
bkm009/Daily-Finance-Django
39469536ea9e16d86a4c9cba02851e9055696d6c
60ae25e1d2f1352f3d90919a9f4a90f50e3792aa
refs/heads/master
2022-12-05T12:25:16.000741
2020-08-19T07:14:12
2020-08-19T07:14:12
288,658,926
0
0
null
null
null
null
UTF-8
Python
false
false
581
py
from django.contrib.admin import ModelAdmin from app.modelforms.accounts_transfer_form import AccountsTransferForm class AccountTransferAdmin(ModelAdmin): def has_view_or_change_permission(self, request, obj=None): return False def has_delete_permission(self, request, obj=None): return False form = AccountsTransferForm exclude = ["account", "amount", "txn_date", "txn_reason", "txn_type"] fieldsets = ( ("Transfer Details", {'fields': ( ("ac_from", "ac_to"), ("tr_amount", "tr_remark"), )}), )
24ab0e23e412856fbf3251c70d415fd78f18a9db
b254f218532fb565ca9a4acb08241dbed34dc474
/wordplay/longest_palindrome_better.py
fd265659d67af907fe42873c440b329be71439f5
[]
no_license
BMariscal/intermediate_python
c00420681e611069294709a6588fd551caa1cd1e
f5da095b1097de9495c111640001ab74dfad7dc4
refs/heads/master
2020-05-23T18:05:27.948829
2017-03-31T12:39:48
2017-03-31T12:39:48
84,777,251
0
0
null
null
null
null
UTF-8
Python
false
false
420
py
import scrabble import time start = time.time() longest ="" for word in scrabble.wordlist: is_palindrome = True for index in range(len(word)): if word[index] != word[-(index + 1)]: is_palindrome = False if is_palindrome and len(word) > len(longest): longest = word print(longest) # too slow: second slowest stop = time.time() print("time elapsed: %.1f seconds"%(stop-start))
474cafb91cac2b18a34e05571e47f5101b705bf1
d4b55377b92c287435b3b42254abb5263a24df5d
/18 Projects/Project_hskinner_attempt_2018-12-12-10-21-35_ProjectTemplate/ProjectTemplate/my_module/test_functions.py
7542a3ae84be978b63872552629665b1e077e377
[]
no_license
brn016/cogs18
3a7ce413504683dff5396e79aad81f1679469c71
ee866ef7ed341f5d4f77512887c3a5521ec5ff7f
refs/heads/master
2020-03-31T20:22:05.213429
2018-12-14T04:36:54
2018-12-14T04:36:54
152,537,087
0
0
null
null
null
null
UTF-8
Python
false
false
3,531
py
"""Test for my functions. """ import random from functions import * from dictionaries import * def test_remember_punc(): assert isinstance(remember_punc('hello.'), str) assert remember_punc ('hello.') == '.' assert isinstance(remember_punc('hello'), str) assert remember_punc ('hello') == '' def test_choose_num(): assert isinstance(choose_num(0,3), str) assert choose_num(0,3) == '0' or '1' or '2' or '3' def test_replace_words(): test_genre = { 'plural_noun' : ['plural_noun1', 'plural_noun2'], 'noun' : ['noun1', 'noun2'], 'adjective' : ['adjective1', 'adjective2'], 'name' : ['name1', 'name2'], 'past_verb' : ['past_verb1', 'past_verb2'], 'verb' : ['verb1', 'verb2'], 'adverb': ['adverb1', 'adverb2'], 'location': ['location1', 'location2']} test_string = 'hello /name!' assert isinstance(replace_words(test_string,test_genre), str) assert replace_words('/plural_noun', test_genre) == 'plural_noun1' or 'plural_noun2' assert replace_words('/noun', test_genre) == 'noun1' or 'noun2' assert replace_words('/adjective', test_genre) == 'adjective1' or 'adjective2' assert replace_words('/name', test_genre) == 'name1' or 'name2' assert replace_words('/past_verb', test_genre) == 'past_verb1' or 'past_verb2' assert replace_words('/verb', test_genre) == 'verb1' or 'verb2' assert replace_words('/adverb', test_genre) == 'adverb1' or 'adverb2' assert replace_words('/location', test_genre) == 'location1' or 'location2' assert replace_words('/number', test_genre) == '0' or '1' or '2' or '3' def test_remember_ends(): assert isinstance(remember_ends('hello!'), str) assert remember_ends('hello!') == '!' assert remember_ends('hello.') == '.' assert remember_ends('hello?') == '?' assert remember_ends('hello') == '' def test_remove_ends(): assert isinstance(remove_ends('hello!'), str) assert isinstance(remove_ends('hello'), str) assert remove_ends('hello!') == 'hello' assert remove_ends('hello') == 'hello' def test_cap_sentences(): test_string = 'hi. glad to hear' assert isinstance(cap_sentences('.',test_string), str) assert cap_sentences('.', test_string) == 'Hi. Glad to hear' def test_fix_all_caps(): test_string = 'hi. um, HELLO? swell! goodbye.' assert isinstance(fix_all_caps(test_string), str) assert fix_all_caps(test_string) == 'Hi. Um, HELLO? Swell! Goodbye.' def test_madlib(): test_string1 = '/name1 is a /adjective1 /noun1 from /location1.' test_string2 = '/number1 /plural_noun1 will /verb1 after they /past_verb1!' test_string3 = 'Are you /adjective1 for the /noun1?' output1 = madlib(test_string1, fantasy) output2 = madlib(test_string2, animal) output3 = madlib(test_string3, UCSD) assert isinstance (output1, str) assert isinstance (output2, str) assert isinstance (output3, str) assert output1[0].isupper assert output2[0].isupper assert output3[0].isupper assert output1[-1] == '.' assert output2 [-1] == '!' assert output3 [-1] == '?' for item in output1[0:-1].split(): assert item in fantasy or test_string1 for item in output2[0:-1].split(): assert item in animal or test_string2 for item in output3[0:-1].split(): assert item in UCSD or test_string3
3510745d963b2b35f3bdf88d51838de062837206
a4dc13112ecc0e510ed9ea5de4d6d62e9b336466
/stickman_game_moving_platforms.py
87f0c6539d16156cde3a0ff616c2025dd7350356
[]
no_license
ethyl2/stickman
67aa1a460070e32c8fc028385a6f06154e02f60a
377c644c1c8b07de4aa212586a0cb0153bf52af2
refs/heads/master
2021-01-13T10:14:07.814617
2016-09-27T15:40:48
2016-09-27T15:40:48
69,371,130
0
0
null
null
null
null
UTF-8
Python
false
false
12,917
py
#Stickman Game from Python for Kids #With moving platforms from Tkinter import * import random import time class Coords: def __init__(self, x1=0, y1=0, x2=0, y2=0): self.x1 = x1 self.y1 = y1 self.x2 = x2 self.y2 = y2 def within_x(co1, co2): if (co1.x1 > co2.x1 and co1.x1 < co2.x2) \ or (co1.x2 > co2.x1 and co1.x2 < co2.x2)\ or (co2.x1 > co1.x1 and co2.x1 < co1.x2)\ or (co2.x2 > co1.x1 and co2.x2 < co1.x2): #The author changed this. return True else: return False def within_y(co1, co2): if (co1.y1 > co2.y1 and co1.y1 < co2.y2) \ or (co1.y2 > co2.y1 and co1.y2 < co2.y2) \ or (co2.y1 > co1.y1 and co2.y1 < co1.y2) \ or (co2.y2 > co1.y1 and co2.y2 < co1.y2): #The author changed this. return True else: return False def collided_left(co1, co2): if within_y(co1, co2): if co1.x1 <= co2.x2 and co1.x1 >= co2.x1: #print("Collided_left detected.") return True return False def collided_top(co1, co2): if within_x(co1, co2): if co1.y1 <= co2.y2 and co1.y1 >= co2.y1: return True return False def collided_bottom(y, co1, co2): if within_x(co1, co2): y_calc = co1.y2 + y if y_calc >= co2.y1 and y_calc <= co2.y2: return True return False def collided_right(co1, co2): if within_y(co1, co2): if co1.x2 >= co2.x1 and co1.x2 <= co2.x2: return True return False class Game: def __init__(self): self.tk = Tk() self.tk.title("Mr. Stick Man Races for the Exit") self.tk.resizable(0,0) self.tk.wm_attributes("-topmost", 1) self.canvas = Canvas(self.tk, width=500, height=500, highlightthickness=0) self.canvas.pack() self.tk.update() self.canvas_height = 500 self.canvas_width = 500 self.bg = PhotoImage(file="background.gif") self.bg2 = PhotoImage(file="background.gif") self.bg3 = PhotoImage(file="background_bookshelf.gif") self.bg4 = PhotoImage(file="background_lamp.gif") self.bg5 = PhotoImage(file="background_window.gif") self.backgrounds = [self.bg, self.bg2, self.bg3, self.bg4, self.bg5] w = self.bg.width() h = self.bg.height() for x in range(5): for y in range(5): num = random.randrange(len(self.backgrounds)) self.canvas.create_image(x*w, y*h, image=self.backgrounds[num], anchor='nw') self.sprites = [] #His code has True here, but I added a click to start instead: self.running = False self.game_over_text = self.canvas.create_text(250, 150, \ text='Click to start', font=("Helvetica", 40), state='hidden') def start_game(self, evt): self.running = True self.canvas.itemconfig(self.game_over_text, state='hidden') self.canvas.itemconfig(self.game_over_text, text="You won!") def mainloop(self): while 1: if self.running == True: for sprite in self.sprites: sprite.move() else: time.sleep(0.5) self.canvas.itemconfig(self.game_over_text, \ state='normal') self.tk.update_idletasks() self.tk.update() time.sleep(0.01) class Sprite: def __init__(self, game): self.game = game self.endgame = False self.coordinates = None def move(self): pass def coords(self): return self.coordinates class DoorSprite(Sprite): def __init__(self, game, x=45, y=30, width=40, height=35): Sprite.__init__(self, game) self.closed_door = PhotoImage(file="door1.gif") self.open_door = PhotoImage(file="door2.gif") self.image = game.canvas.create_image(x, y, image=self.closed_door, \ anchor = 'nw') # Width/2 is used so that the figure will stop in front of the door # Instead of before it. self.coordinates = Coords(x, y, x + (width/3), y + height) self.endgame = True def open_door2(self): print("Now you're in the open_door2 method.") self.game.canvas.itemconfig(self.image, image=self.open_door) self.game.tk.update_idletasks() def close_door(self): print("Now you're in the close_door method.") self.game.canvas.itemconfig(self.image, image=self.closed_door) self.game.tk.update_idletasks() class PlatformSprite(Sprite): def __init__(self, game, photo_image, x, y, width, height): Sprite.__init__(self, game) self.photo_image = photo_image self.image = game.canvas.create_image(x, y, image=self.photo_image, \ anchor='nw') self.coordinates = Coords(x, y, x + width, y + height) class MovingPlatformSprite(PlatformSprite): def __init__(self, game, photo_image, x, y, width, height): self.x = 2 self.width = width self.height = height self.last_time = time.time() self.counter = 0 self.game = game self.photo_image = photo_image self.image = game.canvas.create_image(x, y, image=self.photo_image, \ anchor='nw') self.coordinates = Coords(x, y, x + width, y + height) self.endgame = False def move(self): if time.time() - self.last_time > 0.03: self.last_time = time.time() self.game.canvas.move(self.image, self.x, 0) self.counter += 1 if self.counter > 20: self.x *= -1 self.counter = 0 def coords(self): xy = self.game.canvas.coords(self.image) self.coordinates.x1 = xy[0] self.coordinates.y1 = xy[1] self.coordinates.x2 = xy[0] + self.width self.coordinates.y2 = xy[1] + self.height return self.coordinates class StickFigureSprite(Sprite): def __init__(self, game): Sprite.__init__(self, game) self.images_left = [ PhotoImage(file="figure-L1b.gif"), PhotoImage(file="figure-L2d.gif"), PhotoImage(file="figure-L3b.gif") ] self.images_right = [ PhotoImage(file="figure-R1b.gif"), PhotoImage(file="figure-R2d.gif"), PhotoImage(file="figure-R3b.gif") ] #To check the exit, use 90 and 30: self.image = game.canvas.create_image(200, 470, \ image=self.images_left[0], anchor='nw') self.x = -1 #-2 self.y = 0 #0 self.current_image = 0 self.current_image_add = 1 self.jump_count = 0 self.last_time = time.time() self.coordinates = Coords() game.canvas.bind_all('<KeyPress-Left>', self.turn_left) game.canvas.bind_all('<KeyPress-Right>', self.turn_right) game.canvas.bind_all('<space>', self.jump) #I added the line below to start the game with a mouse click: game.canvas.bind_all('<Button-1>', game.start_game) def turn_left(self, evt): if self.y == 0: self.x = -2 def turn_right(self, evt): if self.y == 0: self.x = 2 def jump(self, evt): if self.y == 0: self.y = -4 self.jump_count = 0 def animate(self): if self.x != 0 and self.y == 0: if time.time() - self.last_time > 0.1: self.last_time=time.time() self.current_image += self.current_image_add if self.current_image >= 2: self.current_image_add = -1 if self.current_image <= 0: self.current_image_add = 1 if self.x < 0: #Stick figure is moving left. if self.y != 0: #Figure is jumping. self.game.canvas.itemconfig(self.image, image=self.images_left[2]) else: #Not jumping. self.game.canvas.itemconfig(self.image, image=self.images_left[self.current_image]) elif self.x > 0: #Stick figure is moving right. if self.y != 0: self.game.canvas.itemconfig(self.image, image=self.images_right[2]) else: self.game.canvas.itemconfig(self.image, image=self.images_right[self.current_image]) def coords(self): xy = self.game.canvas.coords(self.image) self.coordinates.x1 = xy[0] self.coordinates.y1 = xy[1] self.coordinates.x2 = xy[0] + 27 self.coordinates.y2 = xy[1] + 30 return self.coordinates def end(self, sprite): print("Game Over") self.game.running = False sprite.open_door2() time.sleep(1) self.game.canvas.itemconfig(self.image, state='hidden') sprite.close_door() def move(self): self.animate() if self.y < 0: self.jump_count += 1 if self.jump_count > 30: #20 self.y = 4 if self.y > 0: self.jump_count -= 1 co = self.coords() left = True right = True top = True bottom = True falling = True if self.y > 0 and co.y2 >= self.game.canvas_height: self.y = 0 bottom = False elif self.y < 0 and co.y1 <= 0: self.y = 0 top = False if self.x > 0 and co.x2 >= self.game.canvas_width: self.x = 0 right = False elif self.x < 0 and co.x1 <= 0: self.x = 0 left = False for sprite in self.game.sprites: if sprite == self: continue sprite_co = sprite.coords() if top and self.y < 0 and collided_top(co, sprite_co): self.y = -self.y print("I hit my head!") top = False if bottom and self.y > 0 and collided_bottom(self.y, co, sprite_co): self.y = sprite_co.y1 - co.y2 if self.y < 0: self.y = 0 print("I landed on something!") bottom = False top = False if bottom and falling and self.y == 0 and co.y2 < self.game.canvas_height and collided_bottom(1, co, sprite_co): falling = False if left and self.x < 0 and collided_left(co, sprite_co): self.x = 0 print("I hit my left side!") left = False if sprite.endgame: #self.game.running = False self.end(sprite) if right and self.x > 0 and collided_right(co, sprite_co): self.x = 0 print("I hit my right side!") right = False if sprite.endgame: self.end(sprite) #self.game.running = False if falling and bottom and self.y == 0 and co.y2 < self.game.canvas_height: self.y = 2 #4 self.game.canvas.move(self.image, self.x, self.y) g = Game() platform1 = PlatformSprite(g, PhotoImage(file="platform3.gif"), 0,480,100,10) platform2 = PlatformSprite(g, PhotoImage(file="platform3.gif"), 150,440,100, 10) platform3 = MovingPlatformSprite(g, PhotoImage(file="platform3.gif"), 300,400,100, 10) #platform3b = PlatformSprite(g, PhotoImage(file="platform3.gif"), 400,400,100,10) platform4 = PlatformSprite(g, PhotoImage(file="platform3.gif"), 300,160,100, 10) #Platform 2's: With 66 platform5 = MovingPlatformSprite(g, PhotoImage(file="platform2.gif"), 175,350, 66, 10) platform6 = PlatformSprite(g, PhotoImage(file="platform2.gif"), 50,300, 66, 10) platform7 = PlatformSprite(g, PhotoImage(file="platform2.gif"), 170,120,66, 10) platform8 = PlatformSprite(g, PhotoImage(file="platform2.gif"), 45,60, 66, 10) #Platform 1's with 32 platform9 = MovingPlatformSprite(g, PhotoImage(file="platform1.gif"), 170,250, 32, 10) platform10 = PlatformSprite(g, PhotoImage(file="platform1.gif"), 230,200, 32, 10) man = StickFigureSprite(g) g.sprites.append(platform1) g.sprites.append(platform2) g.sprites.append(platform3) #g.sprites.append(platform3b) g.sprites.append(platform4) g.sprites.append(platform5) g.sprites.append(platform6) g.sprites.append(platform7) g.sprites.append(platform8) g.sprites.append(platform9) g.sprites.append(platform10) g.sprites.append(man) door = DoorSprite(g) g.sprites.append(door) g.mainloop()
ab3eab1a23bb4c92b20d6dfe73579aed909130dd
97194f1f32c2461e8f89f0ece213cedbcdac7010
/main/ocr/wsgi.py
cc2098ce1ef23c3dd1fec173214b2a2c2ac7ceb8
[]
no_license
tienhung2812/ocr
eb77125c88c70bd3664c77622fa52d6559d2ecd5
a14d46426f3ab22296ba03b71c8664b5ff01cf81
refs/heads/master
2020-05-01T13:50:16.562865
2019-10-02T16:12:40
2019-10-02T16:12:40
177,503,321
3
0
null
2019-10-02T10:06:52
2019-03-25T02:52:47
Jupyter Notebook
UTF-8
Python
false
false
383
py
""" WSGI config for ocr project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'ocr.settings') application = get_wsgi_application()
106755deaf8d41b33c8e305145718e0b2122ac89
9e7c4f5e723bb85115aee2198ba84143a0cffc28
/pipeline.py
6b84a58d30433d713bf6e775d746aa9d8122d175
[]
no_license
krzjoa/kaggle-sberbank
56ba608485c96b42dda98f5edbda5f354f30321b
10d1b2072ba5642936e2fbebfa4442b981b071a5
refs/heads/master
2021-01-20T06:05:06.876381
2017-05-20T21:40:55
2017-05-20T21:40:55
89,840,955
0
0
null
null
null
null
UTF-8
Python
false
false
1,762
py
# -*- coding: utf-8 -*- def without(columns, with_no): return list(set(columns).difference(with_no)) class TestPipe(object): def transform(self, test): testdf = common_pipe(test) return testdf[without(testdf.columns, ['price_doc', 'id'])].values, test.id.values class TrainPipe(object): def transform(self, train): traindf = common_pipe(train) # Wyciąganie X i y X = traindf[without(traindf.columns, ['price_doc', 'id'])].values y = traindf.price_doc.values return X, y def common_pipe(data): # Wartości yes/no yes_no = [col for col in data if any(data[col].isin(['yes', 'no']))] # Wartości 0/1 zero_one = [col for col in data if data[col].unique().tolist() == [0, 1]] # Wartości 0, 1 ,2 zero_two = [col for col in data if data[col].unique().tolist() == [0, 1, 2]] # Wartości typu str strings = [col for col in data if isinstance(data[col].unique().tolist()[-1], str)] strings = without(strings, yes_no) # Zamiana wszystkich kategorii na 0 i 1 for yn in yes_no: data[yn] = data[yn].apply(lambda x: 0 if x == 'no' else 1) data.product_type = data.product_type.apply(lambda x: 0 if x == "Investment" else 1) data.ecology = data.ecology.apply(lambda x: {'no data': 0, 'poor': 1, 'satisfactory': 2, 'good': 3, 'excellent': 4}[x]) # Zamiana time_stamp data['year'] = data.timestamp.str[:4] data['month'] = data.timestamp.str[5:7].apply(int) # Usunięcie kolumny timestamp i fillna tcols = without(data.columns, ['timestamp', 'sub_area']) data = data[tcols].fillna(0) return data
35828fc54e55365946f49f01dff96bba3f4f97c8
83f40e01db20bb94e84d3d6e272bd78f338ed951
/env/bin/viewer.py
68d8b10a12396b077777426bf8371867844b8db7
[]
no_license
s-wirth/Snackbar
26ffa79635b29b7721f99e0774de205a0410d0a9
210ec931b95893dd022542bd91bbc527d192a2c6
refs/heads/master
2021-01-10T03:54:33.721493
2015-11-25T14:46:28
2015-11-25T14:46:28
46,731,339
0
0
null
null
null
null
UTF-8
Python
false
false
1,000
py
#!/Users/sophie/Projects/Snackbar/env/bin/python2.7 # # The Python Imaging Library # $Id$ # from __future__ import print_function try: from tkinter import Tk, Label except ImportError: from Tkinter import Tk, Label from PIL import Image, ImageTk # # an image viewer class UI(Label): def __init__(self, master, im): if im.mode == "1": # bitmap image self.image = ImageTk.BitmapImage(im, foreground="white") Label.__init__(self, master, image=self.image, bg="black", bd=0) else: # photo image self.image = ImageTk.PhotoImage(im) Label.__init__(self, master, image=self.image, bd=0) # # script interface if __name__ == "__main__": import sys if not sys.argv[1:]: print("Syntax: python viewer.py imagefile") sys.exit(1) filename = sys.argv[1] root = Tk() root.title(filename) im = Image.open(filename) UI(root, im).pack() root.mainloop()
4515d580247c5ba93dec172bf0dcae2163e1b42f
270e038578f67c05c2c1653b1bc6c8c128a68aa5
/Object_to_Json/env/bin/pyreverse
e41dd0c844ab8ba9a3abec23d5dc771b6d9cf75b
[]
no_license
VALQUIRIAFABRO/Study_Python
11c4ef63453f05489841fc3a52a5f0b4ebfd856c
688de5e5f81f4f041e4ce418c95add258bc380fa
refs/heads/master
2021-07-17T03:00:45.698147
2020-03-01T18:13:10
2020-03-01T18:13:10
244,197,291
0
0
null
2021-03-20T03:03:16
2020-03-01T17:56:54
Python
UTF-8
Python
false
false
251
#!/mnt/d/projPython/projVal/env/bin/python3 # -*- coding: utf-8 -*- import re import sys from pylint import run_pyreverse if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(run_pyreverse())
1cf7cc93ebcaaf841cd3ce276c85a9655ca80797
772242d1354ae3864cfd82c77ce08893a2a3837c
/1-aloparca/0-BRANDS/0-DELETE/aston_martin/myproject/spiders/parts.py
929208d8beee189572b9bc0148f4a48339be67f4
[]
no_license
codenotespy/SCRAPY_PROJECTS
7f1a1839a4461c76b838fb2c3cd70f6b945ee98f
c3c965fca86758510b2980d40929c0da989d4f68
refs/heads/main
2023-06-11T08:29:03.505349
2021-06-29T03:18:39
2021-06-29T03:18:39
381,224,993
0
0
null
null
null
null
UTF-8
Python
false
false
1,817
py
import scrapy from myproject.items import MyprojectItem #from scrapy.loader import ItemLoader class PartsSpider(scrapy.Spider): name = 'parts' page_number = 2 start_urls = ['https://www.aloparca.com/oto-yedek-parca/ASTON_MARTIN'] def parse(self, response): items = MyprojectItem() for post in response.css('.crvvuQ'): BRAND = post.css('b::text').extract() PART_NO = post.css('b::text')[1].getall() DESCRIPTION = post.css('b::text')[3].getall() M_PRICE = post.css('.fiyat div::text').extract() REMAINDER = post.css('.fiyat div span::text')[1].getall() CROSS_REF = post.css('a.title::attr(href)').getall() items['BRAND'] = BRAND items['PART_NO'] = PART_NO items['DESCRIPTION'] = DESCRIPTION items['CROSS_REF'] = CROSS_REF items['M_PRICE'] = M_PRICE items['REMAINDER'] = REMAINDER yield items # To bring datas from the other pages too. next_page = 'https://www.aloparca.com/oto-yedek-parca/ASTON_MARTIN?sayfa=' + str(PartsSpider.page_number) +'/' if PartsSpider.page_number < 51: PartsSpider.page_number +=1 yield response.follow(next_page, callback= self.parse) if PartsSpider.page_number > 50: yield response(callback= self.alert) ''' next_page = response.css('a.icon-caret-right::attr(href)').get() if next_page is not None: # To make sure there isn't next page. next_page = response.urljoin(next_page) # If it is not none. yield scrapy.Request(next_page, callback=self.parse) # So if next page is not none parse funtion will be colled back again and the data will be bringed from the next page. '''
0118cbde92183909ac35dc3d61941d92afaa2979
997a65cffc140b9005ac88f29222e7e632ec518c
/train_w_center.py
4d6ea9310cee83550c12e2b2998285313feffcd1
[ "Apache-2.0" ]
permissive
Maeve-D/reid_for_deepsort
5e900be1f22b09e9079bb8a0f6a36bad3e2fae91
f82e2280443829339de4d29c7bbede9d992c4f97
refs/heads/master
2022-07-10T01:47:54.645557
2020-05-19T06:03:42
2020-05-19T06:03:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,077
py
import argparse import os import time import matplotlib import matplotlib.pyplot as plt import torch import torch.backends.cudnn as cudnn import torch.optim as optim import torchvision from torchvision import datasets from eval import get_result from models import build_model from utils.center_loss import CenterLoss matplotlib.use('Agg') os.environ["CUDA_VISIBLE_DEVICES"] = "1" input_size = (128, 128) parser = argparse.ArgumentParser(description="Train on my own dataset") parser.add_argument("--data-dir", default='data', type=str) parser.add_argument("--no-cuda", action="store_true") parser.add_argument("--gpu-id", default=0, type=int) parser.add_argument("--lr", default=0.001, type=float) parser.add_argument("--interval", '-i', default=10, type=int) parser.add_argument('--resume', '-r', action='store_true') parser.add_argument('--model', type=str, default="mudeep") parser.add_argument('--pretrained', action="store_true") args = parser.parse_args() # device device = "cuda:{}".format( args.gpu_id) if torch.cuda.is_available() and not args.no_cuda else "cpu" if torch.cuda.is_available() and not args.no_cuda: cudnn.benchmark = True # data loading root = args.data_dir train_dir = os.path.join(root, "train") test_dir = os.path.join(root, "val") transform_train = torchvision.transforms.Compose([ torchvision.transforms.Resize(input_size), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.3568, 0.3141, 0.2781], [0.1752, 0.1857, 0.1879]) ]) transform_test = torchvision.transforms.Compose([ torchvision.transforms.Resize(input_size), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.3568, 0.3141, 0.2781], [0.1752, 0.1857, 0.1879]) ]) train_datasets = datasets.ImageFolder(train_dir, transform=transform_train) test_datasets = datasets.ImageFolder(test_dir, transform=transform_test) trainloader = torch.utils.data.DataLoader(train_datasets, batch_size=64, shuffle=True, num_workers=4) testloader = torch.utils.data.DataLoader(test_datasets, batch_size=64, shuffle=True, num_workers=4) num_classes = len(trainloader.dataset.classes) ################## # net definition # ################## start_epoch = 0 net = build_model(name=args.model, num_classes=num_classes, pretrained=args.pretrained) if args.resume: assert os.path.isfile( "./weights/best.pt"), "Error: no weights file found!" print('Loading from weights/best.pt') weights = torch.load("./weights/best.pt") # import ipdb; ipdb.set_trace() net_dict = weights['net_dict'] net.load_state_dict(net_dict) best_acc = weights['acc'] start_epoch = weights['epoch'] net.to(device) # loss and optimizer criterion_model = torch.nn.CrossEntropyLoss( ) # CenterLoss(num_classes=num_classes) optimizer_model = torch.optim.SGD( net.parameters(), args.lr) # from 3e-4 to 3e-5 criterion_center = CenterLoss(num_classes=num_classes, feat_dim=num_classes) optimizer_center = optim.Adam(criterion_center.parameters(), lr=0.005) scheduler = optim.lr_scheduler.StepLR( # best lr 1e-3 optimizer_model, step_size=20, gamma=0.1) best_acc = 0. # train function for each epoch def train(epoch): print('=' * 30, "Training", "=" * 30) net.train() training_loss = 0. train_loss = 0. correct = 0 total = 0 interval = args.interval start = time.time() for idx, (inputs, labels) in enumerate(trainloader): # forward inputs, labels = inputs.to(device), labels.to(device) outputs = net(inputs) loss_center = criterion_center(outputs, labels) loss_model = criterion_model(outputs, labels) loss = 0.2 * loss_center + 0.8 * loss_model # backward optimizer_center.zero_grad() optimizer_model.zero_grad() loss.backward() optimizer_model.step() optimizer_center.step() # accumurating training_loss += loss.item() train_loss += loss.item() correct += outputs.max(dim=1)[1].eq(labels).sum().item() total += labels.size(0) # print if (idx + 1) % interval == 0: end = time.time() print( "epoch:{:d}|step:{:03d}|time:{:03.2f}s|Loss:{:03.5f}|center loss:{:03.4f}|model loss:{:03.4f}|Acc:{:02.3f}%" .format(epoch, idx, end - start, training_loss / interval, 0.2 * loss_center.item(), 0.8 * loss_model.item(), 100. * correct / total)) training_loss = 0. start = time.time() return train_loss / len(trainloader), 1. - correct / total def test(epoch): global best_acc # net.eval() # net.train() test_loss = 0. correct = 0 total = 0 start = time.time() with torch.no_grad(): for idx, (inputs, labels) in enumerate(testloader): inputs, labels = inputs.to(device), labels.to(device) outputs = net(inputs) loss = criterion_model(outputs, labels) test_loss += loss.item() correct += outputs.max(dim=1)[1].eq(labels).sum().item() total += labels.size(0) print('=' * 30, "Testing", "=" * 30) end = time.time() print( "epoch:{:d}\t time:{:.2f}s\t Loss:{:.5f}\t Correct:{}/{}\t Acc:{:.3f}%" .format(epoch, end - start, test_loss / len(testloader), correct, total, 100. * correct / total)) # saving weights acc = 100. * correct / total if not os.path.isdir('weights'): os.mkdir('weights') save_path = os.path.join("weights", args.model) if not os.path.exists(save_path): os.makedirs(save_path) if acc > best_acc: best_acc = acc print("Saving parameters to weights/best.pt") weights = { 'net_dict': net.state_dict(), 'acc': acc, 'epoch': epoch, } torch.save(weights, './weights/%s/%s_best.pt' % (args.model, args.model)) torch.save(weights, './weights/%s/%s_last.pt' % (args.model, args.model)) else: weights = { 'net_dict': net.state_dict(), 'acc': acc, 'epoch': epoch, } torch.save(weights, './weights/%s/%s_last.pt' % (args.model, args.model)) # rank and mAP # net.eval() # TODO BUG # get_result(net, trainloader, testloader, train_datasets, test_datasets) return test_loss / len(testloader), 1. - correct / total # plot figure x_epoch = [] record = {'train_loss': [], 'train_err': [], 'test_loss': [], 'test_err': []} fig = plt.figure() ax0 = fig.add_subplot(121, title="loss") ax1 = fig.add_subplot(122, title="top1err") def draw_curve(epoch, train_loss, train_err, test_loss, test_err): global record record['train_loss'].append(train_loss) record['train_err'].append(train_err) record['test_loss'].append(test_loss) record['test_err'].append(test_err) x_epoch.append(epoch) ax0.plot(x_epoch, record['train_loss'], 'bo-', label='train') ax0.plot(x_epoch, record['test_loss'], 'ro-', label='val') ax1.plot(x_epoch, record['train_err'], 'bo-', label='train') ax1.plot(x_epoch, record['test_err'], 'ro-', label='val') if epoch == 0: ax0.legend() ax1.legend() fig.savefig("train.jpg") if __name__ == '__main__': for epoch in range(start_epoch, start_epoch + 200): train_loss, train_err = train(epoch) test_loss, test_err = test(epoch) draw_curve(epoch, train_loss, train_err, test_loss, test_err) scheduler.step() # if epoch % 10 == 0: # os.system("python eval.py")
8711b82efde4f4ea06535e355750e4d054e92d9f
e6dab5aa1754ff13755a1f74a28a201681ab7e1c
/.parts/lib/django-1.3/django/contrib/auth/decorators.py
90bb7a127cf216433ad50dc3c58dae54e28a51b2
[]
no_license
ronkagan/Euler_1
67679203a9510147320f7c6513eefd391630703e
022633cc298475c4f3fd0c6e2bde4f4728713995
refs/heads/master
2021-01-06T20:45:52.901025
2014-09-06T22:34:16
2014-09-06T22:34:16
23,744,842
0
1
null
null
null
null
UTF-8
Python
false
false
99
py
/home/action/.parts/packages/googleappengine/1.9.4/lib/django-1.3/django/contrib/auth/decorators.py
876af148e0e1a2e8891d6f308c68e89c6048db7a
d4573e15795c02ff98aab5e02d4c8effde4691dc
/PythonTasks/isValidSubsequence.py
dddf11e0c5b685688e8010a62f97c23f47b3a15c
[]
no_license
maantos/PythonTask
524a34ed6cfeac2651e362d15e767434b337302a
3460fb118ad725ad5aa549b8de53dddfea9b1ca3
refs/heads/main
2023-08-31T16:20:16.445474
2021-10-24T10:09:36
2021-10-24T10:09:36
403,981,268
0
0
null
null
null
null
UTF-8
Python
false
false
351
py
def isValidSubsequence(array, sequence): indexArray = 0 indexSequence = 0 for a in array: if a == sequence[indexSequence]: indexSequence+=1 return indexSequence == len(sequence) def main(): a= [5, 1, 22, 25, 6, -1, 8, 10] s = [5, 1, 22, 25, 6, -1, 8, 10, 10] print(isValidSubsequence(a,s)) main()
b6aeae9d49474feca35b642020450f59b805f6a1
89c4a43a505df8fdf1f0d7386988c4896c2e631b
/examples/billing/get_invoices.py
2ed69a7c2a8bbecccaf83ad8e70d6bd01cd8c19e
[ "Apache-2.0" ]
permissive
hurricanelennane/google-ads-python
a0a1fed690776a8bb2e81f637eb7eae10fb4992f
310a488b6fdad9d5beea8fa4b166edce779a2511
refs/heads/master
2023-07-04T03:07:53.344466
2021-07-16T19:06:36
2021-07-16T19:06:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,262
py
#!/usr/bin/env python # Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Retrieves the invoices issued last month for a given billing setup.""" import argparse from datetime import date, timedelta import sys from google.ads.googleads.client import GoogleAdsClient from google.ads.googleads.errors import GoogleAdsException def main(client, customer_id, billing_setup_id): """The main method that creates all necessary entities for the example. Args: client: an initialized GoogleAdsClient instance. customer_id: a client customer ID. billing_setup_id: a billing setup ID. """ # The last day of last month. last_month = date.today().replace(day=1) - timedelta(days=1) # [START get_invoices] # Issues a request to list invoices. response = client.get_service("InvoiceService").list_invoices( customer_id=customer_id, billing_setup=client.get_service("GoogleAdsService").billing_setup_path( customer_id, billing_setup_id ), # The year needs to be 2019 or later, per the docs: # https://developers.google.com/google-ads/api/docs/billing/invoice?hl=en#retrieving_invoices issue_year=str(last_month.year), issue_month=last_month.strftime("%B").upper(), ) # [END get_invoices] # [START get_invoices_1] for invoice in response.invoices: print( f""" - Found the invoice {invoice.resource_name} ID (also known as Invoice Number): '{invoice.id}' Type: {invoice.type_} Billing setup ID: '{invoice.billing_setup}' Payments account ID (also known as Billing Account Number): '{invoice.payments_account_id}' Payments profile ID (also known as Billing ID): '{invoice.payments_profile_id}' Issue date (also known as Invoice Date): {invoice.issue_date} Due date: {invoice.due_date} Currency code: {invoice.currency_code} Service date range (inclusive): from {invoice.service_date_range.start_date} to {invoice.service_date_range.end_date} Adjustments: subtotal {_micros_to_currency(invoice.adjustments_subtotal_amount_micros)} tax {_micros_to_currency(invoice.adjustments_tax_amount_micros)} total {_micros_to_currency(invoice.adjustments_total_amount_micros)} Regulatory costs: subtotal {_micros_to_currency(invoice.regulatory_costs_subtotal_amount_micros)} tax {_micros_to_currency(invoice.regulatory_costs_tax_amount_micros)} total {_micros_to_currency(invoice.regulatory_costs_total_amount_micros)} Replaced invoices: {invoice.replaced_invoices.join(", ") if invoice.replaced_invoices else "none"} Amounts: subtotal {_micros_to_currency(invoice.subtotal_amount_micros)} tax {_micros_to_currency(invoice.tax_amount_micros)} total {_micros_to_currency(invoice.total_amount_micros)} Corrected invoice: {invoice.corrected_invoice or "none"} PDF URL: {invoice.pdf_url} Account budgets: """ ) for account_budget_summary in invoice.account_budget_summaries: print( f""" - Account budget '{account_budget_summary.account_budget}': Name (also known as Account Budget): '{account_budget_summary.account_budget_name}' Customer (also known as Account ID): '{account_budget_summary.customer}' Customer descriptive name (also known as Account): '{account_budget_summary.customer_descriptive_name}' Purchase order number (also known as Purchase Order): '{account_budget_summary.purchase_order_number}' Billing activity date range (inclusive): from #{account_budget_summary.billable_activity_date_range.start_date} to #{account_budget_summary.billable_activity_date_range.end_date} Amounts: subtotal '{_micros_to_currency(account_budget_summary.subtotal_amount_micros)}' tax '{_micros_to_currency(account_budget_summary.tax_amount_micros)}' total '{_micros_to_currency(account_budget_summary.total_amount_micros)}' """ ) # [END get_invoices_1] def _micros_to_currency(micros): return micros / 1000000.0 if micros is not None else None if __name__ == "__main__": # GoogleAdsClient will read the google-ads.yaml configuration file in the # home directory if none is specified. googleads_client = GoogleAdsClient.load_from_storage(version="v6") parser = argparse.ArgumentParser( description="Retrieves the invoices issued last month for a given billing setup." ) # The following argument(s) should be provided to run the example. parser.add_argument( "-c", "--customer_id", type=str, required=True, help="The Google Ads customer ID.", ) parser.add_argument( "-b", "--billing_setup_id", type=str, required=True, help="The billing setup ID.", ) args = parser.parse_args() try: main(googleads_client, args.customer_id, args.billing_setup_id) except GoogleAdsException as ex: print( f'Request with ID "{ex.request_id}" failed with status ' f'"{ex.error.code().name}" and includes the following errors:' ) for error in ex.failure.errors: print(f'\tError with message "{error.message}".') if error.location: for field_path_element in error.location.field_path_elements: print(f"\t\tOn field: {field_path_element.field_name}") sys.exit(1)
4757bdbb45e9943f57229c66382e143fdb7eedb0
c50e7eb190802d7849c0d0cea02fb4d2f0021777
/src/notification-hub/azext_notification_hub/aaz/latest/notification_hub/credential/wns/__cmd_group.py
5037cd17f20259548803ca3dbaa434de49a782a9
[ "LicenseRef-scancode-generic-cla", "MIT" ]
permissive
Azure/azure-cli-extensions
c1615b19930bba7166c282918f166cd40ff6609c
b8c2cf97e991adf0c0a207d810316b8f4686dc29
refs/heads/main
2023-08-24T12:40:15.528432
2023-08-24T09:17:25
2023-08-24T09:17:25
106,580,024
336
1,226
MIT
2023-09-14T10:48:57
2017-10-11T16:27:31
Python
UTF-8
Python
false
false
604
py
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # # Code generated by aaz-dev-tools # -------------------------------------------------------------------------------------------- # pylint: skip-file # flake8: noqa from azure.cli.core.aaz import * class __CMDGroup(AAZCommandGroup): """Commands to manage notification hub credential for Windows(WNS). """ pass __all__ = ["__CMDGroup"]
8385b642855ce52a447c4cbb7ee9daef09d08a97
eccb79e51d0805d5643e4bfb37d8bf771a33d07d
/day1/test2.py
f7758110e95c0427b4246ca452a4e96d9e7d8890
[]
no_license
kkc272104568/python_test
a05d1f07f240f9f82410a3ac283f1766591013b3
75ca1e937c830114a6df84d0340c438ce9a01c91
refs/heads/master
2020-03-26T13:45:28.831829
2020-02-25T09:48:45
2020-02-25T09:48:45
144,955,227
1
0
null
null
null
null
UTF-8
Python
false
false
1,520
py
#!/usr/bin/python # -*- coding: UTF-8 -*- '''题目:企业发放的奖金根据利润提成。利润(I)低于或等于10万元时,奖金可提10%;利润高于10万元,低于20万元时, 低于10万元的部分按10%提成,高于10万元的部分,可提成7.5%;20万到40万之间时,高于20万元的部分,可提成5%; 40万到60万之间时高于40万元的部分,可提成3%;60万到100万之间时,高于60万元的部分,可提成1.5%,高于100万元时, 超过100万元的部分按1%提成,从键盘输入当月利润I,求应发放奖金总数? 程序分析:请利用数轴来分界,定位。注意定义时需把奖金定义成长整型。 程序源代码:''' # i= int (raw_input('净利润:')) # # if i <=100000 : # print '净利润为:',i*0.1 # elif 100000<i<=200000: # print '净利润为:',10000+(i-100000)*0.075 # elif 200000<i<=400000: # print '净利润为:',10000+7500+(i-200000)*0.05 # elif 400000 < i <= 600000: # print '净利润为:',10000+7500+10000+(i-400000)*0.03 # elif 600000 < i <= 1000000: # print '净利润为:',10000+7500+10000+6000+(i-600000)*0.015 # elif 1000000 < i : # print '净利润为:',10000+7500+10000+6000+6000+(i-1000000)*0.01 i = int(raw_input('净利润:')) arr = [1000000,600000,400000,200000,100000,0] rat = [0.01,0.015,0.03,0.05,0.075,0.1] r = 0 for idx in range(0,6): if i>arr[idx]: r+=(i-arr[idx])*rat[idx] print (i-arr[idx])*rat[idx] i=arr[idx] print r
3ef7c170aff0467ec017ff6fa55cfec5011d76af
7ed8b6fda0bdf14ae4145d913b1cd6675ea1e8dc
/interspeech2020_codes/vaw-gan/convert-vawgan.py
32d99356060a5fa966244fd2c33bd3efaa2d6242
[]
no_license
hongwen-sun/Speaker-independent-emotional-voice-conversion-based-on-conditional-VAW-GAN-and-CWT
9a8198ad10da163704f9711bcf06f2e44f08ec8c
876fa67c29536afcae05496ca8f8f37abde9b8ee
refs/heads/master
2023-01-10T11:35:24.935806
2020-11-13T12:50:09
2020-11-13T12:50:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,229
py
import json import os import sys import tensorflow as tf import numpy as np import soundfile as sf from util.wrapper import load from analyzer import read_whole_features, pw2wav from analyzer import Tanhize from datetime import datetime from importlib import import_module args = tf.app.flags.FLAGS tf.app.flags.DEFINE_string('corpus_name', 'emotion_vc', 'Corpus name') #tf.app.flags.DEFINE_string('checkpoint', './logdir/train/0314-1843-24-2020/model.ckpt-46860', 'root of log dir') tf.app.flags.DEFINE_string('checkpoint', './logdir/train/0409-1053-31-2020/model.ckpt-46860', 'root of log dir') tf.app.flags.DEFINE_string('src', 'Neutral', 'source speaker [SF1 - SM2]') tf.app.flags.DEFINE_string('trg', 'Angry', 'target speaker [SF1 - TM3]') tf.app.flags.DEFINE_string('output_dir', './logdir', 'root of output dir') tf.app.flags.DEFINE_string('module', 'model.vawgan', 'Module') tf.app.flags.DEFINE_string('model', 'VAWGAN', 'Model') tf.app.flags.DEFINE_string('file_pattern', '../vaw_original/data_multi/bin/evaluation_set/{}/*.bin', 'file pattern') tf.app.flags.DEFINE_string( 'speaker_list', './etc/speakers.tsv', 'Speaker list (one speaker per line)' ) def make_output_wav_name(output_dir, filename): basename = str(filename, 'utf8') basename = os.path.split(basename)[-1] basename = os.path.splitext(basename)[0] return os.path.join( output_dir, '{}-{}-{}.wav'.format(args.src, args.trg, basename) ) def get_default_output(logdir_root): STARTED_DATESTRING = datetime.now().strftime('%0m%0d-%0H%0M-%0S-%Y') logdir = os.path.join(logdir_root, 'output', STARTED_DATESTRING) print('Using default logdir: {}'.format(logdir)) return logdir def convert_f0(f0, src, trg): mu_s, std_s = np.fromfile(os.path.join('./etc', '{}.npf'.format(src)), np.float32) mu_t, std_t = np.fromfile(os.path.join('./etc', '{}.npf'.format(trg)), np.float32) lf0 = tf.where(f0 > 1., tf.log(f0), f0) lf0 = tf.where(lf0 > 1., (lf0 - mu_s)/std_s * std_t + mu_t, lf0) lf0 = tf.where(lf0 > 1., tf.exp(lf0), lf0) return lf0 def nh_to_nchw(x): with tf.name_scope('NH_to_NCHW'): x = tf.expand_dims(x, 1) # [b, h] => [b, c=1, h] return tf.expand_dims(x, -1) # => [b, c=1, h, w=1] def nh_to_nhwc(x): with tf.name_scope('NH_to_NHWC'): return tf.expand_dims(tf.expand_dims(x, -1), -1) def main(unused_args=None): # args(sys.argv) if args.model is None: raise ValueError( '\n You MUST specify `model`.' +\ '\n Use `python convert.py --help` to see applicable options.' ) module = import_module(args.module, package=None) MODEL = getattr(module, args.model) FS = 16000 with open(args.speaker_list) as fp: SPEAKERS = [l.strip() for l in fp.readlines()] logdir, ckpt = os.path.split(args.checkpoint) if 'VAE' in logdir: _path_to_arch, _ = os.path.split(logdir) else: _path_to_arch = logdir arch = tf.gfile.Glob(os.path.join(_path_to_arch, 'architecture*.json')) if len(arch) != 1: print('WARNING: found more than 1 architecture files!') arch = arch[0] with open(arch) as fp: arch = json.load(fp) normalizer = Tanhize( xmax=np.fromfile('./etc/{}_xmax.npf'.format(args.corpus_name)), xmin=np.fromfile('./etc/{}_xmin.npf'.format(args.corpus_name)), ) features = read_whole_features(args.file_pattern.format(args.src)) x = normalizer.forward_process(features['sp']) x = nh_to_nhwc(x) y_s = features['speaker'] y_t_id = tf.placeholder(dtype=tf.int64, shape=[1,]) y_t = y_t_id * tf.ones(shape=[tf.shape(x)[0],], dtype=tf.int64) f0_s = features['f0'] f0_t = convert_f0(f0_s, args.src, args.trg) f0_s_convert = tf.cast(f0_s,dtype=tf.int64) f0_t_convert = tf.cast(f0_t,dtype=tf.int64) machine = MODEL(arch, is_training=False) z = machine.encode(x) x_t = machine.decode(z, y_t, f0_t_convert) # NOTE: the API yields NHWC format x_t = tf.squeeze(x_t) x_t = normalizer.backward_process(x_t) # For sanity check (validation) # x_s = machine.decode(z, y_s, f0_s_convert) # x_s = tf.squeeze(x_s) # x_s = normalizer.backward_process(x_s) # f0_s = features['f0'] # f0_t = convert_f0(f0_s, args.src, args.trg) output_dir = get_default_output(args.output_dir) saver = tf.train.Saver() sv = tf.train.Supervisor(logdir=output_dir) with sv.managed_session() as sess: load(saver, sess, logdir, ckpt=ckpt) print() while True: try: feat, f0, sp = sess.run( [features, f0_t, x_t], feed_dict={y_t_id: np.asarray([SPEAKERS.index(args.trg)])} ) feat.update({'sp': sp, 'f0': f0}) y = pw2wav(feat) oFilename = make_output_wav_name(output_dir, feat['filename']) print('\rProcessing {}'.format(oFilename), end='') sf.write(oFilename, y, FS) except KeyboardInterrupt: break finally: pass print() if __name__ == '__main__': tf.app.run()
f1a816139f85ed6a57d84606962de0bae8e26e2b
431af022b62460f5bf81ff19450e391e22133e0a
/w1/web_app_1/bin/pip
db7ab663bb63410e004d2006c2dae86b3d2fc921
[]
no_license
marcin-jamroz/pythonLvlUp
a8e3d758a807fa1c1ebcc079b86c90fa2aa505f6
1aa966c5e988dd92b7bfff9ccb599332ccbb6f71
refs/heads/master
2020-03-11T10:57:36.634715
2018-04-17T19:49:32
2018-04-17T19:49:45
129,956,755
0
0
null
null
null
null
UTF-8
Python
false
false
252
#!/home/marcin/Kod/Python/pythonLvlUp/w1/web_app_1/bin/python3.6 # -*- coding: utf-8 -*- import re import sys from pip import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
775bfe54fc558de9f2d13cdfab215fb701858979
6b2a8dd202fdce77c971c412717e305e1caaac51
/solutions_5652388522229760_1/Python/hwmaltby/counting_sheep.py
28c65f65b3bc6c9b939b87a0d25dfc2ef60af483
[]
no_license
alexandraback/datacollection
0bc67a9ace00abbc843f4912562f3a064992e0e9
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
refs/heads/master
2021-01-24T18:27:24.417992
2017-05-23T09:23:38
2017-05-23T09:23:38
84,313,442
2
4
null
null
null
null
UTF-8
Python
false
false
715
py
#Henry Maltby #Code Jam 2016 f = open('A-large.in') g = open('A-large.out', 'w') N = int(f.readline()) data = [int(x) for x in f.read().split('\n')] def count_sheep(n): """ Takes a number and returns the last value Bleatrix would say. Does so directly: iterates over each number said and each digit in number. """ digits = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} k = 0 if n == 0: return 'INSOMNIA' while digits != set(): k += 1 s = str(k * n) for i in range(len(s)): if int(s[i]) in digits: digits.remove(int(s[i])) return s for i in range(len(data)): g.write("Case #" + str(i + 1) + ": " + count_sheep(data[i]) + "\n")
185f4234ea2c1aafdc20a163089442b5a7b72a70
f8b5e12316bce07b7e1ea568e81e40442fed17bc
/meloshare/api/resources.py
bcdc0cccbe3734cd43f69597e44f68e617e63dd6
[ "MIT" ]
permissive
xavierfav/meloshare
56ea9d228c4c7a6d6c0bf031e5222ce15ddff5aa
a52bf321135382b415a453ad29498901c96f8cdb
refs/heads/master
2022-12-12T21:10:24.055102
2018-01-30T03:05:15
2018-01-30T03:05:15
119,074,174
1
1
MIT
2022-12-08T00:53:21
2018-01-26T16:18:24
Python
UTF-8
Python
false
false
15
py
RESOURCES = []
0e84c6a4d779d67cc768bbeaf77a684bb7a6e521
ed363858c2a88ed125f7b7dce507a2978201f0ca
/week1/Project1/api/migrations/0001_initial.py
7cabcca21f272fb82e94bba55ef3f0fcbd7abe4f
[]
no_license
progF/advanced-django2019
cc058e99c3d3add3eb0ebac773cdee23f49a284a
e3e2cc37c88cf697446ffa8493db811c1f8a8aa8
refs/heads/master
2022-11-24T17:34:24.951650
2019-12-05T13:28:31
2019-12-05T13:28:31
206,416,155
0
0
null
2022-11-22T04:52:36
2019-09-04T21:20:02
Python
UTF-8
Python
false
false
1,502
py
# Generated by Django 2.2.5 on 2019-09-04 19:01 import django.core.validators from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Product', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('rating', models.IntegerField(default=0, validators=[django.core.validators.MaxValueValidator(5), django.core.validators.MinValueValidator(0)])), ('name', models.CharField(max_length=200)), ('description', models.TextField()), ('photo', models.ImageField(upload_to='images/')), ], ), migrations.CreateModel( name='Review', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('rating', models.IntegerField(default=0, validators=[django.core.validators.MaxValueValidator(5), django.core.validators.MinValueValidator(0)])), ('title', models.CharField(max_length=200)), ('summary', models.TextField()), ('date', models.DateTimeField(auto_now_add=True)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='api.Product')), ], ), ]
a4d4aa0f096c5e18c6c767b951eeab397e31ee94
4eb4677d051a2372dd74f00f19ed6a1ac643662b
/practice8h.py
0f91c5b5ae6be660570286a6e6dc4068d5a7244a
[]
no_license
harmansehmbi/Project8
015625578dd48c5df87631d5e0cfa712836cc8fc
f500ec90c6fa71990987e418adca0e5f5fb00b61
refs/heads/master
2020-06-05T08:54:00.382629
2019-06-17T16:37:22
2019-06-17T16:37:22
192,383,170
0
0
null
null
null
null
UTF-8
Python
false
false
531
py
class Counter: ccount = 1 def __init__(self): self.count = 1 Counter.ccount = 1 def incrementCount(self): self.count = self.count + 1 Counter.ccount = Counter.ccount + 1 def showCount(self): print("count is {} and ccount is {}".format(self.count, Counter.ccount)) c1 = Counter() c2 = Counter() c3 = c1 c1.incrementCount() c2.incrementCount() c3.incrementCount() c1.incrementCount() c2.incrementCount() c3.incrementCount() c1.showCount() c2.showCount() c3.showCount()
b9152793bd39062b3450e1f61fd161cfbeecde12
fbd3b8a646091400df5ba5d586eec55eff0b056d
/src/AS/s05_parse_PSI_vals.py
658051a8e7fa77e17fae73ba111f316bccb5c469
[]
no_license
mpandeyWU/diurnalCycleCodes
a538fe28190d5c62f848ad2ca9802fc98eb22785
14951f768371c1c3ed9e549b6f8863c241a6b7cf
refs/heads/master
2021-08-06T16:06:18.559827
2020-04-16T04:59:15
2020-04-16T04:59:15
151,189,231
0
0
null
null
null
null
UTF-8
Python
false
false
3,706
py
#!/usr/bin/python ######################################################### # Purpose: Parse tsv output files and filter the relevant LSVs # Author: Manishi Pandey # Date: October 16, 2018 # Usage: python s05_parse_PSI_vals.py -majiqpath ../output/Majiq_PSI_All/tsvFiles/ -outfile ../output/s05_output/all_LSV_list.txt ########################################################### import re, sys, os import argparse from collections import defaultdict import numpy as np import scipy.stats as sp def parse_majiq_tsv(filename): ssDict = defaultdict(float) with open(filename, "r") as fIN: for line in fIN: if not(line.startswith("#")): line = line.rstrip("\n") data = line.split("\t") psi = data[3].split(";") sscoord = data[14].split(";") chrom = data[12]; sign = data[13] for i,val in enumerate(sscoord): ssID = "{}:{}:{}@{}".format(chrom,val,sign,data[2]) #data[2] is LSV-ID psi[i] = round(float(psi[i]), 4) ssDict[ssID] = psi[i] return ssDict if (__name__ == "__main__"): parser = argparse.ArgumentParser(prog="") parser.add_argument('-majiqpath', dest="majiqpath", help="Path to the output files of Majiq") parser.add_argument('-outfile', dest="outcsv", help="Path to the output files of Majiq") args = parser.parse_args() tsv_path = args.majiqpath csv_out = args.outcsv allSS = defaultdict(list) tsvFiles = os.listdir(tsv_path) tsvOrder = ["TP_1", "TP_2", "TP_3", "TP_4", "TP_5", "TP_6", "TP_7", "TP_8", "TP_9", "TP_10", "TP_11", "TP_11.5", "TP_12", "TP_12.5", "TP_13.5", "TP_14", "TP_14.5", "TP_15", "TP_16", "TP_17", "TP_18", "TP_19","TP_20", "TP_21", "TP_22", "TP_23", "TP_24"] print(sorted(tsvFiles)) for k,sampleID in enumerate(tsvOrder): filename = "{}.psi.tsv".format(sampleID) print(filename) #fname = re.search(r'(.*)psi.tsv', filename) #sampleID = fname.group(1) #print(fname.group(1),filename) filepath = "{}/{}".format(tsv_path,filename) ssDict = parse_majiq_tsv(filepath) for ssid in ssDict: if (ssid in allSS): allSS[ssid].append(ssDict[ssid]) #allSS dictionary has summary of all ssID with lsvid with a list of psi-values for each time-point. else: l = [0.001]*(k+1) l[k] = ssDict[ssid] allSS[ssid] = l otherIDs = set(allSS.keys()) - set(ssDict.keys()) for oID in otherIDs: allSS[oID].append(0.001) varArr = list() cvArr = list() filteredSS = defaultdict(dict) for sampleID in allSS: arrPSI = allSS[sampleID] #print(sampleID,arrPSI) if (all(x < 0.05 for x in arrPSI)) | (all(x > 0.95 for x in arrPSI)): next; else: varPSI = np.var(arrPSI) cvPSI = sp.variation(arrPSI) varArr.append(varPSI) cvArr.append(cvPSI) #print(arrPSI,varPSI) if (varPSI >= 0.2): #Need to choose a proper cut-off ids = sampleID.split("@") filteredSS[ids[1]][ids[0]] = arrPSI newFilter = defaultdict(dict) #np.histogram(varArr) #med = np.median(varArr) #mean = np.mean(varArr) #print(med, mean, min(varArr), max(varArr)) #med1 = np.median(cvArr) #mean1 = np.mean(cvArr) #print(med1, mean1, min(cvArr), max(cvArr)) allSSList = allSS.keys() for lsvid in filteredSS: #otherSS = [ x for x in allSSList if (re.search(r'(.*)@' + re.escape(lsvid), x))] #print(otherSS) #for oID in otherSS: # sID = oID.split("@") # newFilter[lsvid][sID[0]] = allSS[oID] for ssID in filteredSS[lsvid]: newFilter[lsvid][ssID] = filteredSS[lsvid][ssID] fout = open(csv_out, "w") tsvStr = ",".join(tsvOrder) fout.write("LSV_ID,Chr_Coord,{}\n".format(tsvStr)) for lsvid in newFilter: for ssID in newFilter[lsvid]: arrPSI = newFilter[lsvid][ssID] psistr = ",".join(map(str,arrPSI)) fout.write("{},{},{}\n".format(lsvid,ssID,psistr)) fout.close()
e2d86aa7be06a9fab29cfa499261d2adc9a00dfe
b76615ff745c6d66803506251c3d4109faf50802
/pyobjc-framework-Quartz/PyObjCTest/test_ciplugininterface.py
9dd711b881eaa697be75fbe4494b6429783fdfd1
[ "MIT" ]
permissive
danchr/pyobjc-git
6ef17e472f54251e283a0801ce29e9eff9c20ac0
62b787fddeb381184043c7ff136f1c480755ab69
refs/heads/master
2021-01-04T12:24:31.581750
2020-02-02T20:43:02
2020-02-02T20:43:02
240,537,392
0
0
null
null
null
null
UTF-8
Python
false
false
496
py
from PyObjCTools.TestSupport import * from Quartz.QuartzCore import * from Quartz import * class TestCIPluginInterfaceHelper(NSObject): def load_(self, h): return 1 class TestCIPlugInInterface(TestCase): def testMethods(self): self.assertResultIsBOOL(TestCIPluginInterfaceHelper.load_) def no_testProtocol(self): p = objc.protocolNamed("CIPlugInRegistration") self.assertIsInstancE(p, objc.formal_protocol) if __name__ == "__main__": main()
2159f026e2e91ee4f34ac0e77548ea497fcf9d65
b05761d771bb5a85d39d370c649567c1ff3eb089
/venv/lib/python3.10/site-packages/numpy/typing/tests/data/pass/ufunc_config.py
fd64c8eab5a129e2e7cedb231f7ad525b70f0bed
[]
no_license
JawshyJ/Coding_Practice
88c49cab955eab04609ec1003b6b8c20f103fc06
eb6b229d41aa49b1545af2120e6bee8e982adb41
refs/heads/master
2023-02-19T10:18:04.818542
2023-02-06T21:22:58
2023-02-06T21:22:58
247,788,631
4
0
null
null
null
null
UTF-8
Python
false
false
96
py
/home/runner/.cache/pip/pool/6f/49/d6/2f2ab45761f898a657acd334913f8633ec7c8a0f6dbf76a5e74fd80163
841f0308c5117d12505da207be5622d21060d121
4ab4f763fec96977dd37ae531c20e66528018287
/examples/script.py
5193361b099624704e1fa9b864033643fdd25e69
[]
no_license
rienafairefr/py-bricklink
4187de386dec8c128308fc27ca1a5f25d142f7f8
0e7ea6dbc02dc9a44042fc70feaf164a0c4e92aa
refs/heads/master
2020-08-28T15:10:55.075476
2019-10-26T18:56:28
2019-10-26T18:56:28
217,735,256
0
0
null
2019-10-26T16:14:29
2019-10-26T16:14:29
null
UTF-8
Python
false
false
164
py
import json import bricklink auth = json.load(open('auth.json', 'r')) client = bricklink.ApiClient(**auth) print(client.catalog.getItem('MINIFIG', 'cty0859'))
26f58016bf981e3c9bc9c093f5729428cb70b710
0a40a27bdc9ad234d2f3ec8bc68b082881065fc7
/riko/modules/udf.py
e89eef2ba850ba8862ff29b9ea73cbb05034bc64
[ "MIT" ]
permissive
anilktechie/riko
5130ff054e03315e5e47ea99f68ec5099079675f
9549a1a23153e274069f6d13de0b528488d7ba92
refs/heads/master
2022-11-30T21:39:20.328527
2020-08-14T16:47:45
2020-08-14T16:47:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,288
py
# -*- coding: utf-8 -*- # vim: sw=4:ts=4:expandtab """ riko.modules.udf ~~~~~~~~~~~~~~~~ Provides functions for performing an arbitrary (user-defined) function on stream items. Examples: basic usage:: >>> from riko.modules.udf import pipe >>> >>> items = [{'x': x} for x in range(5)] >>> func = lambda item: {'y': item['x'] + 3} >>> next(pipe(items, func=func)) {'y': 3} """ from . import operator import pygogo as gogo logger = gogo.Gogo(__name__, monolog=True).logger def parser(stream, objconf, tuples, **kwargs): """ Parses the pipe content Args: stream (Iter[dict]): The source. Note: this shares the `tuples` iterator, so consuming it will consume `tuples` as well. objconf (obj): the item independent configuration (an Objectify instance). tuples (Iter[(dict, obj)]): Iterable of tuples of (item, objconf) `item` is an element in the source stream and `objconf` is the item configuration (an Objectify instance). Note: this shares the `stream` iterator, so consuming it will consume `stream` as well. kwargs (dict): Keyword arguments. Returns: Iter(dict): The output stream Examples: >>> from meza.fntools import Objectify >>> from itertools import repeat >>> >>> func = lambda item: {'y': item['x'] + 3} >>> stream = ({'x': x} for x in range(5)) >>> tuples = zip(stream, repeat(None)) >>> next(parser(stream, None, tuples, func=func)) {'y': 3} """ return map(kwargs['func'], stream) @operator(isasync=True) def async_pipe(*args, **kwargs): """An aggregator that asynchronously returns a specified number of items from a stream. Args: items (Iter[dict]): The source. kwargs (dict): The keyword arguments passed to the wrapper Kwargs: func (callable): User defined function to apply to each stream item. Returns: Deferred: twisted.internet.defer.Deferred truncated stream Examples: >>> from riko.bado import react >>> from riko.bado.mock import FakeReactor >>> >>> def run(reactor): ... callback = lambda x: print(next(x)) ... func = lambda item: {'y': item['x'] + 3} ... items = ({'x': x} for x in range(5)) ... d = async_pipe(items, func=func) ... return d.addCallbacks(callback, logger.error) >>> >>> try: ... react(run, _reactor=FakeReactor()) ... except SystemExit: ... pass ... {'y': 3} """ return parser(*args, **kwargs) @operator() def pipe(*args, **kwargs): """An operator that returns a specified number of items from a stream. Args: items (Iter[dict]): The source. kwargs (dict): The keyword arguments passed to the wrapper Kwargs: func (callable): User defined function to apply to each stream item. Yields: dict: an item Examples: >>> items = [{'x': x} for x in range(5)] >>> func = lambda item: {'y': item['x'] + 3} >>> next(pipe(items, func=func)) {'y': 3} """ return parser(*args, **kwargs)
e7f453b02820dc50a5ea35812ca6076647f21f09
f4bc9842fce9846fc94d73c4e52a2ad9cb69aa1b
/Workshop 2/2.3 - String operations.py
b39a3d24c878e139b7666568319f472f4ebb9443
[]
no_license
Honza-m/python-training
df486a160dbc193b5d47a5d54853f4eb6c3a96df
9c0da5bd37ab2fd8164abe7c8970b31ec6a4c083
refs/heads/master
2020-03-08T14:21:02.798713
2018-08-14T11:24:29
2018-08-14T11:24:29
128,182,822
1
2
null
null
null
null
UTF-8
Python
false
false
844
py
#definitions def string_def(): x = 'This is a string' print(x) x = "This is also a string" print(x) z = """ This is a multiline string - good for documentation!""" print(z) def special_chars(): x = "What is I want \"quotes\"?" print(x) x = "C:\\Users\\Jan" print(x) def string_methods(): """ https://docs.python.org/3.6/library/string.html """ x = " this IS a long sentence " print(x.upper()) print(x.lower()) print(x.lstrip()) print(x.rstrip()) print(x.strip()) print(x.replace('IS','IS NOT')) print() x = "test" print(x.capitalize()) def format_string(x, y): result1 = "This is the first arguement: {}".format(x) print(result1) result2 = "These are your arguments: {}, {}".format(x, y) print(result2) string_methods()
4a14d5356601d80e01b3a25d247ce1190222db4e
4d993938125a1c54e11359e2baa498a8c22edbd7
/venv/bin/player.py
b2717055a500daccdc379137dce67b5c515f8519
[]
no_license
william-index/plantgod
57e2454dd9718d918e73558f4951af9ea7ad882b
6aa07ed2694a59659fe56fc95f2c5adf7757c498
refs/heads/master
2020-02-26T15:22:18.724558
2018-08-16T19:41:50
2018-08-16T19:41:50
70,263,435
14
1
null
null
null
null
UTF-8
Python
false
false
2,211
py
#!/Users/wanderson/Repos/evolving-plants/venv/bin/python # # The Python Imaging Library # $Id$ # from __future__ import print_function try: from tkinter import * except ImportError: from Tkinter import * from PIL import Image, ImageTk import sys # -------------------------------------------------------------------- # an image animation player class UI(Label): def __init__(self, master, im): if isinstance(im, list): # list of images self.im = im[1:] im = self.im[0] else: # sequence self.im = im if im.mode == "1": self.image = ImageTk.BitmapImage(im, foreground="white") else: self.image = ImageTk.PhotoImage(im) Label.__init__(self, master, image=self.image, bg="black", bd=0) self.update() try: duration = im.info["duration"] except KeyError: duration = 100 self.after(duration, self.next) def next(self): if isinstance(self.im, list): try: im = self.im[0] del self.im[0] self.image.paste(im) except IndexError: return # end of list else: try: im = self.im im.seek(im.tell() + 1) self.image.paste(im) except EOFError: return # end of file try: duration = im.info["duration"] except KeyError: duration = 100 self.after(duration, self.next) self.update_idletasks() # -------------------------------------------------------------------- # script interface if __name__ == "__main__": if not sys.argv[1:]: print("Syntax: python player.py imagefile(s)") sys.exit(1) filename = sys.argv[1] root = Tk() root.title(filename) if len(sys.argv) > 2: # list of images print("loading...") im = [] for filename in sys.argv[1:]: im.append(Image.open(filename)) else: # sequence im = Image.open(filename) UI(root, im).pack() root.mainloop()
4e341fd28736e9eea2da274a054fc88727cef941
6b7e87cc96948178a9e6b7c60cba81e210607ba4
/com.stonedog/src/com/stonedog/study/metaclass/metaclasstest.py
22bbc3235654621a4e6d5042d807ef87b66d95cf
[]
no_license
stonedog/stonedog-learn-to-python
9025161b70ba47c4b3b7aa60d52b28ceeae1c8c5
a9f90f2285a19b01f91d1e188ae1fbac0e1c43a1
refs/heads/master
2016-09-06T07:07:56.616372
2013-02-17T09:15:36
2013-02-17T09:15:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,025
py
''' Created on 2013-2-12 @author: Administrator ''' class Metaclass(type): def __new__(typeclass,classname,superclass,classdict): print(type(typeclass)) return type.__new__(typeclass,classname,superclass,classdict) class Test(): __metaclass__=Metaclass def __init__(self): pass def aha(self): print ('hello world') a=Test() a.aha() def TraceDecorator(func): def wrapper(*args,**kwargs): print ('%s is Called' %(func.__name__)) return func(*args,**kwargs) return wrapper def ConfigTraceDecorator(name,trace): def realDecorator(func): def wrapper(*args,**kwargs): if trace==True: print ('%s.%s is Called' %(name,func.__name__)) return func(*args,**kwargs) return wrapper return realDecorator from types import FunctionType class TraceMetaClass(type): def __new__(typeclass,classname,superclassname,classdict): for key,value in classdict.items(): if type(value) is FunctionType: classdict[key]=TraceDecorator(value) return type.__new__(typeclass,classname,superclassname,classdict) class ConfigTraceMetaClass(type): def __new__(typeclass,classname,superclass,classdict): if __debug__: for key,value in classdict.items(): if type(value) is FunctionType: classdict[key]=ConfigTraceDecorator(classname, True)(value) return type.__new__(typeclass,classname,superclass,classdict) class Person(object): __metaclass__=TraceMetaClass def __init__(self,name): self.__name=name def SayHello(self): print self.__name class Student(object): __metaclass__=ConfigTraceMetaClass def __init__(self,name): self.__name=name def SayHello(self): print 'hello world2' p=Person('zhang') p.SayHello() s=Student('jiao') s.SayHello()
4df520463024b038d97879f2ec416f27e784bbb7
1967af25a4e18b053682b2dbe8116f4bd38a0479
/Basic Scripts/Animal_Quiz.py
005ce2aae8a062947d70fc972063c90e5e2082b8
[ "Unlicense" ]
permissive
shubhi13/Python_Scripts
c2a82a550fa26cc8a578b1e1263689c29b87facc
9bd8fd402c61f24355a4d6b0d0815ad913becac3
refs/heads/master
2023-08-22T00:45:21.423803
2021-10-29T06:54:16
2021-10-29T06:54:16
422,703,282
0
0
Unlicense
2021-10-29T20:40:02
2021-10-29T20:20:32
null
UTF-8
Python
false
false
818
py
def check_guess(guess, answer): global score still_guessing = True attempt = 0 while still_guessing and attempt < 3: if guess.lower() == answer.lower(): print("Correct Answer") score = score + 1 still_guessing = False else: if attempt < 2: guess = input("Sorry Wrong Answer, try again") attempt = attempt + 1 if attempt == 3: print("The Correct answer is ",answer ) score = 0 print("Guess the Animal") guess1 = input("Which bear lives at the North Pole? ") check_guess(guess1, "polar bear") guess2 = input("Which is the fastest land animal? ") check_guess(guess2, "Cheetah") guess3 = input("Which is the larget animal? ") check_guess(guess3, "Blue Whale") print("Your Score is "+ str(score))
a4f9ea4b9c476bded45c0146c0fb8c9fc24c872f
d9a22d4dcdfc0c28176c0e8afd784b30d275597e
/lib/geometry/rotations.py
6bf545f8075e9092d440c71f9612e0e729c5803c
[]
no_license
jlec/relax
fda1b3ff77be0afc21c2e6cc52348ae7635cd07a
c317326ddeacd1a1c608128769676899daeae531
refs/heads/master
2016-09-08T00:27:57.256090
2015-02-10T12:24:55
2015-02-10T12:24:55
30,596,131
4
1
null
null
null
null
UTF-8
Python
false
false
72,517
py
############################################################################### # # # Copyright (C) 2004-2014 Edward d'Auvergne # # # # This file is part of the program relax (http://www.nmr-relax.com). # # # # This program is free software: you can redistribute it and/or modify # # it under the terms of the GNU General Public License as published by # # the Free Software Foundation, either version 3 of the License, or # # (at your option) any later version. # # # # This program is distributed in the hope that it will be useful, # # but WITHOUT ANY WARRANTY; without even the implied warranty of # # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # # GNU General Public License for more details. # # # # You should have received a copy of the GNU General Public License # # along with this program. If not, see <http://www.gnu.org/licenses/>. # # # ############################################################################### # Python module imports. from copy import deepcopy from math import acos, atan2, cos, pi, sin, sqrt from numpy import array, cross, dot, float64, hypot, transpose, zeros from numpy.linalg import norm from random import gauss # relax module imports. from lib.geometry.angles import wrap_angles from lib.geometry.vectors import random_unit_vector # Global variables. EULER_NEXT = [1, 2, 0, 1] # Used in the matrix_indices() function. EULER_TRANS_TABLE = { 'xzx': [0, 1, 1], 'yxy': [1, 1, 1], 'zyz': [2, 1, 1], 'xzy': [0, 1, 0], 'yxz': [1, 1, 0], 'zyx': [2, 1, 0], 'xyx': [0, 0, 1], 'yzy': [1, 0, 1], 'zxz': [2, 0, 1], 'xyz': [0, 0, 0], 'yzx': [1, 0, 0], 'zxy': [2, 0, 0] } EULER_EPSILON = 1e-5 def axis_angle_to_euler_xyx(axis, angle): """Convert the axis-angle notation to xyx Euler angles. This first generates a rotation matrix via axis_angle_to_R() and then used this together with R_to_euler_xyx() to obtain the Euler angles. @param axis: The 3D rotation axis. @type axis: numpy array, len 3 @param angle: The rotation angle. @type angle: float @return: The alpha, beta, and gamma Euler angles in the xyx convention. @rtype: float, float, float """ # Init. R = zeros((3, 3), float64) # Get the rotation. axis_angle_to_R(axis, angle, R) # Return the Euler angles. return R_to_euler_xyx(R) def axis_angle_to_euler_xyz(axis, angle): """Convert the axis-angle notation to xyz Euler angles. This first generates a rotation matrix via axis_angle_to_R() and then used this together with R_to_euler_xyz() to obtain the Euler angles. @param axis: The 3D rotation axis. @type axis: numpy array, len 3 @param angle: The rotation angle. @type angle: float @return: The alpha, beta, and gamma Euler angles in the xyz convention. @rtype: float, float, float """ # Init. R = zeros((3, 3), float64) # Get the rotation. axis_angle_to_R(axis, angle, R) # Return the Euler angles. return R_to_euler_xyz(R) def axis_angle_to_euler_xzx(axis, angle): """Convert the axis-angle notation to xzx Euler angles. This first generates a rotation matrix via axis_angle_to_R() and then used this together with R_to_euler_xzx() to obtain the Euler angles. @param axis: The 3D rotation axis. @type axis: numpy array, len 3 @param angle: The rotation angle. @type angle: float @return: The alpha, beta, and gamma Euler angles in the xzx convention. @rtype: float, float, float """ # Init. R = zeros((3, 3), float64) # Get the rotation. axis_angle_to_R(axis, angle, R) # Return the Euler angles. return R_to_euler_xzx(R) def axis_angle_to_euler_xzy(axis, angle): """Convert the axis-angle notation to xzy Euler angles. This first generates a rotation matrix via axis_angle_to_R() and then used this together with R_to_euler_xzy() to obtain the Euler angles. @param axis: The 3D rotation axis. @type axis: numpy array, len 3 @param angle: The rotation angle. @type angle: float @return: The alpha, beta, and gamma Euler angles in the xzy convention. @rtype: float, float, float """ # Init. R = zeros((3, 3), float64) # Get the rotation. axis_angle_to_R(axis, angle, R) # Return the Euler angles. return R_to_euler_xzy(R) def axis_angle_to_euler_yxy(axis, angle): """Convert the axis-angle notation to yxy Euler angles. This first generates a rotation matrix via axis_angle_to_R() and then used this together with R_to_euler_yxy() to obtain the Euler angles. @param axis: The 3D rotation axis. @type axis: numpy array, len 3 @param angle: The rotation angle. @type angle: float @return: The alpha, beta, and gamma Euler angles in the yxy convention. @rtype: float, float, float """ # Init. R = zeros((3, 3), float64) # Get the rotation. axis_angle_to_R(axis, angle, R) # Return the Euler angles. return R_to_euler_yxy(R) def axis_angle_to_euler_yxz(axis, angle): """Convert the axis-angle notation to yxz Euler angles. This first generates a rotation matrix via axis_angle_to_R() and then used this together with R_to_euler_yxz() to obtain the Euler angles. @param axis: The 3D rotation axis. @type axis: numpy array, len 3 @param angle: The rotation angle. @type angle: float @return: The alpha, beta, and gamma Euler angles in the yxz convention. @rtype: float, float, float """ # Init. R = zeros((3, 3), float64) # Get the rotation. axis_angle_to_R(axis, angle, R) # Return the Euler angles. return R_to_euler_yxz(R) def axis_angle_to_euler_yzx(axis, angle): """Convert the axis-angle notation to yzx Euler angles. This first generates a rotation matrix via axis_angle_to_R() and then used this together with R_to_euler_yzx() to obtain the Euler angles. @param axis: The 3D rotation axis. @type axis: numpy array, len 3 @param angle: The rotation angle. @type angle: float @return: The alpha, beta, and gamma Euler angles in the yzx convention. @rtype: float, float, float """ # Init. R = zeros((3, 3), float64) # Get the rotation. axis_angle_to_R(axis, angle, R) # Return the Euler angles. return R_to_euler_yzx(R) def axis_angle_to_euler_yzy(axis, angle): """Convert the axis-angle notation to yzy Euler angles. This first generates a rotation matrix via axis_angle_to_R() and then used this together with R_to_euler_yzy() to obtain the Euler angles. @param axis: The 3D rotation axis. @type axis: numpy array, len 3 @param angle: The rotation angle. @type angle: float @return: The alpha, beta, and gamma Euler angles in the yzy convention. @rtype: float, float, float """ # Init. R = zeros((3, 3), float64) # Get the rotation. axis_angle_to_R(axis, angle, R) # Return the Euler angles. return R_to_euler_yzy(R) def axis_angle_to_euler_zxy(axis, angle): """Convert the axis-angle notation to zxy Euler angles. This first generates a rotation matrix via axis_angle_to_R() and then used this together with R_to_euler_zxy() to obtain the Euler angles. @param axis: The 3D rotation axis. @type axis: numpy array, len 3 @param angle: The rotation angle. @type angle: float @return: The alpha, beta, and gamma Euler angles in the zxy convention. @rtype: float, float, float """ # Init. R = zeros((3, 3), float64) # Get the rotation. axis_angle_to_R(axis, angle, R) # Return the Euler angles. return R_to_euler_zxy(R) def axis_angle_to_euler_zxz(axis, angle): """Convert the axis-angle notation to zxz Euler angles. This first generates a rotation matrix via axis_angle_to_R() and then used this together with R_to_euler_zxz() to obtain the Euler angles. @param axis: The 3D rotation axis. @type axis: numpy array, len 3 @param angle: The rotation angle. @type angle: float @return: The alpha, beta, and gamma Euler angles in the zxz convention. @rtype: float, float, float """ # Init. R = zeros((3, 3), float64) # Get the rotation. axis_angle_to_R(axis, angle, R) # Return the Euler angles. return R_to_euler_zxz(R) def axis_angle_to_euler_zyx(axis, angle): """Convert the axis-angle notation to zyx Euler angles. This first generates a rotation matrix via axis_angle_to_R() and then used this together with R_to_euler_zyx() to obtain the Euler angles. @param axis: The 3D rotation axis. @type axis: numpy array, len 3 @param angle: The rotation angle. @type angle: float @return: The alpha, beta, and gamma Euler angles in the zyx convention. @rtype: float, float, float """ # Init. R = zeros((3, 3), float64) # Get the rotation. axis_angle_to_R(axis, angle, R) # Return the Euler angles. return R_to_euler_zyx(R) def axis_angle_to_euler_zyz(axis, angle): """Convert the axis-angle notation to zyz Euler angles. This first generates a rotation matrix via axis_angle_to_R() and then used this together with R_to_euler_zyz() to obtain the Euler angles. @param axis: The 3D rotation axis. @type axis: numpy array, len 3 @param angle: The rotation angle. @type angle: float @return: The alpha, beta, and gamma Euler angles in the zyz convention. @rtype: float, float, float """ # Init. R = zeros((3, 3), float64) # Get the rotation. axis_angle_to_R(axis, angle, R) # Return the Euler angles. return R_to_euler_zyz(R) def axis_angle_to_R(axis, angle, R): """Generate the rotation matrix from the axis-angle notation. Conversion equations ==================== From Wikipedia (U{http://en.wikipedia.org/wiki/Rotation_matrix}), the conversion is given by:: c = cos(angle); s = sin(angle); C = 1-c xs = x*s; ys = y*s; zs = z*s xC = x*C; yC = y*C; zC = z*C xyC = x*yC; yzC = y*zC; zxC = z*xC [ x*xC+c xyC-zs zxC+ys ] [ xyC+zs y*yC+c yzC-xs ] [ zxC-ys yzC+xs z*zC+c ] @param axis: The 3D rotation axis. @type axis: numpy array, len 3 @param angle: The rotation angle. @type angle: float @param R: The 3x3 rotation matrix to update. @type R: 3x3 numpy array """ # Trig factors. ca = cos(angle) sa = sin(angle) C = 1 - ca # Depack the axis. x, y, z = axis # Multiplications (to remove duplicate calculations). xs = x*sa ys = y*sa zs = z*sa xC = x*C yC = y*C zC = z*C xyC = x*yC yzC = y*zC zxC = z*xC # Update the rotation matrix. R[0, 0] = x*xC + ca R[0, 1] = xyC - zs R[0, 2] = zxC + ys R[1, 0] = xyC + zs R[1, 1] = y*yC + ca R[1, 2] = yzC - xs R[2, 0] = zxC - ys R[2, 1] = yzC + xs R[2, 2] = z*zC + ca def axis_angle_to_quaternion(axis, angle, quat, norm_flag=True): """Generate the quaternion from the axis-angle notation. Conversion equations ==================== From Wolfram MathWorld (U{http://mathworld.wolfram.com/Quaternion.html}), the conversion is given by:: q = (cos(angle/2), n * sin(angle/2)), where q is the quaternion and n is the unit vector representing the rotation axis. @param axis: The 3D rotation axis. @type axis: numpy array, len 3 @param angle: The rotation angle. @type angle: float @param quat: The quaternion structure. @type quat: numpy 4D, rank-1 array @keyword norm_flag: A flag which if True forces the axis to be converted to a unit vector. @type norm_flag: bool """ # Convert to unit vector. if norm_flag: axis = axis / norm(axis) # The scalar component of q. quat[0] = cos(angle/2) # The vector component. quat[1:] = axis * sin(angle/2) def copysign(x, y): """Return x with the sign of y. This is defined as:: copysign(x, y) = abs(x) / abs(y) * y @param x: The value. @type x: float @param y: The value. @type y: float @return: x with the sign of y. @rtype: float """ # Return the value. return abs(x) / abs(y) * y def euler_to_axis_angle_xyx(alpha, beta, gamma): """Convert the xyx Euler angles to axis-angle notation. This function first generates a rotation matrix via euler_*_to_R() and then uses R_to_axis_angle() to convert to the axis and angle notation. @param alpha: The alpha Euler angle in rad. @type alpha: float @param beta: The beta Euler angle in rad. @type beta: float @param gamma: The gamma Euler angle in rad. @type gamma: float @return: The 3D rotation axis and angle. @rtype: numpy 3D rank-1 array, float """ # Init. R = zeros((3, 3), float64) # Get the rotation. euler_to_R_xyx(alpha, beta, gamma, R) # Return the axis and angle. return R_to_axis_angle(R) def euler_to_axis_angle_xyz(alpha, beta, gamma): """Convert the xyz Euler angles to axis-angle notation. This function first generates a rotation matrix via euler_*_to_R() and then uses R_to_axis_angle() to convert to the axis and angle notation. @param alpha: The alpha Euler angle in rad. @type alpha: float @param beta: The beta Euler angle in rad. @type beta: float @param gamma: The gamma Euler angle in rad. @type gamma: float @return: The 3D rotation axis and angle. @rtype: numpy 3D rank-1 array, float """ # Init. R = zeros((3, 3), float64) # Get the rotation. euler_to_R_xyz(alpha, beta, gamma, R) # Return the axis and angle. return R_to_axis_angle(R) def euler_to_axis_angle_xzx(alpha, beta, gamma): """Convert the xzx Euler angles to axis-angle notation. This function first generates a rotation matrix via euler_*_to_R() and then uses R_to_axis_angle() to convert to the axis and angle notation. @param alpha: The alpha Euler angle in rad. @type alpha: float @param beta: The beta Euler angle in rad. @type beta: float @param gamma: The gamma Euler angle in rad. @type gamma: float @return: The 3D rotation axis and angle. @rtype: numpy 3D rank-1 array, float """ # Init. R = zeros((3, 3), float64) # Get the rotation. euler_to_R_xzx(alpha, beta, gamma, R) # Return the axis and angle. return R_to_axis_angle(R) def euler_to_axis_angle_xzy(alpha, beta, gamma): """Convert the xzy Euler angles to axis-angle notation. This function first generates a rotation matrix via euler_*_to_R() and then uses R_to_axis_angle() to convert to the axis and angle notation. @param alpha: The alpha Euler angle in rad. @type alpha: float @param beta: The beta Euler angle in rad. @type beta: float @param gamma: The gamma Euler angle in rad. @type gamma: float @return: The 3D rotation axis and angle. @rtype: numpy 3D rank-1 array, float """ # Init. R = zeros((3, 3), float64) # Get the rotation. euler_to_R_xzy(alpha, beta, gamma, R) # Return the axis and angle. return R_to_axis_angle(R) def euler_to_axis_angle_yxy(alpha, beta, gamma): """Convert the yxy Euler angles to axis-angle notation. This function first generates a rotation matrix via euler_*_to_R() and then uses R_to_axis_angle() to convert to the axis and angle notation. @param alpha: The alpha Euler angle in rad. @type alpha: float @param beta: The beta Euler angle in rad. @type beta: float @param gamma: The gamma Euler angle in rad. @type gamma: float @return: The 3D rotation axis and angle. @rtype: numpy 3D rank-1 array, float """ # Init. R = zeros((3, 3), float64) # Get the rotation. euler_to_R_yxy(alpha, beta, gamma, R) # Return the axis and angle. return R_to_axis_angle(R) def euler_to_axis_angle_yxz(alpha, beta, gamma): """Convert the yxz Euler angles to axis-angle notation. This function first generates a rotation matrix via euler_*_to_R() and then uses R_to_axis_angle() to convert to the axis and angle notation. @param alpha: The alpha Euler angle in rad. @type alpha: float @param beta: The beta Euler angle in rad. @type beta: float @param gamma: The gamma Euler angle in rad. @type gamma: float @return: The 3D rotation axis and angle. @rtype: numpy 3D rank-1 array, float """ # Init. R = zeros((3, 3), float64) # Get the rotation. euler_to_R_yxz(alpha, beta, gamma, R) # Return the axis and angle. return R_to_axis_angle(R) def euler_to_axis_angle_yzx(alpha, beta, gamma): """Convert the yzx Euler angles to axis-angle notation. This function first generates a rotation matrix via euler_*_to_R() and then uses R_to_axis_angle() to convert to the axis and angle notation. @param alpha: The alpha Euler angle in rad. @type alpha: float @param beta: The beta Euler angle in rad. @type beta: float @param gamma: The gamma Euler angle in rad. @type gamma: float @return: The 3D rotation axis and angle. @rtype: numpy 3D rank-1 array, float """ # Init. R = zeros((3, 3), float64) # Get the rotation. euler_to_R_yzx(alpha, beta, gamma, R) # Return the axis and angle. return R_to_axis_angle(R) def euler_to_axis_angle_yzy(alpha, beta, gamma): """Convert the yzy Euler angles to axis-angle notation. This function first generates a rotation matrix via euler_*_to_R() and then uses R_to_axis_angle() to convert to the axis and angle notation. @param alpha: The alpha Euler angle in rad. @type alpha: float @param beta: The beta Euler angle in rad. @type beta: float @param gamma: The gamma Euler angle in rad. @type gamma: float @return: The 3D rotation axis and angle. @rtype: numpy 3D rank-1 array, float """ # Init. R = zeros((3, 3), float64) # Get the rotation. euler_to_R_yzy(alpha, beta, gamma, R) # Return the axis and angle. return R_to_axis_angle(R) def euler_to_axis_angle_zxy(alpha, beta, gamma): """Convert the zxy Euler angles to axis-angle notation. This function first generates a rotation matrix via euler_*_to_R() and then uses R_to_axis_angle() to convert to the axis and angle notation. @param alpha: The alpha Euler angle in rad. @type alpha: float @param beta: The beta Euler angle in rad. @type beta: float @param gamma: The gamma Euler angle in rad. @type gamma: float @return: The 3D rotation axis and angle. @rtype: numpy 3D rank-1 array, float """ # Init. R = zeros((3, 3), float64) # Get the rotation. euler_to_R_zxy(alpha, beta, gamma, R) # Return the axis and angle. return R_to_axis_angle(R) def euler_to_axis_angle_zxz(alpha, beta, gamma): """Convert the zxz Euler angles to axis-angle notation. This function first generates a rotation matrix via euler_*_to_R() and then uses R_to_axis_angle() to convert to the axis and angle notation. @param alpha: The alpha Euler angle in rad. @type alpha: float @param beta: The beta Euler angle in rad. @type beta: float @param gamma: The gamma Euler angle in rad. @type gamma: float @return: The 3D rotation axis and angle. @rtype: numpy 3D rank-1 array, float """ # Init. R = zeros((3, 3), float64) # Get the rotation. euler_to_R_zxz(alpha, beta, gamma, R) # Return the axis and angle. return R_to_axis_angle(R) def euler_to_axis_angle_zyx(alpha, beta, gamma): """Convert the zyx Euler angles to axis-angle notation. This function first generates a rotation matrix via euler_*_to_R() and then uses R_to_axis_angle() to convert to the axis and angle notation. @param alpha: The alpha Euler angle in rad. @type alpha: float @param beta: The beta Euler angle in rad. @type beta: float @param gamma: The gamma Euler angle in rad. @type gamma: float @return: The 3D rotation axis and angle. @rtype: numpy 3D rank-1 array, float """ # Init. R = zeros((3, 3), float64) # Get the rotation. euler_to_R_zyx(alpha, beta, gamma, R) # Return the axis and angle. return R_to_axis_angle(R) def euler_to_axis_angle_zyz(alpha, beta, gamma): """Convert the zyz Euler angles to axis-angle notation. This function first generates a rotation matrix via euler_*_to_R() and then uses R_to_axis_angle() to convert to the axis and angle notation. @param alpha: The alpha Euler angle in rad. @type alpha: float @param beta: The beta Euler angle in rad. @type beta: float @param gamma: The gamma Euler angle in rad. @type gamma: float @return: The 3D rotation axis and angle. @rtype: numpy 3D rank-1 array, float """ # Init. R = zeros((3, 3), float64) # Get the rotation. euler_to_R_zyz(alpha, beta, gamma, R) # Return the axis and angle. return R_to_axis_angle(R) def euler_to_R_xyx(alpha, beta, gamma, R): """Generate the x-y-x Euler angle convention rotation matrix. Rotation matrix =============== The rotation matrix is defined as the vector of unit vectors:: R = [mux, muy, muz]. According to wikipedia (U{http://en.wikipedia.org/wiki/Euler_angles#Table_of_matrices}), the rotation matrix for the xyx convention is:: | cb sa*sb ca*sb | R = | sb*sg ca*cg - sa*cb*sg -sa*cg - ca*cb*sg |, | -sb*cg ca*sg + sa*cb*cg -sa*sg + ca*cb*cg | where:: ca = cos(alpha), sa = sin(alpha), cb = cos(beta), sb = sin(beta), cg = cos(gamma), sg = sin(gamma). @param alpha: The alpha Euler angle in rad for the x-rotation. @type alpha: float @param beta: The beta Euler angle in rad for the y-rotation. @type beta: float @param gamma: The gamma Euler angle in rad for the second x-rotation. @type gamma: float @param R: The 3x3 rotation matrix to update. @type R: 3x3 numpy array """ # Trig. sin_a = sin(alpha) cos_a = cos(alpha) sin_b = sin(beta) cos_b = cos(beta) sin_g = sin(gamma) cos_g = cos(gamma) # The unit mux vector component of the rotation matrix. R[0, 0] = cos_b R[1, 0] = sin_b * sin_g R[2, 0] = -sin_b * cos_g # The unit muy vector component of the rotation matrix. R[0, 1] = sin_a * sin_b R[1, 1] = cos_a * cos_g - sin_a * cos_b * sin_g R[2, 1] = cos_a * sin_g + sin_a * cos_b * cos_g # The unit muz vector component of the rotation matrix. R[0, 2] = cos_a * sin_b R[1, 2] = -sin_a * cos_g - cos_a * cos_b * sin_g R[2, 2] = -sin_a * sin_g + cos_a * cos_b * cos_g def euler_to_R_xyz(alpha, beta, gamma, R): """Generate the x-y-z Euler angle convention rotation matrix. Rotation matrix =============== The rotation matrix is defined as the vector of unit vectors:: R = [mux, muy, muz]. According to wikipedia (U{http://en.wikipedia.org/wiki/Euler_angles#Table_of_matrices}), the rotation matrix for the xyz convention is:: | cb*cg -ca*sg + sa*sb*cg sa*sg + ca*sb*cg | R = | cb*sg ca*cg + sa*sb*sg -sa*cg + ca*sb*sg |, | -sb sa*cb ca*cb | where:: ca = cos(alpha), sa = sin(alpha), cb = cos(beta), sb = sin(beta), cg = cos(gamma), sg = sin(gamma). @param alpha: The alpha Euler angle in rad for the x-rotation. @type alpha: float @param beta: The beta Euler angle in rad for the y-rotation. @type beta: float @param gamma: The gamma Euler angle in rad for the z-rotation. @type gamma: float @param R: The 3x3 rotation matrix to update. @type R: 3x3 numpy array """ # Trig. sin_a = sin(alpha) cos_a = cos(alpha) sin_b = sin(beta) cos_b = cos(beta) sin_g = sin(gamma) cos_g = cos(gamma) # The unit mux vector component of the rotation matrix. R[0, 0] = cos_b * cos_g R[1, 0] = cos_b * sin_g R[2, 0] = -sin_b # The unit muy vector component of the rotation matrix. R[0, 1] = -cos_a * sin_g + sin_a * sin_b * cos_g R[1, 1] = cos_a * cos_g + sin_a * sin_b * sin_g R[2, 1] = sin_a * cos_b # The unit muz vector component of the rotation matrix. R[0, 2] = sin_a * sin_g + cos_a * sin_b * cos_g R[1, 2] = -sin_a * cos_g + cos_a * sin_b * sin_g R[2, 2] = cos_a * cos_b def euler_to_R_xzx(alpha, beta, gamma, R): """Generate the x-z-x Euler angle convention rotation matrix. Rotation matrix =============== The rotation matrix is defined as the vector of unit vectors:: R = [mux, muy, muz]. According to wikipedia (U{http://en.wikipedia.org/wiki/Euler_angles#Table_of_matrices}), the rotation matrix for the xzx convention is:: | cb -ca*sb sa*sb | R = | sb*cg -sa*sg + ca*cb*cg -ca*sg - sa*cb*cg |, | sb*sg sa*cg + ca*cb*sg ca*cg - sa*cb*sg | where:: ca = cos(alpha), sa = sin(alpha), cb = cos(beta), sb = sin(beta), cg = cos(gamma), sg = sin(gamma). @param alpha: The alpha Euler angle in rad for the x-rotation. @type alpha: float @param beta: The beta Euler angle in rad for the z-rotation. @type beta: float @param gamma: The gamma Euler angle in rad for the second x-rotation. @type gamma: float @param R: The 3x3 rotation matrix to update. @type R: 3x3 numpy array """ # Trig. sin_a = sin(alpha) cos_a = cos(alpha) sin_b = sin(beta) cos_b = cos(beta) sin_g = sin(gamma) cos_g = cos(gamma) # The unit mux vector component of the rotation matrix. R[0, 0] = cos_b R[1, 0] = sin_b * cos_g R[2, 0] = sin_b * sin_g # The unit muy vector component of the rotation matrix. R[0, 1] = -cos_a * sin_b R[1, 1] = -sin_a * sin_g + cos_a * cos_b * cos_g R[2, 1] = sin_a * cos_g + cos_a * cos_b * sin_g # The unit muz vector component of the rotation matrix. R[0, 2] = sin_a * sin_b R[1, 2] = -cos_a * sin_g - sin_a * cos_b * cos_g R[2, 2] = cos_a * cos_g - sin_a * cos_b * sin_g def euler_to_R_xzy(alpha, beta, gamma, R): """Generate the x-z-y Euler angle convention rotation matrix. Rotation matrix =============== The rotation matrix is defined as the vector of unit vectors:: R = [mux, muy, muz]. According to wikipedia (U{http://en.wikipedia.org/wiki/Euler_angles#Table_of_matrices}), the rotation matrix for the xzy convention is:: | cb*cg sa*sg - ca*sb*cg ca*sg + sa*sb*cg | R = | sb ca*cb -sa*cb |, | -cb*sg sa*cg + ca*sb*sg ca*cg - sa*sb*sg | where:: ca = cos(alpha), sa = sin(alpha), cb = cos(beta), sb = sin(beta), cg = cos(gamma), sg = sin(gamma). @param alpha: The alpha Euler angle in rad for the x-rotation. @type alpha: float @param beta: The beta Euler angle in rad for the z-rotation. @type beta: float @param gamma: The gamma Euler angle in rad for the y-rotation. @type gamma: float @param R: The 3x3 rotation matrix to update. @type R: 3x3 numpy array """ # Trig. sin_a = sin(alpha) cos_a = cos(alpha) sin_b = sin(beta) cos_b = cos(beta) sin_g = sin(gamma) cos_g = cos(gamma) # The unit mux vector component of the rotation matrix. R[0, 0] = cos_b * cos_g R[1, 0] = sin_b R[2, 0] = -cos_b * sin_g # The unit muy vector component of the rotation matrix. R[0, 1] = sin_a * sin_g - cos_a * sin_b * cos_g R[1, 1] = cos_a * cos_b R[2, 1] = sin_a * cos_g + cos_a * sin_b * sin_g # The unit muz vector component of the rotation matrix. R[0, 2] = cos_a * sin_g + sin_a * sin_b * cos_g R[1, 2] = -sin_a * cos_b R[2, 2] = cos_a * cos_g - sin_a * sin_b * sin_g def euler_to_R_yxy(alpha, beta, gamma, R): """Generate the y-x-y Euler angle convention rotation matrix. Rotation matrix =============== The rotation matrix is defined as the vector of unit vectors:: R = [mux, muy, muz]. According to wikipedia (U{http://en.wikipedia.org/wiki/Euler_angles#Table_of_matrices}), the rotation matrix for the yxy convention is:: | ca*cg - sa*cb*sg sb*sg sa*cg + ca*cb*sg | R = | sa*sb cb -ca*sb |, | -ca*sg - sa*cb*cg sb*cg -sa*sg + ca*cb*cg | where:: ca = cos(alpha), sa = sin(alpha), cb = cos(beta), sb = sin(beta), cg = cos(gamma), sg = sin(gamma). @param alpha: The alpha Euler angle in rad for the y-rotation. @type alpha: float @param beta: The beta Euler angle in rad for the x-rotation. @type beta: float @param gamma: The gamma Euler angle in rad for the second y-rotation. @type gamma: float @param R: The 3x3 rotation matrix to update. @type R: 3x3 numpy array """ # Trig. sin_a = sin(alpha) cos_a = cos(alpha) sin_b = sin(beta) cos_b = cos(beta) sin_g = sin(gamma) cos_g = cos(gamma) # The unit mux vector component of the rotation matrix. R[0, 0] = cos_a * cos_g - sin_a * cos_b * sin_g R[1, 0] = sin_a * sin_b R[2, 0] = -cos_a * sin_g - sin_a * cos_b * cos_g # The unit muy vector component of the rotation matrix. R[0, 1] = sin_b * sin_g R[1, 1] = cos_b R[2, 1] = sin_b * cos_g # The unit muz vector component of the rotation matrix. R[0, 2] = sin_a * cos_g + cos_a * cos_b * sin_g R[1, 2] = -cos_a * sin_b R[2, 2] = -sin_a * sin_g + cos_a * cos_b * cos_g def euler_to_R_yxz(alpha, beta, gamma, R): """Generate the y-x-z Euler angle convention rotation matrix. Rotation matrix =============== The rotation matrix is defined as the vector of unit vectors:: R = [mux, muy, muz]. According to wikipedia (U{http://en.wikipedia.org/wiki/Euler_angles#Table_of_matrices}), the rotation matrix for the yxz convention is:: | ca*cg - sa*sb*sg -cb*sg sa*cg + ca*sb*sg | R = | ca*sg + sa*sb*cg cb*cg sa*sg - ca*sb*cg |, | -sa*cb sb ca*cb | where:: ca = cos(alpha), sa = sin(alpha), cb = cos(beta), sb = sin(beta), cg = cos(gamma), sg = sin(gamma). @param alpha: The alpha Euler angle in rad for the y-rotation. @type alpha: float @param beta: The beta Euler angle in rad for the x-rotation. @type beta: float @param gamma: The gamma Euler angle in rad for the z-rotation. @type gamma: float @param R: The 3x3 rotation matrix to update. @type R: 3x3 numpy array """ # Trig. sin_a = sin(alpha) cos_a = cos(alpha) sin_b = sin(beta) cos_b = cos(beta) sin_g = sin(gamma) cos_g = cos(gamma) # The unit mux vector component of the rotation matrix. R[0, 0] = cos_a * cos_g - sin_a * sin_b * sin_g R[1, 0] = cos_a * sin_g + sin_a * sin_b * cos_g R[2, 0] = -sin_a * cos_b # The unit muy vector component of the rotation matrix. R[0, 1] = -cos_b * sin_g R[1, 1] = cos_b * cos_g R[2, 1] = sin_b # The unit muz vector component of the rotation matrix. R[0, 2] = sin_a * cos_g + cos_a * sin_b * sin_g R[1, 2] = sin_a * sin_g - cos_a * sin_b * cos_g R[2, 2] = cos_a * cos_b def euler_to_R_yzx(alpha, beta, gamma, R): """Generate the y-z-x Euler angle convention rotation matrix. Rotation matrix =============== The rotation matrix is defined as the vector of unit vectors:: R = [mux, muy, muz]. According to wikipedia (U{http://en.wikipedia.org/wiki/Euler_angles#Table_of_matrices}), the rotation matrix for the yzx convention is:: | ca*cb -sb sa*cb | R = | sa*sg + ca*sb*cg cb*cg -ca*sg + sa*sb*cg |, | -sa*cg + ca*sb*sg cb*sg ca*cg + sa*sb*sg | where:: ca = cos(alpha), sa = sin(alpha), cb = cos(beta), sb = sin(beta), cg = cos(gamma), sg = sin(gamma). @param alpha: The alpha Euler angle in rad for the y-rotation. @type alpha: float @param beta: The beta Euler angle in rad for the z-rotation. @type beta: float @param gamma: The gamma Euler angle in rad for the x-rotation. @type gamma: float @param R: The 3x3 rotation matrix to update. @type R: 3x3 numpy array """ # Trig. sin_a = sin(alpha) cos_a = cos(alpha) sin_b = sin(beta) cos_b = cos(beta) sin_g = sin(gamma) cos_g = cos(gamma) # The unit mux vector component of the rotation matrix. R[0, 0] = cos_a * cos_b R[1, 0] = sin_a * sin_g + cos_a * sin_b * cos_g R[2, 0] = -sin_a * cos_g + cos_a * sin_b * sin_g # The unit muy vector component of the rotation matrix. R[0, 1] = -sin_b R[1, 1] = cos_b * cos_g R[2, 1] = cos_b * sin_g # The unit muz vector component of the rotation matrix. R[0, 2] = sin_a * cos_b R[1, 2] = -cos_a * sin_g + sin_a * sin_b * cos_g R[2, 2] = cos_a * cos_g + sin_a * sin_b * sin_g def euler_to_R_yzy(alpha, beta, gamma, R): """Generate the y-z-y Euler angle convention rotation matrix. Rotation matrix =============== The rotation matrix is defined as the vector of unit vectors:: R = [mux, muy, muz]. According to wikipedia (U{http://en.wikipedia.org/wiki/Euler_angles#Table_of_matrices}), the rotation matrix for the yzy convention is:: | -sa*sg + ca*cb*cg -sb*cg ca*sg + sa*cb*cg | R = | ca*sb cb sa*sb |, | -sa*cg - ca*cb*sg sb*sg ca*cg - sa*cb*sg | where:: ca = cos(alpha), sa = sin(alpha), cb = cos(beta), sb = sin(beta), cg = cos(gamma), sg = sin(gamma). @param alpha: The alpha Euler angle in rad for the y-rotation. @type alpha: float @param beta: The beta Euler angle in rad for the z-rotation. @type beta: float @param gamma: The gamma Euler angle in rad for the second y-rotation. @type gamma: float @param R: The 3x3 rotation matrix to update. @type R: 3x3 numpy array """ # Trig. sin_a = sin(alpha) cos_a = cos(alpha) sin_b = sin(beta) cos_b = cos(beta) sin_g = sin(gamma) cos_g = cos(gamma) # The unit mux vector component of the rotation matrix. R[0, 0] = -sin_a * sin_g + cos_a * cos_b * cos_g R[1, 0] = cos_a * sin_b R[2, 0] = -sin_a * cos_g - cos_a * cos_b * sin_g # The unit muy vector component of the rotation matrix. R[0, 1] = -sin_b * cos_g R[1, 1] = cos_b R[2, 1] = sin_b * sin_g # The unit muz vector component of the rotation matrix. R[0, 2] = cos_a * sin_g + sin_a * cos_b * cos_g R[1, 2] = sin_a * sin_b R[2, 2] = cos_a * cos_g - sin_a * cos_b * sin_g def euler_to_R_zxy(alpha, beta, gamma, R): """Generate the z-x-y Euler angle convention rotation matrix. Rotation matrix =============== The rotation matrix is defined as the vector of unit vectors:: R = [mux, muy, muz]. According to wikipedia (U{http://en.wikipedia.org/wiki/Euler_angles#Table_of_matrices}), the rotation matrix for the zxy convention is:: | ca*cg + sa*sb*sg -sa*cg + ca*sb*sg cb*sg | R = | sa*cb ca*cb -sb |, | -ca*sg + sa*sb*cg sa*sg + ca*sb*cg cb*cg | where:: ca = cos(alpha), sa = sin(alpha), cb = cos(beta), sb = sin(beta), cg = cos(gamma), sg = sin(gamma). @param alpha: The alpha Euler angle in rad for the z-rotation. @type alpha: float @param beta: The beta Euler angle in rad for the x-rotation. @type beta: float @param gamma: The gamma Euler angle in rad for the y-rotation. @type gamma: float @param R: The 3x3 rotation matrix to update. @type R: 3x3 numpy array """ # Trig. sin_a = sin(alpha) cos_a = cos(alpha) sin_b = sin(beta) cos_b = cos(beta) sin_g = sin(gamma) cos_g = cos(gamma) # The unit mux vector component of the rotation matrix. R[0, 0] = cos_a * cos_g + sin_a * sin_b * sin_g R[1, 0] = sin_a * cos_b R[2, 0] = -cos_a * sin_g + sin_a * sin_b * cos_g # The unit muy vector component of the rotation matrix. R[0, 1] = -sin_a * cos_g + cos_a * sin_b * sin_g R[1, 1] = cos_a * cos_b R[2, 1] = sin_a * sin_g + cos_a * sin_b * cos_g # The unit muz vector component of the rotation matrix. R[0, 2] = cos_b * sin_g R[1, 2] = -sin_b R[2, 2] = cos_b * cos_g def euler_to_R_zxz(alpha, beta, gamma, R): """Generate the z-x-z Euler angle convention rotation matrix. Rotation matrix =============== The rotation matrix is defined as the vector of unit vectors:: R = [mux, muy, muz]. According to wikipedia (U{http://en.wikipedia.org/wiki/Euler_angles#Table_of_matrices}), the rotation matrix for the zxz convention is:: | ca*cg - sa*cb*sg -sa*cg - ca*cb*sg sb*sg | R = | ca*sg + sa*cb*cg -sa*sg + ca*cb*cg -sb*cg |, | sa*sb ca*sb cb | where:: ca = cos(alpha), sa = sin(alpha), cb = cos(beta), sb = sin(beta), cg = cos(gamma), sg = sin(gamma). @param alpha: The alpha Euler angle in rad for the z-rotation. @type alpha: float @param beta: The beta Euler angle in rad for the y-rotation. @type beta: float @param gamma: The gamma Euler angle in rad for the second z-rotation. @type gamma: float @param R: The 3x3 rotation matrix to update. @type R: 3x3 numpy array """ # Trig. sin_a = sin(alpha) cos_a = cos(alpha) sin_b = sin(beta) cos_b = cos(beta) sin_g = sin(gamma) cos_g = cos(gamma) # The unit mux vector component of the rotation matrix. R[0, 0] = cos_a * cos_g - sin_a * cos_b * sin_g R[1, 0] = cos_a * sin_g + sin_a * cos_b * cos_g R[2, 0] = sin_a * sin_b # The unit muy vector component of the rotation matrix. R[0, 1] = -sin_a * cos_g - cos_a * cos_b * sin_g R[1, 1] = -sin_a * sin_g + cos_a * cos_b * cos_g R[2, 1] = cos_a * sin_b # The unit muz vector component of the rotation matrix. R[0, 2] = sin_b * sin_g R[1, 2] = -sin_b * cos_g R[2, 2] = cos_b def euler_to_R_zyx(alpha, beta, gamma, R): """Generate the z-y-x Euler angle convention rotation matrix. Rotation matrix =============== The rotation matrix is defined as the vector of unit vectors:: R = [mux, muy, muz]. According to wikipedia (U{http://en.wikipedia.org/wiki/Euler_angles#Table_of_matrices}), the rotation matrix for the zyx convention is:: | ca*cb -sa*cb sb | R = | sa*cg + ca*sb*sg ca*cg - sa*sb*sg -cb*sg |, | sa*sg - ca*sb*cg ca*sg + sa*sb*cg cb*cg | where:: ca = cos(alpha), sa = sin(alpha), cb = cos(beta), sb = sin(beta), cg = cos(gamma), sg = sin(gamma). @param alpha: The alpha Euler angle in rad for the z-rotation. @type alpha: float @param beta: The beta Euler angle in rad for the y-rotation. @type beta: float @param gamma: The gamma Euler angle in rad for the x-rotation. @type gamma: float @param R: The 3x3 rotation matrix to update. @type R: 3x3 numpy array """ # Trig. sin_a = sin(alpha) cos_a = cos(alpha) sin_b = sin(beta) cos_b = cos(beta) sin_g = sin(gamma) cos_g = cos(gamma) # The unit mux vector component of the rotation matrix. R[0, 0] = cos_a * cos_b R[1, 0] = sin_a * cos_g + cos_a * sin_b * sin_g R[2, 0] = sin_a * sin_g - cos_a * sin_b * cos_g # The unit muy vector component of the rotation matrix. R[0, 1] = -sin_a * cos_b R[1, 1] = cos_a * cos_g - sin_a * sin_b * sin_g R[2, 1] = cos_a * sin_g + sin_a * sin_b * cos_g # The unit muz vector component of the rotation matrix. R[0, 2] = sin_b R[1, 2] = -cos_b * sin_g R[2, 2] = cos_b * cos_g def euler_to_R_zyz(alpha, beta, gamma, R): """Generate the z-y-z Euler angle convention rotation matrix. Rotation matrix =============== The rotation matrix is defined as the vector of unit vectors:: R = [mux, muy, muz]. According to wikipedia (U{http://en.wikipedia.org/wiki/Euler_angles#Table_of_matrices}), the rotation matrix for the zyz convention is:: | -sa*sg + ca*cb*cg -ca*sg - sa*cb*cg sb*cg | R = | sa*cg + ca*cb*sg ca*cg - sa*cb*sg sb*sg |, | -ca*sb sa*sb cb | where:: ca = cos(alpha), sa = sin(alpha), cb = cos(beta), sb = sin(beta), cg = cos(gamma), sg = sin(gamma). @param alpha: The alpha Euler angle in rad for the z-rotation. @type alpha: float @param beta: The beta Euler angle in rad for the y-rotation. @type beta: float @param gamma: The gamma Euler angle in rad for the second z-rotation. @type gamma: float @param R: The 3x3 rotation matrix to update. @type R: 3x3 numpy array """ # Trig. sin_a = sin(alpha) cos_a = cos(alpha) sin_b = sin(beta) cos_b = cos(beta) sin_g = sin(gamma) cos_g = cos(gamma) # The unit mux vector component of the rotation matrix. R[0, 0] = -sin_a * sin_g + cos_a * cos_b * cos_g R[1, 0] = sin_a * cos_g + cos_a * cos_b * sin_g R[2, 0] = -cos_a * sin_b # The unit muy vector component of the rotation matrix. R[0, 1] = -cos_a * sin_g - sin_a * cos_b * cos_g R[1, 1] = cos_a * cos_g - sin_a * cos_b * sin_g R[2, 1] = sin_a * sin_b # The unit muz vector component of the rotation matrix. R[0, 2] = sin_b * cos_g R[1, 2] = sin_b * sin_g R[2, 2] = cos_b def matrix_indices(i, neg, alt): """Calculate the parameteric indices i, j, k, and h. This is one of the algorithms of Ken Shoemake in "Euler Angle Conversion. Graphics Gems IV. Paul Heckbert (ed.). Academic Press, 1994, ISBN: 0123361567. pp. 222-229." (U{http://www.graphicsgems.org/}). The indices (i, j, k) are a permutation of (x, y, z), and the index h corresponds to the row containing the Givens argument a. @param i: The index i. @type i: int @param neg: Zero if (i, j, k) is an even permutation of (x, y, z) or one if odd. @type neg: int @param alt: Zero if the first and last system axes are the same, or one if they are different. @type alt: int @return: The values of j, k, and h. @rtype: tuple of int """ # Calculate the indices. j = EULER_NEXT[i + neg] k = EULER_NEXT[i+1 - neg] # The Givens rotation row index. if alt: h = k else: h = i # Return. return j, k, h def R_random_axis(R, angle=0.0): """Generate a random rotation matrix of fixed angle via the axis-angle notation. Uniform point sampling on a unit sphere is used to generate a random axis orientation. This, together with the fixed rotation angle, is used to generate the random rotation matrix. @param R: A 3D matrix to convert to the rotation matrix. @type R: numpy 3D, rank-2 array @keyword angle: The fixed rotation angle. @type angle: float """ # Random rotation axis. rot_axis = zeros(3, float64) random_unit_vector(rot_axis) # Generate the rotation matrix. axis_angle_to_R(rot_axis, angle, R) def R_random_hypersphere(R): """Generate a random rotation matrix using 4D hypersphere point picking. A quaternion is generated by creating a 4D vector with each value randomly selected from a Gaussian distribution, and then normalising. @param R: A 3D matrix to convert to the rotation matrix. @type R: numpy 3D, rank-2 array """ # The quaternion. quat = array([gauss(0, 1), gauss(0, 1), gauss(0, 1), gauss(0, 1)], float64) quat = quat / norm(quat) # Convert the quaternion to a rotation matrix. quaternion_to_R(quat, R) def R_to_axis_angle(R): """Convert the rotation matrix into the axis-angle notation. Conversion equations ==================== From Wikipedia (U{http://en.wikipedia.org/wiki/Rotation_matrix}), the conversion is given by:: x = Qzy-Qyz y = Qxz-Qzx z = Qyx-Qxy r = hypot(x,hypot(y,z)) t = Qxx+Qyy+Qzz theta = atan2(r,t-1) @param R: The 3x3 rotation matrix to update. @type R: 3x3 numpy array @return: The 3D rotation axis and angle. @rtype: numpy 3D rank-1 array, float """ # Axes. axis = zeros(3, float64) axis[0] = R[2, 1] - R[1, 2] axis[1] = R[0, 2] - R[2, 0] axis[2] = R[1, 0] - R[0, 1] # Angle. r = hypot(axis[0], hypot(axis[1], axis[2])) t = R[0, 0] + R[1, 1] + R[2, 2] theta = atan2(r, t-1) # Normalise the axis. if r != 0.0: axis = axis / r # Return the data. return axis, theta def R_to_euler(R, notation, axes_rot='static', second_sol=False): """Convert the rotation matrix to the given Euler angles. This uses the algorithms of Ken Shoemake in "Euler Angle Conversion. Graphics Gems IV. Paul Heckbert (ed.). Academic Press, 1994, ISBN: 0123361567. pp. 222-229." (U{http://www.graphicsgems.org/}). The Euler angle notation can be one of: - xyx - xyz - xzx - xzy - yxy - yxz - yzx - yzy - zxy - zxz - zyx - zyz @param R: The 3x3 rotation matrix to extract the Euler angles from. @type R: 3D, rank-2 numpy array @param notation: The Euler angle notation to use. @type notation: str @keyword axes_rot: The axes rotation - either 'static', the static axes or 'rotating', the rotating axes. @type axes_rot: str @keyword second_sol: Return the second solution instead (currently unused). @type second_sol: bool @return: The alpha, beta, and gamma Euler angles in the given convention. @rtype: tuple of float """ # Duplicate R to avoid its modification. R = deepcopy(R) # Get the Euler angle info. i, neg, alt = EULER_TRANS_TABLE[notation] # Axis rotations. rev = 0 if axes_rot != 'static': rev = 1 # Find the other indices. j, k, h = matrix_indices(i, neg, alt) # No axis repetition. if alt: # Sine of the beta angle. sin_beta = sqrt(R[i, j]**2 + R[i, k]**2) # Non-zero sin(beta). if sin_beta > EULER_EPSILON: alpha = atan2( R[i, j], R[i, k]) beta = atan2( sin_beta, R[i, i]) gamma = atan2( R[j, i], -R[k, i]) # sin(beta) is zero. else: alpha = atan2(-R[j, k], R[j, j]) beta = atan2( sin_beta, R[i, i]) gamma = 0.0 # Axis repetition. else: # Cosine of the beta angle. cos_beta = sqrt(R[i, i]**2 + R[j, i]**2) # Non-zero cos(beta). if cos_beta > EULER_EPSILON: alpha = atan2( R[k, j], R[k, k]) beta = atan2(-R[k, i], cos_beta) gamma = atan2( R[j, i], R[i, i]) # cos(beta) is zero. else: alpha = atan2(-R[j, k], R[j, j]) beta = atan2(-R[k, i], cos_beta) gamma = 0.0 # Remapping. if neg: alpha, beta, gamma = -alpha, -beta, -gamma if rev: alpha_old = alpha alpha = gamma gamma = alpha_old # Angle wrapping. if alt and -pi < beta < 0.0: alpha = alpha + pi beta = -beta gamma = gamma + pi alpha = wrap_angles(alpha, 0.0, 2.0*pi) beta = wrap_angles(beta, 0.0, 2.0*pi) gamma = wrap_angles(gamma, 0.0, 2.0*pi) # Return the Euler angles. return alpha, beta, gamma def R_to_euler_xyx(R): """Convert the rotation matrix to the xyx Euler angles. @param R: The 3x3 rotation matrix to extract the Euler angles from. @type R: 3D, rank-2 numpy array @return: The alpha, beta, and gamma Euler angles in the xyx convention. @rtype: tuple of float """ # Redirect to R_to_euler() return R_to_euler(R, 'xyx') def R_to_euler_xyz(R): """Convert the rotation matrix to the xyz Euler angles. @param R: The 3x3 rotation matrix to extract the Euler angles from. @type R: 3D, rank-2 numpy array @return: The alpha, beta, and gamma Euler angles in the xyz convention. @rtype: tuple of float """ # Redirect to R_to_euler() return R_to_euler(R, 'xyz') def R_to_euler_xzx(R): """Convert the rotation matrix to the xzx Euler angles. @param R: The 3x3 rotation matrix to extract the Euler angles from. @type R: 3D, rank-2 numpy array @return: The alpha, beta, and gamma Euler angles in the xzx convention. @rtype: tuple of float """ # Redirect to R_to_euler() return R_to_euler(R, 'xzx') def R_to_euler_xzy(R): """Convert the rotation matrix to the xzy Euler angles. @param R: The 3x3 rotation matrix to extract the Euler angles from. @type R: 3D, rank-2 numpy array @return: The alpha, beta, and gamma Euler angles in the xzy convention. @rtype: tuple of float """ # Redirect to R_to_euler() return R_to_euler(R, 'xzy') def R_to_euler_yxy(R): """Convert the rotation matrix to the yxy Euler angles. @param R: The 3x3 rotation matrix to extract the Euler angles from. @type R: 3D, rank-2 numpy array @return: The alpha, beta, and gamma Euler angles in the yxy convention. @rtype: tuple of float """ # Redirect to R_to_euler() return R_to_euler(R, 'yxy') def R_to_euler_yxz(R): """Convert the rotation matrix to the yxz Euler angles. @param R: The 3x3 rotation matrix to extract the Euler angles from. @type R: 3D, rank-2 numpy array @return: The alpha, beta, and gamma Euler angles in the yxz convention. @rtype: tuple of float """ # Redirect to R_to_euler() return R_to_euler(R, 'yxz') def R_to_euler_yzx(R): """Convert the rotation matrix to the yzx Euler angles. @param R: The 3x3 rotation matrix to extract the Euler angles from. @type R: 3D, rank-2 numpy array @return: The alpha, beta, and gamma Euler angles in the yzx convention. @rtype: tuple of float """ # Redirect to R_to_euler() return R_to_euler(R, 'yzx') def R_to_euler_yzy(R): """Convert the rotation matrix to the yzy Euler angles. @param R: The 3x3 rotation matrix to extract the Euler angles from. @type R: 3D, rank-2 numpy array @return: The alpha, beta, and gamma Euler angles in the yzy convention. @rtype: tuple of float """ # Redirect to R_to_euler() return R_to_euler(R, 'yzy') def R_to_euler_zxy(R): """Convert the rotation matrix to the zxy Euler angles. @param R: The 3x3 rotation matrix to extract the Euler angles from. @type R: 3D, rank-2 numpy array @return: The alpha, beta, and gamma Euler angles in the zxy convention. @rtype: tuple of float """ # Redirect to R_to_euler() return R_to_euler(R, 'zxy') def R_to_euler_zxz(R): """Convert the rotation matrix to the zxz Euler angles. @param R: The 3x3 rotation matrix to extract the Euler angles from. @type R: 3D, rank-2 numpy array @return: The alpha, beta, and gamma Euler angles in the zxz convention. @rtype: tuple of float """ # Redirect to R_to_euler() return R_to_euler(R, 'zxz') def R_to_euler_zyx(R): """Convert the rotation matrix to the zyx Euler angles. @param R: The 3x3 rotation matrix to extract the Euler angles from. @type R: 3D, rank-2 numpy array @return: The alpha, beta, and gamma Euler angles in the zyx convention. @rtype: tuple of float """ # Redirect to R_to_euler() return R_to_euler(R, 'zyx') def R_to_euler_zyz(R): """Convert the rotation matrix to the zyz Euler angles. @param R: The 3x3 rotation matrix to extract the Euler angles from. @type R: 3D, rank-2 numpy array @return: The alpha, beta, and gamma Euler angles in the zyz convention. @rtype: tuple of float """ # Redirect to R_to_euler() return R_to_euler(R, 'zyz') def R_to_tilt_torsion(R): """Convert the rotation matrix to the tilt and torsion rotation angles. This notation is taken from "Bonev, I. A. and Gosselin, C. M. (2006) Analytical determination of the workspace of symmetrical spherical parallel mechanisms. IEEE Transactions on Robotics, 22(5), 1011-1017". @param R: The 3x3 rotation matrix to extract the tilt and torsion angles from. @type R: 3D, rank-2 numpy array @return: The phi, theta, and sigma tilt and torsion angles. @rtype: tuple of float """ # First obtain the zyz Euler angles. alpha, beta, gamma = R_to_euler(R, 'zyz') # The convert to tilt and torsion. phi = gamma theta = beta sigma = alpha + gamma # Return the angles. return phi, theta, sigma def R_to_quaternion(R, quat): """Convert a rotation matrix into quaternion form. This is from Wikipedia (U{http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion}), where:: w = 0.5*sqrt(1+Qxx+Qyy+Qzz), x = copysign(0.5*sqrt(1+Qxx-Qyy-Qzz),Qzy-Qyz), y = copysign(0.5*sqrt(1-Qxx+Qyy-Qzz),Qxz-Qzx), z = copysign(0.5*sqrt(1-Qxx-Qyy+Qzz),Qyx-Qxy), where the quaternion is defined as q = (w, x, y, z), and the copysign function is x with the sign of y:: copysign(x, y) = abs(x) / abs(y) * y @param R: The 3D rotation matrix. @type R: numpy 3D, rank-2 array @param quat: The quaternion. @type quat: numpy 4D, rank-1 array """ # Elements. quat[0] = 0.5 * sqrt(1.0 + R[0, 0] + R[1, 1] + R[2, 2]) quat[1] = R[2, 1] - R[1, 2] if quat[1]: quat[1] = copysign(0.5*sqrt(1 + R[0, 0] - R[1, 1] - R[2, 2]), quat[1]) quat[2] = R[0, 2] - R[2, 0] if quat[2]: quat[2] = copysign(0.5*sqrt(1 - R[0, 0] + R[1, 1] - R[2, 2]), quat[2]) quat[3] = R[1, 0] - R[0, 1] if quat[3]: quat[3] = copysign(0.5*sqrt(1 - R[0, 0] - R[1, 1] + R[2, 2]), quat[3]) def reverse_euler_xyx(alpha, beta, gamma): """Convert the given forward rotation Euler angles into the equivalent reverse rotation Euler angles. This if for the xyx notation. @param alpha: The alpha Euler angle in rad. @type alpha: float @param beta: The beta Euler angle in rad. @type beta: float @param gamma: The gamma Euler angle in rad. @type gamma: float @return: The alpha, beta, and gamma Euler angles for the reverse rotation. @rtype: tuple of float """ # Init. R = zeros((3, 3), float64) # Get the rotation. euler_xyx_to_R(alpha, beta, gamma, R) # Reverse rotation. R = transpose(R) # Return the Euler angles. return R_to_euler_xyx(R) def reverse_euler_xyz(alpha, beta, gamma): """Convert the given forward rotation Euler angles into the equivalent reverse rotation Euler angles. This if for the xyz notation. @param alpha: The alpha Euler angle in rad. @type alpha: float @param beta: The beta Euler angle in rad. @type beta: float @param gamma: The gamma Euler angle in rad. @type gamma: float @return: The alpha, beta, and gamma Euler angles for the reverse rotation. @rtype: tuple of float """ # Init. R = zeros((3, 3), float64) # Get the rotation. euler_xyz_to_R(alpha, beta, gamma, R) # Reverse rotation. R = transpose(R) # Return the Euler angles. return R_to_euler_xyz(R) def reverse_euler_xzx(alpha, beta, gamma): """Convert the given forward rotation Euler angles into the equivalent reverse rotation Euler angles. This if for the xzx notation. @param alpha: The alpha Euler angle in rad. @type alpha: float @param beta: The beta Euler angle in rad. @type beta: float @param gamma: The gamma Euler angle in rad. @type gamma: float @return: The alpha, beta, and gamma Euler angles for the reverse rotation. @rtype: tuple of float """ # Init. R = zeros((3, 3), float64) # Get the rotation. euler_xzx_to_R(alpha, beta, gamma, R) # Reverse rotation. R = transpose(R) # Return the Euler angles. return R_to_euler_xzx(R) def reverse_euler_xzy(alpha, beta, gamma): """Convert the given forward rotation Euler angles into the equivalent reverse rotation Euler angles. This if for the xzy notation. @param alpha: The alpha Euler angle in rad. @type alpha: float @param beta: The beta Euler angle in rad. @type beta: float @param gamma: The gamma Euler angle in rad. @type gamma: float @return: The alpha, beta, and gamma Euler angles for the reverse rotation. @rtype: tuple of float """ # Init. R = zeros((3, 3), float64) # Get the rotation. euler_xzy_to_R(alpha, beta, gamma, R) # Reverse rotation. R = transpose(R) # Return the Euler angles. return R_to_euler_xzy(R) def reverse_euler_yxy(alpha, beta, gamma): """Convert the given forward rotation Euler angles into the equivalent reverse rotation Euler angles. This if for the yxy notation. @param alpha: The alpha Euler angle in rad. @type alpha: float @param beta: The beta Euler angle in rad. @type beta: float @param gamma: The gamma Euler angle in rad. @type gamma: float @return: The alpha, beta, and gamma Euler angles for the reverse rotation. @rtype: tuple of float """ # Init. R = zeros((3, 3), float64) # Get the rotation. euler_yxy_to_R(alpha, beta, gamma, R) # Reverse rotation. R = transpose(R) # Return the Euler angles. return R_to_euler_yxy(R) def reverse_euler_yxz(alpha, beta, gamma): """Convert the given forward rotation Euler angles into the equivalent reverse rotation Euler angles. This if for the yxz notation. @param alpha: The alpha Euler angle in rad. @type alpha: float @param beta: The beta Euler angle in rad. @type beta: float @param gamma: The gamma Euler angle in rad. @type gamma: float @return: The alpha, beta, and gamma Euler angles for the reverse rotation. @rtype: tuple of float """ # Init. R = zeros((3, 3), float64) # Get the rotation. euler_yxz_to_R(alpha, beta, gamma, R) # Reverse rotation. R = transpose(R) # Return the Euler angles. return R_to_euler_yxz(R) def reverse_euler_yzx(alpha, beta, gamma): """Convert the given forward rotation Euler angles into the equivalent reverse rotation Euler angles. This if for the yzx notation. @param alpha: The alpha Euler angle in rad. @type alpha: float @param beta: The beta Euler angle in rad. @type beta: float @param gamma: The gamma Euler angle in rad. @type gamma: float @return: The alpha, beta, and gamma Euler angles for the reverse rotation. @rtype: tuple of float """ # Init. R = zeros((3, 3), float64) # Get the rotation. euler_yzx_to_R(alpha, beta, gamma, R) # Reverse rotation. R = transpose(R) # Return the Euler angles. return R_to_euler_yzx(R) def reverse_euler_yzy(alpha, beta, gamma): """Convert the given forward rotation Euler angles into the equivalent reverse rotation Euler angles. This if for the yzy notation. @param alpha: The alpha Euler angle in rad. @type alpha: float @param beta: The beta Euler angle in rad. @type beta: float @param gamma: The gamma Euler angle in rad. @type gamma: float @return: The alpha, beta, and gamma Euler angles for the reverse rotation. @rtype: tuple of float """ # Init. R = zeros((3, 3), float64) # Get the rotation. euler_yzy_to_R(alpha, beta, gamma, R) # Reverse rotation. R = transpose(R) # Return the Euler angles. return R_to_euler_yzy(R) def reverse_euler_zxy(alpha, beta, gamma): """Convert the given forward rotation Euler angles into the equivalent reverse rotation Euler angles. This if for the zxy notation. @param alpha: The alpha Euler angle in rad. @type alpha: float @param beta: The beta Euler angle in rad. @type beta: float @param gamma: The gamma Euler angle in rad. @type gamma: float @return: The alpha, beta, and gamma Euler angles for the reverse rotation. @rtype: tuple of float """ # Init. R = zeros((3, 3), float64) # Get the rotation. euler_zxy_to_R(alpha, beta, gamma, R) # Reverse rotation. R = transpose(R) # Return the Euler angles. return R_to_euler_zxy(R) def reverse_euler_zxz(alpha, beta, gamma): """Convert the given forward rotation Euler angles into the equivalent reverse rotation Euler angles. This if for the zxz notation. @param alpha: The alpha Euler angle in rad. @type alpha: float @param beta: The beta Euler angle in rad. @type beta: float @param gamma: The gamma Euler angle in rad. @type gamma: float @return: The alpha, beta, and gamma Euler angles for the reverse rotation. @rtype: tuple of float """ # Init. R = zeros((3, 3), float64) # Get the rotation. euler_zxz_to_R(alpha, beta, gamma, R) # Reverse rotation. R = transpose(R) # Return the Euler angles. return R_to_euler_zxz(R) def reverse_euler_zyx(alpha, beta, gamma): """Convert the given forward rotation Euler angles into the equivalent reverse rotation Euler angles. This if for the zyx notation. @param alpha: The alpha Euler angle in rad. @type alpha: float @param beta: The beta Euler angle in rad. @type beta: float @param gamma: The gamma Euler angle in rad. @type gamma: float @return: The alpha, beta, and gamma Euler angles for the reverse rotation. @rtype: tuple of float """ # Init. R = zeros((3, 3), float64) # Get the rotation. euler_zyx_to_R(alpha, beta, gamma, R) # Reverse rotation. R = transpose(R) # Return the Euler angles. return R_to_euler_zyx(R) def reverse_euler_zyz(alpha, beta, gamma): """Convert the given forward rotation Euler angles into the equivalent reverse rotation Euler angles. This if for the zyz notation. @param alpha: The alpha Euler angle in rad. @type alpha: float @param beta: The beta Euler angle in rad. @type beta: float @param gamma: The gamma Euler angle in rad. @type gamma: float @return: The alpha, beta, and gamma Euler angles for the reverse rotation. @rtype: tuple of float """ # Init. R = zeros((3, 3), float64) # Get the rotation. euler_to_R_zyz(alpha, beta, gamma, R) # Reverse rotation. R = transpose(R) # Return the Euler angles. return R_to_euler_zyz(R) def quaternion_to_axis_angle(quat): """Convert a quaternion into the axis-angle notation. Conversion equations ==================== From Wolfram MathWorld (U{http://mathworld.wolfram.com/Quaternion.html}), the conversion is given by:: q = (cos(angle/2), n * sin(angle/2)), where q is the quaternion and n is the unit vector representing the rotation axis. Therfore:: angle = 2*acos(w), axis = 2*asin([x, y, z]) @param quat: The quaternion. @type quat: numpy 4D, rank-1 array @return: The 3D rotation axis and angle. @rtype: numpy 3D rank-1 array, float """ # The angle. angle = 2 * acos(quat[0]) # The axis. if angle: axis = quat[1:] / sin(angle/2) else: axis = quat[1:] * 0.0 # Return return axis, angle def quaternion_to_R(quat, R): """Convert a quaternion into rotation matrix form. This is from Wikipedia (U{http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion}), where:: | 1 - 2y**2 - 2z**2 2xy - 2zw 2xz + 2yw | Q = | 2xy + 2zw 1 - 2x**2 - 2z**2 2yz - 2xw |, | 2xz - 2yw 2yz + 2xw 1 - 2x**2 - 2y**2 | and where the quaternion is defined as q = (w, x, y, z). This has been verified using Simo Saerkkae's "Notes on Quaternions" at U{http://www.lce.hut.fi/~ssarkka/}. @param quat: The quaternion. @type quat: numpy 4D, rank-1 array @param R: A 3D matrix to convert to the rotation matrix. @type R: numpy 3D, rank-2 array """ # Alias. (w, x, y, z) = quat # Repetitive calculations. x2 = 2.0 * x**2 y2 = 2.0 * y**2 z2 = 2.0 * z**2 xw = 2.0 * x*w xy = 2.0 * x*y xz = 2.0 * x*z yw = 2.0 * y*w yz = 2.0 * y*z zw = 2.0 * z*w # The diagonal. R[0, 0] = 1.0 - y2 - z2 R[1, 1] = 1.0 - x2 - z2 R[2, 2] = 1.0 - x2 - y2 # The off-diagonal. R[0, 1] = xy - zw R[0, 2] = xz + yw R[1, 2] = yz - xw R[1, 0] = xy + zw R[2, 0] = xz - yw R[2, 1] = yz + xw def tilt_torsion_to_R(phi, theta, sigma, R): """Generate a rotation matrix from the tilt and torsion rotation angles. This notation is taken from "Bonev, I. A. and Gosselin, C. M. (2006) Analytical determination of the workspace of symmetrical spherical parallel mechanisms. IEEE Transactions on Robotics, 22(5), 1011-1017". @param phi: The angle defining the x-y plane rotation axis. @type phi: float @param theta: The tilt angle - the angle of rotation about the x-y plane rotation axis. @type theta: float @param sigma: The torsion angle - the angle of rotation about the z' axis. @type sigma: float @param R: The 3x3 rotation matrix to update. @type R: 3D, rank-2 numpy array """ # Convert to zyz Euler angles. alpha = sigma - phi beta = theta gamma = phi # Update the rotation matrix using the zyz Euler angles. euler_to_R_zyz(alpha, beta, gamma, R) def two_vect_to_R(vector_orig, vector_fin, R): """Calculate the rotation matrix required to rotate from one vector to another. For the rotation of one vector to another, there are an infinit series of rotation matrices possible. Due to axially symmetry, the rotation axis can be any vector lying in the symmetry plane between the two vectors. Hence the axis-angle convention will be used to construct the matrix with the rotation axis defined as the cross product of the two vectors. The rotation angle is the arccosine of the dot product of the two unit vectors. Given a unit vector parallel to the rotation axis, w = [x, y, z] and the rotation angle a, the rotation matrix R is:: | 1 + (1-cos(a))*(x*x-1) -z*sin(a)+(1-cos(a))*x*y y*sin(a)+(1-cos(a))*x*z | R = | z*sin(a)+(1-cos(a))*x*y 1 + (1-cos(a))*(y*y-1) -x*sin(a)+(1-cos(a))*y*z | | -y*sin(a)+(1-cos(a))*x*z x*sin(a)+(1-cos(a))*y*z 1 + (1-cos(a))*(z*z-1) | @param vector_orig: The unrotated vector defined in the reference frame. @type vector_orig: numpy array, len 3 @param vector_fin: The rotated vector defined in the reference frame. @type vector_fin: numpy array, len 3 @param R: The 3x3 rotation matrix to update. @type R: 3x3 numpy array """ # Convert the vectors to unit vectors. vector_orig = vector_orig / norm(vector_orig) vector_fin = vector_fin / norm(vector_fin) # The rotation axis (normalised). axis = cross(vector_orig, vector_fin) axis_len = norm(axis) if axis_len != 0.0: axis = axis / axis_len # Alias the axis coordinates. x = axis[0] y = axis[1] z = axis[2] # The rotation angle. angle = acos(dot(vector_orig, vector_fin)) # Trig functions (only need to do this maths once!). ca = cos(angle) sa = sin(angle) # Calculate the rotation matrix elements. R[0, 0] = 1.0 + (1.0 - ca)*(x**2 - 1.0) R[0, 1] = -z*sa + (1.0 - ca)*x*y R[0, 2] = y*sa + (1.0 - ca)*x*z R[1, 0] = z*sa+(1.0 - ca)*x*y R[1, 1] = 1.0 + (1.0 - ca)*(y**2 - 1.0) R[1, 2] = -x*sa+(1.0 - ca)*y*z R[2, 0] = -y*sa+(1.0 - ca)*x*z R[2, 1] = x*sa+(1.0 - ca)*y*z R[2, 2] = 1.0 + (1.0 - ca)*(z**2 - 1.0)
[ "bugman@b7916896-f9f9-0310-9fe5-b3996d8957d5" ]
bugman@b7916896-f9f9-0310-9fe5-b3996d8957d5
2d345456c811079050eed477f26593bbabcee8e7
9fd767635ecc37f0650a409f88ccc4f2127f1a73
/estudios/views.py
80bf2633acdf63bc046b8b0754f378d43ead7138
[ "MIT" ]
permissive
JVacca12/FIRST
d3175f12595fc39403d72d436a234b7ba6ac2438
e3906209cae1198e1fbda4d00bc0a906e8294a69
refs/heads/main
2023-09-04T18:11:57.460379
2021-09-30T04:40:48
2021-09-30T04:40:48
410,325,878
0
0
null
null
null
null
UTF-8
Python
false
false
1,408
py
# Django REST Framework from rest_framework import mixins, status, viewsets from rest_framework.response import Response # Models from estudios.models import Estudios # Permissions from rest_framework.permissions import IsAuthenticated from users.permissions import IsStandardUser # Serializers from estudios.serializers import (EstudiosModelSerializer, EstudiosSerializer) class EstudiosViewSet(mixins.UpdateModelMixin, mixins.DestroyModelMixin, mixins.ListModelMixin, mixins.CreateModelMixin, viewsets.GenericViewSet): serializer_class = EstudiosModelSerializer def get_permissions(self): #Acá especificamos qué permisos debe tener el usuario para usar esta VISTA permission_classes = [IsAuthenticated, IsStandardUser] return [permission() for permission in permission_classes] def create(self, request, *args, **kwargs): serializer = EstudiosSerializer(data=request.data, context={"request": self.request}) serializer.is_valid(raise_exception=True) est = serializer.save() data = EstudiosModelSerializer(est).data return Response(data, status=status.HTTP_201_CREATED) def get_queryset(self): """Filtra por usuario autenticado.""" queryset = Estudios.objects.filter(user=self.request.user) return queryset
f02e9e368f9dbaa8e480bcb7e184e688a9e90469
ec79881536aa2136a6bde6da632eabc4adf603ed
/src/compute_tfidf.py
d3ee1029552388103f17a1333d0a56a51999eaad
[]
no_license
knkumar/tweet_analysis
4cebfee436eed16d81fbda8c214ea5ce56ca788b
1718cd0a864b86379a8a5d0b84486d1d97357b4d
refs/heads/master
2020-05-09T23:12:00.089244
2012-06-19T17:28:54
2012-06-19T17:28:54
4,524,337
1
0
null
null
null
null
UTF-8
Python
false
false
1,911
py
import shelve import numpy as np import sys import time import pickle as pl import math from settings import * class c_tfidf: def __init__(self): self.fldict = shelve.open("%s_%s"%(flickr_inp,bin_size)) self.twitdict = shelve.open("%s_%s"%(twitter_inp,bin_size)) self.fl_ubins = shelve.open("%s_%s.dat"%(flickr_out,bin_size)) self.tw_ubins = shelve.open("%s_%s.dat"%(twitter_out,bin_size)) def __del__(self): self.fldict.close() self.twitdict.close() self.fl_ubins.close() self.tw_ubins.close() def form_tuples(bin_size): fldict = shelve.open("%s_%s"%(flickr_inp,bin_size)) twitdict = shelve.open("%s_%s"%(twitter_inp,bin_size)) funames = fldict.keys() tunames = twitdict.keys() unames = set(funames)&set(tunames) fl_ubins = shelve.open("%s_%s"%(flickr_out,bin_size)) tw_ubins = shelve.open("%s_%s"%(twitter_out,bin_size)) def make_shelf(shelf,name,bin,tags): if shelf=='f': if name in fl_ubins.keys(): fl_ubins[name][bin] = tags else: fl_ubins[name] = {bin : tags} else: if name in fl_ubins.keys(): tw_ubins[name][bin] = tags else: tw_ubins[name] = {bin :tags} map(lambda name: map(lambda bin: make_shelf('f',name,bin,fldict[name][bin][2]), fldict[name].keys() ), unames) map(lambda name: map(lambda bin: make_shelf('t',name,bin,twitdict[name][bin][2]), twitdict[name].keys() ), unames) fldict.close() twitdict.close() return fl_ubins,tw_ubins def main(): bins = ["4"] for bin_size in bins: try: fl_ubins,tw_ubins = form_tuples(bin_size) print fl_ubins, tw_ubins except: print("Unexpected error:", sys.exc_info()[0]) raise if __name__ == "__main__": sys.exit(main())
eb8f8368b4ae1c7f06f5fbb290ed6efb9ffbe3a2
b3b066a566618f49ae83c81e963543a9b956a00a
/Python Data Science Toolbox (Part 1)/02_Default arguments, variable-length arguments and scope/05_Nested Functions II.py
0c86dd3ba3ffbdb4f2819c05d637b47bd72b72ed
[]
no_license
ahmed-gharib89/DataCamp_Data_Scientist_with_Python_2020
666c4129c3f0b5d759b511529a365dfd36c12f1a
f3d20b788c8ef766e7c86c817e6c2ef7b69520b8
refs/heads/master
2022-12-22T21:09:13.955273
2020-09-30T01:16:05
2020-09-30T01:16:05
289,991,534
2
0
null
2020-08-24T17:15:43
2020-08-24T17:15:42
null
UTF-8
Python
false
false
1,885
py
''' Nested Functions II 100xp Great job, you've just nested a function within another function. One other pretty cool reason for nesting functions is the idea of a closure. This means that the nested or inner function remembers the state of its enclosing scope when called. Thus, anything defined locally in the enclosing scope is available to the inner function even when the outer function has finished execution. Let's move forward then! In this exercise, you will complete the definition of the inner function inner_echo() and then call echo() a couple of times, each with a different argument. Complete the exercise and see what the output will be! Instructions -Complete the function header of the inner function with the function name inner_echo() and a single parameter word1. -Complete the function echo() so that it returns inner_echo. -We have called echo(), passing 2 as an argument, and assigned the resulting function to twice. Your job is to call echo(), passing 3 as an argument. Assign the resulting function to thrice. -Hit Submit to call twice() and thrice() and print the results. ''' # Define echo def echo(n): """Return the inner_echo function.""" # Define inner_echo def inner_echo(word1): """Concatenate n copies of word1.""" echo_word = word1 * n return echo_word # Return inner_echo return inner_echo # Call echo: twice twice = echo(2) # Call echo: thrice thrice = echo(3) # Call twice() and thrice() then print print(twice('hello'), thrice('hello')) #========================================================# # DEVELOPER # # BasitAminBhatti # # Github # # https://github.com/basitaminbhatti # #========================================================#
[ "Your-Email" ]
Your-Email
8426db9d315c63d1b58b87fc61bc26cdac2cfdd4
facb69b5ac8741234546ec3932b776f3f28a965b
/samples/src/main/resources/datasets/python/84.py
c1567b02f9f3629e38c3a57007b11e70996d0da6
[ "Apache-2.0" ]
permissive
CommanderTvis/kotlingrad
47bf579d885e893a0214269a117fe810bd5a4ecc
56a6d4d03544db1bcaa93c31ffc7e075bc564e64
refs/heads/master
2023-06-25T06:43:21.644844
2021-07-29T04:29:55
2021-07-29T04:29:55
365,717,366
0
0
Apache-2.0
2021-05-09T09:43:28
2021-05-09T09:43:28
null
UTF-8
Python
false
false
30
py
def test21(a, b): a + b.x
bbc86de8d4e07cb290ae05a8ae472beb042f7da0
6d2659f3ac85dbcc168835ab841dbfef99ad5b97
/ctrl.py
ea99b0acc6fad0b8a273a6cc3d024ab8dedbef9a
[ "MIT" ]
permissive
sysid/munggoggo
348db6282e1e6349321e1dceb81e6abb15706f43
6b2f398678c51bedc566be5dda579ffa4ff566c5
refs/heads/master
2023-01-28T21:45:03.330412
2022-12-13T15:29:58
2022-12-13T15:29:58
218,945,509
24
1
MIT
2023-01-17T20:59:27
2019-11-01T08:31:16
Python
UTF-8
Python
false
false
6,870
py
#!/usr/bin/env python import asyncio import logging import sys from datetime import datetime from pathlib import Path import click sys.path.insert(0, str(Path(__file__).parent / "munggoggo")) from behaviour import Behaviour from core import Core from messages import ListBehav, ManageBehav, ListTraceStore from twpy import coro from utils import setup_logging _log = logging.getLogger() setup_logging(level=logging.WARNING) logging.getLogger("aio_pika").setLevel(logging.WARNING) logging.getLogger("asyncio").setLevel(logging.INFO) LOGGING_LEVEL = logging.WARNING class Ctrl(Core): @property def behaviour(self) -> Behaviour: return Behaviour(self, binding_keys=["system"], configure_rpc=True) async def setup(self) -> None: await self.add_runtime_dependency(self.behaviour) @click.group() @click.option("--debug", "-d", is_flag=True) @click.pass_context def cli(ctx, debug): ctx.ensure_object(dict) global LOGGING_LEVEL if debug: LOGGING_LEVEL = logging.DEBUG @cli.command() @click.argument("msg") @click.argument("msg_type") @click.argument("target") @click.pass_context @coro async def send_message(ctx, msg, msg_type, target): async with Ctrl(identity="Ctrl") as a: a.logger.setLevel(LOGGING_LEVEL) click.echo(f"Sending type: '{msg_type}' msg: {msg} to {target}") await a.direct_send(msg=msg, msg_type=msg_type, target=target) await asyncio.sleep(0.1) # required for context cleanup # print(f"Duration: {datetime.now() - start}") @cli.command() @click.argument("msg") @click.argument("msg_type") @coro async def broadcast(msg, msg_type): async with Ctrl(identity="Ctrl") as a: a.logger.setLevel(LOGGING_LEVEL) click.echo(f"Broadcasting type: '{msg_type}' msg: {msg}") await a.fanout_send(msg=msg, msg_type=msg_type) await asyncio.sleep(0.1) # required for context cleanup # print(f"Duration: {datetime.now() - start}") @cli.command() @click.argument("agent") @click.pass_context @coro async def list_behaviour(ctx, agent): async with Ctrl(identity="Ctrl") as a: a.logger.setLevel(LOGGING_LEVEL) if not await target_exists(a, agent): return False click.echo(f"Listing behaviours of {agent}:") obj = ListBehav() result = await a.call(obj.to_rpc(), agent) for behav in result.to_dict().get("behavs", list()): click.secho(behav, fg="cyan") await asyncio.sleep(0.1) # required for context cleanup # print(f"Duration: {datetime.now() - start}") @cli.command() @click.pass_context @coro async def list_peers(ctx): async with Ctrl(identity="Ctrl") as a: a.logger.setLevel(LOGGING_LEVEL) click.echo(f"Listing peers.") peers = await a.list_peers() for peer in peers: click.secho(f"{peer.get('name')}", fg="cyan") await asyncio.sleep(0.1) # required for context cleanup # print(f"Duration: {datetime.now() - start}") async def target_exists(core: Core, target: str) -> bool: peers = [peer.get("name") for peer in await core.list_peers()] if target not in peers: click.secho(f"Invalid target: {target}. Choose one of: {peers}.", fg="red") return False return True @cli.command() @click.argument("command") @click.argument("target") @click.argument("behav") @click.pass_context @coro async def call(ctx, command, target, behav): async with Ctrl(identity="Ctrl") as a: a.logger.setLevel(LOGGING_LEVEL) if not await target_exists(a, target): return False # peers = [peer.get("name") for peer in await a.list_peers()] # if target not in peers: # click.echo(f"Invalid target: {target}. Choose one of: {peers}.") # return False click.echo(f"Sending command: '{command}' to {target}:{behav}") obj = ManageBehav(behav=behav, command=None,) if command in ["Stop", "stop"]: obj.command = "stop" elif command in ["Start", "start"]: obj.command = "start" else: click.secho(f"Invalid command.", fg="red") click.secho(f"Expected one of [start, stop]", fg="red") return False result = await a.call(obj.to_rpc(), target=target) click.secho(f"rpc result: {result}", fg="cyan") await asyncio.sleep(0.1) # required for context cleanup # print(f"Duration: {datetime.now() - start}") @cli.command() @click.argument("target") @click.option("--limit", "-d") @click.option("--sender", "-s") @click.pass_context @coro async def list_traces(ctx, target, limit, sender): # assert isinstance(limit, int), f"limit must be integer" async with Ctrl(identity="Ctrl") as a: a.logger.setLevel(LOGGING_LEVEL) if not await target_exists(a, target): return False if limit is not None: limit = int(limit) obj = ListTraceStore(app_id=sender, limit=limit,) result = await a.call(obj.to_rpc(), target=target) for entry in result.traces: click.echo(entry[1]) click.echo(f"Total number of records: {len(result.traces)}.") await asyncio.sleep(0.1) # required for context cleanup # print(f"Duration: {datetime.now() - start}") if __name__ == "__main__": """ Examples: python ctrl.py broadcast '{"c_type": "DemoData", "c_data": "{\"message\": \"Hallo\", \"date\": 1546300800.0}"}' "CUSTOM" python ctrl.py list-behaviour SqlAgent python ctrl.py send-message '{"c_type": "DemoData", "c_data": "{\"message\": \"Hallo2\", \"date\": 1546300800.0}"}' "CUSTOM" SqlAgent python ctrl.py call start SqlAgent SqlAgent.SqlBehav python ctrl.py call start SqlAgent SqlBehav python ctrl.py list-traces SqlAgent --sender Ctrl """ start = datetime.now() # cli(['-d', 'list-peers'], obj=dict(start=start)) # list_peers([]) # list_behaviour(['SqlAgenttt']) # broadcast([r'{"c_type": "DemoData", "c_data": "{\"message\": \"Hallo\", \"date\": 1546300800.0}"}', "CUSTOM"]) # broadcast(['wrong format', "CUSTOM"]) # send_message([r'{"c_type": "DemoData", "c_data": "{\"message\": \"Hallo\", \"date\": 1546300800.0}"}', "CUSTOM", "SqlAgent"]) # call(['Stop', 'SqlAgent', "SqlAgent.SqlBehav"]) # call(['Stop', 'SqlAgent', "SqlBehav"]) # call(['start', 'SqlAgent', "SqlBehav"]) # list_traces(["SqlAgent"]) # list_traces(["SqlAgent", "--limit", 1]) # list_traces(["SqlAgent", "--sender", "Ctrl"]) ################################################################################ # activate CLI ################################################################################ cli(obj=dict(start=start)) print(f"Duration: {datetime.now() - start}")
6b0be7613cc411613219c39a2e460d4b9ff5b3c3
08f61d5432b6cf14bb6fc3448259a6c445b26780
/dapodik/peserta_didik/peserta_didik_baru.py
e973ecbc1b9dba59b799edc8b00f3c1fa4b2a89d
[ "LicenseRef-scancode-warranty-disclaimer", "MIT" ]
permissive
nainaidaa/dapodik
9ecfabc6f262c24a4cd0288b3b1a7116b3a09199
d89c0fb899c89e866527f6b7b57f741abd6444ea
refs/heads/master
2023-07-22T23:37:16.694675
2021-09-08T15:04:23
2021-09-08T15:04:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,337
py
from datetime import datetime, date from typing import Optional from uuid import UUID import attr @attr.dataclass class PesertaDidikBaru: pdb_id: UUID sekolah_id: UUID nama_pd: str jenis_kelamin: str nik: str tempat_lahir: str tanggal_lahir: date nama_ibu_kandung: str jenis_pendaftaran_id: int nisn: str sudah_diproses: int berhasil_diproses: int tahun_ajaran_id: int tahun_ajaran_id_str: str peserta_didik_id: UUID peserta_didik_id_str: UUID # Get only create_date: Optional[datetime] = None last_update: Optional[datetime] = None soft_delete: Optional[int] = None last_sync: Optional[datetime] = None updater_id: Optional[UUID] = None @attr.dataclass class Create: sekolah_id: UUID tahun_ajaran_id: int nama_pd: str jenis_kelamin: str nisn: str nik: str tempat_lahir: str tanggal_lahir: datetime nama_ibu_kandung: str jenis_pendaftaran_id: int sudah_diproses: int = 0 berhasil_diproses: int = 0 peserta_didik_id: str = "" pdb_id: str = "Admin.model.PesertaDidikBaru-1" sekolah_id_str: str = "" tahun_ajaran_id_str: str = "" jenis_pendaftaran_id_str: str = "" peserta_didik_id_str: str = ""
f5d5a6877aa307cae604b2014d304f5a80aeedbe
24fe1f54fee3a3df952ca26cce839cc18124357a
/servicegraph/lib/python2.7/site-packages/acimodel-4.0_3d-py2.7.egg/cobra/modelimpl/eqptcapacity/bdusagehist5min.py
99446d6b79141cb2c690a779a3622e853429f447
[]
no_license
aperiyed/servicegraph-cloudcenter
4b8dc9e776f6814cf07fe966fbd4a3481d0f45ff
9eb7975f2f6835e1c0528563a771526896306392
refs/heads/master
2023-05-10T17:27:18.022381
2020-01-20T09:18:28
2020-01-20T09:18:28
235,065,676
0
0
null
2023-05-01T21:19:14
2020-01-20T09:36:37
Python
UTF-8
Python
false
false
18,985
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2019 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class BdUsageHist5min(Mo): """ Mo doc not defined in techpub!!! """ meta = StatsClassMeta("cobra.model.eqptcapacity.BdUsageHist5min", "Bridge domain usage count") counter = CounterMeta("totalCap", CounterCategory.COUNTER, "count", "Bridge domain entries capacity") counter._propRefs[PropCategory.IMPLICIT_CUMULATIVE] = "totalCapCum" counter._propRefs[PropCategory.IMPLICIT_PERIODIC] = "totalCapPer" counter._propRefs[PropCategory.IMPLICIT_MIN] = "totalCapMin" counter._propRefs[PropCategory.IMPLICIT_MAX] = "totalCapMax" counter._propRefs[PropCategory.IMPLICIT_AVG] = "totalCapAvg" counter._propRefs[PropCategory.IMPLICIT_SUSPECT] = "totalCapSpct" counter._propRefs[PropCategory.IMPLICIT_THRESHOLDED] = "totalCapThr" counter._propRefs[PropCategory.IMPLICIT_TREND] = "totalCapTr" counter._propRefs[PropCategory.IMPLICIT_RATE] = "totalCapRate" meta._counters.append(counter) counter = CounterMeta("total", CounterCategory.COUNTER, "count", "Total Bridge domain entries") counter._propRefs[PropCategory.IMPLICIT_CUMULATIVE] = "totalCum" counter._propRefs[PropCategory.IMPLICIT_PERIODIC] = "totalPer" counter._propRefs[PropCategory.IMPLICIT_MIN] = "totalMin" counter._propRefs[PropCategory.IMPLICIT_MAX] = "totalMax" counter._propRefs[PropCategory.IMPLICIT_AVG] = "totalAvg" counter._propRefs[PropCategory.IMPLICIT_SUSPECT] = "totalSpct" counter._propRefs[PropCategory.IMPLICIT_THRESHOLDED] = "totalThr" counter._propRefs[PropCategory.IMPLICIT_TREND] = "totalTr" counter._propRefs[PropCategory.IMPLICIT_RATE] = "totalRate" meta._counters.append(counter) meta.moClassName = "eqptcapacityBdUsageHist5min" meta.rnFormat = "HDeqptcapacityBdUsage5min-%(index)s" meta.category = MoCategory.STATS_HISTORY meta.label = "historical Bridge domain usage count stats in 5 minute" meta.writeAccessMask = 0x1 meta.readAccessMask = 0x1 meta.isDomainable = False meta.isReadOnly = True meta.isConfigurable = False meta.isDeletable = False meta.isContextRoot = False meta.parentClasses.add("cobra.model.eqptcapacity.Entity") meta.superClasses.add("cobra.model.stats.Item") meta.superClasses.add("cobra.model.stats.Hist") meta.superClasses.add("cobra.model.eqptcapacity.BdUsageHist") meta.rnPrefixes = [ ('HDeqptcapacityBdUsage5min-', True), ] prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "cnt", "cnt", 16212, PropCategory.REGULAR) prop.label = "Number of Collections During this Interval" prop.isImplicit = True prop.isAdmin = True meta.props.add("cnt", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "index", "index", 47458, PropCategory.REGULAR) prop.label = "History Index" prop.isConfig = True prop.isAdmin = True prop.isCreateOnly = True prop.isNaming = True meta.props.add("index", prop) prop = PropMeta("str", "lastCollOffset", "lastCollOffset", 111, PropCategory.REGULAR) prop.label = "Collection Length" prop.isImplicit = True prop.isAdmin = True meta.props.add("lastCollOffset", prop) prop = PropMeta("str", "modTs", "modTs", 7, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("modTs", prop) prop = PropMeta("str", "repIntvEnd", "repIntvEnd", 110, PropCategory.REGULAR) prop.label = "Reporting End Time" prop.isImplicit = True prop.isAdmin = True meta.props.add("repIntvEnd", prop) prop = PropMeta("str", "repIntvStart", "repIntvStart", 109, PropCategory.REGULAR) prop.label = "Reporting Start Time" prop.isImplicit = True prop.isAdmin = True meta.props.add("repIntvStart", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) prop = PropMeta("str", "totalAvg", "totalAvg", 47520, PropCategory.IMPLICIT_AVG) prop.label = "Total Bridge domain entries average value" prop.isOper = True prop.isStats = True meta.props.add("totalAvg", prop) prop = PropMeta("str", "totalCapAvg", "totalCapAvg", 47499, PropCategory.IMPLICIT_AVG) prop.label = "Bridge domain entries capacity average value" prop.isOper = True prop.isStats = True meta.props.add("totalCapAvg", prop) prop = PropMeta("str", "totalCapCum", "totalCapCum", 47495, PropCategory.IMPLICIT_CUMULATIVE) prop.label = "Bridge domain entries capacity cumulative" prop.isOper = True prop.isStats = True meta.props.add("totalCapCum", prop) prop = PropMeta("str", "totalCapMax", "totalCapMax", 47498, PropCategory.IMPLICIT_MAX) prop.label = "Bridge domain entries capacity maximum value" prop.isOper = True prop.isStats = True meta.props.add("totalCapMax", prop) prop = PropMeta("str", "totalCapMin", "totalCapMin", 47497, PropCategory.IMPLICIT_MIN) prop.label = "Bridge domain entries capacity minimum value" prop.isOper = True prop.isStats = True meta.props.add("totalCapMin", prop) prop = PropMeta("str", "totalCapPer", "totalCapPer", 47496, PropCategory.IMPLICIT_PERIODIC) prop.label = "Bridge domain entries capacity periodic" prop.isOper = True prop.isStats = True meta.props.add("totalCapPer", prop) prop = PropMeta("str", "totalCapRate", "totalCapRate", 47503, PropCategory.IMPLICIT_RATE) prop.label = "Bridge domain entries capacity rate" prop.isOper = True prop.isStats = True meta.props.add("totalCapRate", prop) prop = PropMeta("str", "totalCapSpct", "totalCapSpct", 47500, PropCategory.IMPLICIT_SUSPECT) prop.label = "Bridge domain entries capacity suspect count" prop.isOper = True prop.isStats = True meta.props.add("totalCapSpct", prop) prop = PropMeta("str", "totalCapThr", "totalCapThr", 47501, PropCategory.IMPLICIT_THRESHOLDED) prop.label = "Bridge domain entries capacity thresholded flags" prop.isOper = True prop.isStats = True prop.defaultValue = 0 prop.defaultValueStr = "unspecified" prop._addConstant("avgCrit", "avg-severity-critical", 2199023255552) prop._addConstant("avgHigh", "avg-crossed-high-threshold", 68719476736) prop._addConstant("avgLow", "avg-crossed-low-threshold", 137438953472) prop._addConstant("avgMajor", "avg-severity-major", 1099511627776) prop._addConstant("avgMinor", "avg-severity-minor", 549755813888) prop._addConstant("avgRecovering", "avg-recovering", 34359738368) prop._addConstant("avgWarn", "avg-severity-warning", 274877906944) prop._addConstant("cumulativeCrit", "cumulative-severity-critical", 8192) prop._addConstant("cumulativeHigh", "cumulative-crossed-high-threshold", 256) prop._addConstant("cumulativeLow", "cumulative-crossed-low-threshold", 512) prop._addConstant("cumulativeMajor", "cumulative-severity-major", 4096) prop._addConstant("cumulativeMinor", "cumulative-severity-minor", 2048) prop._addConstant("cumulativeRecovering", "cumulative-recovering", 128) prop._addConstant("cumulativeWarn", "cumulative-severity-warning", 1024) prop._addConstant("lastReadingCrit", "lastreading-severity-critical", 64) prop._addConstant("lastReadingHigh", "lastreading-crossed-high-threshold", 2) prop._addConstant("lastReadingLow", "lastreading-crossed-low-threshold", 4) prop._addConstant("lastReadingMajor", "lastreading-severity-major", 32) prop._addConstant("lastReadingMinor", "lastreading-severity-minor", 16) prop._addConstant("lastReadingRecovering", "lastreading-recovering", 1) prop._addConstant("lastReadingWarn", "lastreading-severity-warning", 8) prop._addConstant("maxCrit", "max-severity-critical", 17179869184) prop._addConstant("maxHigh", "max-crossed-high-threshold", 536870912) prop._addConstant("maxLow", "max-crossed-low-threshold", 1073741824) prop._addConstant("maxMajor", "max-severity-major", 8589934592) prop._addConstant("maxMinor", "max-severity-minor", 4294967296) prop._addConstant("maxRecovering", "max-recovering", 268435456) prop._addConstant("maxWarn", "max-severity-warning", 2147483648) prop._addConstant("minCrit", "min-severity-critical", 134217728) prop._addConstant("minHigh", "min-crossed-high-threshold", 4194304) prop._addConstant("minLow", "min-crossed-low-threshold", 8388608) prop._addConstant("minMajor", "min-severity-major", 67108864) prop._addConstant("minMinor", "min-severity-minor", 33554432) prop._addConstant("minRecovering", "min-recovering", 2097152) prop._addConstant("minWarn", "min-severity-warning", 16777216) prop._addConstant("periodicCrit", "periodic-severity-critical", 1048576) prop._addConstant("periodicHigh", "periodic-crossed-high-threshold", 32768) prop._addConstant("periodicLow", "periodic-crossed-low-threshold", 65536) prop._addConstant("periodicMajor", "periodic-severity-major", 524288) prop._addConstant("periodicMinor", "periodic-severity-minor", 262144) prop._addConstant("periodicRecovering", "periodic-recovering", 16384) prop._addConstant("periodicWarn", "periodic-severity-warning", 131072) prop._addConstant("rateCrit", "rate-severity-critical", 36028797018963968) prop._addConstant("rateHigh", "rate-crossed-high-threshold", 1125899906842624) prop._addConstant("rateLow", "rate-crossed-low-threshold", 2251799813685248) prop._addConstant("rateMajor", "rate-severity-major", 18014398509481984) prop._addConstant("rateMinor", "rate-severity-minor", 9007199254740992) prop._addConstant("rateRecovering", "rate-recovering", 562949953421312) prop._addConstant("rateWarn", "rate-severity-warning", 4503599627370496) prop._addConstant("trendCrit", "trend-severity-critical", 281474976710656) prop._addConstant("trendHigh", "trend-crossed-high-threshold", 8796093022208) prop._addConstant("trendLow", "trend-crossed-low-threshold", 17592186044416) prop._addConstant("trendMajor", "trend-severity-major", 140737488355328) prop._addConstant("trendMinor", "trend-severity-minor", 70368744177664) prop._addConstant("trendRecovering", "trend-recovering", 4398046511104) prop._addConstant("trendWarn", "trend-severity-warning", 35184372088832) prop._addConstant("unspecified", None, 0) meta.props.add("totalCapThr", prop) prop = PropMeta("str", "totalCapTr", "totalCapTr", 47502, PropCategory.IMPLICIT_TREND) prop.label = "Bridge domain entries capacity trend" prop.isOper = True prop.isStats = True meta.props.add("totalCapTr", prop) prop = PropMeta("str", "totalCum", "totalCum", 47516, PropCategory.IMPLICIT_CUMULATIVE) prop.label = "Total Bridge domain entries cumulative" prop.isOper = True prop.isStats = True meta.props.add("totalCum", prop) prop = PropMeta("str", "totalMax", "totalMax", 47519, PropCategory.IMPLICIT_MAX) prop.label = "Total Bridge domain entries maximum value" prop.isOper = True prop.isStats = True meta.props.add("totalMax", prop) prop = PropMeta("str", "totalMin", "totalMin", 47518, PropCategory.IMPLICIT_MIN) prop.label = "Total Bridge domain entries minimum value" prop.isOper = True prop.isStats = True meta.props.add("totalMin", prop) prop = PropMeta("str", "totalPer", "totalPer", 47517, PropCategory.IMPLICIT_PERIODIC) prop.label = "Total Bridge domain entries periodic" prop.isOper = True prop.isStats = True meta.props.add("totalPer", prop) prop = PropMeta("str", "totalRate", "totalRate", 47524, PropCategory.IMPLICIT_RATE) prop.label = "Total Bridge domain entries rate" prop.isOper = True prop.isStats = True meta.props.add("totalRate", prop) prop = PropMeta("str", "totalSpct", "totalSpct", 47521, PropCategory.IMPLICIT_SUSPECT) prop.label = "Total Bridge domain entries suspect count" prop.isOper = True prop.isStats = True meta.props.add("totalSpct", prop) prop = PropMeta("str", "totalThr", "totalThr", 47522, PropCategory.IMPLICIT_THRESHOLDED) prop.label = "Total Bridge domain entries thresholded flags" prop.isOper = True prop.isStats = True prop.defaultValue = 0 prop.defaultValueStr = "unspecified" prop._addConstant("avgCrit", "avg-severity-critical", 2199023255552) prop._addConstant("avgHigh", "avg-crossed-high-threshold", 68719476736) prop._addConstant("avgLow", "avg-crossed-low-threshold", 137438953472) prop._addConstant("avgMajor", "avg-severity-major", 1099511627776) prop._addConstant("avgMinor", "avg-severity-minor", 549755813888) prop._addConstant("avgRecovering", "avg-recovering", 34359738368) prop._addConstant("avgWarn", "avg-severity-warning", 274877906944) prop._addConstant("cumulativeCrit", "cumulative-severity-critical", 8192) prop._addConstant("cumulativeHigh", "cumulative-crossed-high-threshold", 256) prop._addConstant("cumulativeLow", "cumulative-crossed-low-threshold", 512) prop._addConstant("cumulativeMajor", "cumulative-severity-major", 4096) prop._addConstant("cumulativeMinor", "cumulative-severity-minor", 2048) prop._addConstant("cumulativeRecovering", "cumulative-recovering", 128) prop._addConstant("cumulativeWarn", "cumulative-severity-warning", 1024) prop._addConstant("lastReadingCrit", "lastreading-severity-critical", 64) prop._addConstant("lastReadingHigh", "lastreading-crossed-high-threshold", 2) prop._addConstant("lastReadingLow", "lastreading-crossed-low-threshold", 4) prop._addConstant("lastReadingMajor", "lastreading-severity-major", 32) prop._addConstant("lastReadingMinor", "lastreading-severity-minor", 16) prop._addConstant("lastReadingRecovering", "lastreading-recovering", 1) prop._addConstant("lastReadingWarn", "lastreading-severity-warning", 8) prop._addConstant("maxCrit", "max-severity-critical", 17179869184) prop._addConstant("maxHigh", "max-crossed-high-threshold", 536870912) prop._addConstant("maxLow", "max-crossed-low-threshold", 1073741824) prop._addConstant("maxMajor", "max-severity-major", 8589934592) prop._addConstant("maxMinor", "max-severity-minor", 4294967296) prop._addConstant("maxRecovering", "max-recovering", 268435456) prop._addConstant("maxWarn", "max-severity-warning", 2147483648) prop._addConstant("minCrit", "min-severity-critical", 134217728) prop._addConstant("minHigh", "min-crossed-high-threshold", 4194304) prop._addConstant("minLow", "min-crossed-low-threshold", 8388608) prop._addConstant("minMajor", "min-severity-major", 67108864) prop._addConstant("minMinor", "min-severity-minor", 33554432) prop._addConstant("minRecovering", "min-recovering", 2097152) prop._addConstant("minWarn", "min-severity-warning", 16777216) prop._addConstant("periodicCrit", "periodic-severity-critical", 1048576) prop._addConstant("periodicHigh", "periodic-crossed-high-threshold", 32768) prop._addConstant("periodicLow", "periodic-crossed-low-threshold", 65536) prop._addConstant("periodicMajor", "periodic-severity-major", 524288) prop._addConstant("periodicMinor", "periodic-severity-minor", 262144) prop._addConstant("periodicRecovering", "periodic-recovering", 16384) prop._addConstant("periodicWarn", "periodic-severity-warning", 131072) prop._addConstant("rateCrit", "rate-severity-critical", 36028797018963968) prop._addConstant("rateHigh", "rate-crossed-high-threshold", 1125899906842624) prop._addConstant("rateLow", "rate-crossed-low-threshold", 2251799813685248) prop._addConstant("rateMajor", "rate-severity-major", 18014398509481984) prop._addConstant("rateMinor", "rate-severity-minor", 9007199254740992) prop._addConstant("rateRecovering", "rate-recovering", 562949953421312) prop._addConstant("rateWarn", "rate-severity-warning", 4503599627370496) prop._addConstant("trendCrit", "trend-severity-critical", 281474976710656) prop._addConstant("trendHigh", "trend-crossed-high-threshold", 8796093022208) prop._addConstant("trendLow", "trend-crossed-low-threshold", 17592186044416) prop._addConstant("trendMajor", "trend-severity-major", 140737488355328) prop._addConstant("trendMinor", "trend-severity-minor", 70368744177664) prop._addConstant("trendRecovering", "trend-recovering", 4398046511104) prop._addConstant("trendWarn", "trend-severity-warning", 35184372088832) prop._addConstant("unspecified", None, 0) meta.props.add("totalThr", prop) prop = PropMeta("str", "totalTr", "totalTr", 47523, PropCategory.IMPLICIT_TREND) prop.label = "Total Bridge domain entries trend" prop.isOper = True prop.isStats = True meta.props.add("totalTr", prop) meta.namingProps.append(getattr(meta.props, "index")) def __init__(self, parentMoOrDn, index, markDirty=True, **creationProps): namingVals = [index] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
a10765120a7758b9dc943cb42170270d4fb26a28
a02016f368e9e9615dabe0c30b97d4e3f494ff20
/Transformer/Model.py
049fc2085f4d12ebeec365b9d16f86db63f5a069
[]
no_license
carmelocs/Learning
d46a9c58035fe22204585ebcad2001ffee07d9b4
f0eea71a689ac4e4f5c75a69fd6bd56a0f606da8
refs/heads/master
2023-06-11T03:36:03.521019
2021-07-07T04:40:02
2021-07-07T04:40:02
286,873,786
1
0
null
null
null
null
UTF-8
Python
false
false
8,493
py
import torch import torch.nn as nn import torch.nn.functional as F from Layer import EncoderLayer, DecoderLayer def get_pad_mask(seq_q, seq_k): ''' Input: seq_q: [B, len_q] seq_k: [B, len_k] Output: pad_mask: [B, len_q, len_k] ''' len_q = seq_q.size(1) # `PAD` is 0 pad_mask = seq_k.eq(0) # print(f"pad mask: {pad_mask.shape}") pad_mask = pad_mask.unsqueeze(1).repeat(1, len_q, 1) # shape [B, len_q, len_k] # print(f"output of pad mask:{pad_mask.shape}") return pad_mask def get_subsequent_mask(len_q, len_k): ''' Mask out subsequent positions. Input: int: len_q, len_k Output: subsequent_mask: [1, len_q, len_k] ''' return torch.triu(torch.ones(1, len_q, len_k), diagonal=1) == 0 class Encoder(nn.Module): def __init__(self, len_src_vocab, d_word_vec, d_model, num_head, num_layer, d_k, d_v, d_ff, dropout=0.1): super(Encoder, self).__init__() self.src_word_emb = nn.Embedding(len_src_vocab, d_word_vec) self.dropout = nn.Dropout(p=dropout) self.layer_stack = nn.ModuleList([ EncoderLayer(d_model, num_head, d_k, d_v, d_ff, dropout) for _ in range(num_layer) ]) self.layer_norm = nn.LayerNorm(d_model) self.d_model = d_model def forward(self, src_word, src_slf_mask=None): ''' Input: src_word: [B, len_src] src_slf_mask: [B, len_src, len_src] Output: enc_output: [B, len_src, d_model] ''' enc_output = self.layer_norm(self.dropout(self.src_word_emb(src_word))) # print(f"enc_output: {enc_output.shape}") for enc_layer in self.layer_stack: enc_output, *_ = enc_layer(enc_output, src_slf_mask) # print( # f"enc_output: {enc_output.shape}\nenc_src_mask: {src_mask.shape}") return enc_output class Decoder(nn.Module): def __init__(self, len_tgt_vocab, d_word_vec, d_model, num_head, num_layer, d_k, d_v, d_ff, dropout=0.1): super(Decoder, self).__init__() self.tgt_word_emb = nn.Embedding(len_tgt_vocab, d_word_vec) self.dropout = nn.Dropout(p=dropout) self.layer_stack = nn.ModuleList([ DecoderLayer(d_model, num_head, d_k, d_v, d_ff, dropout) for _ in range(num_layer) ]) self.layer_norm = nn.LayerNorm(d_model) self.d_model = d_model def forward(self, tgt_word, enc_output, tgt_slf_mask=None, tgt_src_mask=None): ''' Input: tgt_word: [B, len_tgt] enc_output: [B, len_src, d_model] tgt_slf_mask: [B, len_tgt, len_tgt] tgt_src_mask: [B, len_tgt, len_src] Output: dec_output: [B, len_tgt, d_model] ''' dec_output = self.layer_norm(self.dropout(self.tgt_word_emb(tgt_word))) # print(f"tgt_word: {tgt_word.shape}\nenc_output: {enc_output.shape}\ntgt_mask: {tgt_mask.shape}\nsrc_mask: {src_mask.shape}") for dec_layer in self.layer_stack: dec_output, *_ = dec_layer(dec_output, enc_output, dec_slf_mask=tgt_slf_mask, dec_enc_mask=tgt_src_mask) return dec_output class Transformer(nn.Module): def __init__(self, len_src_vocab, len_tgt_vocab, d_word_vec, d_model, num_head, num_layer, d_k, d_v, d_ff, dropout=0.1): super(Transformer, self).__init__() self.len_src_vocab = len_src_vocab self.len_tgt_vocab = len_tgt_vocab self.d_model = d_model self.encoder = Encoder(len_src_vocab=len_src_vocab, d_word_vec=d_word_vec, d_model=d_model, num_head=num_head, num_layer=num_layer, d_k=d_k, d_v=d_v, d_ff=d_ff, dropout=dropout) self.decoder = Decoder(len_tgt_vocab=len_tgt_vocab, d_word_vec=d_word_vec, d_model=d_model, num_head=num_head, num_layer=num_layer, d_k=d_k, d_v=d_v, d_ff=d_ff, dropout=dropout) self.tgt_word_prj = nn.Linear(d_model, len_tgt_vocab) assert d_word_vec == d_model def forward(self, src_word, tgt_word): ''' Input: src_word: [B, len_src] tgt_word: [B, len_tgt] Output: pred: [B, len_tgt] ''' src_slf_mask = get_pad_mask(src_word, src_word) tgt_slf_mask = get_pad_mask(tgt_word, tgt_word) & get_subsequent_mask( self.len_tgt_vocab, self.len_tgt_vocab) tgt_src_mask = get_pad_mask(tgt_word, src_word) print( f"src_slf_mask: {src_slf_mask.shape}\ntgt_slf_mask: {tgt_slf_mask.shape}\ntgt_src_mask: {tgt_src_mask.shape}" ) enc_output = self.encoder(src_word=src_word, src_slf_mask=src_slf_mask) # print(f"trans_src_word: {src_word.shape}\ntrans_src_mask: {src_mask.shape}\ntransf_enc_output: {enc_output.shape}\n") dec_output = self.decoder(tgt_word=tgt_word, enc_output=enc_output, tgt_slf_mask=tgt_slf_mask, tgt_src_mask=tgt_src_mask) print( f"trans_src_word: {src_word.shape}\nsrc_slf_mask: {src_slf_mask.shape}\ntransf_enc_output: {enc_output.shape}\ntrans_dec_output: {dec_output.shape}" ) seq_pred = self.tgt_word_prj(dec_output) print(f"seq_pred: {seq_pred.shape}") return F.log_softmax(seq_pred, dim=-1).max(-1)[0] if __name__ == '__main__': # Make some fake data torch.manual_seed(0) BATCH_SIZE = 16 MAX_LEN_SEQ = 100 LEN_SRC = 100 LEN_TGT = 120 D_WORD_VEC = 512 src_word = torch.rand(BATCH_SIZE, LEN_SRC).long() print(f"source word: {src_word.shape}") tgt_word = torch.rand(BATCH_SIZE, LEN_TGT).long() print(f"target word: {tgt_word.shape}") src_word_emb = nn.Embedding(LEN_SRC, D_WORD_VEC) tgt_word_emb = nn.Embedding(LEN_TGT, D_WORD_VEC) # query = src_word_emb(src_word) # key = src_word_emb(src_word) # value = src_word_emb(src_word) enc_input = src_word_emb(src_word) print(f"encoder input: {enc_input.shape}") dec_input = tgt_word_emb(tgt_word) print(f"decoder input: {dec_input.shape}") # Hyperparameters # number of encoder/decoder layers NUM_LAYER = 6 # The dimensionality of input and output for EncoderDecoder model D_MODEL = 512 # number of heads/parallel attention layers NUM_HEAD = 8 # The dimensionality of qurey and key in each head D_K = D_MODEL // NUM_HEAD # The dimensionality of value in each head (could be different from d_k) D_V = D_K # The dimensionality of inner-layer for Position-wise Feed-Forward Network(FFN) D_FF = 2048 # enc_pad_mask = get_pad_mask(src_word, src_word) # dec_enc_pad_mask = get_pad_mask(tgt_word, src_word) # dec_pad_mask = get_pad_mask(tgt_word, tgt_word) # dec_sub_mask = get_subsequent_mask(LEN_TGT, LEN_TGT) # dec_slf_att_mask = dec_pad_mask & dec_sub_mask transformer = Transformer( len_src_vocab=LEN_SRC, len_tgt_vocab=LEN_TGT, d_word_vec=D_WORD_VEC, d_model=D_MODEL, num_head=NUM_HEAD, num_layer=NUM_LAYER, d_k=D_K, d_v=D_V, d_ff=D_FF, ) pred = transformer(src_word, tgt_word) print(f"pred: {pred.shape}")
d47a7be89ea03b1b9eea03e8ab1f78a3ad026051
606c03cdf70fe642d8d0ad1b55bc0a01ade33776
/twitter/twitter/setup.py
4f77ed74a85bc45045ceb22a1f1bb76d2a6dd1fd
[]
no_license
pravallika2207/TWITTER-SENTIMENT-ANALYSIS-USING-STREAMING-API
f8353bb9a7ffd341bfccc2820057ade72e47185d
69e58f6a1d10b7d3a4b1d8aeb4e096a587c7073f
refs/heads/master
2020-05-23T18:27:28.230447
2019-05-15T20:00:24
2019-05-15T20:00:24
186,888,131
1
0
null
null
null
null
UTF-8
Python
false
false
560
py
from setuptools import setup,find_packages setup(name='twitter', version='0.1', description='Twitter Sentiment Analysis Using Streaming APi', url='https://github.com/Mrudula09/twitter', author='Mrudula Nudurupati', author_email='[email protected]', packages=find_packages(), install_requires=[ 'emoji==0.5.1', 'nltk==3.4', 'matplotlib==2.1.2', 'tweepy==3.7.0', 'pandas==0.22.0', 'numpy==1.14.0', 'wordcloud==1.5.0', ], zip_safe=True)
717f01eec18028cda1a7a1fc9cd5684655077da5
a55fcbe94032f98f8a858cebf7cfe843410aea76
/hw4/env/lib/python3.6/encodings/palmos.py
1235c0724933a47f8554a706098c955e9509af68
[]
no_license
quentintruong/UCLA-ECE239AS-W19
a3aca9302125ee7b85f8cecf82485782718d8266
f734aa7a8178b64b309761f4a390ed4689c4caed
refs/heads/master
2022-12-10T19:01:28.589101
2020-02-14T08:00:33
2020-02-14T08:00:33
166,895,199
1
0
null
2022-12-08T01:43:39
2019-01-21T23:34:01
Jupyter Notebook
UTF-8
Python
false
false
64
py
/Users/quentintruong/anaconda3/lib/python3.6/encodings/palmos.py
6fd7f3b2f75c83c5bd806a7fa3e9207ca1a109b0
707afa88f15e7bbf7d0d1c89b5076a9d6d17547e
/Python-Selenium unittest/EpilepsyTC_AirCondition.py
abbd1206e995a656f1bc6447c62ade17f053ad00
[]
no_license
Longmann94/DFI_testing
769f7211313b6303271b556b97e1038992d927a9
a42430a25bdea98c5551f51003078a547335f7c6
refs/heads/master
2020-03-15T19:11:51.965865
2018-06-07T15:40:27
2018-06-07T15:40:27
132,302,477
3
0
null
2018-05-27T15:04:44
2018-05-06T03:11:25
Python
UTF-8
Python
false
false
10,769
py
import unittest import time import HtmlTestRunner import os from selenium import webdriver from selenium.webdriver.support.ui import Select from selenium.webdriver.common.action_chains import ActionChains from selenium.webdriver.common.keys import Keys cwd = os.getcwd()+'/results' class Test_setUp_menu_buttons(unittest.TestCase): def setUp(self): self.driver = webdriver.Chrome() self.driver.maximize_window() def tearDown(self): self.driver.close() #@unittest.skip("skip") def test_TC_AirCondition_01_iconClick(self): driver = self.driver driver.get("https://www.dfiinfo.com.au/beta-2-0-3d/") time.sleep(2) driver.find_element_by_xpath("//div[@id='firsttime']/div[2]/button/div[2]").click() driver.find_element_by_xpath("//div[@id='wrapper']/div[8]/div/button/div[2]").click() driver.find_element_by_xpath("//div[@id='setupContainer']/div[2]/select").click() Select(driver.find_element_by_xpath("//div[@id='setupContainer']/div[2]/select")).select_by_visible_text("Epilepsy") driver.find_element_by_xpath("//img[@alt='setup icon']").click() driver.find_element_by_xpath("//img[@alt='Air Conditioning']").click() time.sleep(2) self.assertTrue(driver.find_element_by_id("aircon").is_selected()) driver.save_screenshot('SC_TC_AirCondition_01_iconClick.png') #@unittest.skip("skip") def test_TC_AirCondition_01_checkboxClick(self): driver = self.driver driver.get("https://www.dfiinfo.com.au/beta-2-0-3d/") time.sleep(2) driver.find_element_by_xpath("//div[@id='firsttime']/div[2]/button/div[2]").click() driver.find_element_by_xpath("//div[@id='wrapper']/div[8]/div/button/div[2]").click() driver.find_element_by_xpath("//div[@id='setupContainer']/div[2]/select").click() Select(driver.find_element_by_xpath("//div[@id='setupContainer']/div[2]/select")).select_by_visible_text("Epilepsy") driver.find_element_by_xpath("//img[@alt='setup icon']").click() driver.find_element_by_xpath("//div[@id='setup3']/ul/div[4]/li/label/span").click() time.sleep(2) self.assertTrue(driver.find_element_by_id("aircon").is_selected()) driver.save_screenshot('SC_TC_AirCondition_01_checkboxClick.png') #@unittest.skip("skip") def test_TC_AirCondition_01_textClick(self): driver = self.driver driver.get("https://www.dfiinfo.com.au/beta-2-0-3d/") time.sleep(2) driver.find_element_by_xpath("//div[@id='firsttime']/div[2]/button/div[2]").click() driver.find_element_by_xpath("//div[@id='wrapper']/div[8]/div/button/div[2]").click() driver.find_element_by_xpath("//div[@id='setupContainer']/div[2]/select").click() Select(driver.find_element_by_xpath("//div[@id='setupContainer']/div[2]/select")).select_by_visible_text("Epilepsy") driver.find_element_by_xpath("//img[@alt='setup icon']").click() driver.find_element_by_xpath("//div[@id='setup3']/ul/div[4]/li/label").click() time.sleep(2) self.assertTrue(driver.find_element_by_id("aircon").is_selected()) driver.save_screenshot('SC_TC_AirCondition_01_textClick.png') #@unittest.skip("skip") def test_TC_AirCondition_01_boxAreaClick(self): driver = self.driver driver.get("https://www.dfiinfo.com.au/beta-2-0-3d/") driver.find_element_by_xpath("//div[@id='firsttime']/div[2]/button/div[2]").click() driver.find_element_by_xpath("//div[@id='wrapper']/div[8]/div/button/div[2]").click() driver.find_element_by_xpath("//div[@id='setupContainer']/div[2]/select").click() Select(driver.find_element_by_xpath("//div[@id='setupContainer']/div[2]/select")).select_by_visible_text("Epilepsy") driver.find_element_by_xpath("//img[@alt='setup icon']").click() driver.find_element_by_xpath("//div[@id='setup3']/ul/div[4]/li").click() time.sleep(2) self.assertTrue(driver.find_element_by_id("aircon").is_selected()) driver.save_screenshot('SC_TC_AirCondition_01_boxAreaClick.png') #@unittest.skip("skip") def test_TC_AirCondition_02a(self): driver = self.driver driver.get("https://www.dfiinfo.com.au/beta-2-0-3d/") time.sleep(2) driver.find_element_by_xpath("//div[@id='firsttime']/div[2]/button/div[2]").click() driver.find_element_by_xpath("//div[@id='wrapper']/div[8]/div/button/div[2]").click() driver.find_element_by_xpath("//div[@id='setupContainer']/div[2]/select").click() Select(driver.find_element_by_xpath("//div[@id='setupContainer']/div[2]/select")).select_by_visible_text("Epilepsy") driver.find_element_by_xpath("//img[@alt='setup icon']").click() driver.find_element_by_xpath("//div[@id='setup3']/ul/div[4]/li/label").click() driver.find_element_by_xpath("//div[@id='setup3']/ul/div[4]/li/label").click() driver.find_element_by_xpath("//div[@id='setup3']/ul/div[4]/li").click() driver.find_element_by_xpath("//div[@id='setup3']/ul/div[4]/li/label/span").click() driver.find_element_by_xpath("//div[@id='setup3']/ul/div[4]/li/label").click() driver.find_element_by_xpath("//img[@alt='Air Conditioning']").click() time.sleep(2) self.assertFalse(driver.find_element_by_id("aircon").is_selected()) driver.save_screenshot('SC_TC_AirCondition_02a_unselect.png') #@unittest.skip("skip") def test_TC_AirCondition_02b(self): driver = self.driver driver.get("https://www.dfiinfo.com.au/beta-2-0-3d/") driver.find_element_by_xpath("//div[@id='firsttime']/div[2]/button/div[2]").click() driver.find_element_by_xpath("//div[@id='wrapper']/div[8]/div/button/div[2]").click() driver.find_element_by_xpath("//div[@id='setupContainer']/div[2]/select").click() Select(driver.find_element_by_xpath("//div[@id='setupContainer']/div[2]/select")).select_by_visible_text("Epilepsy") driver.find_element_by_xpath("//img[@alt='setup icon']").click() driver.find_element_by_xpath("//div[@id='setup3']/ul/div[4]/li/label").click() driver.find_element_by_xpath("//div[@id='setup3']/ul/div[4]/li").click() driver.find_element_by_xpath("//div[@id='setup3']/ul/div[4]/li/label/span").click() driver.find_element_by_xpath("//div[@id='setup3']/ul/div[4]/li/label").click() driver.find_element_by_xpath("//img[@alt='Air Conditioning']").click() time.sleep(2) self.assertTrue(driver.find_element_by_id("aircon").is_selected()) driver.save_screenshot('SC_TC_AirCondition_02b_select.png') #@unittest.skip("skip") def test_TC_AirCondition_03(self): driver = self.driver driver.get("https://www.dfiinfo.com.au/beta-2-0-3d/") driver.find_element_by_xpath("//div[@id='firsttime']/div[2]/button/div[2]").click() driver.find_element_by_xpath("//div[@id='wrapper']/div[8]/div/button/div[2]").click() driver.find_element_by_xpath("//div[@id='setupContainer']/div[2]/select").click() Select(driver.find_element_by_xpath("//div[@id='setupContainer']/div[2]/select")).select_by_visible_text("Epilepsy") driver.find_element_by_xpath("//img[@alt='setup icon']").click() button = driver.find_element_by_xpath("//img[@alt='Air Conditioning']") ActionChains(driver).move_to_element(button).click_and_hold(button).pause(6).release().perform() time.sleep(2) self.assertTrue(driver.find_element_by_id("aircon").is_selected()) # assertEqual() driver.save_screenshot('SC_TC_AirCondition_03.png') #@unittest.skip("skip still working on it, drag mouse over button") def test_TC_AirCondition_04(self): driver = self.driver driver.get("https://www.dfiinfo.com.au/beta-2-0-3d/") driver.find_element_by_xpath("//div[@id='firsttime']/div[2]/button/div[2]").click() driver.find_element_by_xpath("//div[@id='wrapper']/div[8]/div/button/div[2]").click() driver.find_element_by_xpath("//div[@id='setupContainer']/div[2]/select").click() Select(driver.find_element_by_xpath("//div[@id='setupContainer']/div[2]/select")).select_by_visible_text("Epilepsy") driver.find_element_by_xpath("//img[@alt='setup icon']").click() driver.find_element_by_xpath("//img[@alt='Air Conditioning']") button = driver.find_element_by_xpath("//div[@id='setup3']/ul/div[4]/li/label") ActionChains(driver).drag_and_drop_by_offset(button, 30, 10).perform() time.sleep(2) self.assertTrue(driver.find_element_by_id("aircon").is_selected()) # assertEqual() driver.save_screenshot('SC_TC_AirCondition_04.png') #@unittest.skip("skip") def test_TC_AirCondition_05(self): driver = self.driver driver.get("https://www.dfiinfo.com.au/beta-2-0-3d/") time.sleep(2) driver.find_element_by_xpath("//div[@id='firsttime']/div[2]/button/div[2]").click() driver.find_element_by_xpath("//div[@id='wrapper']/div[8]/div/button/div[2]").click() driver.find_element_by_xpath("//div[@id='setupContainer']/div[2]/select").click() Select(driver.find_element_by_xpath("//div[@id='setupContainer']/div[2]/select")).select_by_visible_text("Epilepsy") driver.find_element_by_xpath("//img[@alt='setup icon']").click() driver.find_element_by_xpath("//img[@alt='Air Conditioning']").click() driver.find_element_by_xpath("//div[@id='setupContainer']/div/button/div[2]").click() time.sleep(2) driver.find_element_by_id("inputname").click() driver.find_element_by_id("inputname").clear() driver.find_element_by_id("inputname").send_keys("TEST") driver.find_element_by_id("inputsub").click() driver.find_element_by_id("inputsub").clear() driver.find_element_by_id("inputsub").send_keys("Mornington") driver.find_element_by_id("inputsub").send_keys(Keys.ENTER) time.sleep(2) # assertEqual() driver.save_screenshot('SC_TC_AirCondition_05.png') if __name__ == "__main__": #import sys;sys.argv = ['', 'Test.testDFI_Search'] unittest.main(testRunner=HtmlTestRunner.HTMLTestRunner(output=cwd))
77b06ffff76eaa8fc30bc45f6bbc686ae4474388
76f44f087082cc0092485803edacf8bdef9ac513
/alfabet.py
be7b6a2a9d87cbbe7b58f946292014245e296c9e
[]
no_license
marcinmaslach/Enigma
6a556fda7cb2351d2b5da41077039ad428490f5e
68492ba60eb9140764b8429b631bef173f2972fd
refs/heads/master
2020-04-11T04:40:09.248195
2018-12-12T17:46:40
2018-12-12T17:46:40
161,520,996
1
0
null
null
null
null
UTF-8
Python
false
false
619
py
class Alphabet(): def __init__(self, alphabet): self.alphabet = [i for i in alphabet.upper()] def check_len_alphabet(self): if len(self.alphabet) != 26: raise ValueError ("Your alphabet have wrong lenght!") def repeat_alphabet(self): for i in range(len(self.alphabet)): if self.alphabet.count(self.alphabet[i])>1: raise ValueError ("Duplicates appear in the alphabet!") def take_index(self, sign): return self.alphabet.index(sign) def take_sign(self, index): return self.alphabet[index] def len_alphabet(self): return len(self.alphabet) def __str__(self): return self.alphabet
47ae4bdf56fb000fd7182d52f0ac862315036afa
44d1ce981d0a0607e5394f837e555ac7ffe5d8f2
/Python Machine Learning CookBook/ch04_无监督学习_聚类/P68_k-means_聚类.py
4f21dd98d25bd1a520a21487764de7ad1277b61a
[]
no_license
sola1121/references_of_machine_learning
9b6a8dfdc41884a0cedc0c1ce93da2af91686648
acd6b41646a7f95793b08b8590ce5daa66877b0d
refs/heads/master
2020-04-24T14:45:22.659428
2019-07-31T10:02:29
2019-07-31T10:02:29
172,034,868
0
0
null
null
null
null
UTF-8
Python
false
false
1,465
py
import numpy as np import matplotlib; matplotlib.use("Qt5Agg") import matplotlib.pyplot as plt from sklearn.cluster import KMeans # 从聚合中导入kmeans file_dir = "./dat/data_multivar.txt" data = list() with open(file_dir, 'r') as file: for line in file.readlines(): data.append(line[:-1].split(",")) data = np.array(data).astype("float64") # 初始化一个k-means对象, 然后对其进行训练 kmeans = KMeans(init="k-means++", n_clusters=10, n_init=10) kmeans.fit(data) # 作图 x_min, x_max = min(data[:, 0])-1.0, max(data[:, 0])+1.0 y_min, y_max = min(data[:, 1])-1.0, max(data[:, 1])+1.0 x_values, y_values = np.meshgrid(np.arange(x_min, x_max, 0.1), np.arange(y_min, y_max, 0.1)) predict_labels = kmeans.predict(np.c_[x_values.ravel(), y_values.ravel()]) print(predict_labels) predict_labels = predict_labels.reshape(x_values.shape) plt.figure() # 画出边界 plt.imshow(predict_labels, interpolation="nearest", extent=(x_values.min(), x_values.max(), y_values.min(), y_values.max()), cmap=plt.cm.Paired, aspect="auto", origin="lower" ) # 作画中心点 centroids = kmeans.cluster_centers_ plt.scatter(centroids[:, 0], centroids[:, 1], marker="o", s=150, linewidths=3, color="k", zorder=10, facecolors="blue") # 作画原始数据点 plt.scatter(data[:, 0], data[:, 1], marker="o", facecolors="none", edgecolors="black") plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.show()
fdcf843cbacd5bff6bea2c85dac2f94b4f88c0b9
a8db7a0be1cf92d1ad8f3106114209dc6518ba8e
/flaskapp.wsgi
3e1de5ee94885429942c11636c1a041db0b17b6d
[]
no_license
mensurm/registar
b14544df2e703fc5e6ab86e4b628aa607367175e
9008d58cd4802703d76e0638ae90f87ab1195160
refs/heads/master
2021-01-10T21:46:41.924983
2015-10-21T17:05:23
2015-10-21T17:05:23
34,619,900
0
0
null
null
null
null
UTF-8
Python
false
false
89
wsgi
import sys sys.path.insert(0, '/var/www/flaskapp') from admin import app as application
cda9c9c57511424f73367de4ffc507d2fc22a9ba
94f278407a5b4254d94663be768bd9bd604804a8
/django_boards/urls.py
f927f00b92cb90d742e65a506ab03ef89473319a
[]
no_license
SriNandan33/django-boards
25fca0192618aae4ed1ccae507880a95340d850c
3f12f49aef4fd3d018d91a2456ed6d024e3fb63d
refs/heads/master
2020-04-02T03:54:58.422667
2018-10-25T17:58:46
2018-10-25T17:58:46
153,990,835
1
0
null
null
null
null
UTF-8
Python
false
false
1,109
py
"""django_boards URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.contrib.auth.views import LogoutView, LoginView from django.urls import path, include from accounts import views as accounts_views urlpatterns = [ path('', include('boards.urls')), path('signup/', accounts_views.signup, name='signup'), path('login/', LoginView.as_view(template_name='accounts/login.html'), name='login'), path('logout/', LogoutView.as_view(), name='logout'), path('admin/', admin.site.urls), ]
[ "=" ]
=
99a3a7aed12047431b1087b08ede9b531b7d3dc8
7e48ab347783507edc388887827a60db9b186a12
/thermal_2p_0salt.py
739d5be221c81fb75c5a4cbfe39b44bee5a3b1e3
[]
no_license
laphysique/Protein_RPA
188b825a66799293a629a25ee214877df7f81b8c
9668caccea88a85fd1334bc0a64938a98710a24c
refs/heads/master
2023-04-19T11:36:11.277320
2021-04-28T13:45:34
2021-04-28T13:45:34
255,717,263
1
1
null
2021-04-28T13:45:36
2020-04-14T20:22:21
Python
UTF-8
Python
false
false
5,611
py
# RPA model (no FH) for 2 overall neutral charge sequences # No salt. No conterions. # Constant permittivity # solute sizes are not tunable # ver Git.1 Apr 14, 2020 # Upload to github # Rewrite data structure: from class to dict # Rewrtie the code for calculating S(k): from matrix product to linear summation # ver 2 May 14, 2017 import numpy as np import scipy import time import scipy.integrate as sci from numpy import exp from numpy import log phi_min_sys = 1e-12 Gamma = 1 # Short-range cutoff factor, 1 for Olvera de la Cruz's electric potential c_smear = 0 # Short-range Gaussian smearing, 0.5 for Wang/Fredrickson's smearing intlim = 200 # twoProteins: # Returns a dict HP, which includes basic information of the proteins and the model parameters def twoProteins(sigma1, sigma2): sig1, sig2 = np.array(sigma1), np.array(sigma2) N1, N2 = sig1.shape[0], sig2.shape[0] # linear summation for S1(k) mel1 = np.kron(sig1, sig1).reshape((N1, N1)) Tel1 = np.array([ np.sum(mel1.diagonal(n) + mel1.diagonal(-n)) for n in range(N1)]) Tel1[0] /= 2 L1 = np.arange(N1) # linear summation for S2(k) mel2 = np.kron(sig2, sig2).reshape((N2, N2)) Tel2 = np.array([ np.sum(mel2.diagonal(n) + mel2.diagonal(-n)) for n in range(N2)]) Tel2[0] /= 2 L2 = np.arange(N2) HP = { 'sig1': sig1, \ 'sig2': sig2, \ 'N1' : N1, \ 'N2' : N2, \ 'T1' : Tel1, \ 'T2' : Tel2, \ 'L1' : L1, \ 'L2' : L2 \ } return HP #----------------------------------- Entropy ----------------------------------- def s_calc(x): return (x > phi_min_sys )*x*np.log(x+(x<phi_min_sys)) def Enp(HP, phi1, phi2): return s_calc(phi1)/HP['N1'] + s_calc(phi2)/HP['N2'] + s_calc(1-phi1-phi2) def d_Enp_1(HP, phi1, phi2): return -1 + 1/HP['N1'] + log(phi1)/HP['N1'] - log(1-phi1-phi2) def d_Enp_2(HP, phi1, phi2): return -1 + 1/HP['N2'] + log(phi2)/HP['N2'] - log(1-phi1-phi2) def dd_Enp_11(HP, phi1, phi2): return 1/phi1/HP['N1'] + 1/(1-phi1-phi2) def dd_Enp_22(HP, phi1, phi2): return 1/phi2/HP['N2'] + 1/(1-phi1-phi2) def dd_Enp_12(HP, phi1, phi2): return 1/(1-phi1-phi2) #------------------------------ RPA f_el function ------------------------------ def Uel(k,u): return 4*np.pi*u/(k*k*(1+Gamma*k*k))*np.exp(-c_smear*k*k) def Sk(Hp,k): return np.mean( HP['T1']*np.exp(-k*k*HP['L1']/6) ), \ np.mean( HP['T2']*np.exp(-k*k*HP['L2']/6) ) def Fel(HP, phi1, phi2, u): f1 = sci.quad(Fel_toint1, 0, np.inf, args=(HP,phi,phis,u), limit=intlim)[0] f2 = sci.quad(Fel_toint2, 0, np.inf, args=(HP,phi,phis,u), limit=intlim)[0] return quad(self._Fel_to_int, 0, np.inf, \ args=(self, phi1, phi2, u), \ epsabs=err_abs, epsrel=err_rel,limit = N_int_max)[0] # f_el def Fel_toint1(k, HP, phi1, phi2, u): sk1, sk2 = Sk(HP, k) uk = Uel(k,u) G = lk*( phi1*sk1 + phi2*sk2 ) return 1/(4*np.pi*np.pi)*k*k*( log(1 + G) - G + G*G/2 ) def Fel_toint2(k, HP, phi1,phi2, u): sk1, sk2 = Sk(HP, k) uk = Uel(k,u) G = lk*( phi1*sk1 + phi2*sk2 ) return 1/(4*np.pi*np.pi)*k*k*( G - G*G/2 ) # 1st-phi1 derivative of f_el def dFel(HP, phi1, phi2, u ): df1 = sci.quad(dFel_1_toint, 0, np.inf, args=(HP,phi,phis,u), limit=intlim )[0] df2 = sci.quad(dFel_2_toint, 0, np.inf, args=(HP,phi,phis,u), limit=intlim )[0] return df1, df2 def dFel_1_toint(k, HP, phi1, phi2, u): sk1, sk2 = Sk(HP, k) uk = Uel(k,u) G = lk*( phi1*sk1 + phi2*sk2 ) return 1/(4*np.pi*np.pi)*k*k*lk*sk1/( 1 + G ) def dFel_2_toint(k, HP, phi1, phi2, u): sk1, sk2 = Sk(HP, k) uk = Uel(k,u) G = lk*( phi1*sk1 + phi2*sk2 ) return 1/(4*np.pi*np.pi)*k*k*lk*sk2/( 1 + G ) # 2nd-phi1^2 derivative of f_el def ddFel(HP, phi1, phi2, u ): ddf11 = sci.quad(ddFel_11_toint, 0, np.inf, args=(HP,phi,phis,u),limit=intlim )[0] ddf22 = sci.quad(ddFel_22_toint, 0, np.inf, args=(HP,phi,phis,u),limit=intlim )[0] ddf12 = sci.quad(ddFel_12_toint, 0, np.inf, args=(HP,phi,phis,u),limit=intlim )[0] return ddf11, ddf22, ddf12 def ddFel_11_toint(k, HP, phi1, phi2, u): sk1, sk2 = Sk(HP, k) uk = Uel(k,u) G = lk*( phi1*sk1 + phi2*sk2 ) A = lk*sk1/(1+G) return -1/(4*np.pi*np.pi)*k*k*A*A def ddFel_11_toint(k, HP, phi1, phi2, u): sk1, sk2 = Sk(HP, k) uk = Uel(k,u) G = lk*( phi1*sk1 + phi2*sk2 ) B = lk*sk2/(1+G) return -1/(4*np.pi*np.pi)*k*k*B*B def ddFel_12_toint(k, HP, phi1, phi2, u): sk1, sk2 = Sk(HP, k) uk = Uel(k,u) G = lk*( phi1*sk1 + phi2*sk2 ) A, B = lk*sk1/(1+G) , lk*sk2/(1+G) return -1/(4*np.pi*np.pi)*k*k*A*B #---------------------------- free energy functions ---------------------------- def feng(HP, phi1, phi2, u): return Enp(HP, phi1, phi2) + Fel(HP,phi1,phi2,u) # 1st derivatives def dfeng(HP, phi1, phi2, u): dFel_1, dFel_2 = dFel(HP, phi1,phi2,u) df1 = d_Enp_1(HP, phi1, phi2) + dFel_1 df2 = d_Enp_2(HP, phi1, phi2) + dFel_2 return df1, df2 # 2nd derivatives def ddfeng(P, phi1, phi2, u): ddFel_11, ddFel_22, dFel_12 = ddFel(HP, phi1,phi2,u) ddf11 = dd_Enp_11(HP, phi1, phi2) + ddFel_11 ddf22 = dd_Enp_22(HP, phi1, phi2) + ddFel_22 ddf12 = dd_Enp_12(HP, phi1, phi2) + ddFel_12 return ddf11, ddf22, ddf12, ddf11*ddf22-ddf12*ddf12 return s_calc(phi1)/Ns[0] + s_calc(phi2)/Ns[1] + s_calc(1-phi1-phi2)
4d3f87a0b767ed6f306f99fa37a60b0cde0a70c5
5e35f570b2c9c6a507039ff97189c1d679b8510f
/abandon/TypeParser.py
af71f95063a96290d32b0ceac96c9ea0d776c617
[]
no_license
FMX/qt-gui
7e48cc21e963a69ef80b70bfa7a2198dbbfe3813
5185662fc4b58fcc5ad932ca79650305734cb1d3
refs/heads/master
2021-03-19T08:26:45.262904
2016-08-30T03:01:55
2016-08-30T03:01:55
65,461,731
0
0
null
null
null
null
UTF-8
Python
false
false
329
py
# coding:utf-8 class TypeParse: def __init__(self): self.dbtype = {1: 'oracle', 2: 'sql server', 3: 'mysql'} self.ostype = {1: 'windows', 2: 'linux', 3: 'unix'} def parDBType(self, dbtype): return self.dbtype.get(dbtype) def parOSType(self, ostype): return self.ostype.get(ostype)
5b221f2049670502c0c49c8cbd7e7685ee710bd4
82805dab063b51dd679a1acb0693ff51cf9ea287
/aixm_adr.py
9dc353230b0c71c09a7a0c98196bee5e13620c06
[]
no_license
fgraciani/connectedbyairm
33ca73f8d42675fe1c1c19350edabf4028e9d94f
1eefc81dd377e69fa9975df6a89792de3ceeb13e
refs/heads/master
2023-01-27T23:33:11.431592
2020-12-11T11:19:19
2020-12-11T11:19:19
297,360,153
0
0
null
null
null
null
UTF-8
Python
false
false
2,725
py
import pandas as pd class Aixm_adr: aixm_adr_mapping_dataframe = pd.read_excel (r'data/xlsx/ADR_23.5.0_Semantic_Correspondence_Report.xlsx', sheet_name='semantic_correspondence') #it would be nice to align sheet names def __init__(self): self.aixm_adr_mapping_dataframe.fillna("missing data", inplace = True) self.aixm_adr_mapping_dataframe.columns = ["Information Concept","Data Concept","Basic Type", "Concept Identifier", "Concept Definition", "AIRM Concept Identifier", "Special Case", "CR Number", "Rationale", "Level of semantic correspondence", "Remarks"] def is_in_amxm_adr_mapping(self, airm_urn): results = self.get_from_amxm_mapping(airm_urn) if results is None: return False else: print(airm_urn) return True def get_from_amxm_adr_mapping(self, airm_urn): #print("Searching for " + airm_urn) amxm_df = self.aixm_adr_mapping_dataframe.copy() filter = amxm_df["AIRM Concept Identifier"]==airm_urn amxm_df.sort_values("AIRM Concept Identifier", inplace = True) amxm_df.where(filter, inplace = True) df_results = amxm_df.dropna(how='all') if df_results.empty: return None else: results_dict = df_results.to_dict('records') return results_dict def get_information_concepts(self): results_dict = [] amxm_df = self.aixm_adr_mapping_dataframe.copy() amxm_df = amxm_df.drop_duplicates(subset='Information Concept', keep="last") amxm_df = amxm_df.drop(["Data Concept", "Basic Type"], axis=1) amxm_dict = amxm_df.to_dict('records') for entry in amxm_dict: info_concept = str(entry["Information Concept"]) concept_def = str(entry["Concept Definition"]) concept_id = str(entry["Concept Identifier"]) results_dict.append({"Information Concept": info_concept, "Concept Definition": concept_def, "Concept Identifier": concept_id, "AIRM Concept Identifier": str(entry["AIRM Concept Identifier"]), "Semantic Correspondence": str(entry["Special Case"]), "Rationale": str(entry["Rationale"]), "Level of semantic correspondence": str(entry["Level of semantic correspondence"]), "Remarks": str(entry["Remarks"])}) return results_dict def get_traces_by_info_concept(self, info_concept): amxm_df = self.aixm_adr_mapping_dataframe.copy() filter = amxm_df["Information Concept"]==info_concept amxm_df.sort_values("Information Concept", inplace = True) amxm_df.where(filter, inplace = True) df_results = amxm_df.dropna(how='all') if df_results.empty: return None else: results_dict = df_results.to_dict('records') print(results_dict) return results_dict
9eefe86c11ef3e2b2f7ef456699a607f1177291e
5fa445e459693a1fd96d6572b1ed8d3bfababebd
/tp3/testing/plot.py
7b1a2bf3e25df14208a457b8f30838b509c173f0
[ "MIT" ]
permissive
gabriel-milan/distributed-systems
1cb98b091e20414be3f74f4342669db2c8a5ccf6
7c016eb5dda7ae7d68c33fc3048397aae9b9bc5f
refs/heads/master
2023-03-24T20:01:40.871857
2020-12-15T17:01:50
2020-12-15T17:01:50
292,856,988
0
0
MIT
2021-03-14T11:38:29
2020-09-04T13:37:11
C++
UTF-8
Python
false
false
315
py
import matplotlib.pyplot as plt X = [2, 4, 8, 16, 32, 64, 128] y = [ 200.169, 400.339, 800.707, 1601.553, 3203.045, 6405.874, 12813.326, ] plt.figure (figsize=(20,20)) plt.title ("Tempo vs. nº processos") plt.plot(X, y) plt.xlabel("Number of processes") plt.ylabel("Execution time (s)") plt.show()
c61f5704f188e3c500d22acef254827b5a5aef7f
a8da8667bbf3281cf726f4849f61b091bf8093fe
/number.py
5ab2ef2eb705e9bce2bb3147fa7723343227f263
[]
no_license
gaoyanping/myself
db3dda6a8359d733e24123831d32d774807ed111
91c855c8266db89e9c4dfc3523fb4ce208aaefae
refs/heads/master
2020-05-16T23:18:37.133773
2014-03-14T05:30:46
2014-03-14T05:31:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
230
py
#-*- coding=utf-8 -*- #python可以直接用于数学计算,对于两个句子之间可以用”,“号分开 print "the number is", 5+3 print "true or false",5<3 print 5+4/2 print 5%2 print 5/2 print 5.00%2.00 print 5.00/2.00
6d1193ea718c006898d0ac5103a9ef072ba31aae
39dc1d0988b35a3c641d6a47508dcd9cd3e1f9d6
/Google/Code Jam/NumberGuessing.py
f53306ad52f5e14531947c50c3c05b8b1ec02ba2
[]
no_license
luisfernado28/PythonProjects
4934b6bc407584b05fde4fec27fd3c6245e54386
49b48376b8b7860eb1bd741bdd52c1356db07860
refs/heads/master
2022-12-11T04:25:44.640193
2020-08-28T01:47:01
2020-08-28T01:47:01
286,575,816
0
0
null
null
null
null
UTF-8
Python
false
false
384
py
import sys def guess(a, b): guessed = (a + b) // 2 print(guessed) sys.stdout.flush() res = input() if res == "CORRECT": return elif res == "TOO_SMALL": a = guessed + 1 else: b = guessed - 1 guess(a, b) cases = int(input()) for i in range(cases): a, b = map(int, input().split()) n = int(input()) guess(a + 1, b)
5e6fc921fca826083a87a4ee84ea466f3504d39d
21d3283b6695a2a93d316858a2b5d43e6a2caeef
/test/test1/myquetsion.py
dd9f68bf08f7967ce1063c11846573fb09cb1938
[]
no_license
ReCodeLife/tianshoutest
d95f93e121c1d5ca168033af9cd93d0d55fffb0d
74f701b9b90a9f2dea7c13625ee382ca40c4b120
refs/heads/master
2023-02-26T16:03:29.848070
2021-02-07T01:14:08
2021-02-07T01:14:08
336,672,084
0
0
null
null
null
null
UTF-8
Python
false
false
243
py
from diylib.question.question import DiyQuestion class DQNQuestion(DiyQuestion): def __init__(self,gameclass:type,reward_threshold:float): super(DQNQuestion, self).__init__(gameclass) self.reward_threshold=reward_threshold
d3320481d1a478be0bd4a958ffae11f11f0eb48f
32106821c8fa1d2de6ad38391909ae3986d2a2c1
/python/paddle/distributed/auto_parallel/operators/dist_softmax.py
fad11aadf8020f290487874a506c6f2d3384fd99
[ "Apache-2.0" ]
permissive
wzzju/Paddle
7a13735b4c7d2c942e8d2b5cbc84229f99f8237a
1353a5d0b40e7e34b812965ccda08796a1f1e398
refs/heads/paddle_compiler
2022-10-26T22:51:52.528161
2021-09-17T02:08:38
2021-09-17T02:08:38
140,524,963
0
1
Apache-2.0
2021-09-17T06:50:08
2018-07-11T05:17:15
Python
UTF-8
Python
false
false
3,199
py
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License from .common import DistributedOperator from .common import DistributedOperatorImpl from .common import register_distributed_operator from .common import register_distributed_operator_impl from ..utils import is_dim_shard from ..utils import is_dim_replicate from ..utils import is_valid_list_index from ..utils import compute_compatible_dim_mapping from ..utils import compute_compatible_dims_mapping from ..utils import compute_compatible_and_update_dim_mapping class DistributedSoftmax(DistributedOperator): def __init__(self, name): super(DistributedSoftmax, self).__init__() self._name = name register_distributed_operator("softmax", DistributedSoftmax("softmax")) class DistributedSoftmaxImpl(DistributedOperatorImpl): def __init__(self, name): super(DistributedSoftmaxImpl, self).__init__() self._name = name def is_process_mesh_compatible(self, op_dist_attr): """ No restriction for now. """ return True def is_input_compatible(self, op_dist_attr): op_desc = op_dist_attr.get_owner_op().desc x_name = op_desc.input('X')[0] axis = op_desc.attr('axis') x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name) # print("softmax axis", axis) if axis != -1 and axis != len(x_dims_mapping) - 1: return False if is_dim_shard(x_dims_mapping[axis]): return False return True def is_output_compatible(self, op_dist_attr): op_desc = op_dist_attr.get_owner_op().desc out_name = op_desc.output('Out')[0] axis = op_desc.attr('axis') out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name) if axis != -1 and axis != len(out_dims_mapping) - 1: return False if is_dim_shard(out_dims_mapping[axis]): return False return True def update_dims_mapping(self, op_dist_attr): changed = False op_desc = op_dist_attr.get_owner_op().desc x_name = op_desc.input('X')[0] out_name = op_desc.output('Out')[0] x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name) out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name) for i in range(len(x_dims_mapping)): dim_changed = compute_compatible_and_update_dim_mapping( [x_dims_mapping, out_dims_mapping], [i, i]) if dim_changed: changed = True return changed register_distributed_operator_impl( "softmax", DistributedSoftmaxImpl("replicate_last_axis"))
2043efaa3d05b534d4e7ff4a022e8189801833e3
52107dcbcb4bf45ae45eb6907c652ca96a05de17
/MxOnline/extra_apps/xadmin/widgets.py
801e4c5e2715fe8c6873420030ebc7d6cc9bfc4a
[]
no_license
MH-Blog/Python
2f4fe4c55adc8766be3e0ffead6debe58d0643d2
7662f893120d5ffe417f37801b0135ac9fba3742
refs/heads/master
2022-12-08T12:14:35.559723
2020-01-19T07:34:14
2020-01-19T07:34:14
164,229,745
17
5
null
2022-12-08T06:52:38
2019-01-05T16:01:18
Python
UTF-8
Python
false
false
8,853
py
""" Form Widget classes specific to the Django admin site. """ from __future__ import absolute_import from itertools import chain from django import forms try: from django.forms.widgets import ChoiceWidget as RadioChoiceInput except: from django.forms.widgets import RadioFieldRenderer, RadioChoiceInput from django.utils.encoding import force_text from django.utils.safestring import mark_safe from django.utils.html import conditional_escape from django.utils.translation import ugettext as _ import util class AdminDateWidget(forms.DateInput): @property def media(self): return util.vendor('datepicker.js', 'datepicker.css', 'xadmin.widget.datetime.js') def __init__(self, attrs=None, format=None): final_attrs = {'class': 'date-field form-control', 'size': '10'} if attrs is not None: final_attrs.update(attrs) super(AdminDateWidget, self).__init__(attrs=final_attrs, format=format) def render(self, name, value, attrs=None, renderer=None): input_html = super(AdminDateWidget, self).render(name, value, attrs, renderer) return mark_safe('<div class="input-group date bootstrap-datepicker"><span class="input-group-addon"><i class="fa fa-calendar"></i></span>%s' '<span class="input-group-btn"><button class="btn btn-default" type="button">%s</button></span></div>' % (input_html, _(u'Today'))) class AdminTimeWidget(forms.TimeInput): @property def media(self): return util.vendor('datepicker.js', 'clockpicker.js', 'clockpicker.css', 'xadmin.widget.datetime.js') def __init__(self, attrs=None, format=None): final_attrs = {'class': 'time-field form-control', 'size': '8'} if attrs is not None: final_attrs.update(attrs) super(AdminTimeWidget, self).__init__(attrs=final_attrs, format=format) def render(self, name, value, attrs=None, renderer=None): input_html = super(AdminTimeWidget, self).render(name, value, attrs, renderer) return mark_safe('<div class="input-group time bootstrap-clockpicker"><span class="input-group-addon"><i class="fa fa-clock-o">' '</i></span>%s<span class="input-group-btn"><button class="btn btn-default" type="button">%s</button></span></div>' % (input_html, _(u'Now'))) class AdminSelectWidget(forms.Select): @property def media(self): return util.vendor('select.js', 'select.css', 'xadmin.widget.select.js') class AdminSplitDateTime(forms.SplitDateTimeWidget): """ A SplitDateTime Widget that has some admin-specific styling. """ def __init__(self, attrs=None): widgets = [AdminDateWidget, AdminTimeWidget] # Note that we're calling MultiWidget, not SplitDateTimeWidget, because # we want to define widgets. forms.MultiWidget.__init__(self, widgets, attrs) def render(self, name, value, attrs=None, renderer=None): input_html = [ht for ht in super(AdminSplitDateTime, self).render(name, value, attrs, renderer).replace('><input', '>\n<input').split('\n') if ht != ''] # return input_html return mark_safe('<div class="datetime clearfix"><div class="input-group date bootstrap-datepicker"><span class="input-group-addon"><i class="fa fa-calendar"></i></span>%s' '<span class="input-group-btn"><button class="btn btn-default" type="button">%s</button></span></div>' '<div class="input-group time bootstrap-clockpicker"><span class="input-group-addon"><i class="fa fa-clock-o">' '</i></span>%s<span class="input-group-btn"><button class="btn btn-default" type="button">%s</button></span></div></div>' % (input_html[0], _(u'Today'), input_html[1], _(u'Now'))) def format_output(self, rendered_widgets): return mark_safe(u'<div class="datetime clearfix">%s%s</div>' % (rendered_widgets[0], rendered_widgets[1])) class AdminRadioInput(RadioChoiceInput): def render(self, name=None, value=None, attrs=None, choices=()): name = name or self.name value = value or self.value attrs = attrs or self.attrs attrs['class'] = attrs.get('class', '').replace('form-control', '') if 'id' in self.attrs: label_for = ' for="%s_%s"' % (self.attrs['id'], self.index) else: label_for = '' choice_label = conditional_escape(force_text(self.choice_label)) if attrs.get('inline', False): return mark_safe(u'<label%s class="radio-inline">%s %s</label>' % (label_for, self.tag(), choice_label)) else: return mark_safe(u'<div class="radio"><label%s>%s %s</label></div>' % (label_for, self.tag(), choice_label)) class AdminRadioFieldRenderer(forms.RadioSelect): def __iter__(self): for i, choice in enumerate(self.choices): yield AdminRadioInput(self.name, self.value, self.attrs.copy(), choice, i) def __getitem__(self, idx): choice = self.choices[idx] # Let the IndexError propogate return AdminRadioInput(self.name, self.value, self.attrs.copy(), choice, idx) def render(self): return mark_safe(u'\n'.join([force_text(w) for w in self])) class AdminRadioSelect(forms.RadioSelect): renderer = AdminRadioFieldRenderer class AdminCheckboxSelect(forms.CheckboxSelectMultiple): def render(self, name, value, attrs=None, choices=()): if value is None: value = [] has_id = attrs and 'id' in attrs final_attrs = self.build_attrs(attrs, extra_attrs={'name': name}) output = [] # Normalize to strings str_values = set([force_text(v) for v in value]) for i, (option_value, option_label) in enumerate(chain(self.choices, choices)): # If an ID attribute was given, add a numeric index as a suffix, # so that the checkboxes don't all have the same ID attribute. if has_id: final_attrs = dict(final_attrs, id='%s_%s' % (attrs['id'], i)) label_for = u' for="%s"' % final_attrs['id'] else: label_for = '' cb = forms.CheckboxInput( final_attrs, check_test=lambda value: value in str_values) option_value = force_text(option_value) rendered_cb = cb.render(name, option_value) option_label = conditional_escape(force_text(option_label)) if final_attrs.get('inline', False): output.append(u'<label%s class="checkbox-inline">%s %s</label>' % (label_for, rendered_cb, option_label)) else: output.append(u'<div class="checkbox"><label%s>%s %s</label></div>' % (label_for, rendered_cb, option_label)) return mark_safe(u'\n'.join(output)) class AdminSelectMultiple(forms.SelectMultiple): def __init__(self, attrs=None): final_attrs = {'class': 'select-multi'} if attrs is not None: final_attrs.update(attrs) super(AdminSelectMultiple, self).__init__(attrs=final_attrs) class AdminFileWidget(forms.ClearableFileInput): template_with_initial = (u'<p class="file-upload">%s</p>' % forms.ClearableFileInput.initial_text) template_with_clear = (u'<span class="clearable-file-input">%s</span>' % forms.ClearableFileInput.clear_checkbox_label) class AdminTextareaWidget(forms.Textarea): def __init__(self, attrs=None): final_attrs = {'class': 'textarea-field'} if attrs is not None: final_attrs.update(attrs) super(AdminTextareaWidget, self).__init__(attrs=final_attrs) class AdminTextInputWidget(forms.TextInput): def __init__(self, attrs=None): final_attrs = {'class': 'text-field'} if attrs is not None: final_attrs.update(attrs) super(AdminTextInputWidget, self).__init__(attrs=final_attrs) class AdminURLFieldWidget(forms.TextInput): def __init__(self, attrs=None): final_attrs = {'class': 'url-field'} if attrs is not None: final_attrs.update(attrs) super(AdminURLFieldWidget, self).__init__(attrs=final_attrs) class AdminIntegerFieldWidget(forms.TextInput): def __init__(self, attrs=None): final_attrs = {'class': 'int-field'} if attrs is not None: final_attrs.update(attrs) super(AdminIntegerFieldWidget, self).__init__(attrs=final_attrs) class AdminCommaSeparatedIntegerFieldWidget(forms.TextInput): def __init__(self, attrs=None): final_attrs = {'class': 'sep-int-field'} if attrs is not None: final_attrs.update(attrs) super(AdminCommaSeparatedIntegerFieldWidget, self).__init__(attrs=final_attrs)
ff57f7b9e615dea41c06efec99b6c19479bce080
14a04c0f312f2e8bc25a528f11afc350a878dfe9
/MembraneDiffusion/2P_DiffusionModel-units-micron-min.py
19661251a68a9379179396c4c6f4f64cb0b56492
[]
no_license
anujchaudhri/python-examples
f4862016feafdbddf952777184f88b78813cfc9e
fa026bb777487e084e632ed8f6800123cfce7447
refs/heads/master
2020-09-25T06:58:34.789573
2019-12-04T19:48:49
2019-12-04T19:48:49
225,943,863
0
0
null
null
null
null
UTF-8
Python
false
false
2,683
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Apr 3 11:14:04 2019 @author: anujchaudhri """ import numpy as np from scipy.integrate import solve_ivp import matplotlib.pyplot as plt Vo = 5.24e5 # microm^3, initial cell volume Vc Vso = 0.0 # microm^3, initial solute volume in cell Vs vbf = 0.25 Vb = vbf*Vo # Vc = Vw + Vs + Vb, total volume of cell at time t # Vo = Vwo + Vso + Vbo, total volume of cell at time 0 # Vbo = Vb, since cell solids volume does not change Vwo = Vo - (Vso + Vb)# microm^3, initial water volume in cell Vw rhoWater = 997.0e-18 # Kg/microm^3 Vsbar = 0.071e15 # microm^3/mol Mino = 0.3*rhoWater # osmoles/Kg * Kg/m^3 Lp = 1.0 # microm/(min*atm) A = 3.14e4 # microm^2 R = 8.2057338e13 # microm^3*atm/(K*mol) T = 293.0 # K Mes = 2.0*rhoWater # osmoles/Kg * Kg/m^3 Men = 0.3*rhoWater # osmoles/Kg * Kg/m^3 Psarray = np.array([0.0e4,0.001e4,0.01e4,0.03e4]) # microm/min # function that returns dz/dt = [dx/dt dy/dt] def model(t,z,Ps): dxdt = ((((Lp*A*R*T)/z[0])*((z[1]/Vsbar)+(Mino*Vwo))) - ((Lp*A*R*T)*(Mes+Men))) dydt = -(Ps*A*z[1]/z[0]) + (Ps*A*Vsbar*Mes) dzdt = [dxdt,dydt] return dzdt def jacobian(t,y,Ps): J11 = -(Lp*A*R*T/(y[0]*y[0]))*((y[1]/Vsbar)+(Mino*Vwo)) J12 = (Lp*A*R*T)/(y[0]*Vsbar) J21 = (y[1]*Ps*A)/(y[0]*y[0]) J22 = -(Ps*A)/y[0] Jacob = np.array([[J11,J12],[J21,J22]]) return Jacob # initial conditions z0 = [Vwo,Vso] # time points in mins tf = 4 N = 50 t = np.linspace(0,tf,N,endpoint=True,dtype=np.double) #print(t) Vn = np.zeros(shape=(t.size,Psarray.size)) # solve ODE for i in range(Psarray.size): sol = (solve_ivp(fun=lambda t, z: model(t, z, Psarray[i]),t_span=[0,tf],y0=z0, method='BDF',t_eval=t,vectorized=True, jac=lambda t, y: jacobian(t, y, Psarray[i]))) # Note that z[:,0] is solution at all time points of dxdt i.e. Vw # z[:,1] is solution at all time points of dydt i.e. Vs # Vc = Vw+Vs+Vb and Vn = (Vw+Vs+Vb)/Vo or Vn = (z[:,0]+z[:,1]+Vb)/Vo #print("status: explanations") #print("-1: Integration step failed.") #print("0: The solver successfully reached the end of tspan.") #print("1: A termination event occurred. ") #print("status: ", sol.status) ##print(sol.y) #print("Number of function evaluations: ", sol.nfev) #print("Number of Jacobian evaluations: ", sol.njev) Vc = np.add(sol.y[0,:],sol.y[1,:]) Vbarray = np.full_like(Vc,Vb,dtype=np.double) Vc = np.add(Vc,Vbarray) Vn[:,i] = Vc/Vo print(Vn) #plt.axis([-0.2,tf,0.0,1.2]) #plt.plot(t,Vn[:,0],'r-',t,Vn[:,1],'g-',t,Vn[:,2],'b-',t,Vn[:,3],'k-') #plt.show()
6b96866b678951b2a15ac2f00edfecee8e197416
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/adjectives/_populists.py
20dbebab5468cb5697405f5e98e33b4c882d36c8
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
262
py
from xai.brain.wordbase.adjectives._populist import _POPULIST #calss header class _POPULISTS(_POPULIST, ): def __init__(self,): _POPULIST.__init__(self) self.name = "POPULISTS" self.specie = 'adjectives' self.basic = "populist" self.jsondata = {}
d7af4c9fc83f3a065982703e42e47fd3721b0412
eb9b8ed6d24b21a9fd6d768d6c0baab2ce88c2fd
/DQUANT/dquant/urls.py
44738500ada52a9b2789019e8e8019a1c3509175
[]
no_license
SoonMinKwun/QUANT
40df4b354abd3bb6d97fa770c1bd1e1ede188881
5fe7e67840455d59c86447a29a792080b78f98fa
refs/heads/master
2022-12-05T16:11:07.822076
2020-08-28T07:41:39
2020-08-28T07:41:39
289,828,894
0
0
null
null
null
null
UTF-8
Python
false
false
852
py
"""DQUANT URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path , include urlpatterns = [ path('admin/', admin.site.urls), path('blog/' ,include('QuantApp.urls')), path('magazine/' ,include('QuantApp.urls')), ]