blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
ec23a853f5ceb288a79ccc61e24ce866e8b343d7
c8fface11c98413c17c1a839fae323be76bf00d2
/4Dobble Game.py
a31cafdd301e2cd7cdcc377e1e0a1100b3d21b0a
[]
no_license
praveen-95572/Nptel-the-joy-of-computing-using-python-
6dd75bf669bdd3493f0ab6b1a993399662eb18c1
46c34f3e303fa3fb46e0c9f2f2dc5f61ea22ac8e
refs/heads/master
2023-06-24T08:29:50.225493
2021-07-26T13:04:34
2021-07-26T13:04:34
389,632,106
0
0
null
null
null
null
UTF-8
Python
false
false
998
py
import string import random #print(string.ascii_letters) symbols=[] symbols=list(string.ascii_letters) card1=[0]*5 card2=[0]*5 pos1=random.randint(0,4) pos2=random.randint(0,4) #pos1 and pos2 are same symbol position in card1 and card2 respectively samesymbol=random.choice(symbols) symbols.remove(samesymbol) if(pos1==pos2): card2[pos1]=samesymbol card1[pos1]=samesymbol else: card2[pos2]=samesymbol card1[pos1]=samesymbol card1[pos2]=random.choice(symbols) symbols.remove(card1[pos2]) card2[pos1]=random.choice(symbols) symbols.remove(card2[pos1]) i=0 while(i<5): if(i!=pos1 and i!=pos2): alphabet1=random.choice(symbols) symbols.remove(alphabet1) alphabet2=random.choice(symbols) symbols.remove(alphabet2) card1[i]=alphabet1 card2[i]=alphabet2 i=i+1 print(card1) print(card2) ch=input("Spot the similar symbol") if(ch==samesymbol): print("right") else: print("wrong")
a1be103c453678ec3adbbd37563c923bc80349e7
913ffcf29991e57c504bc639cfabe471dfd41782
/Draw Chat/menu_inicial.py
6f4b787d6202c659479626f3793eb14b1510374c
[]
no_license
JaimeGo/PyQt-Projects
ef30761c5c2c025b9f98db7ed7e7d66b32d9b535
c54eeaff69424ab463d64391422005bba3ceabd7
refs/heads/master
2020-03-18T13:52:40.067614
2018-05-25T07:01:57
2018-05-25T07:01:57
134,814,650
0
0
null
null
null
null
UTF-8
Python
false
false
5,052
py
from PyQt4 import QtGui, uic, QtCore from sys import exit from chat_grupal import ChatGrupal formulario_1 = uic.loadUiType("menu_inicio.ui") class MenuInicial(formulario_1[0], formulario_1[1]): def __init__(self, cliente): super().__init__() self.cliente = cliente self.setupUi(self) self.pushButton.clicked.connect(self.registrarse) self.pushButton_2.clicked.connect(self.ingresar) self.pushButton_3.clicked.connect(self.salir) self.menu_ingreso = MenuIngreso(self.cliente, self) self.menu_registro = MenuRegistro(self.cliente, self) self.chat_grupal = ChatGrupal(self.cliente, self) self.seleccion_sala = SeleccionSala(self.cliente, self) def registrarse(self): self.hide() self.menu_registro.show() def ingresar(self): self.hide() self.menu_ingreso.show() def salir(self): self.cliente.disconnect() self.hide() exit(0) def closeEvent(self, event): self.hide() self.cliente.disconnect() formulario_2 = uic.loadUiType("ingreso.ui") class MenuIngreso(formulario_2[0], formulario_2[1]): def __init__(self, cliente, menu_inicial): super().__init__() self.cliente = cliente self.menu_inicial = menu_inicial self.setupUi(self) self.pushButton.clicked.connect(self.continuar) def continuar(self): usuario = self.lineEdit.text() contraseña = self.lineEdit_2.text() seguir_escuchando = True primer_largo = len(self.cliente.current_list) self.cliente.send_message_to_server("antiguo_usuario:" + usuario + "," + contraseña) while seguir_escuchando: if len(self.cliente.current_list) > primer_largo: if self.cliente.current_list[-1] == "contraseña_aceptada": print("SE ACEPTÓ!!!") seguir_escuchando = False self.hide() self.menu_inicial.seleccion_sala.show() self.cliente.usuario = usuario self.cliente.menu.chat_grupal.rellenar_amigos() elif self.cliente.current_list[-1] == "contraseña_rechazada": print("SE RECHAZÓ!!!") seguir_escuchando = False self.label_3.setText("Error: Datos incorrectos") self.label_3.setStyleSheet("QLabel {color:red}") self.lineEdit.clear() self.lineEdit_2.clear() def closeEvent(self, event): self.hide() self.cliente.disconnect() formulario_3 = uic.loadUiType("registro.ui") class MenuRegistro(formulario_3[0], formulario_3[1]): def __init__(self, cliente, menu_inicial): super().__init__() self.cliente = cliente self.menu_inicial = menu_inicial self.setupUi(self) self.pushButton.clicked.connect(self.continuar) def continuar(self): usuario = self.lineEdit.text() contraseña = self.lineEdit_2.text() confirmacion = self.lineEdit_3.text() if len(usuario) == 0 or len(contraseña) == 0 or len(confirmacion) == 0: self.label_4.setText("Error: Falta información") self.label_4.setStyleSheet("QLabel {color:red}") self.lineEdit.clear() self.lineEdit_2.clear() self.lineEdit_3.clear() elif contraseña != confirmacion: self.label_4.setText("Error: Contraseñas no coinciden") self.label_4.setStyleSheet("QLabel {color:red}") self.lineEdit.clear() self.lineEdit_2.clear() self.lineEdit_3.clear() else: self.lineEdit_2.clear() self.lineEdit_3.clear() self.cliente.send_message_to_server("nuevo_usuario:" + usuario + "," + contraseña) self.hide() self.menu_inicial.show() def closeEvent(self, event): self.hide() self.cliente.disconnect() formulario_4 = uic.loadUiType("seleccion_sala.ui") class SeleccionSala(formulario_4[0], formulario_4[1]): def __init__(self, cliente, menu_inicial): super().__init__() self.cliente = cliente self.menu_inicial = menu_inicial self.setupUi(self) self.pushButton.clicked.connect(self.entrar_1) self.pushButton_2.clicked.connect(self.entrar_2) self.pushButton_3.clicked.connect(self.entrar_3) def entrar_1(self): self.cliente.sala = "sala_1:::" self.hide() self.menu_inicial.chat_grupal.show() self.cliente.send_message_to_server("empieza_partida:") def entrar_2(self): self.cliente.sala = "sala_2:::" self.hide() self.menu_inicial.chat_grupal.show() self.cliente.send_message_to_server("empieza_partida:") def entrar_3(self): self.cliente.sala = "sala_3:::" self.hide() self.menu_inicial.chat_grupal.mostrar_minichat_grup()
7dc6e352a48eddfe374a1dd70cd502f92368190a
3b376850dd360e0eaeb4f710bbec30cd2e4f8f4a
/users/urls.py
b898aae8777a3f975e96f05e2fde286668f9b9ab
[]
no_license
nielHNIA/Crm-project
409dfc28e0086a7ade36972d4043e92ac29badf7
6f342a83652fe210ad76ba6322dc11e1df710689
refs/heads/master
2023-02-05T04:58:51.572334
2021-01-02T02:57:06
2021-01-02T02:57:06
326,096,976
0
0
null
null
null
null
UTF-8
Python
false
false
200
py
from django.urls import path, include app_name = 'users' from . import views urlpatterns = [ path('', include('django.contrib.auth.urls')), path('register/', views.register, name='register'), ]
d793aff26fdb5850f8ce22d236f87142a4d570d6
781e2692049e87a4256320c76e82a19be257a05d
/all_data/exercism_data/python/word-count/67602c62088e448aa6899a2feae08bb8.py
9742b7715ac57210a724a124215699112573a4b4
[]
no_license
itsolutionscorp/AutoStyle-Clustering
54bde86fe6dbad35b568b38cfcb14c5ffaab51b0
be0e2f635a7558f56c61bc0b36c6146b01d1e6e6
refs/heads/master
2020-12-11T07:27:19.291038
2016-03-16T03:18:00
2016-03-16T03:18:42
59,454,921
4
0
null
2016-05-23T05:40:56
2016-05-23T05:40:56
null
UTF-8
Python
false
false
256
py
# # word-count exercise # iter. 2 # def word_count(phrase): wordlist = phrase.split() #output in dictionary format to past the test output = {} for x in wordlist : if x not in output : output [x] = 1 else : output [x] += 1 return output
9195a76592f3dbac3dc38ac9aa7b3815503c4e68
db7601406ea38e0b361d9a1c54ba640ae9b132eb
/10494 If We Were a Child Again.py
e91933043b3c91fcfde5c909009fb177d10bb283
[]
no_license
FalseF/Algorithms-and-Problem-Solving-with-Python
c06c049d7499df76795eac8b82d8f5aebe126109
d53ee80da5ff865eef05bbe280bdc68dae4f275d
refs/heads/master
2023-07-17T06:24:47.918286
2021-09-06T16:32:30
2021-09-06T16:32:30
403,690,848
0
0
null
null
null
null
UTF-8
Python
false
false
71
py
n=12 ck=95.123 r=1 while(n): n=n-1 r*=ck print(r)
61cfada2daa7561decdbe434fcd476886f36a64b
a884525000ecec4e14e51ffa2a3f7ddc7d0e516e
/Intermediate/Day 39/Calling constructor from outside.py
a6f477b71a38316d634ee5311103b5d78d421ff8
[]
no_license
Dong2Yo/Learning-Python
0fac4437126da0b2351a4212f6bb1355df87724e
8599c3a97afa2dc3fcb4e72c654e90f4b1848fe6
refs/heads/main
2023-08-25T03:46:08.660780
2021-10-17T10:50:22
2021-10-17T10:50:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
113
py
class sample: def __init__(self): print("Class instantiated") mysample=sample() mysample.__init__()
8f77c9a2fe285d78dd8306f572f66615be551d8d
0bfe2290ecb7212f03c5a36d6de2a0441423fbd2
/weekly-stats.py
dd9241143a82f6ab66e7a36a98d6f5fb88029e46
[ "MIT" ]
permissive
ca4ti/call-stats
5e4bd482cf883378c6e1c82c809c410415d2a891
7413636918f438043a00158bd26a777002acdbfc
refs/heads/master
2023-02-25T05:23:45.462700
2016-08-15T11:20:10
2016-08-15T11:20:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
802
py
from asternic_email import CallStats import local_settings import optparse import arrow last_week = arrow.get().replace(days=-7).format('YYYY-MM-DD') help_txt = ( "Date inside of the week you wish to create a" " report for. For example for last week use {}").format(last_week) parser = optparse.OptionParser() parser.add_option( '-s', dest='start_of_week', default=arrow.get().format('YYYY-MM-DD'), nargs=1, help=help_txt) opts, remainder = parser.parse_args() stats = CallStats(local_settings.EXTENSIONS) stats.set_week(opts.start_of_week) stats.connect_smtp( local_settings.SMTP_SERVER, local_settings.SMTP_USER, local_settings.SMTP_PASSWORD) stats.fetch_stats() print stats.stats stats.generate_emails('Your weekly call stats are as follows:') print ">>> DONE!"
83f0a7ab3cbfab9a992ced7a1692165995ce681f
3ea7513732b5c38d485a2be3d327a7c079329331
/crudapi/views.py
bbfff5dd59057df93a1d62902cb712355050c851
[]
no_license
manojpraveen101/api
285e4a992419333ead98f33c333b47975926dfe6
46defb852bf013c86b73889b16ebfca36fe9eb5a
refs/heads/master
2023-03-16T16:37:58.938862
2021-03-08T13:16:46
2021-03-08T13:16:46
345,570,164
0
0
null
null
null
null
UTF-8
Python
false
false
2,620
py
import logging from django.core.exceptions import ObjectDoesNotExist, EmptyResultSet from django.http.response import JsonResponse, HttpResponse from django.shortcuts import render from rest_framework.decorators import api_view from rest_framework.parsers import JSONParser from crudapi.models import Employee from crudapi.serializers import EmployeeSerializer logger = logging.getLogger(__name__) def setcookie(request): response = HttpResponse("Cookie Set") response.set_cookie('firstname', 'praveen') return response def getcookie(request): value = request.COOKIES['firstname'] return HttpResponse("firstname is : "+ value) @api_view(['GET', 'POST', 'DELETE', 'PUT']) def employee_list(request): if request.method == 'GET': logger.debug("inside get method") employee = Employee.objects.all() firstname = request.GET.get('firstname',None) if firstname is not None: logger.debug("firstname is {}".format(firstname)) employee = employee.filter(firstname=firstname) employee_serializer = EmployeeSerializer(employee, many=True) return JsonResponse(employee_serializer.data, safe=False) elif request.method == 'POST': logger.debug("inside post method") employee_data = JSONParser().parse(request) employee_serializer = EmployeeSerializer(data=employee_data) if employee_serializer.is_valid(): employee_serializer.save() return JsonResponse({"message": "valid"}) else: return JsonResponse({ "message":"not valid"}) elif request.method == 'DELETE': logger.debug("inside delete method") firstname = request.GET.get('firstname', None) employee = Employee.objects.filter(firstname=firstname) if firstname is not None: employee.delete() return JsonResponse({"message":"deleted successfully"}) else: return JsonResponse({"message":"deletion not successful"}) elif request.method == 'PUT': logger.debug("inside put method") employee_data = JSONParser().parse(request) firstname = employee_data.get("firstname") if firstname is not None: employee = Employee.objects.filter(firstname=firstname) employee.update(**employee_data) return JsonResponse({"message":"updated successful"}) else: return JsonResponse({"message":"update failed"}) # try: # employee = TEmployee.objects.get(id=10) # except TEmployee.DoesNotExist: # return HttpResponse("EXCEPTION")
47eee066e6b2436acfd0b25a8c700664ca98fd5c
a4deea660ea0616f3b5ee0b8bded03373c5bbfa2
/executale_binaries/register-variants/pshufb_xmm_xmm.gen.vex.py
e4c89ba1279d236c1e25139f95a869d267887f3b
[]
no_license
Vsevolod-Livinskij/x86-64-instruction-summary
4a43472e26f0e4ec130be9a82f7e3f3c1361ccfd
c276edab1b19e3929efb3ebe7514489f66087764
refs/heads/master
2022-02-02T18:11:07.818345
2019-01-25T17:19:21
2019-01-25T17:19:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
158
py
import angr proj = angr.Project('pshufb_xmm_xmm.exe') print proj.arch print proj.entry print proj.filename irsb = proj.factory.block(proj.entry).vex irsb.pp()
c152fe84a4529c8caaabf63186e0a65476cfe50a
7e963835ac072178b415c992cccc24c161dad32f
/venv/bin/sqlformat
338a7f966051794ea80430265b4b37042139f480
[]
no_license
urmi6750/new-djnago
cf47d5796007c7e1d15de71765fb1fd76fc44dfb
3840ba2e4f2e2790698b0d3537734d1daa7e051f
refs/heads/master
2021-05-17T16:06:09.610551
2020-04-01T20:13:32
2020-04-01T20:13:32
250,861,226
0
0
null
null
null
null
UTF-8
Python
false
false
256
#!/home/fariya/PycharmProjects/untitled/venv/bin/python # -*- coding: utf-8 -*- import re import sys from sqlparse.__main__ import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
a1b304081c5ddb28ccb5c07f0347c0e5a72b93f7
1ec86f822bb30ea18f992bfc0badc818423a2161
/venv/Scripts/pip3-script.py
21c1769b7a28819993aaa80e796fd701f1350e65
[]
no_license
urbrob/strona
58ad912529a4148855fa171b0d0966c090f691f4
4c5962fe05e1460197510ce38b820495bcf067b9
refs/heads/master
2020-04-27T08:38:04.563497
2019-03-06T07:55:04
2019-03-06T07:55:04
174,178,786
0
0
null
2019-03-06T16:17:06
2019-03-06T16:17:05
null
UTF-8
Python
false
false
412
py
#!C:\Users\sylwi\PycharmProjects\strona\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==10.0.1','console_scripts','pip3' __requires__ = 'pip==10.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==10.0.1', 'console_scripts', 'pip3')() )
396d25013a696593483857993a2a2f54c29edbf4
ae3ddb20e33ea0e6b3af8d738532b1b8c21e2e74
/scripts/genome_assembly_annotate.py
9dee024eb9a39f6215b58f3bfe217da1364bcb11
[]
no_license
TonyMannion/Microbial-Comparative-Genomics
dded0e8e5a1cf4101bf76ca0fff2ddfc0c764d39
33067214fa248badc0d2a3e0bace417163c1d6a7
refs/heads/master
2021-07-14T12:35:01.463328
2021-02-15T14:51:15
2021-02-15T14:51:15
236,011,461
0
0
null
null
null
null
UTF-8
Python
false
false
10,811
py
import os import time import glob import argparse import numpy as np import pandas as pd parser = argparse.ArgumentParser() parser.add_argument('-u', '--username', dest='username', help='Provide username for PATRIC account. Prompt to enter password will appear.') parser.add_argument('-m','--metadata_file',dest='metadata_file',help='Specify metadata file.') parser.add_argument('-f', '--upload_files', dest='upload_files', default = 'yes', help='Upload read and/or contig files? Enter "yes" or "no". Default is "yes". If file with same name has already been upload to PATRIC, it will be overwritten by file upload here.') parser.add_argument('-a', '--assembly_annotate', dest='assembly_annotate', default = 'yes', help='Execute assembly and annotate pipeline? Enter "yes" or "no". Default is "yes".') parser.add_argument('-c', '--check_job', dest='check_job', default = 'yes', help='Check status of assemlby/annotation job? Enter "yes" or "no". Default is "yes". When job is complete, genome reports, contigs, and annotations data will be downloaded to output folder.') parser.add_argument('-d', '--download_reports', dest='download_reports', default = 'yes', help='Download genome reports, contigs, and annotations data for assembled/annotated genomes? Enter "yes" or "no". Default is "no". Use this flag to download data from previously completed jobs.') parser.add_argument('-o', '--output_folder', dest='output_folder', help='Specify output folder for downloaded data.') args=parser.parse_args() #login print 'Enter password to log into PATRIC...' os.system('p3-login ' + str(args.username) + ' > patric_domain_temp_genome_assemlby_annotation.txt') patric_domain = open('patric_domain_temp_genome_assemlby_annotation.txt', "rb").readlines()[1].replace('Logged in with username ', '').rstrip() #upload data if str(args.upload_files) == 'yes': df_reads = pd.read_csv(str(args.metadata_file), sep='\t', usecols=['R1','R2','genome_name_reads']) R1_list = df_reads['R1'].dropna().tolist() R2_list = df_reads['R2'].dropna().tolist() df_contigs = pd.read_csv(str(args.metadata_file), sep='\t', usecols=['contigs','genome_name_contigs']) contigs_list = df_contigs['contigs'].dropna().tolist() for R1 in R1_list: print 'Uploading ' + str(R1) + ' to PATRIC...' os.system('p3-cp ' + str(R1) + ' ws:/' + str(patric_domain) + '/home/AssemblyJob -f') for R2 in R2_list: print 'Uploading ' + str(R2) + ' to PATRIC...' os.system('p3-cp ' + str(R2) + ' ws:/' + str(patric_domain) + '/home/AssemblyJob -f') for contigs in contigs_list: print 'Uploading ' + str(contigs) + ' to PATRIC...' os.system('p3-cp ' + str(contigs) + ' ws:/' + str(patric_domain) + '/home/AssemblyJob -f') #assembly annotate if str(args.assembly_annotate) == 'yes': #reads df_reads = pd.read_csv(str(args.metadata_file), sep='\t', usecols=['R1','R2','genome_name_reads']).replace(' ','_', regex=True) R1_list = df_reads['R1'].dropna().tolist() R2_list = df_reads['R2'].dropna().tolist() genome_name_list_reads = df_reads['genome_name_reads'].dropna().tolist() zip(R1_list,R2_list,genome_name_list_reads) for R1, R2, genome_name in zip(R1_list,R2_list,genome_name_list_reads): in_file = open('params_reads.json', "rb") out_file = open('params_reads_out_temp_genome_assemlby_annotation.json', "wb") reader = in_file.read() repls1= (('R1', '/' + str(patric_domain) + '/home/AssemblyJob/' + str(R1)),('R2', '/' + str(patric_domain) + '/home/AssemblyJob/' + str(R2)),('Genome_name_path', '/' + str(patric_domain) + '/home/AssemblyJob'),('Genome_name',str(genome_name)),) writer1 = reduce(lambda a, kv: a.replace(*kv), repls1, reader) writer2 = out_file.write(writer1) in_file.close() out_file.close() os.system('appserv-start-app ComprehensiveGenomeAnalysis params_reads_out_temp_genome_assemlby_annotation.json \"[email protected]/home/\"'+ ' > ' + str(genome_name) + '_job_ID_temp_genome_assemlby_annotation.txt') job_id = open(str(genome_name) + '_job_ID_temp_genome_assemlby_annotation.txt', "rb").readline().replace('Started task ', '').rstrip() print "Comprehensive Genome Analysis job sent for " + str(genome_name) + ' as job id ' + job_id #contigs df_contigs = pd.read_csv(str(args.metadata_file), sep='\t', usecols=['contigs','genome_name_contigs']).replace(' ','_', regex=True) contigs_list = df_contigs['contigs'].dropna().tolist() genome_name_list_contigs = df_contigs['genome_name_contigs'].dropna().tolist() zip(contigs_list,genome_name_list_contigs) for contigs, genome_name in zip(contigs_list,genome_name_list_contigs): in_file = open('params_contigs.json', "rb") out_file = open('params_contigs_out_temp_genome_assemlby_annotation.json', "wb") reader = in_file.read() repls1= (('contigs_path', '/' + str(patric_domain) + '/home/AssemblyJob/' + str(contigs)),('out_path', '/' + str(patric_domain) + '/home/AssemblyJob'),('Genome_name',str(genome_name))) writer1 = reduce(lambda a, kv: a.replace(*kv), repls1, reader) writer2 = out_file.write(writer1) in_file.close() out_file.close() os.system('appserv-start-app ComprehensiveGenomeAnalysis params_contigs_out_temp_genome_assemlby_annotation.json \"[email protected]/home/\"'+ ' > ' + str(genome_name) + '_job_ID_temp_genome_assemlby_annotation.txt') job_id = open(str(genome_name) + '_job_ID_temp_genome_assemlby_annotation.txt', "rb").readline().replace('Started task ', '').rstrip() print "Comprehensive Genome Analysis job sent for " + str(genome_name) + ' as job id ' + job_id #check job if str(args.check_job) == 'yes': df_reads = pd.read_csv(str(args.metadata_file), sep='\t', usecols=['R1','R2','genome_name_reads']).replace(' ','_', regex=True) genome_name_list_reads = df_reads['genome_name_reads'].dropna().tolist() df_contigs = pd.read_csv(str(args.metadata_file), sep='\t', usecols=['contigs','genome_name_contigs']).replace(' ','_', regex=True) genome_name_list_contigs = df_contigs['genome_name_contigs'].dropna().tolist() genome_name_list = genome_name_list_reads + genome_name_list_contigs for genome_name in genome_name_list: job_id2 = open(str(genome_name) + '_job_ID_temp_genome_assemlby_annotation.txt', "rb").readline().replace('Started task ', '').rstrip() while True: os.system('p3-job-status' + ' ' + job_id2 + ' > ' + str(genome_name) + '_job_status_temp_genome_assemlby_annotation.txt') job_id_status = open(str(genome_name) + '_job_status_temp_genome_assemlby_annotation.txt', "rb").readline().rstrip() print 'Checking status of ' + str(genome_name) + ' as job id ' + job_id_status t = time.localtime() current_time = time.strftime('%H:%M:%S', t) print 'Current time: ' + current_time if job_id_status == job_id2 + ': completed': break time.sleep(300) #check status of first jobs every 300 seconds (ie 5 minutes) print 'Comprehensive Genome Analysis done for ' + str(genome_name) #download data if not os.path.exists(str(args.output_folder)): os.mkdir(str(args.output_folder)) os.system('p3-cp ws:\"/' + str(patric_domain) + '/home/AssemblyJob/.' + str(genome_name) + '/FullGenomeReport.html\"' + ' ' + str(args.output_folder) +'/'+str(genome_name) + '_FullGenomeReport.html') os.system('p3-cp ws:\"/' + str(patric_domain) + '/home/AssemblyJob/.' + str(genome_name) + '/.annotation/annotation.contigs.fasta\"' + ' ' + str(args.output_folder) +'/'+str(genome_name) + '_contigs.fasta') os.system('p3-cp ws:\"/' + str(patric_domain) + '/home/AssemblyJob/.' + str(genome_name) + '/.annotation/annotation.txt\"' + ' ' + str(args.output_folder) +'/'+str(genome_name) + '_annotation.txt') os.system('p3-cp ws:\"/' + str(patric_domain) + '/home/AssemblyJob/.' + str(genome_name) + '/.annotation/annotation.feature_protein.fasta\"' + ' ' + str(args.output_folder) +'/'+str(genome_name) + '_protein.fasta') os.system('p3-cp ws:\"/' + str(patric_domain) + '/home/AssemblyJob/.' + str(genome_name) + '/.annotation/annotation.feature_dna.fasta\"' + ' ' + str(args.output_folder) +'/'+str(genome_name) + '_DNA.fasta') #add column with genome name df = pd.read_csv(str(args.output_folder) +'/'+str(genome_name) + '_annotation.txt', sep='\t') df['genome_name']=str(genome_name) column_order = ['genome_name','contig_id','feature_id','type','location','start','stop','strand','function','aliases','plfam','pgfam','figfam','evidence_codes','nucleotide_sequence','aa_sequence'] df[column_order].to_csv(str(args.output_folder) +'/'+str(genome_name) + '_annotation.txt', sep='\t', index=False) #download data if str(args.download_reports) == 'yes': df_reads = pd.read_csv(str(args.metadata_file), sep='\t', usecols=['R1','R2','genome_name_reads']).replace(' ','_', regex=True) genome_name_list_reads = df_reads['genome_name_reads'].dropna().tolist() df_contigs = pd.read_csv(str(args.metadata_file), sep='\t', usecols=['contigs','genome_name_contigs']).replace(' ','_', regex=True) genome_name_list_contigs = df_contigs['genome_name_contigs'].dropna().tolist() genome_name_list = genome_name_list_reads + genome_name_list_contigs for genome_name in genome_name_list: if not os.path.exists(str(args.output_folder)): os.mkdir(str(args.output_folder)) os.system('p3-cp ws:\"/' + str(patric_domain) + '/home/AssemblyJob/.' + str(genome_name) + '/FullGenomeReport.html\"' + ' ' + str(args.output_folder) +'/'+str(genome_name) + '_FullGenomeReport.html') os.system('p3-cp ws:\"/' + str(patric_domain) + '/home/AssemblyJob/.' + str(genome_name) + '/.annotation/annotation.contigs.fasta\"' + ' ' + str(args.output_folder) +'/'+str(genome_name) + '_contigs.fasta') os.system('p3-cp ws:\"/' + str(patric_domain) + '/home/AssemblyJob/.' + str(genome_name) + '/.annotation/annotation.txt\"' + ' ' + str(args.output_folder) +'/'+str(genome_name) + '_annotation.txt') os.system('p3-cp ws:\"/' + str(patric_domain) + '/home/AssemblyJob/.' + str(genome_name) + '/.annotation/annotation.feature_protein.fasta\"' + ' ' + str(args.output_folder) +'/'+str(genome_name) + '_protein.fasta') os.system('p3-cp ws:\"/' + str(patric_domain) + '/home/AssemblyJob/.' + str(genome_name) + '/.annotation/annotation.feature_dna.fasta\"' + ' ' + str(args.output_folder) +'/'+str(genome_name) + '_DNA.fasta') #add column with genome name df = pd.read_csv(str(args.output_folder) +'/'+str(genome_name) + '_annotation.txt', sep='\t') df['genome_name']=str(genome_name) column_order = ['genome_name','contig_id','feature_id','type','location','start','stop','strand','function','aliases','plfam','pgfam','figfam','evidence_codes','nucleotide_sequence','aa_sequence'] df[column_order].to_csv(str(args.output_folder) +'/'+str(genome_name) + '_annotation.txt', sep='\t', index=False) #delete temp files temp_filter_files=glob.glob('*_temp_genome_assemlby_annotation.txt') for temp_file in temp_filter_files: os.remove(str(temp_file))
d83ee3ab1824a8146fa04d80c14a0b011af7d09e
047031e749f95f385e45629e540b002e132d8520
/PMT/projects/migrations/0003_project_slug.py
fff1ac6e753b1efd4e5570652bdc7de0ab95156a
[]
no_license
carsonalexander14/project-management-tool
907e968a8c2a7a2914d992f81cfe54ae83294b8a
8987b22364e366f033ee739690598206aab00ad6
refs/heads/master
2022-11-26T16:37:02.772473
2021-04-15T17:40:47
2021-04-15T17:40:47
243,101,283
0
0
null
2022-11-22T07:54:47
2020-02-25T20:59:11
CSS
UTF-8
Python
false
false
391
py
# Generated by Django 3.0.3 on 2021-01-21 02:45 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('projects', '0002_remove_position_related_skill'), ] operations = [ migrations.AddField( model_name='project', name='slug', field=models.SlugField(null=True), ), ]
1a7942bfa09a42c5b1e7c442e32d5b0be847dcc1
cbb805d9efd3bd5a03a32a234c84eca06297e21c
/main.py
6099667cb777dfff3ef82c4a1085fb2d5b133bbf
[]
no_license
kaungmyatthumdy/FlaskWithJinja
4cac0dad018135b5165fb93aaaf8137be5552569
8dc403a1074b28bd500b7daa5ccef7dd68cad38f
refs/heads/master
2020-03-22T02:53:58.546975
2018-07-02T08:03:58
2018-07-02T08:03:58
139,400,201
0
0
null
null
null
null
UTF-8
Python
false
false
196
py
from flask import Flask, render_template myapp = Flask(__name__) @myapp.route("/") def hello(): return render_template("index.html") if __name__ == "__main__": myapp.run(debug=True)
a06d251656d70de9cf2669ad98288f791db8af37
150464efa69db3abf328ef8cd912e8e248c633e6
/_4.python/__code/Python大數據特訓班(第二版)/ch03/ch03_all.py
5b3de4b523557a5a8656e835bb3ba0eb10899289
[]
no_license
bunshue/vcs
2d194906b7e8c077f813b02f2edc70c4b197ab2b
d9a994e3afbb9ea84cc01284934c39860fea1061
refs/heads/master
2023-08-23T22:53:08.303457
2023-08-23T13:02:34
2023-08-23T13:02:34
127,182,360
6
3
null
2023-05-22T21:33:09
2018-03-28T18:33:23
C#
UTF-8
Python
false
false
10,672
py
# filewrite1.py content='''Hello Python 中文字測試 Welcome''' f=open('file1.txt', 'w' ,encoding='utf-8', newline="") f.write(content) f.close() # filewrite2.py content='''Hello Python 中文字測試 Welcome''' with open('file1.txt', 'w' ,encoding='utf-8', newline="") as f: f.write(content) # fileread1.py with open('file1.txt', 'r', encoding='utf-8') as f: output_str=f.read(5) print(output_str) # Hello # fileread2.py with open('file1.txt', 'r', encoding ='UTF-8') as f: print(f.readline()) print(f.readline(3)) # fileread3.py with open('file1.txt', 'r', encoding='utf-8') as f: content=f.readlines() print(type(content)) print(content) # fileread4.py with open('file2.txt', 'r', encoding ='UTF-8') as f: print(f.readlines()) # csv_read.py import csv # 開啟 csv 檔案 with open('school.csv', newline='') as csvfile: # 讀取 csv 檔案內容 rows = csv.reader(csvfile) # 以迴圈顯示每一列 for row in rows: print(row) # csv_read_dict.py import csv # 開啟 csv 檔案 with open('school.csv', newline='') as csvfile: # 讀取 csv 檔內容,將每一列轉成 dictionary rows = csv.DictReader(csvfile) # 以迴圈顯示每一列 for row in rows: print(row['座號'],row['姓名'],row['國文'],row['英文'],row['數學']) # csv_write_list1.py import csv with open('test1.csv', 'w', newline='') as f: # 建立 csv 檔寫入物件 writer = csv.writer(f) # 寫入欄位及資料 writer.writerow(['座號', '姓名', '國文', '英文', '數學']) writer.writerow([1, '葉大雄', 65, 62, 40]) writer.writerow([2, '陳靜香', 85, 90, 87]) writer.writerow([3, '王聰明', 92, 90, 95]) # csv_write_list2.py import csv # 建立csv二維串列資料 csvtable = [ ['座號', '姓名', '國文', '英文', '數學'], [1, '葉大雄', 65, 62, 40], [2, '陳靜香', 85, 90, 87], [3, '王聰明', 92, 90, 95] ] # 寫入csv檔案 with open('test2.csv', 'w', newline='') as csvfile: writer = csv.writer(csvfile) writer.writerows(csvtable) # csv_write_dict.py import csv with open('test3.csv', 'w', newline='') as csvfile: # 定義欄位 fieldnames = ['座號', '姓名', '國文', '英文', '數學'] # 將 dictionary 寫入 csv 檔 writer = csv.DictWriter(csvfile, fieldnames=fieldnames) # 寫入欄位名稱 writer.writeheader() # 寫入資料 writer.writerow({'座號': 1, '姓名': '葉大雄', '國文': 65, '英文': 62, '數學': 40}) writer.writerow({'座號': 2, '姓名': '陳靜香', '國文': 85, '英文': 90, '數學': 87}) writer.writerow({'座號': 3, '姓名': '王聰明', '國文': 92, '英文': 90, '數學': 95}) # jsonload1.py import json class_str = """ { "一年甲班": [ { "座號": 1, "姓名": "葉大雄", "國文": 65, "英文": 62, "數學": 40 }, { "座號": 2, "姓名": "陳靜香", "國文": 85, "英文": 90, "數學": 87 }, { "座號": 3, "姓名": "王聰明", "國文": 92, "英文": 90, "數學": 95 } ] } """ datas = json.loads(class_str) print(type(datas)) for data in datas["一年甲班"]: print(data, data['姓名']) # jsonload2.py import json with open('class_str.json', 'r', encoding='utf-8') as f: datas = json.load(f) print(type(datas)) for data in datas["一年甲班"]: print(data, data['姓名']) # jsondump1.py import json with open('class_str.json', 'r', encoding='utf-8') as f: datas = json.load(f) print(datas, type(datas)) dumpdata = json.dumps(datas, ensure_ascii=False) print(dumpdata, type(dumpdata)) # jsondump2.py import json with open('class_str.json', 'r', encoding='utf-8') as f: datas = json.load(f) with open('new_class_str.json', 'w', encoding='utf-8') as f: dumpdata = json.dump(datas, f, ensure_ascii=False) # xlsx_write.py import openpyxl # 建立一個工作簿 workbook=openpyxl.Workbook() # 取得第 1 個工作表 sheet = workbook.worksheets[0] # 以儲存格位置寫入資料 sheet['A1'] = '一年甲班' # 以串列寫入資料 listtitle=['座號', '姓名', '國文', '英文', '數學'] sheet.append(listtitle) listdatas=[[1, '葉大雄', 65, 62, 40], [2, '陳靜香', 85, 90, 87], [3, '王聰明', 92, 90, 95]] for listdata in listdatas: sheet.append(listdata) # 儲存檔案 workbook.save('test.xlsx') # xlsx_read.py import openpyxl # 讀取檔案 workbook = openpyxl.load_workbook('test.xlsx') # 取得第 1 個工作表 sheet = workbook.worksheets[0] # 取得指定儲存格 print(sheet['A1'], sheet['A1'].value) # 取得總行、列數 print(sheet.max_row, sheet.max_column) # 顯示 cell資料 for i in range(1, sheet.max_row+1): for j in range(1, sheet.max_column+1): print(sheet.cell(row=i, column=j).value,end=" ") print() sheet['A1'] = '二年甲班' workbook.save('test.xlsx') # sqlite_cursor.py import sqlite3 conn = sqlite3.connect('school.db') # 建立資料庫連線 cursor = conn.cursor() # 建立 cursor 物件 # 建立一個資料表 sqlstr='''CREATE TABLE IF NOT EXISTS scores \ ("id" INTEGER PRIMARY KEY NOT NULL, "name" TEXT NOT NULL, "chinese" INTEGER NOT NULL, "english" INTEGER NOT NULL, "math" INTEGER NOT NULL ) ''' cursor.execute(sqlstr) # 新增記錄 cursor.execute('insert into scores values(1, "葉大雄", 65, 62, 40)') cursor.execute('insert into scores values(2, "陳靜香", 85, 90, 87)') cursor.execute('insert into scores values(3, "王聰明", 92, 90, 95)') conn.commit() # 更新 conn.close() # 關閉資料庫連線 # sqlite_crud1.py import sqlite3 conn = sqlite3.connect('school.db') # 建立資料庫連線 # 建立一個資料表 sqlstr='''CREATE TABLE IF NOT EXISTS scores \ ("id" INTEGER PRIMARY KEY NOT NULL, "name" TEXT NOT NULL, "chinese" INTEGER NOT NULL, "english" INTEGER NOT NULL, "math" INTEGER NOT NULL ) ''' conn.execute(sqlstr) conn.commit() # 更新 conn.close() # 關閉資料庫連線 # sqlite_crud2.py import sqlite3 conn = sqlite3.connect('school.db') # 建立資料庫連線 # 定義資料串列 datas = [[1,'葉大雄',65,62,40], [2,'陳靜香',85,90,87], [3,'王聰明',92,90,95]] # 新增資料 for data in datas: conn.execute("INSERT INTO scores (id, name, chinese, english, math) VALUES \ ({}, '{}', {}, {}, {})".format(data[0], data[1], data[2], data[3], data[4])) conn.commit() # 更新 conn.close() # 關閉資料庫連線 # sqlite_crud3.py import sqlite3 conn = sqlite3.connect('school.db') # 建立資料庫連線 # 更新資料 conn.execute("UPDATE scores SET name='{}' WHERE id={}".format('林胖虎', 1)) conn.commit() # 更新 conn.close() # 關閉資料庫連線 # sqlite_crud4.py import sqlite3 conn = sqlite3.connect('school.db') # 建立資料庫連線 # 刪除資料 conn.execute("DELETE FROM scores WHERE id={}".format(1)) conn.commit() # 更新 conn.close() # 關閉資料庫連線 # fetchall.py import sqlite3 conn = sqlite3.connect('school.db') # 建立資料庫連線 cursor = conn.execute('select * from scores') rows = cursor.fetchall() # 顯示原始資料 print(rows) # 逐筆顯示資料 for row in rows: print(row[0],row[1]) conn.close() # 關閉資料庫連線 # fetchone.py import sqlite3 conn = sqlite3.connect('school.db') # 建立資料庫連線 cursor = conn.execute('select * from scores') row = cursor.fetchone() print(row[0], row[1]) conn.close() # 關閉資料庫連線 # mysqltable.py import pymysql conn = pymysql.connect('localhost',port=3306,user='root',passwd='1234',charset='utf8', db='pythondb') #連結資料庫 with conn.cursor() as cursor: sql = """ CREATE TABLE IF NOT EXISTS Scores ( ID int NOT NULL AUTO_INCREMENT PRIMARY KEY, Name varchar(20), Chinese int(3), English int(3), Math int(3) ); """ cursor.execute(sql) #執行SQL指令 conn.commit() #提交資料庫 conn.close() # mysqlinsert.py import pymysql conn = pymysql.connect('localhost',port=3306,user='root',passwd='1234',charset='utf8', db='pythondb') #連結資料庫 with conn.cursor() as cursor: sql = """ insert into scores (Name, Chinese, English, Math) values ('葉大雄',65,62,40), ('陳靜香',85,90,87), ('王聰明',92,90,95) """ cursor.execute(sql) conn.commit() #提交資料庫 conn.close() # mysqlquery.py import pymysql conn = pymysql.connect('localhost',port=3306,user='root',passwd='1234',charset='utf8', db='pythondb') #連結資料庫 with conn.cursor() as cursor: sql = "select * from scores" cursor.execute(sql) datas = cursor.fetchall() # 取出所有資料 print(datas) print('-' * 30) # 畫分隔線 sql = "select * from scores" cursor.execute(sql) data = cursor.fetchone() # 取出第一筆資料 print(data) conn.close() # mysqlupdate.py import pymysql conn = pymysql.connect('localhost',port=3306,user='root',passwd='1234',charset='utf8', db='pythondb') #連結資料庫 with conn.cursor() as cursor: sql = "update scores set Chinese = 98 where ID = 3" cursor.execute(sql) conn.commit() sql = "select * from scores where ID = 3" cursor.execute(sql) data = cursor.fetchone() print(data) conn.close() # mysqldelete.py import pymysql conn = pymysql.connect('localhost',port=3306,user='root',passwd='1234',charset='utf8', db='pythondb') #連結資料庫 with conn.cursor() as cursor: sql = "delete from scores where ID = 3" cursor.execute(sql) conn.commit() sql = "select * from scores" cursor.execute(sql) data = cursor.fetchall() print(data) conn.close() # LinkGoogleSheet.py import gspread from oauth2client.service_account import ServiceAccountCredentials as sac # 設定金鑰檔路徑及驗證範圍 auth_json = 'PythonConnectGsheet1-6a6086d149c5.json' gs_scopes = ['https://spreadsheets.google.com/feeds'] # 連線資料表 cr = sac.from_json_keyfile_name(auth_json, gs_scopes) gc = gspread.authorize(cr) # 開啟資料表 spreadsheet_key = '1OihpM657yWo1lc3RjskRfZ8m75dCPwL1IPwoDXSvyzI' sheet = gc.open_by_key(spreadsheet_key) # 開啟工作簿 wks = sheet.sheet1 # 清除所有內容 wks.clear() # 新增列 listtitle=['座號', '姓名', '國文', '英文', '數學'] wks.append_row(listtitle) # 標題 listdatas=[[1, '葉大雄', 65, 62, 40], [2, '陳靜香', 85, 90, 87], [3, '王聰明', 92, 90, 95]] for listdata in listdatas: wks.append_row(listdata) # 資料內容
199aa3a40db1995b68f6f7db614edf3060fc6fa3
925293c229ea4e51ede2f00964e1d474693ed726
/neuralnet.py
bd27014f8dd8db09adb7dafa5205eeb3186dfdd2
[]
no_license
jessprim/IntroNeuralNet
4041a53fc07c9c7dfedbb4d74f21f827f570a0d0
e7693445d1e9aa7b05e9ad96e4f57175545b8181
refs/heads/master
2021-04-30T00:07:10.068851
2018-02-15T04:42:05
2018-02-15T04:42:05
121,570,225
0
1
null
null
null
null
UTF-8
Python
false
false
979
py
# Load Dependency: import numpy as np # Activation Function: def activate(x,deriv=False): if(deriv==True): return x*(1-x) return 1/(1+np.exp(-x)) # Input Dataset: _input = np.array([ [0,0,1], [0,1,1], [1,0,1], [1,1,1] ]) # Output Dataset output = np.array([[0,0,1,1]]).T # Set Seed - For reproducibility np.random.seed(5) # Synaptic Random Weights With Mean 0 synapse = 2*np.random.random((3,1)) - 1 # Putting It Together: for j in xrange(70000): # Layers # Forward propagation layer1 = _input layer2 = activate(np.dot(layer1,synapse)) # Calculate Error (Actual - Predicted Values) error = output - layer2 # Multiply The Error By Slope of The Sigmoids (Here we calculate the Sigmoid's derivative) delta = error * activate(layer2,True) # Update Weights synapse += np.dot(layer1.T,delta) print "Output After Training:" print layer2
f4b7beae000280cf87847699e43e1a68ed71e434
c8dbd229195a384ae8e4e671a6a59b67352de167
/python_rest/venv/bin/easy_install
8abed8dd358f7d3df9082c4db730064e18483fd6
[]
no_license
shinde-prasad/booklist-oops-js
a97990c9eb4234929538c11b8831359a1853fc8b
99b4a5c9c12a4bc08728f8805215a27a53e1646e
refs/heads/master
2020-03-29T15:20:54.691354
2018-09-27T11:49:18
2018-09-27T11:49:18
150,058,352
0
0
null
null
null
null
UTF-8
Python
false
false
313
#!/mnt/D0A2B33FA2B328BC/Frontend-Workspace/VS-workspace/oop-book-list/python_rest/venv/bin/python2 # -*- coding: utf-8 -*- import re import sys from setuptools.command.easy_install import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
453bf4ec36013630bd101b835594ecaf92567b0e
0146c1c427453f170ba0cb1b76a8ac1f1d2b194c
/juggle.py
0bde64e97df1c342e13eedbf82485daa1d5a2d81
[]
no_license
ismarou/isaacgym_sandbox
ee7d71e5702cfdc1eda7d57b2cce8c8d6c7ea7de
30368cb37d07bfdce45b2fbb3ba3ec86d66cdc95
refs/heads/master
2023-04-28T06:46:50.570236
2021-05-18T08:53:08
2021-05-18T08:53:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,097
py
""" [email protected] """ import matplotlib.pyplot as plt import numpy as np import time from policies import CubicMP, PiecewiseMP from envs import IsaacSim, IsaacJugglingWam4 from ereps import eREPS # stroke based movement primitive to get going poss_stroke = np.array([[- 0.10, 1.20, 0.0, 1.25], [- 0.09, 1.01, 0.0, 0.99], [+ 0.08, 1.16, 0.0, 1.19], [+ 0.112, 0.95, 0.0, 1.09], [- 0.08, 1.18, 0.0, 1.22]]) vels_stroke = np.zeros_like(poss_stroke) times_stroke = np.array([0.095, 0.475, 0.57, 0.95]) # cyclic movement primitive poss_cyclic = np.array([[- 0.08, 1.19, 0.0, 1.22], [- 0.12, 1.03, 0.0, 0.95], [+ 0.08, 1.19, 0.0, 1.22], [+ 0.12, 1.03, 0.0, 0.95]]) vels_cyclic = np.zeros_like(poss_cyclic) times_cyclic = np.array([0.095, 0.475, 0.57, 0.95]) # visible parameters to be trained param_names = ['pos1_act0_s', 'pos1_act1_s', 'pos1_act3_s', 'pos2_act0_s', 'pos2_act1_s', 'pos2_act3_s', 'pos3_act0_s', 'pos3_act1_s', 'pos3_act3_s', 't1_s', 't2_s', 't3_s', 'pos0_act0_c', 'pos0_act1_c', 'pos0_act3_c', 'pos1_act0_c', 'pos1_act1_c', 'pos1_act3_c', 'pos2_act0_c', 'pos3_act0_c', 't1_c'] # cosntraints on hidden parameters constraints = {'equal': [['pos4_act0_s', 'pos0_act0_c'], ['pos4_act1_s', 'pos0_act1_c'], ['pos4_act3_s', 'pos0_act3_c'], ['pos2_act1_c', 'pos0_act1_c'], ['pos2_act3_c', 'pos0_act3_c'], ['pos3_act1_c', 'pos1_act1_c'], ['pos3_act3_c', 'pos1_act3_c']], 'offset': [['t3_c', 't1_c', 0.475]], 'mirror': []} def reward(sim): rewards = np.zeros(len(sim.envs)) for i in range(len(sim.envs)): env = sim.envs[i] x_balls = env.get_ball_positions() heigt_balls = np.array([x.z for x in x_balls]) if min(heigt_balls) > 0.5: rewards[i] = 1 return rewards class Func: """ interface for eREPS to evaluate a batch of parameters """ def __init__(self, sim, policies): self.sim = sim self.policies = policies self.dm_act = len(policies[0].get_params()) self.nb_envs = len(self.sim.envs) self.dt = self.sim.envs[0].dt def eval(self, params_batch): q = [] dq = [] tau = [] for i in range(self.nb_envs): self.policies[i].set_params(params_batch[i]) q0, _, _ = self.policies[i].get_action(0) self.sim.reset(q=q0) kt = 0 returns = np.zeros(self.nb_envs) for _ in range(1000): for k_envs in range(self.nb_envs): q_des, dq_des, tau_des = self.policies[k_envs].get_action(kt*self.dt) self.sim.envs[k_envs].apply_action(q_des, dq_des, tau_des) kt = self.sim.step() q.append(self.sim.envs[0].pos) dq.append(self.sim.envs[0].vel) returns += reward(self.sim) return returns def main(): nb_envs = 30 policies = [] for _ in range(nb_envs): policy_stroke = CubicMP(poss_stroke, vels_stroke, times_stroke, cyclic=False, id='s') policy_cyclic = CubicMP(poss_cyclic, vels_cyclic, times_cyclic, cyclic=True, id='c') intervals = np.array([policy_stroke.duration, np.inf]) policy = PiecewiseMP([policy_stroke, policy_cyclic], intervals, visible_params=param_names, constraints=constraints) policies.append(policy) sim = IsaacSim(IsaacJugglingWam4, num_envs=nb_envs) func = Func(sim, policies) mu0 = policies[0].get_params() # reps = eREPS(func=func, n_episodes=nb_envs, kl_bound=20, mu0=mu0, cov0=5e-4) # reps.run(10, verbose=True) func.eval(np.tile(mu0, (nb_envs, 1))) if __name__ == '__main__': main()
28c7b91ebf60af1184a4ec46854dbac4312490ea
a62b4b44572f6551db6ea3498e38f57476e3e911
/demo02.py
47a32a3ce85fc82b8d78b233062c09dfad626889
[]
no_license
lmjdas/exe
6da004ee661cf06ff0c3dce1c7970f3dfee67b3e
6bd5472b8869dbbd1a2b34a04c9ca23061693deb
refs/heads/main
2023-08-23T01:51:32.144750
2021-10-15T13:15:35
2021-10-15T13:15:35
416,738,390
0
0
null
null
null
null
UTF-8
Python
false
false
20
py
2+2 print("智障")
5ab5444b4709afc95701728675b9a2b1d60faf77
165dcb74cd7c489fa65d2c02e2421a5928f95a02
/find_path.py
22221e79a664f4ec1ab0bf3b5a44af60c6f556c5
[]
no_license
TongBaoTran/Graph-Theory-Programming
6e972cc47a10dbfcba6ae53bbce825ef7ee0e622
e3fb2ee518aed3c1e8cd8126843d92285b56378d
refs/heads/master
2022-06-05T17:26:37.506384
2020-03-06T18:50:27
2020-03-06T18:50:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,035
py
# -*- coding: utf-8 -*- """ Created on Fri Mar 6 19:41:44 2020 @author: baotr """ class Graph(object): def __init__(self, graph_dict=None): if graph_dict == None: graph_dict={} self.graph_dict=graph_dict def neighbors(self, node): return self.graph_dict[node] def add_vertex(self, vertex): if vertex not in self.graph_dict.keys(): self.graph_dict[vertex]=[] def vertices(self): return list(self.graph_dict.keys()) def add_edge(self, edge): vert1, vert2 = edge[0], edge[1] if vert1 in self.graph_dict.keys(): self.graph_dict[vert1].append(vert2) else: self.graph_dict[vert1]=[vert2] ## All paths between two nodes def find_path(self, start_vertex, end_vertex, path=None, paths=None): """ find a path from start_vertex to end_vertex in graph """ if path == None: path = [] if paths==None: paths=[] self.paths=paths if start_vertex not in self.graph_dict.keys(): return None path = path + [start_vertex] if start_vertex == end_vertex: return path if start_vertex not in self.graph_dict.keys(): return None for vertex in self.graph_dict[start_vertex]: if vertex not in path: new_path = self.find_path(vertex, end_vertex, path, paths) if new_path and isinstance(new_path[0], str): self.paths.append(new_path) return self.paths graph_dict = { "a" : ["b", "c"], "b" : ["a"], "c" : ["b", "a", "e", "d"], "d" : ["b", "c","e"], "e" : ["d", "b"], "f" : [] } graph = Graph(graph_dict) print(graph.find_path("a", "d"))
8e4deeb02622dcbe1ed430ad3b1918bef54bf16d
0d3ab7354bf54ddd78ee2d3a48796691eb41bb68
/mnist.py
c665b59b4ae71dd6c91400d972f65b888837a7b4
[]
no_license
WinstonQian7/ml-learning-repo
89ce2e7d7b5bd83ffa2f363687722c7b9272e070
8d8eb392e6b62a30ff4d8b30c9a4d77ea54ea2c4
refs/heads/main
2023-08-19T10:44:49.326490
2021-10-14T15:10:25
2021-10-14T15:10:25
405,760,604
0
0
null
null
null
null
UTF-8
Python
false
false
2,535
py
from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense from keras.layers import Dropout from keras.layers import Flatten from keras.layers import BatchNormalization from keras.layers.convolutional import Conv2D from keras.layers.convolutional import MaxPooling2D from keras.utils import np_utils # load data (X_train, y_train), (X_test, y_test) = mnist.load_data() # reshape to be [samples][width][height][channels] X_train = X_train.reshape((X_train.shape[0], 28, 28, 1)).astype('float32') X_test = X_test.reshape((X_test.shape[0], 28, 28, 1)).astype('float32') # normalize inputs from 0-255 to 0-1 X_train = X_train / 255 X_test = X_test / 255 # one hot encode outputs y_train = np_utils.to_categorical(y_train) y_test = np_utils.to_categorical(y_test) num_classes = y_test.shape[1] # define the larger model def larger_model(): # create model model = Sequential() model.add(Conv2D(30, (5, 5), input_shape=(28, 28, 1), activation='relu')) model.add(MaxPooling2D()) model.add(Conv2D(15, (3, 3), activation='relu')) model.add(MaxPooling2D()) model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(50, activation='relu')) model.add(Dense(num_classes, activation='softmax')) # Compile model model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model #T1 0.73% #T2 0.64% #T3 0.56% #T4 0.68% #T5 0.70% #T6 0.63% #T7 0.67% #T8 0.71% #T9 0.72% #T10 0.81% #TA def test_model(): model = Sequential() model.add(Conv2D(32, (5,5), input_shape=(28,28,1), activation = 'relu')) model.add(MaxPooling2D()) model.add(Conv2D(64, (5,5), activation = 'relu')) model.add(MaxPooling2D()) model.add(BatchNormalization()) model.add(Dropout(0.4)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(50, activation='relu')) model.add(Dense(num_classes, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model #Error ~0.54% # build the model model = test_model() # Fit the model model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=10, batch_size=300) # Final evaluation of the model scores = model.evaluate(X_test, y_test, verbose=0) print("Large CNN Error: %.2f%%" % (100-scores[1]*100)) import numpy as np from keras.preprocessing import image img = image.load_img
7a06523870d885350bcd34d61515636f04dbade5
a2e8e2d72bc084c2fd6edc9d0d4fcfab83b0dc41
/src/normalAnalysis.py
e752f584036d7f0c3533a0f7152524fe2e7d0259
[]
no_license
kingjin94/enhanced_simulation
6899df1968a8e5d4be5b2881494f8d0a1b7f8549
45021f9691e5f772ef4840d69b0d504a6ee79441
refs/heads/master
2020-06-13T13:14:48.414887
2019-11-13T14:27:25
2019-11-13T14:27:25
194,667,626
0
0
null
null
null
null
UTF-8
Python
false
false
2,224
py
import rospy import numpy as np from geometry_msgs.msg import WrenchStamped from gazebo_msgs.msg import ContactsState rospy.init_node("Test", anonymous=True) # get state msg = rospy.wait_for_message("/panda/ft/tool", WrenchStamped) F = np.asarray((msg.wrench.force.x, msg.wrench.force.y, msg.wrench.force.z)) M = np.asarray((msg.wrench.torque.x, msg.wrench.torque.y, msg.wrench.torque.z)) # get ground truth, normal is published in world frame it seems msg_contact = rospy.wait_for_message("/panda/bumper/panda_probe_ball", ContactsState) # minimize force and torque errors wrt. f_n, f_t1/2, phi, theta from sympy import * # apt install python-sympy theta, phi = symbols('theta phi', real=True) r = 0.03 L = 0.12 + 0.7 p_coll = Matrix([[r*sin(theta)*cos(phi)], [r*sin(theta)*sin(phi)], [r*cos(theta)]]) P_hand = Matrix([[0],[0],[-L]]) Normal = Matrix([[sin(theta)*cos(phi)], [sin(theta)*sin(phi)], [cos(theta)]]) T_1 = 1/r * Matrix([[-r*sin(theta)*sin(phi)], [r*sin(theta)*cos(phi)], [0]]) T_2 = 1/r * Matrix([[r*cos(theta)*cos(phi)], [r*cos(theta)*sin(phi)], [r*(-sin(theta))]]) # global force balance f_n, f_t1, f_t2 = symbols('f_n f_t1 f_t2') F_coll = f_n*(-Normal) + f_t1*T_1 + f_t2*T_2 f_obs_x, f_obs_y, f_obs_z = symbols('f_obs_x f_obs_y f_obs_z') F_obs = Matrix([[f_obs_x], [f_obs_y], [f_obs_z]]) equ_F = F_coll + F_obs # global torque balance about contact point m_obs_x, m_obs_y, m_obs_z = symbols('m_obs_x m_obs_y m_obs_z') M_obs = Matrix([[m_obs_x], [m_obs_y], [m_obs_z]]) equ_M = M_obs + (P_hand-p_coll).cross(F_obs) equ_M = simplify(equ_M) # apt install python-scipy # does not work, approach to dumb or just false? x = (f_n, f_t1, f_t2, phi, theta) lambda_F = lambdify(x, equ_F.subs(f_obs_x, F[0]).subs(f_obs_y, F[1]).subs(f_obs_z, F[2]), "numpy") lambda_M = lambdify(x, equ_M.subs(m_obs_x, M[0]).subs(m_obs_y, M[1]).subs(m_obs_z, M[2]).subs(f_obs_x, F[0]).subs(f_obs_y, F[1]).subs(f_obs_z, F[2]), "numpy") x0 = np.array([0.,0.,0.,0.,0.]) def residuum(x): return np.sum(lambda_F(*x))+np.sum(lambda_M(*x)) minimize(residuum, x0, method='nelder-mead')
321e910f13675a64ef9a7d4e04c7325c66131994
71ca21a02e5ab15715fc9b2c89ef6d2fb4cef75d
/studies_api/rest/v1/exceptions/submission.py
3b4831900bf6aa867f45aca407a8729eafdf7e6c
[]
no_license
stephenomalley/study-api
3da4dbce9c17ddf56bec431beeebed722557655a
669497dbad65466b456728428f70ed8f124527f7
refs/heads/master
2021-05-04T07:30:06.173914
2016-10-13T19:27:44
2016-10-13T19:27:44
70,636,540
1
0
null
null
null
null
UTF-8
Python
false
false
309
py
class SubmissionLimitExceeded(Exception): """ Exception thrown when the maximum number of places on a study already exists. """ pass class StudyNotCreated(Exception): """ Exception type thrown when an attempt to create a submission with an invalid study id is made. """ pass
47a5283f013e69c0e318103c2aab7676938afc29
77e9d856429373258ff98d49fbe0c585549ffda0
/PJ1_search/search.py
20d1fb3a755814316c92249569933bbcfa331423
[ "Apache-2.0" ]
permissive
beibidesr/CS188-Homework
7dccf162ffe74ad95c22cba85eb6afdf7fca9ee8
6712da1b27907f4096752c379c342481927000c8
refs/heads/master
2022-12-22T08:38:06.276030
2020-09-27T15:01:20
2020-09-27T15:01:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,382
py
# search.py # --------- # Licensing Information: You are free to use or extend these projects for # educational purposes provided that (1) you do not distribute or publish # solutions, (2) you retain this notice, and (3) you provide clear # attribution to UC Berkeley, including a link to http://ai.berkeley.edu. # # Attribution Information: The Pacman AI projects were developed at UC Berkeley. # The core projects and autograders were primarily created by John DeNero # ([email protected]) and Dan Klein ([email protected]). # Student side autograding was added by Brad Miller, Nick Hay, and # Pieter Abbeel ([email protected]). """ In search.py, you will implement generic search algorithms which are called by Pacman agents (in searchAgents.py). """ import util class SearchProblem: """ This class outlines the structure of a search problem, but doesn't implement any of the methods (in object-oriented terminology: an abstract class). You do not need to change anything in this class, ever. """ def getStartState(self): """ Returns the start state for the search problem. """ util.raiseNotDefined() def isGoalState(self, state): """ state: Search state Returns True if and only if the state is a valid goal state. """ util.raiseNotDefined() def getSuccessors(self, state): """ state: Search state For a given state, this should return a list of triples, (successor, action, stepCost), where 'successor' is a successor to the current state, 'action' is the action required to get there, and 'stepCost' is the incremental cost of expanding to that successor. """ util.raiseNotDefined() def getCostOfActions(self, actions): """ actions: A list of actions to take This method returns the total cost of a particular sequence of actions. The sequence must be composed of legal moves. """ util.raiseNotDefined() def tinyMazeSearch(problem): """ Returns a sequence of moves that solves tinyMaze. For any other maze, the sequence of moves will be incorrect, so only use this for tinyMaze. """ from game import Directions s = Directions.SOUTH w = Directions.WEST return [s, s, w, s, w, w, s, w] def depthFirstSearch(problem): fringe = util.Stack() start = [problem.getStartState(), 0, []] fringe.push(start) closed = [] while not fringe.isEmpty(): [state, cost, path] = fringe.pop() if problem.isGoalState(state): return path if not state in closed: closed.append(state) for child_state, child_action, child_cost in problem.getSuccessors(state): new_cost = cost + child_cost new_path = path + [child_action] fringe.push([child_state, new_cost, new_path]) def breadthFirstSearch(problem): fringe = util.Queue() start = [problem.getStartState(), 0, []] fringe.push(start) # queue push at index_0 closed = [] while not fringe.isEmpty(): [state, cost, path] = fringe.pop() if problem.isGoalState(state): return path if state not in closed: closed.append(state) for child_state, child_action, child_cost in problem.getSuccessors(state): new_cost = cost + child_cost new_path = path + [child_action] fringe.push([child_state, new_cost, new_path]) def uniformCostSearch(problem): fringe = util.PriorityQueue() start = [problem.getStartState(), 0, []] p = 0 fringe.push(start, p) # queue push at index_0 closed = [] while not fringe.isEmpty(): [state, cost, path] = fringe.pop() if problem.isGoalState(state): return path if state not in closed: closed.append(state) for child_state, child_action, child_cost in problem.getSuccessors(state): new_cost = cost + child_cost new_path = path + [child_action, ] fringe.push([child_state, new_cost, new_path], new_cost) def nullHeuristic(state, problem=None): """ A heuristic function estimates the cost from the current state to the nearest goal in the provided SearchProblem. This heuristic is trivial. """ return 0 def aStarSearch(problem, heuristic=nullHeuristic): fringe = util.PriorityQueue() start = [problem.getStartState(), 0, []] p = 0 fringe.push(start, p) # queue push at index_0 closed = [] while not fringe.isEmpty(): [state, cost, path] = fringe.pop() # print(state) if problem.isGoalState(state): # print(path) return path # here is a deep first algorithm in a sense if state not in closed: closed.append(state) for child_state, child_action, child_cost in problem.getSuccessors(state): new_cost = cost + child_cost new_path = path + [child_action, ] fringe.push([child_state, new_cost, new_path], new_cost + heuristic(child_state, problem)) util.raiseNotDefined() # Abbreviations bfs = breadthFirstSearch dfs = depthFirstSearch astar = aStarSearch ucs = uniformCostSearch
8da161cd6f56e6ed705cee2eb410fc227eacde91
16fb4d7d9277f738463eaa0a1e5b3e0329df4a7a
/clases.py
35848f59cd378f34a85b9894cf403b73a42b2ca4
[]
no_license
gchapa22/python_workshop
e7267840e64980fad6adc6dc86fee521d1f29bbf
41ef18107952af16632eb8f051463e5689765226
refs/heads/master
2016-09-06T18:18:21.122727
2014-04-03T17:55:45
2014-04-03T17:55:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
308
py
class Animal(object): def __init__(self): self.attr = 1 def speak(self): return "Noise" class Dog(Animal): def speak(self): return "Waw" def bite(self): return "chomp" class Cat(Animal): def speak(self): return "Miau" fido = Dog() pelusa = Cat() print fido.speak() print pelusa.speak()
40df7bdb6d3ff42134e00c035dac62fe565ad508
9181d67cdbc8ffbb8b4bdd8c7605df544fc1a37a
/venv/Scripts/easy_install-script.py
1d25dfec4918fd0dd33f930999b9228bcb4c8757
[]
no_license
DmitryDankov207/resender-bot
21cfc37f007cc6efc67b9af96a78996ade497cad
07dad8f6dd23e6b601411951af67f59225fbf2c0
refs/heads/master
2022-02-27T11:36:51.696951
2019-11-04T09:02:38
2019-11-04T09:02:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
446
py
#!C:\Users\12dda\PycharmProjects\bot\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==40.8.0','console_scripts','easy_install' __requires__ = 'setuptools==40.8.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==40.8.0', 'console_scripts', 'easy_install')() )
cc58cd6f621d9910d0ad66afdebbf2d5ef6d9c08
b2acf2dab56a42c22304b0e236b154d453175d6d
/Forex/Account.py
dd10ebe408b05f733a47a2298d40d575eaa813bd
[ "MIT" ]
permissive
bitsalt/bitbot
8cd14da5015598e18e65d41843ab7ecb7d3347da
24dcc037fcc2778929cb1091f2c87f38359e50c1
refs/heads/main
2023-03-29T22:07:01.746273
2021-04-13T20:42:25
2021-04-13T20:42:25
357,523,571
0
0
null
null
null
null
UTF-8
Python
false
false
6,200
py
import Forex.config as fxconfig class Account: def __init__(self): cfg = fxconfig.make_config_instance() api = cfg.create_context() response = api.account.summary(cfg.active_account) account = response.body['account'] self.id = account.id # # Client-assigned alias for the Account. Only provided if the Account # has an alias set # self.alias = account.alias # # The home currency of the Account # self.currency = account.currency # # The current balance of the Account. # self.balance = account.balance # # ID of the user that created the Account. # self.createdByUserID = account.createdByUserID # # The date/time when the Account was created. # self.createdTime = account.createdTime # # The current guaranteed Stop Loss Order mode of the Account. # self.guaranteedStopLossOrderMode = account.guaranteedStopLossOrderMode # # The total profit/loss realized over the lifetime of the Account. # self.pl = account.pl # # The total realized profit/loss for the Account since it was last # reset by the client. # self.resettablePL = account.resettablePL # # The date/time that the Account's resettablePL was last reset. # self.resettablePLTime = account.resettablePLTime # # The total amount of financing paid/collected over the lifetime of the # Account. # self.financing = account.financing # # The total amount of commission paid over the lifetime of the Account. # self.commission = account.commission # # The total amount of fees charged over the lifetime of the Account for # the execution of guaranteed Stop Loss Orders. # self.guaranteedExecutionFees = account.guaranteedExecutionFees # # Client-provided margin rate override for the Account. The effective # margin rate of the Account is the lesser of this value and the OANDA # margin rate for the Account's division. This value is only provided # if a margin rate override exists for the Account. # self.marginRate = account.marginRate # # The date/time when the Account entered a margin call state. Only # provided if the Account is in a margin call. # self.marginCallEnterTime = account.marginCallEnterTime # # The number of times that the Account's current margin call was # extended. # self.marginCallExtensionCount = account.marginCallExtensionCount # # The date/time of the Account's last margin call extension. # self.lastMarginCallExtensionTime = account.lastMarginCallExtensionTime # # The number of Trades currently open in the Account. # self.openTradeCount = account.openTradeCount # # The number of Positions currently open in the Account. # self.openPositionCount = account.openPositionCount # # The number of Orders currently pending in the Account. # self.pendingOrderCount = account.pendingOrderCount # # Flag indicating that the Account has hedging enabled. # self.hedgingEnabled = account.hedgingEnabled # # The date/time of the last order that was filled for this account. # self.lastOrderFillTimestamp = account.lastOrderFillTimestamp # # The total unrealized profit/loss for all Trades currently open in the # Account. # self.unrealizedPL = account.unrealizedPL # # The net asset value of the Account. Equal to Account balance + # unrealizedPL. # self.NAV = account.NAV # # Margin currently used for the Account. # self.marginUsed = account.marginUsed # # Margin available for Account currency. # self.marginAvailable = account.marginAvailable # # The value of the Account's open positions represented in the # Account's home currency. # self.positionValue = account.positionValue # # The Account's margin closeout unrealized PL. # self.marginCloseoutUnrealizedPL = account.marginCloseoutUnrealizedPL # # The Account's margin closeout NAV. # self.marginCloseoutNAV = account.marginCloseoutNAV # # The Account's margin closeout margin used. # self.marginCloseoutMarginUsed = account.marginCloseoutMarginUsed # # The Account's margin closeout percentage. When this value is 1.0 or # above the Account is in a margin closeout situation. # self.marginCloseoutPercent = account.marginCloseoutPercent # # The value of the Account's open positions as used for margin closeout # calculations represented in the Account's home currency. # self.marginCloseoutPositionValue = account.marginCloseoutPositionValue # # The current WithdrawalLimit for the account which will be zero or a # positive value indicating how much can be withdrawn from the account. # self.withdrawalLimit = account.withdrawalLimit # # The Account's margin call margin used. # self.marginCallMarginUsed = account.marginCallMarginUsed # # The Account's margin call percentage. When this value is 1.0 or above # the Account is in a margin call situation. # self.marginCallPercent = account.marginCallPercent # # The ID of the last Transaction created for the Account. # self.lastTransactionID = account.lastTransactionID def get_account_info(self, key): if key == 'currency': return self.account.currency
33fefc0ea918910f473b074cc5dc93ae1294a282
225723d8311f63378b729e576aaa2c0cf977f6c9
/myCVGenerator/myCVGenerator/wsgi.py
2876240cf95bae39b2bfdd59b28398ed2f41c215
[]
no_license
Acerosa/CV-Generator
f7e3625264e1242e8086a85b79717b1ac6fda73a
389280def918d037b557a909685c3eceaeb99481
refs/heads/main
2023-01-04T07:34:28.042004
2020-11-03T09:44:33
2020-11-03T09:44:33
308,640,180
0
0
null
null
null
null
UTF-8
Python
false
false
403
py
""" WSGI config for myCVGenerator project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'myCVGenerator.settings') application = get_wsgi_application()
a82572d154e3b2593d02ea5e3d02809cfbda836d
6084cf0b13307fe7c09e2e336ceaec321f21757b
/small_tests/runner_threading_test.py
c4599ef48bcc96c1f84a3c0bf6239fe5d7a74342
[]
no_license
asmialek/python_experiments
eae349b718e0e1c3d70f95cee2a0c6e03ba70971
daef809564afb77b705486bb7241fae6c0940390
refs/heads/master
2020-03-12T15:51:02.645817
2019-04-03T21:51:41
2019-04-03T21:51:41
130,701,122
0
0
null
null
null
null
UTF-8
Python
false
false
10,977
py
import sys import copy import builtins import traceback # from queue import Queue import queue import threading import time ################# look at me ################################ # http://www.rueckstiess.net/research/snippets/show/ca1d7d90 ############################################################# class ReadOnlyBuiltins(dict): """ Type used for a read only version of the __builtins__ dictionary. """ # def __hash__(self): # return hash(repr(self)) def clear(self): ValueError("Read only!") def __delitem__(self, key): ValueError("Read only!") def pop(self, key, default=None): ValueError("Read only!") def popitem(self): ValueError("Read only!") def setdefault(self, key, default=None): ValueError("Read only!") def __setitem__(self, key, value): ValueError("Read only!") def update(self, dict, **kw): ValueError("Read only!") def create_read_only_builtins(builtins_dict): """Substitutes given dictionary with a non modifiable version. Args: builtins_dict (dict): Dictionary to be modified. Returns: (dict): Non modifiable dictionary. """ safe_builtins = ReadOnlyBuiltins(builtins_dict) def __init__(*args, **kw): ValueError("Read only!") ReadOnlyBuiltins.__init__ = __init__ return safe_builtins class SafeImport(object): """Creates safe replacement for builtin `__init__` function. Can import only from modules whitelist. It is created as a class, because `multiprocessing.Process` uses pickle for safekeeping, and you cannot pickle nested functions. `_safe_import` function needs to be nested, to use `module_whitelist` variable, which needs to be modified from the outside. Returns: (func): "Safe" import function. """ def __init__(self): self.module_whitelist = ['time'] def __call__(self, *args, **kwargs): return self._safe_import def _safe_import(self, module_name, globals={}, locals={}, fromlist=[], level=-1): if module_name in self.module_whitelist: return __import__(module_name, globals, locals, fromlist, level) else: raise ImportError('Module \'' + module_name + '\' is not on ' 'the import ' 'whitelist') def _safe_open(file, mode='r', buffering=-1, encoding=None, errors=None, newline=None, closefd=True): """Creates safe replacement for builtin `open` function. Todo: - Check for open modes, whether every destructive one will be blocked. """ for char in mode: if char in ['w', 'a', '+']: raise IOError('Mode \'' + char + '\' is disallowed in the ' 'sandbox.') return open(file, mode, buffering, encoding, errors, newline, closefd) def create_whitelist(): """Creates builtins whitelist for `exec` environment. Returns: (set): Set of names to be whitelisted. """ ret = set() def recurse(item): if item.__subclasses__(): for sub_item in item.__subclasses__(): ret.add(sub_item.__name__) recurse(sub_item) return ret.add(item.__name__) recurse(builtins.BaseException) constants = {'False', 'None', 'True', '__doc__', '__name__', '__package__', } types = {'basestring', 'bytearray', 'bytes', 'complex', 'dict', 'float', 'frozenset', 'int', 'long', 'object', 'set', 'str', 'tuple', 'unicode', } functions = {'__import__', 'abs', 'all', 'any', 'ascii', 'apply', 'bin', 'bool', 'bytearray', 'bytes', 'callable', 'chr', 'classmethod', 'complex', 'dict', 'dir', 'divmod', 'enumerate', 'filter', 'float', 'format', 'frozenset', 'getattr', 'globals', 'hasattr', 'hash', 'help,' 'hex', 'id', 'input', 'int', 'isinstance', 'issubclass', 'iter', 'len', 'list', 'locals', 'map', 'max', 'min', 'next', 'object', 'oct', 'ord', 'pow', 'print', 'property', 'range', 'repr', 'reversed', 'round', 'set', 'setattr', 'slice', 'sorted', 'staticmethod', 'str', 'sum', 'super', 'tuple', 'type', 'vars', 'zip', } ret = ret | constants | types | functions return ret def _run(filename, new_builtins, queue): try: exec(open(filename).read(), {'__builtins__': dict(**new_builtins)}, {}) except Exception as e: queue.put(e) return 0 class Runner(object): """Acts as a sandbox environment for user scripts. Aims to be as safe as possible. Uses `exec` for script execution. Possible circumventions: - Find `file` in a list of `object` class subclasses. - Impose one function on another by overwriting `func_code` """ rtr = '' def __init__(self, builtins_expansion=None): self.current_run = None self.main = sys.modules['__main__'].__dict__ self.orig_builtins = self.main['__builtins__'].__dict__ # Build new builtins dictionary, from names whitelist self.builtins_whitelist = create_whitelist() self.new_builtins = dict() for item in self.orig_builtins.keys(): if item in self.builtins_whitelist: self.new_builtins[item] = \ copy.deepcopy(self.orig_builtins[item]) if builtins_expansion: self.new_builtins.update(builtins_expansion) # Remove items specified in blacklist from builtins self.builtins_blacklist = [] for item in self.builtins_blacklist: if item in self.new_builtins.keys(): self.new_builtins.pop(item) # Whitelist of module names, that can be imported into Runner scripts self.module_whitelist = [] # Adding custom "safe" methods to new builtins self.safe_import_object = SafeImport() self.new_builtins['__import__'] = self.safe_import_object() self.new_builtins['open'] = _safe_open self.new_builtins = create_read_only_builtins(self.new_builtins) def run(self, filename, feedback=False, timeout=None): """Safely executes Python script located in user `home` directory. Todo: - Add return string (one way communication) - Cleanup implementation Args: filename (str): Name of the file containing the script. feedback (flag, bool): For printing query results into console timeout (int): Timeout in seconds after which the execution stops """ run_queue = queue.Queue() # manager = multiprocessing.Manager() # new_builtins = manager.dict() # for key in self.new_builtins: # new_builtins[key] = self.new_builtins[key] self.current_run = threading.Thread(target=_run, args=(filename, self.new_builtins, run_queue)) try: self.current_run.daemon = True self.current_run.start() start_time = time.time() while self.current_run.is_alive(): if time.time() - start_time > 3: print('Killing process!') self.current_run._stop() print('> Killed!') self.current_run._delete() break else: print('> else') rtr_value = queue.get() if isinstance(rtr_value, BaseException): raise rtr_value elif rtr_value is 0: return 'return_string' else: raise RuntimeError('something happened') except RuntimeError: raise except SyntaxError as e: e.filename = filename raise e except Exception as e: _, _, tb = sys.exc_info() line_number = str(traceback.extract_tb(tb)[-1][1]) args = list(e.args) if len(args) > 0: args[0] = str(args[0]) + '\nIn file \"{}\", line {}' \ .format(filename, line_number) e.args = tuple(args) raise e # print('> Executed') # raise queue.get() def strop_current_run(self): # self.current_run pass if __name__ == '__main__': ################################ # THIS IS FOR TESTING PURPOSES # ################################ box = Runner() box.run('E:\\test.py') # box.run_old('E:\\test.py')
3e25deebd22289144408e2ae152663c49c07bb88
7ce0f3ce7dff2bf3050fca752373c39dbed41ebf
/LoanAnalyticsssss/LoanAnalytics/loan_analytics/loan_analytics/Helper.py
d84b7119b718fd306a7d9a0d454761e412a8f337
[]
no_license
jiying9/loanAnalysis
dc079c4051d4438d872fffc73dc56af229ae8c6f
3b12d39c00bee7ccca0e99998ccaac787093c0d5
refs/heads/main
2023-01-24T02:03:09.228359
2020-11-27T17:18:20
2020-11-27T17:18:20
316,558,618
0
0
null
null
null
null
UTF-8
Python
false
false
2,719
py
from prettytable import PrettyTable import matplotlib.pyplot as plt import numpy as np import decimal import plotly.graph_objs as go from plotly.graph_objs import Scatter,Layout import plotly import plotly.offline as py import pandas as pd import plotly.express as px class Helper: """ Helper class for printing and plotting of loan schedules. """ @staticmethod def display(value, digits=2): """ Return a displayable value with a specified number of digits. :param value: value to display :param digits: number of digits right of the decimal place :return: formatted displayable value """ temp = str(decimal.Decimal(str(value) + '0' * digits)) return temp[:temp.find('.') + digits + 1] @staticmethod def plot(loan): payment_number, applied_principal, applied_interest, end_principal = [], [], [], [] # iterate over the loan schedule # for pay in loan.schedule.values(): payment_number.append(pay[0]) applied_principal.append(pay[4]) applied_interest.append(pay[5]) end_principal.append(pay[6]) ind = np.arange(len(payment_number)) width = 0.35 p1 = plt.bar(ind, applied_principal, width) p2 = plt.bar(ind, applied_interest, width, bottom=applied_principal) plt.ylabel('USD') plt.title('Schedule') plt.xticks(np.arange(0, max(payment_number), 12)) plt.yticks(np.arange(0, max(applied_principal + applied_interest), 500)) plt.legend((p1[0], p2[0]), ('Principal', 'Interest'), loc='lower right') plt.show() @staticmethod def print(loan): x = PrettyTable() x.field_names = ['Payment Number', 'Begin Principal', 'Payment', 'Extra Payment', 'Applied Principal', 'Applied Interest', 'End Principal'] for field_name in x.field_names: x.align[field_name] = "r" for pay in loan.schedule.values(): x.add_row([pay[0], Helper.display(pay[1]), Helper.display(pay[2]), Helper.display(pay[3]), Helper.display(pay[4]), Helper.display(pay[5]), Helper.display(pay[6])]) print(x) @staticmethod def getimg(loan): df = pd.DataFrame({ "month": [pay[0] for pay in loan.schedule.values()], "principal": [Helper.display(pay[1]) for pay in loan.schedule.values()] }) return px.bar(df, x="month", y="principal", barmode="group")
162955668c9881485c3760eae76a6559879c4eb3
e48704ccf1ff1ff83163b8b7deed5c2973d70b30
/yield/test8_except.py
3343045c4bd566e955f6bf89c152a7b9fba9334a
[]
no_license
nilecui/nile_python_swk
e410c9ead2c6455b4c0ff55f1188f287f9fabe1b
cf39d7272821edb74c0bcca7120514e4e23a3b80
refs/heads/master
2021-03-12T23:01:20.038183
2013-04-06T09:30:38
2013-04-06T09:30:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
516
py
#!/usr/bin/python #-*- coding:utf-8 -*- def echo(value=None): print "Excution starts when next() is called for the first time." try: while True: try: value=(yield value) except Exception,e: value=3 finally: print "Don't forget to clean up when 'close()'is called" generator=echo(1) print generator.next() #1 print generator.next() #None print generator.send(2) #2 yield value generator.throw(TypeError,"spam") generator.close()
cc932fa561bbdb458aab97b1b882a7a91e775d24
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/Pf2kDoCRvEL8qzKTs_1.py
ba8544a0fea52347f5454de892ffd9d16371d082
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
293
py
def order_people(lst, people): if lst[0] * lst[1] < people: return 'overcrowded' res = [] for row in range(lst[0]): direc = -1 if len(res) % 2 else 1 res.append([n if n <= people else 0 for n in range(len(res) * lst[1] + 1, (len(res) + 1) * lst[1] + 1)][::direc]) return res
c6e4684f00604f3de05e374e87b459aa5bea5fce
7aa9f792cf95a9819b974f4a83f4af9c39606b30
/src/__init__.py
a05cc4c8be3eacec8edb2dc20c27e9b9ec489eca
[]
no_license
brolze/okex_test_project
e7b38a2638c0fa6410347c5d3003cacba0945493
3206e54c3990e0ae4235b8517ce9f9499ca67bc1
refs/heads/main
2023-03-23T11:24:39.301862
2021-03-20T07:42:26
2021-03-20T07:42:26
334,464,430
0
0
null
null
null
null
UTF-8
Python
false
false
113
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Jan 30 17:30:54 2021 @author: xujianqiao """
c7118b9671b22885cdb4e72acc137c952a2ac1f2
3413f253ba9b11fa795a57306be714d3f317e155
/dfvfs/analyzer/qcow_analyzer_helper.py
78a96b3447827aca49f19355ea1dda90798b3f97
[ "Apache-2.0" ]
permissive
ekristen/dfvfs
5e7e87b2fa9b39c15817dc42228b0f943abbf735
2dcb8a3e5bdc36bcb11f133a18f718b3010dd93e
refs/heads/master
2021-01-17T22:11:59.482625
2016-05-14T08:15:12
2016-05-14T08:15:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,179
py
# -*- coding: utf-8 -*- """The QCOW format analyzer helper implementation.""" from dfvfs.analyzer import analyzer from dfvfs.analyzer import analyzer_helper from dfvfs.analyzer import specification from dfvfs.lib import definitions class QCOWAnalyzerHelper(analyzer_helper.AnalyzerHelper): """Class that implements the QCOW analyzer helper.""" FORMAT_CATEGORIES = frozenset([ definitions.FORMAT_CATEGORY_STORAGE_MEDIA_IMAGE]) TYPE_INDICATOR = definitions.TYPE_INDICATOR_QCOW def GetFormatSpecification(self): """Retrieves the format specification.""" format_specification = specification.FormatSpecification( self.type_indicator) # QCOW version 1 signature and version. format_specification.AddNewSignature(b'QFI\xfb\x00\x00\x00\x01', offset=0) # QCOW version 2 signature and version. format_specification.AddNewSignature(b'QFI\xfb\x00\x00\x00\x02', offset=0) # QCOW version 3 signature and version. format_specification.AddNewSignature(b'QFI\xfb\x00\x00\x00\x03', offset=0) return format_specification # Register the analyzer helpers with the analyzer. analyzer.Analyzer.RegisterHelper(QCOWAnalyzerHelper())
35196e8a2bbb42d4660f9850ec32b9729408a369
8931d9e5a7cab2a4363105d3bd72de629b3444af
/auth.py
4fd9e15e6594e2f69b1fef9b3a304b4847d4ad1a
[]
no_license
kpurusho/MoneySquareBackend
de255a5995a5888298151dac97f06a8fcda7a328
1939317ec92b44e2161cf38d4adf249a996cfd18
refs/heads/master
2022-11-20T23:58:39.713941
2020-07-26T12:21:39
2020-07-26T12:21:39
275,732,456
0
0
null
null
null
null
UTF-8
Python
false
false
990
py
import os import cachecontrol import google.auth.transport.requests import requests from functools import wraps from google.oauth2 import id_token class AuthenticationFailedException(Exception): pass def oidc_auth_required(request, email=None, audience=None): def decorator(f): @wraps(f) def wrapper(*args, **kvargs): token = request.headers.get('idToken') session = requests.session() cached_session = cachecontrol.CacheControl(session) transport_request = google.auth.transport.requests.Request(session=cached_session) decoded_token = id_token.verify_oauth2_token(token, transport_request) if decoded_token['iss'] != 'accounts.google.com': raise AuthenticationFailedException() if email and decoded_token['email'] != email: raise AuthenticationFailedException() return f(*args, **kvargs) return wrapper return decorator
c4f20fce595f09bdabfdbdf0d65d5b1465e45826
9f91fa2910d13273a50ae416c116e16385a4eb95
/natvenv/env/bin/jp.py
d6d50fb640cee342a3af191071bf38b79dcb68ac
[]
no_license
natrayanp/mysb_v2
cac811e7f66670f8546cccdbca386ba6ff4f8cd6
24dea04e2a631ca6b465b3f62077a83a5dce9758
refs/heads/master
2022-11-20T16:49:30.341095
2018-07-31T17:18:04
2018-07-31T17:18:04
116,319,931
0
1
null
2022-11-14T21:09:17
2018-01-05T00:05:13
Python
UTF-8
Python
false
false
1,748
py
#!/home/natrayan/project/AwsProject/Python/Tradingapp/tradingapp5/natvenv/env/bin/python3.6 import sys import json import argparse from pprint import pformat import jmespath from jmespath import exceptions def main(): parser = argparse.ArgumentParser() parser.add_argument('expression') parser.add_argument('-f', '--filename', help=('The filename containing the input data. ' 'If a filename is not given then data is ' 'read from stdin.')) parser.add_argument('--ast', action='store_true', help=('Pretty print the AST, do not search the data.')) args = parser.parse_args() expression = args.expression if args.ast: # Only print the AST expression = jmespath.compile(args.expression) sys.stdout.write(pformat(expression.parsed)) sys.stdout.write('\n') return 0 if args.filename: with open(args.filename, 'r') as f: data = json.load(f) else: data = sys.stdin.read() data = json.loads(data) try: sys.stdout.write(json.dumps( jmespath.search(expression, data), indent=4)) sys.stdout.write('\n') except exceptions.ArityError as e: sys.stderr.write("invalid-arity: %s\n" % e) return 1 except exceptions.JMESPathTypeError as e: sys.stderr.write("invalid-type: %s\n" % e) return 1 except exceptions.UnknownFunctionError as e: sys.stderr.write("unknown-function: %s\n" % e) return 1 except exceptions.ParseError as e: sys.stderr.write("syntax-error: %s\n" % e) return 1 if __name__ == '__main__': sys.exit(main())
0cbe366c9fcfb220b4dc178aaae8b058b5713ff2
63ce91bae5eeadf885262b8fe0e769a64454d257
/ray_torch_lightning_advanced.py
9d62f3141c7e6f55a16c79f12c3cd7dd81faca0d
[ "Apache-2.0" ]
permissive
Data-drone/cv_experiments
c7349e7808f7f9c1315ce1efe33be1f86f4a9f80
d6e1d9716c03a9165e3d8a08f4cc1287323a56ca
refs/heads/master
2021-06-26T04:33:10.079771
2021-01-19T11:40:30
2021-01-19T11:40:30
196,596,871
0
0
null
null
null
null
UTF-8
Python
false
false
5,559
py
### test script for Ray and import torch import pytorch_lightning as pl from torch.utils.data import DataLoader, random_split from torch.nn import functional as F from torchvision.datasets import CIFAR100 from torchvision import transforms from torchvision import models from torch.nn import CrossEntropyLoss import os class LightningMNISTClassifier(pl.LightningModule): """ This has been adapted from https://towardsdatascience.com/from-pytorch-to-pytorch-lightning-a-gentle-introduction-b371b7caaf09 adjusted for cifar100 """ def __init__(self, config, data_dir=None): super(LightningMNISTClassifier, self).__init__() self.data_dir = data_dir or os.getcwd() self.lr = config["lr"] self.batch_size = config["batch_size"] #self.momentum = config["momentum"] # mnist images are (1, 28, 28) (channels, width, height) self.model = models.resnet34(pretrained=False) self.criterion = CrossEntropyLoss() self.tr_accuracy = pl.metrics.Accuracy() self.vl_accuracy = pl.metrics.Accuracy() self.test_accuracy = pl.metrics.Accuracy() def forward(self, x): return self.model(x) def training_step(self, train_batch, batch_idx): x, y = train_batch logits = self.forward(x) loss = self.criterion(logits, y) accuracy = self.tr_accuracy(logits, y) self.log("ptl/train_loss", loss) self.log("ptl/train_accuracy", accuracy) return loss def validation_step(self, val_batch, batch_idx): x, y = val_batch logits = self.forward(x) loss = self.criterion(logits, y) accuracy = self.vl_accuracy(logits, y) return {"val_loss": loss, "val_accuracy": accuracy} def validation_epoch_end(self, outputs): avg_loss = torch.stack([x["val_loss"] for x in outputs]).mean() avg_acc = torch.stack([x["val_accuracy"] for x in outputs]).mean() self.log("ptl/val_loss", avg_loss) self.log("ptl/val_accuracy", self.vl_accuracy.compute()) @staticmethod def download_data(data_dir): transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)) ]) return CIFAR100(data_dir, train=True, download=True, transform=transform) def prepare_data(self): mnist_train = self.download_data(self.data_dir) print(len(mnist_train)) self.mnist_train, self.mnist_val = random_split( mnist_train, [45000, 5000]) def train_dataloader(self): return DataLoader(self.mnist_train, batch_size=int(self.batch_size), num_workers=4) def val_dataloader(self): return DataLoader(self.mnist_val, batch_size=int(self.batch_size), num_workers=4) def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=self.lr) return optimizer def train_mnist(config): model = LightningMNISTClassifier(config) trainer = pl.Trainer(max_epochs=50, gpus=1) #, show_progress_bar=False) trainer.fit(model) import shutil import tempfile from pytorch_lightning.loggers import TensorBoardLogger from pytorch_lightning.utilities.cloud_io import load as pl_load from ray import tune from ray.tune import CLIReporter from ray.tune.schedulers import ASHAScheduler, PopulationBasedTraining from ray.tune.integration.pytorch_lightning import TuneReportCallback, \ TuneReportCheckpointCallback def train_mnist_tune(config, data_dir=None, num_epochs=10, num_gpus=0): model = LightningMNISTClassifier(config, data_dir) trainer = pl.Trainer( max_epochs=num_epochs, gpus=num_gpus, logger=TensorBoardLogger( save_dir=tune.get_trial_dir(), name="", version="."), progress_bar_refresh_rate=0, callbacks=[ TuneReportCallback( { "loss": "ptl/val_loss", "mean_accuracy": "ptl/val_accuracy" }, on="validation_end") ]) trainer.fit(model) def tune_mnist_asha(num_samples=10, num_epochs=50, gpus_per_trial=0, cpus_per_trial=4): data_dir = os.path.join(tempfile.gettempdir(), "mnist_data_") LightningMNISTClassifier.download_data(data_dir) config = { "lr": tune.loguniform(1e-4, 1e-1), "batch_size": tune.choice([32, 64, 128]), } scheduler = ASHAScheduler( max_t=num_epochs, grace_period=1, reduction_factor=2) reporter = CLIReporter( parameter_columns=["lr", "batch_size"], metric_columns=["loss", "mean_accuracy", "training_iteration"]) analysis = tune.run( tune.with_parameters( train_mnist_tune, data_dir=data_dir, num_epochs=num_epochs, num_gpus=gpus_per_trial), resources_per_trial={ "cpu": cpus_per_trial, "gpu": gpus_per_trial }, metric="loss", mode="min", config=config, num_samples=num_samples, scheduler=scheduler, progress_reporter=reporter, name="tune_mnist_asha") print("Best hyperparameters found were: ", analysis.best_config) shutil.rmtree(data_dir) #tune_mnist_asha(cpus_per_trial=4, gpus_per_trial=1) single_config = { 'lr': 1e-4, 'batch_size': 64 } # uses about 60% of gpu #train_mnist(single_config) # tune_mnist_asha(num_samples=10, num_epochs=50, gpus_per_trial=1, cpus_per_trial=4)
7361bd53a9be6f44f6b646cdbedc297239e87561
eea1d77d08b3e64519e8ac86f0cabcb78a14e7de
/main.py
a8fefa41a6d891c234790f2d5bfb33d971f98bde
[]
no_license
colemai/nutritics_client
02f93f4a42c29be9f0a4badaa33671b485bb32eb
788a65ef5a095c750e67385888e0ffb2846a9777
refs/heads/master
2022-10-25T09:05:33.478644
2020-06-13T08:57:20
2020-06-13T08:57:20
271,804,448
0
0
null
null
null
null
UTF-8
Python
false
false
494
py
#!/usr/bin/env python3 """ Author: Ian Coleman Purpose: Call the Nutritics API """ import pdb import requests api_address = "https://iancoleman1a:Pokemon124*@www.nutritics.com/api/v1.1/" def get_users (): all_users = requests.get("{}LIST/&client".format(api_address)) return all_users.text def create_user (uid): call = requests.get("{}CREATE/&client&id={}".format(api_address, uid)) return call if __name__ == "__main__": create_user(333) all_users = get_users() print(all_users)
19546a5640b4da97df0abe9a12cf7adb5607d3dd
ba6454efa22648faf4de1b8de069294d4cb7d09b
/python/meetup/meetup.py
5ace7b4fcc4b3bf0fda4cd43dc59872c32fcfe74
[]
no_license
GreatBahram/exercism
c876e727b0c42f625f71d09f721ed8416cbbbcd6
d3e63dd7e5753e7c8356c10c7b7f796db0c90163
refs/heads/master
2020-04-17T03:34:06.188855
2019-08-15T11:23:28
2019-08-15T11:23:28
166,189,724
0
0
null
null
null
null
UTF-8
Python
false
false
960
py
import datetime from calendar import day_name class MeetupDayException(Exception): pass def weekdays_in_month(year, month, weekday): """Return all 4/5 dates with given weekday.""" date = datetime.date(year, month, 1) date += datetime.timedelta(days=(weekday - date.weekday()) % 7) first_to_fifth = ( date + datetime.timedelta(weeks=i) for i in range(6) ) return [ date for date in first_to_fifth if date.month == month ] def meetup_day(year, month, weekday, nth): day_names = list(day_name) shift_by = {'1st': 0, '2nd': 1, '3rd': 2, '4th': 3, '5th': 4, 'last': -1} dates = weekdays_in_month(year, month, day_names.index(weekday)) if nth == 'teenth': return next(date for date in dates if date.day > 12) try: date = dates[shift_by[nth]] except IndexError: raise MeetupDayException('Date does not exist.') from None return date
b8b00de4949bf71e8d3937c558e0b4579c217e27
fccaec3ce13d96d853b888e49ed4177de621f3cd
/choose_your_own/your_algorithm_rf.py
52eecba74cf19558837127207043d7a454fde16c
[]
no_license
Lundgren/ud120-intro-ml
e83471bebc1213520c531d359f3b51add0ca992b
f36a89bee650a13263dab7ae8e9b5ff3fbb8e60c
refs/heads/master
2021-03-19T09:32:42.073926
2017-02-28T18:45:16
2017-02-28T18:45:16
82,955,031
0
0
null
null
null
null
UTF-8
Python
false
false
2,598
py
#!/usr/bin/python import matplotlib.pyplot as plt from prep_terrain_data import makeTerrainData from class_vis import prettyPicture features_train, labels_train, features_test, labels_test = makeTerrainData() ### the training data (features_train, labels_train) have both "fast" and "slow" ### points mixed together--separate them so we can give them different colors ### in the scatterplot and identify them visually grade_fast = [features_train[ii][0] for ii in range(0, len(features_train)) if labels_train[ii]==0] bumpy_fast = [features_train[ii][1] for ii in range(0, len(features_train)) if labels_train[ii]==0] grade_slow = [features_train[ii][0] for ii in range(0, len(features_train)) if labels_train[ii]==1] bumpy_slow = [features_train[ii][1] for ii in range(0, len(features_train)) if labels_train[ii]==1] #### initial visualization plt.xlim(0.0, 1.0) plt.ylim(0.0, 1.0) plt.scatter(bumpy_fast, grade_fast, color = "b", label="fast") plt.scatter(grade_slow, bumpy_slow, color = "r", label="slow") plt.legend() plt.xlabel("bumpiness") plt.ylabel("grade") #plt.show() ################################################################################ ### your code here! name your classifier object clf if you want the ### visualization code (prettyPicture) to show you the decision boundary from sklearn.ensemble import RandomForestClassifier from time import time ''' # 1000 best at ~0.9192 for n in [1, 10, 50, 100, 500, 1000]: sum = 0 for x in range(0, 10): clf = RandomForestClassifier(n_estimators=n) clf.fit(features_train, labels_train) sum += clf.score(features_test, labels_test) print "RandomForest n:", str(n), ", accuracy:", str(sum / 10) ''' ''' # 10 best at ~0.92 for mss in [2, 3, 5, 7, 10]: sum = 0 for x in range(0, 10): clf = RandomForestClassifier(n_estimators=1000, min_samples_split=mss) clf.fit(features_train, labels_train) sum += clf.score(features_test, labels_test) print "RandomForest n: 1000, min sample split:", str(mss), ", accuracy:", str(sum / 10) ''' # Very random results (of course), 1000 & 10 probably isn't better than default clf = RandomForestClassifier(n_estimators=1000, min_samples_split=10) t0 = time() clf.fit(features_train, labels_train) print "training time:", round(time()-t0, 3), "s" #~2.0s t1 = time() clf.predict(features_test) print "prediction time:", round(time()-t1, 3), "s" #~0.45s print "accuracy:", clf.score(features_test, labels_test) #.92 try: prettyPicture(clf, features_test, labels_test) plt.show() except NameError: pass
dce128646442ea8ce80d326e0a857c00cff81ee8
d05abfff9c45ec8eef6f2b2dfeec2aa3662fecdf
/Courses/Phys 241/MICE.py
e8b28b0095aa449200285eb6d7daf447ffa3337f
[]
no_license
Srivastava/Hello-World
9d695e8caa9e9117e94963a5b3a0a0ced2f5dd3c
1f57b7b7edffd3934d75d76f495ebcab48f58911
refs/heads/master
2020-04-04T07:51:32.837730
2017-01-09T18:32:28
2017-01-09T18:32:28
51,562,562
0
0
null
null
null
null
UTF-8
Python
false
false
6,077
py
import sys import time import math import scipy as sp import numpy as np import matplotlib.pyplot as plt import csv from mpl_toolkits.mplot3d import Axes3D from matplotlib.backends.backend_pdf import PdfPages import matplotlib.animation as animation #GM =0.00029632889 * 10E11 GM = 4.498309551e-13 #GM=4.43E-6 #GM =1E-3 #GMm =10E-12 #GMS=8.46611639e-8 #print GM def rotation (x,y,z,nx,ny,nz,angle): theta=-np.pi*angle/180.0 c=np.cos(theta) s=np.sin(theta) a=1-c xN=[0]*len(x) yN=[0]*len(x) zN=[0]*len(x) #print a*nx*nx+c ,a*nx*ny-s*nz,a*nx*nz+s*ny #print a*nx*ny+s*nz,a*ny*ny+c,a*ny*nz-s*nx #print a*nx*nz-s*ny, a*ny*nz+s*nx, a*nz*nz+c xN=[(a*nx*nx+c)*p+(a*nx*ny-s*nz)*q+(a*nx*nz+s*ny)*r for p,q,r in zip(x,y,z)] yN=[(a*nx*ny+s*nz)*p+(a*ny*ny+c)*q+(a*ny*nz-s*nx)*r for p,q,r in zip(x,y,z)] zN=[(a*nx*nz-s*ny)*p+(a*ny*nz+s*nx)*q+(a*nz*nz+c)*r for p,q,r in zip(x,y,z)] '''print len(xN) print len(yN) print len(zN)''' return (xN,yN,zN) def accel(x,y,z,n): ax=sp.zeros([n]) ay=sp.zeros([n]) az=sp.zeros([n]) '''dist11=((x[1]-x[0])*(x[1]-x[0])+(y[1]-y[0])*(y[1]-y[0])+(z[1]-z[0])*(z[1]-z[0]))**(-1.5) #print dist11, x[1], x[0], y[1], y[0], z[1], z[0] aX11=-GM*(x[1]-x[0])*dist11 aY11=-GM*(y[1]-y[0])*dist11 aZ11=-GM*(z[1]-z[0])*dist11 ax[0]=-aX11 ay[0]=-aY11 az[0]=-aZ11 ax[1]=aX11 ay[1]=aY11 az[1]=aZ11''' dist11=((x[0]*x[0]+y[0]*y[0]+z[0]*z[0])+10E-6)**(-1.5) aX11=-GM*(x[0])*dist11*0.5 aY11=-GM*(y[0])*dist11*0.5 aZ11=-GM*(z[0])*dist11*0.5 ax[0]=aX11 ay[0]=aY11 az[0]=aZ11 dist12=((x[1]*x[1]+y[1]*y[1]+z[1]*z[1])+10E-6)**(-1.5) aX12=-GM*(x[1])*dist12*0.5 aY12=-GM*(y[1])*dist12*0.5 aZ12=-GM*(z[1])*dist12*0.5 ax[1]=aX12 ay[1]=aY12 az[1]=aZ12 for i in range (2,n): aX=0 aY=0 aZ=0 dist=((x[i]-x[0])*(x[i]-x[0])+(y[i]-y[0])*(y[i]-y[0])+(z[i]-z[0])*(z[i]-z[0])+10E-6)**(-1.5) dist1=((x[i]-x[1])*(x[i]-x[1])+(y[i]-y[1])*(y[i]-y[1])+(z[i]-z[1])*(z[i]-z[1])+10E-6)**(-1.5) aX=-GM*(x[i]-x[0])*dist aY=-GM*(y[i]-y[0])*dist aZ=-GM*(z[i]-z[0])*dist aX1=-GM*(x[i]-x[1])*dist1 aY1=-GM*(y[i]-y[1])*dist1 aZ1=-GM*(z[i]-z[1])*dist1 ax[i]=aX+aX1 ay[i]=aY+aY1 az[i]=aZ+aZ1 return (ax,ay,az) def LeapState(x,y,z,vx,vy,vz,n): dt =1E+7 ax,ay,az=accel(x,y,z,n) vx=[a+b*0.5*dt for a,b in zip(vx,ax)] vy=[a+b*0.5*dt for a,b in zip(vy,ay)] vz=[a+b*0.5*dt for a,b in zip(vz,az)] x=[a+b*dt for a,b in zip(x,vx)] y=[a+b*dt for a,b in zip(y,vy)] z=[a+b*dt for a,b in zip(z,vz)] ax,ay,az=accel(x,y,z,n) vx=[a+b*0.5*dt for a,b in zip(vx,ax)] vy=[a+b*0.5*dt for a,b in zip(vy,ay)] vz=[a+b*0.5*dt for a,b in zip(vz,az)] return (x,y,z,vx,vy,vz) def init(npart): x=[] y=[] z=[] vx=[] vy=[] vz=[] Rmin=25.0 e=0.6 a=float(Rmin/(2*(1-e))) print a Ra=a*(1+e) #Ra=Rmin*(1+e)*((1-e)**(-1)) #print a,Ra #VelMass=GM*((1+e)/(a-a*e)) #VelMass=VelMass**0.5 #vel=(GM*((2.0/Ra) - (1.0/a)))**0.5 vel = (GM*0.5*Rmin*((Ra*(Ra+Rmin))**(-1)))**(0.5) #vel =0.5*(GM*(1-e)*(1-e)*((3+e)*Rmin)**(-1))**(0.5) vx.append(0) vy.append(vel) vz.append(0) vx.append(0) vy.append(-vel) vz.append(0) x.append(-Ra) y.append(0) z.append(0) x.append(Ra) y.append(0) z.append(0) for i in range(0,11): r=(0.2+0.05*i)*Rmin velocity=((GM/r))**0.5 n=12+3*i for j in range(0,n): x.append(r*np.cos((2*np.pi*j)/n)) y.append(r*np.sin((2*np.pi*j)/n)) z.append(0.0) vx.append(-velocity*np.sin((2*np.pi*j)/n)) vy.append(velocity*np.cos((2*np.pi*j)/n)) vz.append(0.0) x[2:],y[2:],z[2:]=rotation(x[2:],y[2:],z[2:],1.0,0.0,0.0,60.0) vx[2:],vy[2:],vz[2:]=rotation(vx[2:],vy[2:],vz[2:],1.0,0.0,0.0,60.0) #vx[0],vy[0],vz[0]=rotation([vx[0]],[vy[0]],[vz[0]],0.0,1.0,0.0,60.0) #x[2:],y[2:],z[2:]=rotation(x[2:],y[2:],z[2:],1.0,0.0,0.0,90.0) #vx[2:],vy[2:],vz[2:]=rotation(vx[2:],vy[2:],vz[2:],1.0,0.0,0.0,90.0) x[2:]=[p-Ra for p in x[2:]] vy[2:]=[p+vel for p in vy[2:]] for i in range(0,11): #print i r=(0.2+0.05*i)*Rmin #print 0.2+0.05*i velocity=((GM/r))**0.5 n=12+3*i #print n for j in range(0,n): x.append(r*np.cos((2*np.pi*j)/n)) y.append(r*np.sin((2*np.pi*j)/n)) z.append(0.0) vx.append(-velocity*np.sin((2*np.pi*j)/n)) vy.append(velocity*np.cos((2*np.pi*j)/n)) vz.append(0.0) x[299:],y[299:],z[299:]=rotation(x[299:],y[299:],z[299:],1.0,0.0,0.0,15.0) vx[299:],vy[299:],vz[299:]=rotation(vx[299:],vy[299:],vz[299:],1.0,0.0,0.0,15.0) #x[299:],y[299:],z[299:]=rotation(x[299:],y[299:],z[299:],1.0,0.0,0.0,90.0) #vx[299:],vy[299:],vz[299:]=rotation(vx[299:],vy[299:],vz[299:],1.0,0.0,0.0,90.0) #vx[1],vy[1],vz[1]=rotation([vx[1]],[vy[1]],[vz[1]],1.0,0.0,0.0,60.0) #x[299:],y[299:],z[299:]=rotation(x[299:],y[299:],z[299:],0.0,0.0,1.0,90.0) #vx[299:],vy[299:],vz[299:]=rotation(vx[299:],vy[299:],vz[299:],0.0,0.0,1.0,90.0) x[299:]=[p+Ra for p in x[299:]] vy[299:]=[p-vel for p in vy[299:]] #print len(x),len(y),len(z) return (x,y,z,vx,vy,vz) def main(): #n,t=(raw_input('>> N, T ').split()) t=(raw_input('>>T ').split()) #n=np.int64(n) n=596 t=np.float128(t) x,y,z,vx,vy,vz=init(n) N=np.int64(math.ceil(t/1)) f=open('Data.csv','w') with open('Data.csv', 'wb') as fp: a = csv.writer(fp) for i in range(0,N): for j in range(0,n): #print i,j values=[] values.append([x[j],y[j],z[j]]) a.writerows(values) x,y,z,vx,vy,vz=LeapState(x,y,z,vx,vy,vz,n) f.close() main()
88fcaf6f65d7eace44bd670058f01549c220a470
d066f1ef43678f93b516534ebe3674c7b09e309b
/PyThon学习笔记+代码/update_ini_config/Module/psutil/cpu1.py
4d5a22ab551189a4d6578d738c4b5d2accc6903c
[]
no_license
lantian316/Stone_Study_Box
daaee53c63fc35c9a33353a885ba0a7b78202863
d13c0338c74acfffc9b4627799249561d8dda822
refs/heads/master
2021-04-29T09:31:54.298740
2018-02-05T14:35:33
2018-02-05T14:35:33
77,659,704
3
1
null
null
null
null
UTF-8
Python
false
false
1,425
py
#!/usr/bin/env python # -*- coding: UTF-8 -*- import psutil print(psutil.cpu_times()) #显示cpu的整个信息 print(psutil.cpu_times().user) print(psutil.cpu_count()) #获取cpu的逻辑个数(核心) print(psutil.cpu_count( logical=False )) print(psutil.swap_memory()) print(psutil.disk_io_counters()) print(psutil.disk_partitions()) print(psutil.disk_usage('/')) print(psutil.disk_io_counters()) print(psutil.disk_io_counters(perdisk=True)) print() print() print() print() print() print() #print(psutil.pids()) p=psutil.Process(10024) print(p.name()) print(p.exe()) #进程的bin路径 print(p.cwd()) #进程的工作目录绝对路径 print(p.status()) #进程状态 print(p.create_time()) #进程创建时间 #print(p.uids()) #进程uid信息 #print(p.gids()) #进程的gid信息 print(p.cpu_times()) #进程的cpu时间信息,包括user,system两个cpu信息 print(p.cpu_affinity()) #get进程cpu亲和度,如果要设置cpu亲和度,将cpu号作为参考就好 print(p.memory_percent()) #进程内存利用率 print(p.memory_info()) #进程内存rss,vms信息 print(p.io_counters()) #进程的IO信息,包括读写IO数字及参数 #print(p.connectios()) #返回进程列表 print(p.num_threads()) #进程开启的线程数
3c4fc4b4311666ae69e4ff6c2501b873ceba975e
31a97987247fb9c23d19e7dcccd0ff0f27be94be
/bert-sklearn/bert_sklearn/model/utils.py
14cefab33b2ce4a0ad8856a8e895d04d5ca8cdaa
[ "Apache-2.0" ]
permissive
uphill-ai/NAS2019
31302027b46ca11b41c167aacc14dc5da1cc92ab
fe356878d7c007013002e86dd3c7a83333e01084
refs/heads/master
2022-12-23T14:54:51.211530
2022-04-06T21:14:16
2022-04-06T21:14:16
202,396,842
2
2
Apache-2.0
2022-12-17T06:11:36
2019-08-14T17:32:03
Jupyter Notebook
UTF-8
Python
false
false
3,702
py
import torch from .pytorch_pretrained import BertTokenizer, BasicTokenizer from .pytorch_pretrained import PYTORCH_PRETRAINED_BERT_CACHE from .model import BertPlusMLP def get_basic_tokenizer(do_lower_case): """ Get a basic tokenizer(punctuation splitting, lower casing, etc.). """ return BasicTokenizer(do_lower_case=do_lower_case) def get_tokenizer(bert_model='bert-base-uncased', bert_vocab_file=None, do_lower_case=False): """ Get a BERT wordpiece tokenizer. Parameters ---------- bert_model : string one of SUPPORTED_MODELS i.e 'bert-base-uncased','bert-large-uncased' bert_vocab_file: string Optional pathname to vocab file to initialize BERT tokenizer do_lower_case : bool use lower case with tokenizer Returns ------- tokenizer : BertTokenizer Wordpiece tokenizer to use with BERT """ if bert_vocab_file is not None: return BertTokenizer(bert_vocab_file, do_lower_case=do_lower_case) else: return BertTokenizer.from_pretrained(bert_model, do_lower_case=do_lower_case) def get_model(bert_model='bert-base-uncased', bert_config_json=None, from_tf=False, num_labels=2, model_type='classifier', num_mlp_layers=0, num_mlp_hiddens=500, state_dict=None, local_rank=-1): """ Get a BertPlusMLP model. Parameters ---------- bert_model : string one of SUPPORTED_MODELS i.e 'bert-base-uncased','bert-large-uncased' num_labels : int For a classifier, this is the number of distinct classes. For a regressor his will be 1. model_type : string specifies 'classifier' or 'regressor' model num_mlp_layers : int The number of mlp layers. If set to 0, then defualts to the linear classifier/regresor as in the original Google code. num_mlp_hiddens : int The number of hidden neurons in each layer of the mlp. state_dict : collections.OrderedDict object an optional state dictionnary local_rank : (int) local_rank for distributed training on gpus Returns ------- model : BertPlusMLP BERT model plus mlp head """ cache_dir = PYTORCH_PRETRAINED_BERT_CACHE/'distributed_{}'.format(local_rank) if bert_config_json is not None: # load from a tf checkpoint file, pytorch checkpoint file, # or a pytorch state dict model = BertPlusMLP.from_model_ckpt(config_file_or_dict=bert_config_json, weights_path=bert_model, state_dict=state_dict, from_tf=from_tf, num_labels=num_labels, model_type=model_type, num_mlp_hiddens=num_mlp_hiddens, num_mlp_layers=num_mlp_layers) else: # Load from pre-trained model archive print("Loading %s model..."%(bert_model)) model = BertPlusMLP.from_pretrained(bert_model, cache_dir=cache_dir, state_dict=state_dict, num_labels=num_labels, model_type=model_type, num_mlp_hiddens=num_mlp_hiddens, num_mlp_layers=num_mlp_layers) return model
e9be198289de62167eb43eb5900f051d45b63886
5eb1ab885494f7952a104bcc3756235c8116b3c5
/Module_2_Challenge/Starter_Code/qualifier/tests/test_qualifier.py
c39d8f0300f891904302b71596b08199be2ef526
[ "MIT" ]
permissive
abolla04/Module_2_Challenge
24ad33d6e8e086f925fd0a11092974b7e66b7109
1c583e83a9bfe936a6c2b9327031affdac044600
refs/heads/main
2023-05-27T10:46:09.953612
2021-06-14T04:51:16
2021-06-14T04:51:16
376,175,792
0
0
null
null
null
null
UTF-8
Python
false
false
1,177
py
# Import pathlib from pathlib import Path #Import fileio from qualifier.utils import fileio # Import Calculators from qualifier.utils import calculators # Import Filters from qualifier.filters import credit_score from qualifier.filters import debt_to_income from qualifier.filters import loan_to_value from qualifier.filters import max_loan_size def test_save_csv(): myfile = 'hello' csv_path = Path('Starter_code/qualifier/tests/data/output/qualifying_loans.csv') fileio.save_csv(csv_path, myfile) assert csv_path.exists() # Use Path from pathlib to output the test csv to ./data/output/qualifying_loans.csv def test_calculate_monthly_debt_ratio(): assert calculators.calculate_monthly_debt_ratio(1500, 4000) == 0.375 def test_calculate_loan_to_value_ratio(): assert calculators.calculate_loan_to_value_ratio(210000, 250000) == 0.84 #def test_filters(): bank_data = fileio.load_csv(Path('./data/daily_rate_sheet.csv')) current_credit_score = 750 debt = 1500 income = 4000 loan = 210000 home_value = 250000 monthly_debt_ratio = 0.375 loan_to_value_ratio = 0.84 # @TODO: Test the new save_csv code!
d56decb5438d33d14d13d2c472bbc9a6720fb931
2f98aa7e5bfc2fc5ef25e4d5cfa1d7802e3a7fae
/python/python_21210.py
9693c1c30eb08a3645f37e8fdea9224e4e16f558
[]
no_license
AK-1121/code_extraction
cc812b6832b112e3ffcc2bb7eb4237fd85c88c01
5297a4a3aab3bb37efa24a89636935da04a1f8b6
refs/heads/master
2020-05-23T08:04:11.789141
2015-10-22T19:19:40
2015-10-22T19:19:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
140
py
# Django: Custom User form instead of built in + custom required fields help_text=_("Enter the same password as above, for verification."))
4817b10d73911622da1ebaca2741e011f56ae9f2
149bffb7c3fc7e4dc38da892b7f6fb588408b0e3
/2017/solutions/assignment1/cs231n/classifiers/k_nearest_neighbor.py
9169ff640474f9c68d4f545ac0ab13f4d7b14890
[]
no_license
Luvata/CS231N-2017-2018-Solutions
e4ef936d8f7f08e661e7005d90cb37f0c2dd3645
4a53cf9131b1822c3312a3ea105c8c88c33b3950
refs/heads/master
2020-03-19T04:23:07.485586
2018-06-18T20:06:51
2018-06-18T20:06:51
135,822,219
0
0
null
null
null
null
UTF-8
Python
false
false
8,140
py
import numpy as np from past.builtins import xrange class KNearestNeighbor(object): """ a kNN classifier with L2 distance """ def __init__(self): pass def train(self, X, y): """ Train the classifier. For k-nearest neighbors this is just memorizing the training data. Inputs: - X: A numpy array of shape (num_train, D) containing the training data consisting of num_train samples each of dimension D. - y: A numpy array of shape (N,) containing the training labels, where y[i] is the label for X[i]. """ self.X_train = X self.y_train = y def predict(self, X, k=1, num_loops=0): """ Predict labels for test data using this classifier. Inputs: - X: A numpy array of shape (num_test, D) containing test data consisting of num_test samples each of dimension D. - k: The number of nearest neighbors that vote for the predicted labels. - num_loops: Determines which implementation to use to compute distances between training points and testing points. Returns: - y: A numpy array of shape (num_test,) containing predicted labels for the test data, where y[i] is the predicted label for the test point X[i]. """ if num_loops == 0: dists = self.compute_distances_no_loops(X) elif num_loops == 1: dists = self.compute_distances_one_loop(X) elif num_loops == 2: dists = self.compute_distances_two_loops(X) else: raise ValueError('Invalid value %d for num_loops' % num_loops) return self.predict_labels(dists, k=k) def compute_distances_two_loops(self, X): """ Compute the distance between each test point in X and each training point in self.X_train using a nested loop over both the training data and the test data. Inputs: - X: A numpy array of shape (num_test, D) containing test data. Returns: - dists: A numpy array of shape (num_test, num_train) where dists[i, j] is the Euclidean distance between the ith test point and the jth training point. """ num_test = X.shape[0] num_train = self.X_train.shape[0] dists = np.zeros((num_test, num_train)) for i in xrange(num_test): for j in xrange(num_train): ##################################################################### # TODO: # # Compute the l2 distance between the ith test point and the jth # # training point, and store the result in dists[i, j]. You should # # not use a loop over dimension. # ##################################################################### dists[i,j] = (np.sqrt(np.sum((X[i] - self.X_train[j])**2))) pass ##################################################################### # END OF YOUR CODE # ##################################################################### return dists def compute_distances_one_loop(self, X): """ Compute the distance between each test point in X and each training point in self.X_train using a single loop over the test data. Input / Output: Same as compute_distances_two_loops """ num_test = X.shape[0] num_train = self.X_train.shape[0] dists = np.zeros((num_test, num_train)) for i in xrange(num_test): ####################################################################### # TODO: # # Compute the l2 distance between the ith test point and all training # # points, and store the result in dists[i, :]. # ####################################################################### dists[i] = np.sqrt(np.sum((X[i] - self.X_train)**2,axis=1)) pass ####################################################################### # END OF YOUR CODE # ####################################################################### return dists def compute_distances_no_loops(self, X): """ Compute the distance between each test point in X and each training point in self.X_train using no explicit loops. Input / Output: Same as compute_distances_two_loops """ num_test = X.shape[0] num_train = self.X_train.shape[0] dists = np.zeros((num_test, num_train)) ######################################################################### # TODO: # # Compute the l2 distance between all test points and all training # # points without using any explicit loops, and store the result in # # dists. # # # # You should implement this function using only basic array operations; # # in particular you should not use functions from scipy. # # # # HINT: Try to formulate the l2 distance using matrix multiplication # # and two broadcast sums. # ######################################################################### dists = np.sqrt(-2 * np.dot(X,self.X_train.T) + (X**2).sum(axis=1,keepdims=True)+ (self.X_train**2).sum(axis=1)) pass ######################################################################### # END OF YOUR CODE # ######################################################################### return dists def predict_labels(self, dists, k=1): """ Given a matrix of distances between test points and training points, predict a label for each test point. Inputs: - dists: A numpy array of shape (num_test, num_train) where dists[i, j] gives the distance betwen the ith test point and the jth training point. Returns: - y: A numpy array of shape (num_test,) containing predicted labels for the test data, where y[i] is the predicted label for the test point X[i]. """ num_test = dists.shape[0] y_pred = np.zeros(num_test) d2 = np.argsort(dists) for i in xrange(num_test): # A list of length k storing the labels of the k nearest neighbors to # the ith test point. closest_y = [] ######################################################################### # TODO: # # Use the distance matrix to find the k nearest neighbors of the ith # # testing point, and use self.y_train to find the labels of these # # neighbors. Store these labels in closest_y. # # Hint: Look up the function numpy.argsort. # ######################################################################### closest_y = self.y_train[d2[i,:k]] pass ######################################################################### # TODO: # # Now that you have found the labels of the k nearest neighbors, you # # need to find the most common label in the list closest_y of labels. # # Store this label in y_pred[i]. Break ties by choosing the smaller # # label. # ######################################################################### uniques, count = np.unique(closest_y,return_counts=True) y_pred[i] = uniques[count==np.max(count)][0] pass ######################################################################### # END OF YOUR CODE # ######################################################################### return y_pred
35c73627210b1a7f1a5074fa2d0e88abcd642a6c
bfa99342c8ae0a411e75ada24dd43017a4624d5e
/PushMessageTest/pushmessage.py
e014ddeaa25cd52e5729ac10b5622022a9fcbefd
[]
no_license
dumbcat/ROM-line-bot
03969f79e0ecba3b0837e4a891c36b2a036506c7
89547b84f9ba132767cb7174dba50022d10201f6
refs/heads/master
2022-11-24T16:24:27.040068
2020-07-26T11:49:17
2020-07-26T11:49:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,385
py
import json import requests import configparser def sender(token, id, message): """Use line message api to push message to line user, group, or chat room. Args: token (string): Channel access token of message api. id (string): Line ser, group, or chat room id. message (string): A message which wants to push. Returns: tuple: A tuple include response code and message. """ url = 'https://api.line.me/v2/bot/message/push' header = {'Content-Type': 'application/json', 'Authorization': token} data = json.dumps({ "to": id, "messages": [ { "type": "text", "text": message }] }) r = requests.post(url, headers=header, data=data) if r.status_code == 200: return r.status_code, 'Send Message Success' else: error_message = r.text.split(':', 1)[1].strip('}').strip('"') return r.status_code, error_message if __name__ == "__main__": config = configparser.ConfigParser() config.read('config.ini') channel_access_token = config.get('BASE', 'token') uesr_id = config.get('BASE', 'id') message = input('Please input message to send: ') code, message = sender(channel_access_token, uesr_id, message) print(f'Response Code: {code}') print(f'Response Message: {message}')
d05028c308d892473fe48052245b721f6dc4a996
ac10e9ebc0de81dcfd3090b59991400eb338b9fb
/main.py
026cbeecf6e8401e43713f9ccb03c36bb121ad65
[]
no_license
mack-book-review/CarGame
78bcc309667ba07356b302165a9b1bd8becfcaef
2e34e3528cfaff31ab6ec641e6962a9f65ab4d22
refs/heads/master
2023-08-30T09:49:37.609406
2021-11-04T02:56:11
2021-11-04T02:56:11
424,453,145
0
0
null
null
null
null
UTF-8
Python
false
false
384
py
from game import Game def print_hi(name): # Use a breakpoint in the code line below to debug your script. print(f'Hi, {name}') # Press ⌘F8 to toggle the breakpoint. def main(): game = Game() game.run() # Press the green button in the gutter to run the script. if __name__ == '__main__': main() # See PyCharm help at https://www.jetbrains.com/help/pycharm/
2ba8d89941a2e6ce76eb48b159481e5ed6b30d8a
d81501a3e150ce2c63a755988fb7da10af1a7d91
/code/predictors/axis.py
a4643d65cf1d177b35a7122fd4381a9e5fdd9052
[ "MIT" ]
permissive
alexmbird/luckyhorse
b6a1c64b7368b081037b097bf95ec4f6be44ceea
815502c06117c22456d20a5064a20e95bce4470d
refs/heads/master
2021-10-13T11:24:19.528610
2021-10-12T08:47:54
2021-10-12T08:47:54
77,913,644
4
0
MIT
2021-10-12T08:47:20
2017-01-03T12:05:09
Python
UTF-8
Python
false
false
6,607
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from collections import deque, defaultdict, namedtuple import random from operator import itemgetter import numpy as np from concurrent.futures import ThreadPoolExecutor from predictors.container import PredictionContainer from predictors.coefficient import BaseCoefficient from predictors.preds._base import PredictorBase from utils.time import HORSEYTIEM from utils.exceptions import InsufficientDataError from predictors.factory import PredictorFactory class Axis(PredictionContainer): ''' Manage a coefficient by maintaining multiple versions of a predictor using different values. Mutate those values to converge on the a good value. Coefficients can never truly converge: the market's behaviour changes over time so we must mutate constantly in case a new, more appropriate value emerges. ''' # Use N parallel threads from top-level of an axis to do prediction & judging NUM_THREADS = 4 def __init__(self, pfakt, klass, coefficients=None, target_coef=None, level=0): ''' Setup a new axis. `klass` - The Predictor class to work with. `pfakt` - PredictorFactory to create Predictors with appropriate sources `coefficients` - dict of coefs bound so far. We will add `mutate` to this for our children. `target_coef` - Name of the coefficient we will mutate. If not supplied a random one will be selected. ''' super(Axis,self).__init__() if not isinstance(pfakt, PredictorFactory): raise TypeError("pfakt needs to be an PredictorFactory, not %s" % type(pfakt)) self.pfakt = pfakt if not issubclass(klass, PredictorBase): raise TypeError("klass must descend from PredictorBase, not %s" % type(klass)) if coefficients is not None: if set(coefficients.keys()) != set(klass.COEFFICIENTS.keys()): raise ValueError("Supplied coefficients don't match Predictor") self.coefficients = coefficients if len(self._unbound()) == 0: raise ValueError("All coefficients bound; nothing left to mutate") else: self.coefficients = dict.fromkeys(klass.COEFFICIENTS.keys(), None) # Starting? pick a random coefficient to mutate. If none are left to mutate # use 'None' to signal we'll create real Predictors as our children. if target_coef is None: self.target_coef = random.choice(self._unbound()) else: self.target_coef = target_coef if self.coefficients[self.target_coef] is not None: raise ValueError("%s already bound, cannot mutate" % mutate) # Top-level Axes may use threading to parallelize # predictions & judgement. self.level = level if self.level == 0: self.threadpool_ex = ThreadPoolExecutor(self.NUM_THREADS) self.klass = klass self.target_desc = klass.COEFFICIENTS[self.target_coef] # Will our children be real Prediction* objects? self.last_node = len(self._unbound()) == 1 # Store the present value of our mutable coefficient assigned to each child self.coef_values = {} # Populate ourself with children based on sensible values for value in self.target_desc.seed(): ch = self._instantiate(value) self.children.append(ch) self.coef_values[ch] = value def __str__(self): fmt = "<%s mutating '%s', statics: %s>" statics = filter(itemgetter(1), self.coefficients.items()) return fmt % ( self.__class__.__name__, self.target_coef, ', '.join(["%s:%s" % (k,v) for k,v in statics]) if statics else 'none' ) def dump(self, indent=0, last=True): ''' Pretty-print a tree of containers and predictors ''' for c in self.children: fmt = "%s avnw:%s value:%s" wavg = ('%.3f'%self.wrongness_avg[c]) if c in self.wrongness_avg else '-' print( (' '*indent) + fmt % (c, wavg, self.coef_values[c]) ) if isinstance(c, PredictionContainer): c.dump(indent+2, last=False) if last: print() def _instantiate(self, value): ''' Instantiate a child node. This will be either: 1) If no more coefficients are left to bind, a real Predictor obj OR 2) An Axis() object ''' my_coefficients = self.coefficients.copy() my_coefficients[self.target_coef] = value if self.last_node: return self.pfakt.create(self.klass, my_coefficients) else: next_mutate = sorted(self._unbound(my_coefficients))[0] return Axis( self.pfakt, self.klass, my_coefficients, next_mutate, level=self.level+1 ) def _unbound(self, c=None): ''' Return a list of coefficients yet to be bound ''' if c is None: c = self.coefficients return [k for k, v in c.items() if v is None] def _bound(self, c=None): ''' Return a dict of coefficients that are already bound ''' if c is None: c = self.coefficients return {k:v for k,v in c.items() if v is not None} def _mutantval(self, child): ''' Get a child's ''' def mutate(self, coefficients=None): ''' Mutate our mutable value by: 1) Replacing the weakest performer with a new value halfway between the best 2) Replacing the next two weakest performer's mutable values with XXX New coefficients are passed into children as a dict with the `coefficients` parameter. ''' # Dict to convey changes to our children if coefficients is None: coefficients = {} def mutatechild(ch, coefs, new_val=None): coefs = coefs.copy() if new_val is not None: coefs[self.target_coef] = new_val del self.coef_values[ch] self.coef_values[ch] = new_val self.wrongness_avg.pop(ch,None) self.wrongness_hist.pop(ch,None) ch.mutate(coefs) # Only mutate our children if: # 1) We are mutating on a mutable coef type - not all are # 2) all have history to be judged by if self.target_desc.IS_MUTABLE: if len(self.wrongness_avg) == len(self.children): # triplets of (child, value, avg normalized wrongness) cands = [(c,self.wrongness_avg[c]) for c in self.children] cands.sort(key=itemgetter(1)) # Create a child between the two best scorers v0 = self.coef_values[cands[0][0]] v1 = self.coef_values[cands[1][0]] new_val = v1 + ((v0-v1)/2) if v0 > v1 else v0 + ((v1-v0)/2) mutatechild(cands.pop()[0], coefficients, new_val) # print("mutate() - finding point between v0:%s and v1:%s" % (v0,v1)) # Replace two worst performing with random values for i in range(0,2): mutatechild(cands.pop()[0], coefficients, self.target_desc.random()) # Finally - if other values have changed, relay them to the children if len(coefficients): for c in self.children: mutatechild(c, coefficients)
ba9bbd7d6df3b5dc24a42b58d5db54048471ec38
2eec9b249e7243277b59695499c779e5509c7d68
/alldata/migrations/0009_announcement_announcementnotification_answerchoice_assignment_assignmentsubmission_coursepagemodule_.py
d578e2170496d6fcfaf6bb97e2e38e5cc5ab0b56
[ "MIT" ]
permissive
askhatkenenbay/Learning_Management_System_Backend
04e7121cad7c46f32742d9274b0fce2cf562cd3b
3e241a9f401623eec1c705ee5a38ad595b899c3b
refs/heads/master
2023-04-07T10:59:12.431974
2021-04-18T06:47:13
2021-04-18T06:47:13
299,650,943
0
0
null
2021-02-25T08:40:46
2020-09-29T14:58:12
Python
UTF-8
Python
false
false
9,322
py
# Generated by Django 3.1.2 on 2020-10-12 14:57 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('alldata', '0008_advice_coursegrades_courseinstructor_studentenrollment'), ] operations = [ migrations.CreateModel( name='Coursepagemodule', fields=[ ('moduleid', models.AutoField(db_column='moduleID', primary_key=True, serialize=False)), ('title', models.CharField(max_length=45)), ('order', models.IntegerField()), ('coursesection_sectionid', models.ForeignKey(db_column='courseSection_sectionID', on_delete=django.db.models.deletion.CASCADE, to='alldata.coursesection')), ], options={ 'db_table': 'coursePageModule', 'unique_together': {('moduleid', 'coursesection_sectionid')}, }, ), migrations.CreateModel( name='Discussion', fields=[ ('discussionid', models.AutoField(db_column='discussionID', primary_key=True, serialize=False)), ('title', models.CharField(max_length=45)), ('coursepagemodule_moduleid', models.ForeignKey(db_column='coursePageModule_moduleID', on_delete=django.db.models.deletion.CASCADE, to='alldata.coursepagemodule')), ], options={ 'db_table': 'discussion', 'unique_together': {('discussionid', 'coursepagemodule_moduleid')}, }, ), migrations.CreateModel( name='File', fields=[ ('fileid', models.AutoField(db_column='fileID', primary_key=True, serialize=False)), ('placeid', models.CharField(db_column='placeID', max_length=45)), ('type', models.CharField(max_length=45)), ('url', models.CharField(max_length=45)), ], options={ 'db_table': 'file', }, ), migrations.CreateModel( name='Quiz', fields=[ ('quizid', models.AutoField(db_column='quizID', primary_key=True, serialize=False)), ('name', models.CharField(max_length=45)), ('description', models.CharField(max_length=45)), ('open_time', models.TimeField()), ('close_time', models.TimeField()), ('time_limit', models.TimeField()), ('max_poit', models.IntegerField()), ('coursepagemodule_moduleid', models.ForeignKey(db_column='coursePageModule_moduleID', on_delete=django.db.models.deletion.CASCADE, to='alldata.coursepagemodule')), ], options={ 'db_table': 'quiz', 'unique_together': {('quizid', 'coursepagemodule_moduleid')}, }, ), migrations.CreateModel( name='Quizquestion', fields=[ ('questionid', models.AutoField(db_column='questionID', primary_key=True, serialize=False)), ('text', models.CharField(max_length=45)), ('is_open', models.BooleanField(default=False)), ('points', models.IntegerField()), ('quiz_quizid', models.ForeignKey(db_column='quiz_quizID', on_delete=django.db.models.deletion.CASCADE, to='alldata.quiz')), ], options={ 'db_table': 'quizQuestion', 'unique_together': {('questionid', 'quiz_quizid')}, }, ), migrations.CreateModel( name='Assignment', fields=[ ('assignmentid', models.AutoField(db_column='assignmentID', primary_key=True, serialize=False)), ('name', models.CharField(max_length=45)), ('description', models.CharField(max_length=45)), ('start_date', models.DateTimeField()), ('due_date', models.DateTimeField()), ('max_point', models.IntegerField()), ('coursepagemodule_moduleid', models.ForeignKey(db_column='coursePageModule_moduleID', on_delete=django.db.models.deletion.CASCADE, to='alldata.coursepagemodule')), ], options={ 'db_table': 'assignment', 'unique_together': {('assignmentid', 'coursepagemodule_moduleid')}, }, ), migrations.CreateModel( name='Answerchoice', fields=[ ('answerid', models.AutoField(db_column='answerID', primary_key=True, serialize=False)), ('text', models.CharField(max_length=45)), ('is_right', models.BooleanField(default=False)), ('quizquestion_questionid', models.ForeignKey(db_column='quizQuestion_questionID', on_delete=django.db.models.deletion.CASCADE, to='alldata.quizquestion')), ], options={ 'db_table': 'answerChoice', 'unique_together': {('answerid', 'quizquestion_questionid')}, }, ), migrations.CreateModel( name='AnnouncementNotification', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('notify_object_id', models.IntegerField()), ('time', models.TimeField()), ('is_turned_on', models.BooleanField(default=False)), ('user_userid', models.ForeignKey(db_column='user_userID', on_delete=django.db.models.deletion.CASCADE, to='alldata.user')), ], options={ 'db_table': 'announcement_notification', }, ), migrations.CreateModel( name='Quizsubmission', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('answerchoice_answerid', models.OneToOneField(db_column='answerChoice_answerID', on_delete=django.db.models.deletion.CASCADE, to='alldata.answerchoice')), ('quiz_quizid', models.ForeignKey(db_column='quiz_quizID', on_delete=django.db.models.deletion.CASCADE, to='alldata.quiz')), ('quizquestion_questionid', models.OneToOneField(db_column='quizQuestion_questionID', on_delete=django.db.models.deletion.CASCADE, to='alldata.quizquestion')), ('student_studentid', models.ForeignKey(db_column='student_studentID', on_delete=django.db.models.deletion.CASCADE, to='alldata.student')), ], options={ 'db_table': 'quizSubmission', 'unique_together': {('student_studentid', 'quizquestion_questionid', 'quiz_quizid', 'answerchoice_answerid')}, }, ), migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('text', models.CharField(max_length=45)), ('date', models.DateTimeField()), ('discussion_discussionid', models.ForeignKey(db_column='discussion_discussionID', on_delete=django.db.models.deletion.CASCADE, to='alldata.discussion')), ('user_userid', models.ForeignKey(db_column='user_userID', on_delete=django.db.models.deletion.CASCADE, to='alldata.user')), ], options={ 'db_table': 'post', 'unique_together': {('user_userid', 'discussion_discussionid')}, }, ), migrations.CreateModel( name='Assignmentsubmission', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('date', models.DateField(blank=True, null=True, unique=True)), ('points', models.IntegerField()), ('feedback', models.CharField(blank=True, max_length=45, null=True)), ('assignment_assignmentid', models.ForeignKey(db_column='assignment_assignmentID', on_delete=django.db.models.deletion.CASCADE, to='alldata.assignment')), ('student_studentid', models.ForeignKey(db_column='student_studentID', on_delete=django.db.models.deletion.CASCADE, to='alldata.student')), ], options={ 'db_table': 'assignmentSubmission', 'unique_together': {('assignment_assignmentid', 'student_studentid')}, }, ), migrations.CreateModel( name='Announcement', fields=[ ('announcementid', models.AutoField(db_column='announcementID', primary_key=True, serialize=False)), ('text', models.CharField(max_length=45)), ('date', models.DateTimeField()), ('coursesection_sectionid', models.ForeignKey(db_column='courseSection_sectionID', on_delete=django.db.models.deletion.CASCADE, to='alldata.coursesection')), ], options={ 'db_table': 'announcement', 'unique_together': {('announcementid', 'coursesection_sectionid')}, }, ), ]
3d898e9cd22c5c11329910a8c028e68b0b8622b6
0745860246fcf79ebb468d91ffee4c79ee3d4945
/daily_odds/models.py
65297cc30257db2fb2e2d7295c7d98439a15db88
[]
no_license
Esschichu/socceranalyst
7fd8aa486e8d6f6d1fb355be15960aa3d896dab9
45bd621fc1e65a0d8d7fd14ff404a1943063499e
refs/heads/master
2023-03-18T03:11:14.703502
2018-05-03T19:38:52
2018-05-03T19:38:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,131
py
from django.db import models import datetime from django.db import models from django.utils import timezone class DailyMain(models.Model): slip_date = models.DateTimeField('slip_date', default=None) slip_name = models.CharField(max_length=40, null=True, blank=True) def name(self): return self.outcome def recent_slips(self): now = timezone.now() return now - datetime.timedelta(days=40) <= self.slip_date <= now def showing_prev(self): now = timezone.now() yester = now - datetime.timedelta(1) return now - datetime.timedelta(days=40) <= self.slip_date <= yester class DailySub(models.Model): daily_main = models.ForeignKey(DailyMain, on_delete=models.CASCADE, default=None) country = models.CharField(max_length=30, default=None) home_team = models.CharField(max_length=30) away_team = models.CharField(max_length=30) prediction = models.CharField(max_length=40) outcome = models.CharField(max_length=20, null=True, blank=True) match_date = models.DateTimeField('match date') h2h_home = models.CharField(max_length=30, default=None) h2h_away = models.CharField(max_length=30, default=None) h2h_draw = models.CharField(max_length=30, default=None) standings_home = models.CharField(max_length=30, default=None) standings_away = models.CharField(max_length=30, default=None) form_home = models.CharField(max_length=30, default=None) form_away = models.CharField(max_length=30, default=None) goals_home = models.IntegerField(default=None) goals_away = models.IntegerField(default=None) missing_players_home = models.CharField(max_length=300, default=None) missing_players_away = models.CharField(max_length=300, default=None) def __str__(self): return self.home_team def __str__(self): return self.away_team def __str__(self): return self.prediction def match_outcome(self): return self.outcome def recent_matches(self): now = timezone.now() return now - datetime.timedelta(days=1) <= self.match_date <= now
7c2ff7068c4a75e9c61c48204c463f7cc357e497
4cb33f37e1322b5e7d4a8c2dc1dcd9867b03dd42
/tstDates/myCal.py
ff0fc6bacc9e917f91ec3c9243dbe0412af72994
[]
no_license
gilgamesh7/learn-python
8190b72fed33653a98d2380a001a574942ee4f8f
9eaf85ec992be5bc6d545a443bcf6ecd37cacb15
refs/heads/master
2020-04-07T10:21:10.805884
2018-12-11T08:31:21
2018-12-11T08:31:21
158,283,568
0
0
null
2018-11-20T00:40:28
2018-11-19T20:08:45
Python
UTF-8
Python
false
false
378
py
import calendar def tstCal(): myCal=calendar.TextCalendar(calendar.MONDAY) fmtMyCal=myCal.formatmonth(2018, 11, 1, 1) print(fmtMyCal) for myMonth in range(1,13): myCal=calendar.TextCalendar(calendar.MONDAY) fmtMyCal=myCal.formatmonth(2018,myMonth,1,1) print(fmtMyCal) if __name__ == '__main__': tstCal() exit(1)
fcb3525b6b449bfe3b6d056191b980d8dad95733
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03044/s603271997.py
359e1984b099d65a4e94c67dda0f5a26eb748584
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
494
py
from collections import deque n = int(input()) uvw = [list(map(int, input().split())) for _ in range(n-1)] l = [[] for _ in range(n)] for u, v, w in uvw: u, v = u-1, v-1 l[u].append((v, w)) l[v].append((u, w)) ans = [0] * n parents = [-1] * n q = deque([0]) while q: a = q.pop() for i, j in l[a]: if i == parents[a]: continue parents[i] = a q.append(i) ans[i] = ans[a] if j%2 == 0 else (ans[a]+1) % 2 for i in ans: print(i)
d9cd792f95700d7261bd95f404dea35e3f406bb2
dec643e844179268a889d47172a52fd35f8a853c
/data_prep.py
beef8ae17aae0dfdd339e10a3788336601f22d86
[ "MIT" ]
permissive
harpreet153/Simple_Neural_Network
a26058642543d90495316057b98c0f34f6ca17c6
ab59c19f09bd15158867cdab55243a94065b9402
refs/heads/master
2020-04-07T18:47:16.176234
2018-11-28T20:44:42
2018-11-28T20:44:42
158,623,390
0
0
null
null
null
null
UTF-8
Python
false
false
812
py
# coding: utf-8 import numpy as np import pandas as pd admissions = pd.read_csv('student_data.csv') # Make dummy variables for rank data = pd.concat([admissions, pd.get_dummies(admissions['rank'], prefix='rank')], axis=1) data = data.drop('rank', axis=1) # Standarize features for field in ['gre', 'gpa']: mean, std = data[field].mean(), data[field].std() data.loc[:,field] = (data[field]-mean)/std # Split off random 10% of the data for testing np.random.seed(21) sample = np.random.choice(data.index, size=int(len(data)*0.9), replace=False) data, test_data = data.ix[sample], data.drop(sample) # Split into features and targets features, targets = data.drop('admit', axis=1), data['admit'] features_test, targets_test = test_data.drop('admit', axis=1), test_data['admit']
80c8c3d3ff1516f508803938c89e42a30ca9e1dc
ad670c6a90f7ee300460934691879810914d38f6
/backend/collectors/ucas/data.py
b78a2233ead5102567ad9a8673854e5fff07e5f1
[]
no_license
kennydude/comparethatuni
a767bfb7d786b9e5601b2e1d2597b2a491dda7b7
16cef01500e91904204b9033a88087898aa21896
refs/heads/master
2016-08-05T12:21:50.205702
2012-11-10T18:37:04
2012-11-10T18:37:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,697
py
data = {} # Auto: data["BSC"] = "Bachelor of Science" data["BA"] = "Bachelor of Arts" data["BACC"] = "Bachelor of Accounting" data["BAE"] = "Bachelor of Arts and Economics" data["BARCH"] = "Bachelor of Architecture" data["BASC"] = "Bachelor of Applied Science" data["BAS"] = "Bachelor of Applied Science" data["BAPPSC"] = "Bachelor of Applied Science" data["BBA"] = "Bachelor of Businesss Administration" data["BCJ"] = "Bachelor of Crinimal Justice" data["BCL"] = "Bachelor of Civil Law" data["BCOUN"] = "Bachelor of Counseling" data["BD"] = "Bachelor of Divinity" data["BDES"] = "Bachelor of Design" data["BECON"] = "Bachelor of Economics" data["BECON&FIN"] = "Bachelor of Economics and Finance" data["BENG"] = "Bachelor of Engineering" data["BE"] = "Bachelor of Engineering" data["BFIN"] = "Bachelor of Finance" data["BFA"] = "Bachelor of Fine Art" data["BHSC"] = "Bachelor of Health Science" data["BLITT"] = "Bachelor of Literature" data["LITTB"] = "Bachelor of Literature" data["BMID"] = "Bachelor of Midwifery" data["BMIN"] = "Bachelor of Ministry" data["BNURS"] = "Bachelor of Nursing" data["BN"] = "Bachelor of Nursing" data["BPHARM"] = "Bachelor of Pharmacy" data["BPHYS"] = "Bachelor of Physics" data["BPHIL"] = "Bachelor of Philosophy" data["BSC(PSYCH)"] = "Bachelor of Science in Psychology" data["BSC(ECON)"] = "Bachelor of Science in Economics" data["BSC(ENG)"] = "Bachelor of Science in Engineering" data["BED"] = "Bachelor of Education" data["EDB"] = "Bachelor of Education" data["BDS"] = "Bachelor of Dental Surgery" data["BCHD"] = "Bachelor of Dental Surgery" data["BMUS"] = "Bachelor of Music" data["BMUSB"] = "Bachelor of Music" data["BMEDSC"] = "Bachelor of Biomedical Science" data["BMSC"] = "Bachelor of Biomedical Science" data["MBBS"] = "Bachelor of Medicine and Bachelor of Surgery" data["MBCHB"] = "Bachelor of Medicine and Bachelor of Surgery" data["BSCECON"] = "Bachelor of Economic and Social Studies" data["BSCEC"] = "Bachelor of Economic and Social Studies" data["BSOCSC"] = "Bachelor of Social Science" data["BTCHG"] = "Bachelor of Teaching" data["BTH"] = "Bachelor of Theology" data["BTHEOL"] = "Bachelor of Teology" data["THB"] = "Bachelor of Theology" data["BTECH"] = "Bachelor of Technology" data["MB"] = "Bachelor of Medicine" data["BM"] = "Bachelor of Medicine" data["BS"] = "Bachelor of Surgery" data["CHB"] = "Bachelor of Surgery" data["BCHIR"] = "Bachelor of Surgery" data["BCH"] = "Bachelor of Surgery" data["BVETMED"] = "Bachelor of Veterinary Medicine and Surgery" data["VETMB"] = "Bachelor of Veterinary Medicine and Surgery" data["BVMS"] = "Bachelor of Veterinary Medicine and Surgery" data["BVM"] = "Bachelor of Veterinary Medicine and Surgery" data["BVS"] = "Bachelor of Veterinary Medicine and Surgery" data["BVMEDSC"] = "Bachelor of Veterinary Medical Science" data["BVSC"] = "Bachelor of Veterinary Medical Science" data["LLB"] = "Bachelor of Laws" data["MA"] = "Master in Arts" data["MACC"] = "Master in Accountancy" data["MBIOCHEM"] = "Master in Biochemistry" data["MBIOL"] = "Master in Biology" data["MDIV"] = "Master in Divinity" data["MDES"] = "Master in Design" data["MEARTHSCI"] = "Master in Earth Science" data["MESCI"] = "Master in Earth Science" data["MENVSC"] = "Master in Environmental Science" data["MGEOG"] = "Master in Geography" data["MEOL"] = "Master in Geology" data["MGEOPHYS"] = "Master in Geophysics" data["MINF"] = "Master in Informatics" data["MMATHCOMP"] = "Master of Computational Mathematics" data["MMORSE"] = "Master in Mathematics, Operational Research, Statistics and Economics" data["MNATSC"] = "Master in Natural Science" data["MNURSSC"] = "Master in Nursing Science" data["MOCEAN"] = "Master in Oceanography" data["MPHRAM"] = "Master in Phramacy" data["MPLAN"] = "Master in Planning" data["MSC"] = "Master in Science" data["MSTAT"] = "Masters in Statistics" data["MTHEOL"] = "Master in Theology" data["MCHEM"] = "Master in Chemistry" data["MENG"] = "Master in Engineering" data["MENV"] = "Master in Environmental Studies" data["MCOMP"] = "Master in Computing" data["MSCI"] = "Master in Science" data["MMATH"] = "Master in Mathematics" data["MLAW"] = "Master in Laws" data["MMATHSTAT"] = "Master of Mathematics and Statistics" data["FYR"] = "Foundation Year" data["HND"] = "Higher National Diploma" data["DIPHE"] = "Diploma of Higher Education" data["FDSC"] = "Foundation Degree of Science" data["FDA"] = "Foundation Degree of Art" data["CERTHE"] = "Certificate of Higher Education" data["DBA"] = "Doctor of Business Administration" data["DCLINPSYCH"] = "Doctor of Clinical Psychology" data["DDS"] = "Doctor of Dental Surgery" data["DNURSSC"] = "Doctor of Nursing Science" data["DPROF"] = "Doctor of Professional Studies" data["EDPSYCHD"] = "Doctor of Educational Psychology" data["DEDPSY"] = "Doctor of Educational Psychology" data["HSCD"] = "Doctor of Health Science" data["DHSC"] = "Doctor of Health Science" data["MD"] = "Doctor of Medicine" data["DM"] = "Doctor of Medicine" data["DPT"] = "Doctor of Practical Theology" data["EDD"] = "Doctor of Education" data["DED"] = "Doctor of Education" data["DMUS"] = "Doctor of Music" data["MUSD"] = "Doctor of Music" data["DMIN"] = "Doctor of Ministry" data["PHD"] = "Doctor of Philosphy" data["DPHIL"] = "Doctor of Philosophy" data["SOCSCD"] = "Doctor of Social Science" data["THD"] = "Doctor of Theology" data["DD"] = "Doctor of Divinity" data["DCL"] = "Doctor of Civil Law" data["LLD"] = "Doctor of Laws" data["DLITT"] = "Doctor of Letters" data["LITTD"] = "Doctor of Letters" data["DLIT"] = "Doctor of Literature" data["DSC"] = "Doctor of Science" data["SCD"] = "Doctor of Science" data["ENGD"] = "Doctor of Engineering" data["DUNIV"] = "Doctor of the University"
f84eea71e90ff7d2d7a6dddbf57e751ba15463fc
bec09fcb7126390f1738c4990fa08b95d0b42e95
/CrawlerXingzhengquhuaFileTest.py
dad38273a93a3ce0e64970ef4b460c3a2cf898b1
[]
no_license
javasqlbug/pythonProject
5bb65807872a65c14c531027007fb3ed10c36119
e6eb38ec7ef6e08beec343177e77f01952494746
refs/heads/master
2022-12-23T19:44:21.680262
2020-09-16T13:08:07
2020-09-16T13:08:07
295,891,536
1
1
null
null
null
null
UTF-8
Python
false
false
4,136
py
#!/usr/bin/python # -*- coding: UTF-8 -*- #参考自http://c.biancheng.net/view/2011.html import requests #导入requests包 from bs4 import BeautifulSoup import re import time file_name = 'D:\\test\\xingzhengquhua\\xingzhengquhua.txt' url='https://xingzhengquhua.51240.com/' strhtml=requests.get(url) soup=BeautifulSoup(strhtml.text,'lxml') data = soup.select('#main_content > table > tr > td > table > tr') print(data) for item in data[2:-1]: time.sleep(0.1) result={ 'title': re.findall('\D+', item.get_text()), 'ID': re.findall('\d+', item.get_text()) } print(result) with open(file_name, 'a') as file_obj: #file_obj.write(str(result.get('ID')) + ',' + str(result.get('title')) + '\n') #file_obj.write(",".join(result) + '\n') file_obj.write(str(result['ID'][0]) + ',' + str(result['title'][0]) + ',,1' + '\n') #file_obj.write('\r\n') # 市级 url = 'https://xingzhengquhua.51240.com/' + str(re.findall('\d+', item.get_text())[0]) + '__xingzhengquhua/' print(url) strhtml = requests.get(url) soup = BeautifulSoup(strhtml.text, 'lxml') data = soup.select('#main_content > table > tr > td > table > tr') print(data[3:]) for item in data[3:]: time.sleep(0.1) result = { 'title': re.findall('\D+', item.get_text()), 'ID': re.findall('\d+', item.get_text()) } print(result) with open(file_name, 'a') as file_obj: file_obj.write(str(result['ID'][0]) + ',' + str(result['title'][0]) + ',,2' + '\n') # 区级 url = 'https://xingzhengquhua.51240.com/' + str(re.findall('\d+', item.get_text())[0]) + '__xingzhengquhua/' print(url) strhtml = requests.get(url) soup = BeautifulSoup(strhtml.text, 'lxml') data = soup.select('#main_content > table > tr > td > table > tr') print(data[3:]) for item in data[3:]: time.sleep(0.1) result = { 'title': re.findall('\D+', item.get_text()), 'ID': re.findall('\d+', item.get_text()) } print(result) with open(file_name, 'a') as file_obj: file_obj.write(str(result['ID'][0]) + ',' + str(result['title'][0]) + ',,3' + '\n') # 街道级 url = 'https://xingzhengquhua.51240.com/' + str(re.findall('\d+', item.get_text())[0]) + '__xingzhengquhua/' print(url) strhtml = requests.get(url) soup = BeautifulSoup(strhtml.text, 'lxml') data = soup.select('#main_content > table > tr > td > table > tr') print(data[3:]) for item in data[3:]: time.sleep(0.1) result = { 'title': re.findall('\D+', item.get_text()), 'ID': re.findall('\d+', item.get_text()) } print(result) with open(file_name, 'a') as file_obj: file_obj.write(str(result['ID'][0]) + ',' + str(result['title'][0]) + ',,4' + '\n') # 居委会级 url = 'https://xingzhengquhua.51240.com/' + str( re.findall('\d+', item.get_text())[0]) + '__xingzhengquhua/' print(url) strhtml = requests.get(url) soup = BeautifulSoup(strhtml.text, 'lxml') data = soup.select('#main_content > table > tr > td > table > tr') print(data[3:]) for item in data[3:]: time.sleep(0.1) result = { 'title': re.findall('\D+', item.get_text()), 'ID': str(re.findall('\d+', item.get_text()))[2:14], 'type': str(re.findall('\d+', item.get_text()))[14:17] } print(result) with open(file_name, 'a') as file_obj: file_obj.write(result['ID'] + ',' + str(result['title'][0]) + ',' + result['type'] + ',5' + '\n') print('程序执行结束')
030e8876934a3a45463110d92ce353acf7e3978b
564f887b3e4e81568e0088d3f4915d424213fee4
/RE.CNN/code/cnn.py
71ec84df1332b8c3ddcb01c2c6b9969fa1d54ca9
[]
no_license
Minzhe/KerasDeepLearning
9153eb836a80456c2397342236f5099c9826bb6b
0ec0b6c0641e0f9f8a0bebc28af745de6b665b45
refs/heads/master
2020-03-21T09:11:02.651379
2018-06-30T08:36:11
2018-06-30T08:36:11
138,386,452
0
0
null
null
null
null
UTF-8
Python
false
false
5,183
py
########################################################################################################## ### CNN.py ### ########################################################################################################## # https://github.com/UKPLab/deeplearning4nlp-tutorial """ This is a CNN for relation classification within a sentence. The architecture is based on: Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou and Jun Zhao, 2014, Relation Classification via Convolutional Deep Neural Network Performance (without hyperparameter optimization): Accuracy: 0.7943 Macro-Averaged F1 (without Other relation): 0.7612 Performance Zeng et al. Macro-Averaged F1 (without Other relation): 0.789 Code was tested with: - Python 2.7 & Python 3.6 - Theano 0.9.0 & TensorFlow 1.2.1 - Keras 2.0.5 """ from __future__ import print_function import numpy as np import gzip import sys import pickle as pkl import keras from keras.models import Model from keras.layers import Input, Dense, Dropout, Activation, Flatten, concatenate from keras.layers import Embedding from keras.layers import Convolution1D, MaxPooling1D, GlobalMaxPooling1D from keras.regularizers import Regularizer from keras.preprocessing import sequence np.random.seed(1337) # for reproducibility ################## function ################# def getPrecision(pred_test, y_test, targetLabel): # Precision for non-vague targetLabelCount = 0 correctTargetLabelCount = 0 for idx in range(len(pred_test)): if pred_test[idx] == targetLabel: targetLabelCount += 1 if pred_test[idx] == y_test[idx]: correctTargetLabelCount += 1 if correctTargetLabelCount == 0: return 0 return float(correctTargetLabelCount) / targetLabelCount def predict_classes(prediction): return prediction.argmax(axis=-1) ################## parameters ################# batch_size = 64 nb_filter = 100 filter_length = 3 hidden_dims = 100 nb_epoch = 100 pos_dims = 50 ################## read data ################# print("Loading dataset ...") f = gzip.open('data/sem-relations.pkl.gz', 'rb') data = pkl.load(f) f.close() embeddings = data['wordEmbeddings'] y_train, sent_train, pos1_train, pos2_train = data['train_set'] y_test, sent_test, pos1_test, pos2_test = data['test_set'] max_pos = max(np.max(pos1_train), np.max(pos2_train)) + 1 n_out = max(y_train) + 1 # train_y_cat = np_utils.to_categorical(y_train, n_out) max_sent_len = sent_train.shape[1] print("Dimension sent_train: ", sent_train.shape) print("Dimension pos1_train: ", pos1_train.shape) print("Dimension y_train: ", y_train.shape) print("Dimension sent_test: ", sent_test.shape) print("Dimension pos1_test: ", pos1_test.shape) print("Dimension y_test: ", y_test.shape) print("Dimension Embeddings: ", embeddings.shape) ################## CNN model ################# # embedding layers words_input = Input(shape=(max_sent_len,), dtype='int32', name='words_input') words = Embedding(input_dim=embeddings.shape[0], output_dim=embeddings.shape[1], weights=[embeddings], trainable=False) (words_input) dist1_input = Input(shape=(max_sent_len,), dtype='int32', name='dist1_input') dist1 = Embedding(input_dim=max_pos, output_dim=pos_dims, trainable=True) (dist1_input) dist2_input = Input(shape=(max_sent_len,), dtype='int32', name='dist2_input') dist2 = Embedding(input_dim=max_pos, output_dim=pos_dims, trainable=True) (dist2_input) output = concatenate([words, dist1, dist2]) # convolution layer output = Convolution1D(filters=nb_filter, kernel_size=filter_length, padding='same', activation='tanh', strides=1)(output) # we use standard max over time pooling output = GlobalMaxPooling1D()(output) output = Dropout(0.25)(output) output = Dense(n_out, activation='softmax')(output) model = Model(inputs=[words_input, dist1_input, dist2_input], outputs=[output]) model.compile(loss='sparse_categorical_crossentropy', optimizer='Adam', metrics=['accuracy']) model.summary() ################## training ################# print("Start training ...") max_prec, max_rec, max_acc, max_f1 = 0, 0, 0, 0 for epoch in range(nb_epoch): model.fit([sent_train, pos1_train, pos2_train], y_train, batch_size=batch_size, verbose=2, epochs=1) pred_test = predict_classes(model.predict([sent_test, pos1_test, pos2_test], verbose=0)) dctLabels = np.sum(pred_test) totalDCTLabels = np.sum(y_test) acc = np.sum(pred_test == y_test) / float(len(y_test)) max_acc = max(max_acc, acc) print("Accuracy: %.4f (max: %.4f)" % (acc, max_acc)) f1Sum = 0 f1Count = 0 for targetLabel in range(1, max(y_test)): prec = getPrecision(pred_test, y_test, targetLabel) recall = getPrecision(y_test, pred_test, targetLabel) f1 = 0 if (prec+recall) == 0 else 2*prec*recall/(prec+recall) f1Sum += f1 f1Count +=1 macroF1 = f1Sum / float(f1Count) max_f1 = max(max_f1, macroF1) print("Non-other Macro-Averaged F1: %.4f (max: %.4f)\n" % (macroF1, max_f1))
5784709a950d180e39c1205f1d2e1a0f2b52130e
9e55492c1ea09b518b778a54bf513bb5ec573dcb
/Tools/python/userConfig_TEMPLATE.py
f94e387db161972b09492ec24bf6cb832ee9afc0
[]
no_license
prafullaiitm/LatinoAnalysis
36f5d2e1c2d4dfb08709e74aeab17cfb7201d6ce
ff71f4821f000a9f31fecfe0a66547a0d5265c5a
refs/heads/master
2021-01-19T05:00:14.110174
2017-04-04T17:19:11
2017-04-04T17:19:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
137
py
#!/usr/bin/env python baseDir = '/afs/cern.ch/user/x/xjanssen/cms/HWW2015/' jobDir = baseDir+'jobs/' workDir = baseDir+'workspace/'
08a3b367ed240d7bf2c7506b76c8e53f5a8ade3b
339ff1f2089a085641c6b76818927f6b711c4750
/eic/identities.py
92ee4da245df8961e9cffdce60ed58c8ccd65e2d
[]
no_license
Muterra/muse-experiments
b670c67a2726722695487f2f77dcdddd1a86f65a
4ef87a6279d60d5d25493266b21d830050ac1c1a
refs/heads/master
2020-05-24T15:31:10.949179
2015-07-27T15:54:56
2015-07-27T15:54:56
39,783,223
0
0
null
null
null
null
UTF-8
Python
false
false
2,529
py
''' LICENSING ------------------------------------------------- pyEIC: A python library for EIC manipulation. Copyright (C) 2014-2015 Nicholas Badger [email protected] nickbadger.com This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA ------------------------------------------------------ ''' # Global dependencies that aren't here because I'm being lazy import base64 import struct from collections import deque import abc # This is a universal symmetric key for public identities. It is contained # within the EIC spec in "bootstraps". PUBLIC_ID_SYMKEY = bytes(32) PUBLIC_ID_PRIVKEY = bytes(512) PUBLIC_ID_PUBKEY = bytes(512) class IdentityProvider(metaclass=abc.ABCMeta): ''' An abstract base class for a mechanism that keeps track of identity requirements. ''' def __init__(self, storage_providers): ''' Blahblahblah. ''' # How to check any of these? self._stores = storage_providers @property def storage_providers(self): ''' Read-only property returning the storage providers. ''' return self._stores @abc.abstractmethod def fetch_pubkey(self, euid, cipher_suite): ''' Returns the pubkey associated with the given euid. ''' pass @abc.abstractmethod def new_identity(self, pubkey): ''' Creates an identity from the pubkey, returning the euid. ''' pass class GenericIdentityProvider(IdentityProvider): ''' Implements an access provider solely tasked with unlocking identities. ''' def fetch_pubkey(self, euid): ''' Gets the public key from an euid at self's storage providers. ''' eics = EICs.fetch(euid, PUBLIC_ID_SYMKEY, self.storage_providers)
67f79154b5a77882ba2db7f43578b38243154c28
91c9f6c1c6933d21076b29fce93580a4cca63ab2
/setup.py
c5100378629fbf20ed0894b594c98d8b44576c51
[ "Apache-2.0" ]
permissive
pansiyuan123/mmdetection-rocm
cb4ee8474978019963f3192e2bcdff5a46601d75
5fbfedd4ea73645750626d70ac8ed456759b6b4f
refs/heads/master
2022-11-18T09:01:40.626726
2020-07-01T05:43:22
2020-07-01T05:43:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,160
py
#!/usr/bin/env python import os import subprocess import time from setuptools import find_packages, setup import torch from torch.utils.cpp_extension import (BuildExtension, CppExtension, CUDAExtension) def readme(): with open('README.md', encoding='utf-8') as f: content = f.read() return content version_file = 'mmdet/version.py' def get_git_hash(): def _minimal_ext_cmd(cmd): # construct minimal environment env = {} for k in ['SYSTEMROOT', 'PATH', 'HOME']: v = os.environ.get(k) if v is not None: env[k] = v # LANGUAGE is used on win32 env['LANGUAGE'] = 'C' env['LANG'] = 'C' env['LC_ALL'] = 'C' out = subprocess.Popen( cmd, stdout=subprocess.PIPE, env=env).communicate()[0] return out try: out = _minimal_ext_cmd(['git', 'rev-parse', 'HEAD']) sha = out.strip().decode('ascii') except OSError: sha = 'unknown' return sha def get_hash(): if os.path.exists('.git'): sha = get_git_hash()[:7] elif os.path.exists(version_file): try: from mmdet.version import __version__ sha = __version__.split('+')[-1] except ImportError: raise ImportError('Unable to get git version') else: sha = 'unknown' return sha def write_version_py(): content = """# GENERATED VERSION FILE # TIME: {} __version__ = '{}' short_version = '{}' version_info = ({}) """ sha = get_hash() with open('mmdet/VERSION', 'r') as f: SHORT_VERSION = f.read().strip() VERSION_INFO = ', '.join(SHORT_VERSION.split('.')) VERSION = SHORT_VERSION + '+' + sha version_file_str = content.format(time.asctime(), VERSION, SHORT_VERSION, VERSION_INFO) with open(version_file, 'w') as f: f.write(version_file_str) def get_version(): with open(version_file, 'r') as f: exec(compile(f.read(), version_file, 'exec')) return locals()['__version__'] def make_cuda_ext(name, module, sources, sources_cuda=[]): define_macros = [] extra_compile_args = {'cxx': []} is_rocm_pytorch = False if torch.__version__ >= '1.5': from torch.utils.cpp_extension import ROCM_HOME is_rocm_pytorch = True if ((torch.version.hip is not None) and (ROCM_HOME is not None)) else False if (torch.cuda.is_available() or is_rocm_pytorch) or os.getenv('FORCE_CUDA', '0') == '1': extension = CUDAExtension sources += sources_cuda if not is_rocm_pytorch: define_macros += [('WITH_CUDA', None)] extension = CUDAExtension extra_compile_args['nvcc'] = [ '-D__CUDA_NO_HALF_OPERATORS__', '-D__CUDA_NO_HALF_CONVERSIONS__', '-D__CUDA_NO_HALF2_OPERATORS__', ] else: define_macros += [('WITH_HIP', None)] nvcc_flags = [] extra_compile_args = { 'cxx': [], 'nvcc': nvcc_flags, } else: print(f'Compiling {name} without CUDA') extension = CppExtension # raise EnvironmentError('CUDA is required to compile MMDetection!') return extension( name=f'{module}.{name}', sources=[os.path.join(*module.split('.'), p) for p in sources], define_macros=define_macros, extra_compile_args=extra_compile_args) def parse_requirements(fname='requirements.txt', with_version=True): """ Parse the package dependencies listed in a requirements file but strips specific versioning information. Args: fname (str): path to requirements file with_version (bool, default=False): if True include version specs Returns: List[str]: list of requirements items CommandLine: python -c "import setup; print(setup.parse_requirements())" """ import sys from os.path import exists import re require_fpath = fname def parse_line(line): """ Parse information from a line in a requirements text file """ if line.startswith('-r '): # Allow specifying requirements in other files target = line.split(' ')[1] for info in parse_require_file(target): yield info else: info = {'line': line} if line.startswith('-e '): info['package'] = line.split('#egg=')[1] else: # Remove versioning from the package pat = '(' + '|'.join(['>=', '==', '>']) + ')' parts = re.split(pat, line, maxsplit=1) parts = [p.strip() for p in parts] info['package'] = parts[0] if len(parts) > 1: op, rest = parts[1:] if ';' in rest: # Handle platform specific dependencies # http://setuptools.readthedocs.io/en/latest/setuptools.html#declaring-platform-specific-dependencies version, platform_deps = map(str.strip, rest.split(';')) info['platform_deps'] = platform_deps else: version = rest # NOQA info['version'] = (op, version) yield info def parse_require_file(fpath): with open(fpath, 'r') as f: for line in f.readlines(): line = line.strip() if line and not line.startswith('#'): for info in parse_line(line): yield info def gen_packages_items(): if exists(require_fpath): for info in parse_require_file(require_fpath): parts = [info['package']] if with_version and 'version' in info: parts.extend(info['version']) if not sys.version.startswith('3.4'): # apparently package_deps are broken in 3.4 platform_deps = info.get('platform_deps') if platform_deps is not None: parts.append(';' + platform_deps) item = ''.join(parts) yield item packages = list(gen_packages_items()) return packages if __name__ == '__main__': write_version_py() setup( name='mmdet', version=get_version(), description='Open MMLab Detection Toolbox and Benchmark', long_description=readme(), author='OpenMMLab', author_email='[email protected]', keywords='computer vision, object detection', url='https://github.com/open-mmlab/mmdetection', packages=find_packages(exclude=('configs', 'tools', 'demo')), package_data={'mmdet.ops': ['*/*.so']}, classifiers=[ 'Development Status :: 4 - Beta', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', ], license='Apache License 2.0', setup_requires=parse_requirements('requirements/build.txt'), tests_require=parse_requirements('requirements/tests.txt'), install_requires=parse_requirements('requirements/runtime.txt'), extras_require={ 'all': parse_requirements('requirements.txt'), 'tests': parse_requirements('requirements/tests.txt'), 'build': parse_requirements('requirements/build.txt'), 'optional': parse_requirements('requirements/optional.txt'), }, ext_modules=[ make_cuda_ext( name='compiling_info', module='mmdet.ops.utils', sources=['src/compiling_info.cpp']), make_cuda_ext( name='nms_ext', module='mmdet.ops.nms', sources=['src/nms_ext.cpp', 'src/cpu/nms_cpu.cpp'], sources_cuda=[ 'src/hip/nms_cuda.cpp', 'src/hip/nms_kernel.hip' ]), make_cuda_ext( name='roi_align_ext', module='mmdet.ops.roi_align', sources=[ 'src/roi_align_ext.cpp', 'src/cpu/roi_align_v2.cpp', ], sources_cuda=[ 'src/hip/roi_align_kernel.hip', 'src/hip/roi_align_kernel_v2.hip' ]), make_cuda_ext( name='roi_pool_ext', module='mmdet.ops.roi_pool', sources=['src/roi_pool_ext.cpp'], sources_cuda=['src/hip/roi_pool_kernel.hip']), make_cuda_ext( name='deform_conv_ext', module='mmdet.ops.dcn', sources=['src/deform_conv_ext.cpp'], sources_cuda=[ 'src/hip/deform_conv_cuda.cpp', 'src/hip/deform_conv_hip_kernel.hip' ]), make_cuda_ext( name='deform_pool_ext', module='mmdet.ops.dcn', sources=['src/deform_pool_ext.cpp'], sources_cuda=[ 'src/hip/deform_pool_cuda.cpp', 'src/hip/deform_pool_hip_kernel.hip' ]), make_cuda_ext( name='sigmoid_focal_loss_ext', module='mmdet.ops.sigmoid_focal_loss', sources=['src/sigmoid_focal_loss_ext.cpp'], sources_cuda=['src/hip/sigmoid_focal_loss_hip.hip']), make_cuda_ext( name='masked_conv2d_ext', module='mmdet.ops.masked_conv', sources=['src/masked_conv2d_ext.cpp'], sources_cuda=[ 'src/hip/masked_conv2d_cuda.cpp', 'src/hip/masked_conv2d_kernel.hip' ]), make_cuda_ext( name='carafe_ext', module='mmdet.ops.carafe', sources=['src/carafe_ext.cpp'], sources_cuda=[ 'src/hip/carafe_cuda.cpp', 'src/hip/carafe_hip_kernel.hip' ]), make_cuda_ext( name='carafe_naive_ext', module='mmdet.ops.carafe', sources=['src/carafe_naive_ext.cpp'], sources_cuda=[ 'src/hip/carafe_naive_cuda.cpp', 'src/hip/carafe_naive_hip_kernel.hip' ]), #make_cuda_ext( # name='corner_pool_ext', # module='mmdet.ops.corner_pool', # sources=['src/corner_pool.cpp']), ], cmdclass={'build_ext': BuildExtension}, zip_safe=False)
e2048391927256fc2515bf8c8bfb13dd16269986
ce76b3ef70b885d7c354b6ddb8447d111548e0f1
/week/case/large_day/way/bad_thing_and_person/eye.py
9d986299d4e6b9d77f6fec2a2c89dd8ed8aab7a9
[]
no_license
JingkaiTang/github-play
9bdca4115eee94a7b5e4ae9d3d6052514729ff21
51b550425a91a97480714fe9bc63cb5112f6f729
refs/heads/master
2021-01-20T20:18:21.249162
2016-08-19T07:20:12
2016-08-19T07:20:12
60,834,519
0
0
null
null
null
null
UTF-8
Python
false
false
217
py
#! /usr/bin/env python def time_or_old_fact(str_arg): life(str_arg) print('small_company') def life(str_arg): print(str_arg) if __name__ == '__main__': time_or_old_fact('say_high_person_up_thing')
8315cc52bffb847852532e37dd45604b0dec1350
d904ecb1cf65ffbd2bd0332b46ae3c90a9d96158
/dzz/dz.py
62bb5fcb4b8ca30dc8e048af5f60992d83359f27
[]
no_license
EraSilv/day2
9e1b5573017a6c3e3a4afa3cc0d19de10fcc4d34
a1528897b150cd856d72e7ab387a1dbb5e0189ee
refs/heads/master
2023-06-04T00:09:18.992833
2021-06-28T11:45:36
2021-06-28T11:45:36
368,862,399
0
0
null
null
null
null
UTF-8
Python
false
false
586
py
#a = 35 #b = int(input()) #print(b > a) #rint(b < a) #print(b == a) #print(b != a) #a = int(input("первое число:")) #b = int(input("второе число:")) #print(a + b) #print(a * b) #a = int(input( "ur first no:")) #b = float(input("ur second no:")) #c = int(input("ur third no:")) #print(a == b == c) location = input("region:") age = input("age:") print('') print("Ur Region:" + location) print("Age:" + age) print('') ponchiki = "Ohaiyooo! I am Erlan, and i live in " ponchiki_2 = "I am " print(ponchiki + '' + location) print(ponchiki_2 + '' + age)
ba382696da0039d785ebfec6866480fa880b41ae
38ae0a339102c9fa0c24ecac7901a0103f87c1fe
/Lib/site-packages/pip/_vendor/pep517/wrappers.py
fe5b787c9e9a772e68d4f31be10a41b8036235e0
[]
no_license
Tanzin-Ul-Islam/Django_dynamic_filterform
11cf897391abc56929b3e6d5156660312a65ef13
76eb92d65a8cab5a9b294f87c144e425227feee5
refs/heads/main
2023-02-23T02:38:51.562393
2021-01-26T20:36:20
2021-01-26T20:36:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,291
py
import threading from contextlib import contextmanager import os from os.path import dirname, abspath, join as pjoin import shutil from subprocess import check_call, check_output, STDOUT import sys from tempfile import mkdtemp from . import compat __all__ = [ 'BackendUnavailable', 'BackendInvalid', 'HookMissing', 'UnsupportedOperation', 'default_subprocess_runner', 'quiet_subprocess_runner', 'Pep517HookCaller', ] try: import importlib.resources as resources def _in_proc_script_path(): return resources.path(__package__, '_in_process.py') except ImportError: @contextmanager def _in_proc_script_path(): yield pjoin(dirname(abspath(__file__)), '_in_process.py') @contextmanager def tempdir(): td = mkdtemp() try: yield td finally: shutil.rmtree(td) class BackendUnavailable(Exception): """Will be raised if the backend cannot be imported in the hook process.""" def __init__(self, traceback): self.traceback = traceback class BackendInvalid(Exception): """Will be raised if the backend is invalid.""" def __init__(self, backend_name, backend_path, message): self.backend_name = backend_name self.backend_path = backend_path self.message = message class HookMissing(Exception): """Will be raised on missing hooks.""" def __init__(self, hook_name): super(HookMissing, self).__init__(hook_name) self.hook_name = hook_name class UnsupportedOperation(Exception): """May be raised by build_sdist if the backend indicates that it can't.""" def __init__(self, traceback): self.traceback = traceback def default_subprocess_runner(cmd, cwd=None, extra_environ=None): """The default method of calling the wrapper subprocess.""" env = os.environ.copy() if extra_environ: env.update(extra_environ) check_call(cmd, cwd=cwd, env=env) def quiet_subprocess_runner(cmd, cwd=None, extra_environ=None): """A method of calling the wrapper subprocess while suppressing output.""" env = os.environ.copy() if extra_environ: env.update(extra_environ) check_output(cmd, cwd=cwd, env=env, stderr=STDOUT) def norm_and_check(source_tree, requested): """Normalise and check a backend path. Ensure that the requested backend path is specified as a relative path, and resolves to a location under the given source tree. Return an absolute version of the requested path. """ if os.path.isabs(requested): raise ValueError("paths must be relative") abs_source = os.path.abspath(source_tree) abs_requested = os.path.normpath(os.path.join(abs_source, requested)) # We have to use commonprefix for Python 2.7 compatibility. So we # normalise case to avoid problems because commonprefix is a character # based comparison :-( norm_source = os.path.normcase(abs_source) norm_requested = os.path.normcase(abs_requested) if os.path.commonprefix([norm_source, norm_requested]) != norm_source: raise ValueError("paths must be inside source tree") return abs_requested class Pep517HookCaller(object): """A wrapper around a source directory to be built with a PEP 517 backend. :param source_dir: The path to the source directory, containing pyproject.toml. :param build_backend: The build backend spec, as per PEP 517, from pyproject.toml. :param backend_path: The backend path, as per PEP 517, from pyproject.toml. :param runner: A callable that invokes the wrapper subprocess. :param python_executable: The Python executable used to invoke the backend The 'runner', if provided, must expect the following: - cmd: a list of strings representing the commands and arguments to execute, as would be passed to e.g. 'subprocess.check_call'. - cwd: a string representing the working directory that must be used for the subprocess. Corresponds to the provided source_dir. - extra_environ: a dict mapping environment variable names to values which must be set for the subprocess execution. """ def __init__( self, source_dir, build_backend, backend_path=None, runner=None, python_executable=None, ): if runner is None: runner = default_subprocess_runner self.source_dir = abspath(source_dir) self.build_backend = build_backend if backend_path: backend_path = [ norm_and_check(self.source_dir, p) for p in backend_path ] self.backend_path = backend_path self._subprocess_runner = runner if not python_executable: python_executable = sys.executable self.python_executable = python_executable @contextmanager def subprocess_runner(self, runner): """A context manager for temporarily overriding the default subprocess runner. """ prev = self._subprocess_runner self._subprocess_runner = runner try: yield finally: self._subprocess_runner = prev def get_requires_for_build_wheel(self, config_settings=None): """Identify packages required for building a wheel Returns a list of dependency specifications, e.g.:: ["wheel >= 0.25", "setuptools"] This does not include requirements specified in pyproject.toml. It returns the result of calling the equivalently named hook in a subprocess. """ return self._call_hook('get_requires_for_build_wheel', { 'config_settings': config_settings }) def prepare_metadata_for_build_wheel( self, metadata_directory, config_settings=None, _allow_fallback=True): """Prepare a ``*.dist-info`` folder with metadata for this project. Returns the name of the newly created folder. If the build backend defines a hook with this name, it will be called in a subprocess. If not, the backend will be asked to build a wheel, and the dist-info extracted from that (unless _allow_fallback is False). """ return self._call_hook('prepare_metadata_for_build_wheel', { 'metadata_directory': abspath(metadata_directory), 'config_settings': config_settings, '_allow_fallback': _allow_fallback, }) def build_wheel( self, wheel_directory, config_settings=None, metadata_directory=None): """Build a wheel from this project. Returns the name of the newly created file. In general, this will call the 'build_wheel' hook in the backend. However, if that was previously called by 'prepare_metadata_for_build_wheel', and the same metadata_directory is used, the previously built wheel will be copied to wheel_directory. """ if metadata_directory is not None: metadata_directory = abspath(metadata_directory) return self._call_hook('build_wheel', { 'wheel_directory': abspath(wheel_directory), 'config_settings': config_settings, 'metadata_directory': metadata_directory, }) def get_requires_for_build_sdist(self, config_settings=None): """Identify packages required for building a wheel Returns a list of dependency specifications, e.g.:: ["setuptools >= 26"] This does not include requirements specified in pyproject.toml. It returns the result of calling the equivalently named hook in a subprocess. """ return self._call_hook('get_requires_for_build_sdist', { 'config_settings': config_settings }) def build_sdist(self, sdist_directory, config_settings=None): """Build an sdist from this project. Returns the name of the newly created file. This calls the 'build_sdist' backend hook in a subprocess. """ return self._call_hook('build_sdist', { 'sdist_directory': abspath(sdist_directory), 'config_settings': config_settings, }) def _call_hook(self, hook_name, kwargs): # On Python 2, pytoml returns Unicode values (which is correct) but the # environment passed to check_call needs to contain string values. We # convert here by encoding using ASCII (the backend can only contain # letters, digits and _, . and : characters, and will be used as a # Python identifier, so non-ASCII content is wrong on Python 2 in # any case). # For backend_path, we use sys.getfilesystemencoding. if sys.version_info[0] == 2: build_backend = self.build_backend.encode('ASCII') else: build_backend = self.build_backend extra_environ = {'PEP517_BUILD_BACKEND': build_backend} if self.backend_path: backend_path = os.pathsep.join(self.backend_path) if sys.version_info[0] == 2: backend_path = backend_path.encode(sys.getfilesystemencoding()) extra_environ['PEP517_BACKEND_PATH'] = backend_path with tempdir() as td: hook_input = {'kwargs': kwargs} compat.write_json(hook_input, pjoin(td, 'input.json'), indent=2) # Run the hook in a subprocess with _in_proc_script_path() as script: python = self.python_executable self._subprocess_runner( [python, abspath(str(script)), hook_name, td], cwd=self.source_dir, extra_environ=extra_environ ) data = compat.read_json(pjoin(td, 'output.json')) if data.get('unsupported'): raise UnsupportedOperation(data.get('traceback', '')) if data.get('no_backend'): raise BackendUnavailable(data.get('traceback', '')) if data.get('backend_invalid'): raise BackendInvalid( backend_name=self.build_backend, backend_path=self.backend_path, message=data.get('backend_error', '') ) if data.get('hook_missing'): raise HookMissing(hook_name) return data['return_val'] class LoggerWrapper(threading.Thread): """ Read messages from a pipe and redirect them to a logger (see python's logging module). """ def __init__(self, logger, level): threading.Thread.__init__(self) self.daemon = True self.logger = logger self.level = level # create the pipe and reader self.fd_read, self.fd_write = os.pipe() self.reader = os.fdopen(self.fd_read) self.start() def fileno(self): return self.fd_write @staticmethod def remove_newline(msg): return msg[:-1] if msg.endswith(os.linesep) else msg def run(self): for line in self.reader: self._write(self.remove_newline(line)) def _write(self, message): self.logger.log(self.level, message)
0b283bf769e85611ae53808e6e2aa56546029522
50a21aa11a8d55fdaf8de6eb3804fdc27c16ca24
/failed examples/try1/server1.py
e0504e42eda80e2b911041649709f6c4559ea973
[]
no_license
gideon59a/websock
50624ed35107202c359ba4fc1f24ef5b20e3b5d8
eac5875033f80b06fec1254edbd9b35a0978b779
refs/heads/main
2023-07-18T21:15:13.073419
2021-09-28T08:56:51
2021-09-28T08:56:51
411,205,209
0
0
null
null
null
null
UTF-8
Python
false
false
805
py
# Ref (works ok): https://pythonprogramminglanguage.com/python-flask-websocket/ # NOTE: The server fails until I downgraded flask-socketio to 4.3.2 per https://github.com/miguelgrinberg/Flask-SocketIO/issues/1432 # C:\Python\Python39\Scripts\pip.exe install -Iv flask-socketio==4.3.2 from flask import Flask, render_template from flask_socketio import SocketIO, emit app = Flask(__name__) socketio = SocketIO(app) @app.route('/') def index(): return render_template('index.html') @socketio.on('connect') def test_connect(): print("*** connect event ***") emit('after connect', {'data': 'Lets dance'}) emit('after connect', {'data': 'sent again'}) emit('after connect', {'data': '3rd time'}) if __name__ == '__main__': socketio.run(app, host='0.0.0.0', port=50001, debug=True)
1ea6b52092f1832a41e71c7d18ba2b6654e3d8c8
7c5d7347294afced072950c2b22cf8a12d54a3cc
/src/calibration.py
8840f7488bbe1a530a7b11195ea4e2fe56fdea25
[]
no_license
DinoHub-SubT/basestation_gui_python
129b7d2cf90175b17462f7c36f0ebf684e5f8562
e4cf13f4f0ab9811880981d8623c085b6509eda5
refs/heads/master
2023-08-29T11:16:28.108675
2019-12-21T23:23:03
2019-12-21T23:23:03
423,113,324
0
0
null
null
null
null
UTF-8
Python
false
false
23,348
py
from __future__ import print_function import os import math import random import datetime import json import re import subprocess import rospkg import rospy import robots from qt_gui.plugin import Plugin from python_qt_binding import loadUi, QtCore, QtGui, QtWidgets from nav_msgs.msg import Odometry from geometry_msgs.msg import Quaternion, Point class Robot(object): """ Robot provides a structure for the UI to communicate with its controller and has the following fields: - name Copied from a robots.Robot. - is_aerial True if the robot is an aerial (drone) robot. Copied from a robots.Robot. - points Number of points saved so far. - last_save Records the datetime of when either the last successful point save operation has been performed on the robot in the UI. This should be reset to the empty string if the user resets the points. - uuid A random unique identifier that conforms to the UUID4 specification. This created once and should never be changed. Copied from a robots.Robot. - mean_error The computed mean error after calibrating the transform matrix. - transform: A 4x4 matrix that can transform CMU's Subt coordinate frame to DARPA's coordinate frame. The default is the identity matrix. - quaternion: The rotation portion of 'transform' represented in quaternion form. - darpa_tf_pub: ROS publisher of where to publish an Odometry message to the robot to utilize the calibrated DARPA transform. """ def __init__(self, cfgRobot): self.name = cfgRobot.name self.is_aerial = cfgRobot.is_aerial self.points = [] self.last_save = "" self.uuid = cfgRobot.uuid self.mean_error = 0 self.transform = [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]] self.quaternion = [0, 0, 0, 1] self.darpa_tf_pub = None def encode_to_json(self): """Encode this Robot object into a dictionary that is suitable for JSON encoding.""" d = dict() d["name"] = self.name d["uuid"] = self.uuid d["is_aerial"] = self.is_aerial d["points"] = self.points d["last_save"] = self.last_save d["mean_error"] = self.mean_error d["transform"] = self.transform d["quaternion"] = self.quaternion return d def decode_from_json(self, obj): """ Decode a dictionary object that was loaded from JSON and return a new Robot object. Note that while all Robot properties are serialized to the JSON file they are not deserialized back into Robot as these properties are already derived from the configuration robots.Robot. """ self.points = obj["points"] self.last_save = obj["last_save"] self.mean_error = obj["mean_error"] self.transform = obj["transform"] self.quaternion = obj["quaternion"] class Calibration(Plugin): """ Main entry point for the robot calibration plugin and acts as the controller for the CalibrationView. This plugin takes an overall different strategy then the old calibration workflow. Previously the GUI could only support two robots and the user had to run the calibration process in a separate terminal window. This is no longer necessary as the this plugin performs such process on the users behalf while allowing an arbitrary number of robots. The support for any number of robots required a different strategy to interface with calibration process. Now the two have been decoupled as this plugin maintains its own set of data files under the basestation_gui_python/data/calibration path. Inside this folder there will be a JSON file for each robot that is added through the user interface. The name of the file is the UUID that was assigned to the Robot object when it was created. The contents of this file is the Robot object serialized into JSON form. Ideally, a database would be the right answer here but adding such a dependency is overkill what is needed from the GUI. With robots continously persisted into JSON files this also decouples this plugin from any other plugin that needs the resulting data. For example, when a robot has detected an artifact, the other plugin that is managing artifact images can load the robot data to obtain its DARPA transformation matrix to apply to the artifacts coordinate frame. In other words, any type of message passing between plugins is unnecessary. """ def __init__(self, context): super(Calibration, self).__init__(context) self.setObjectName("Calibration") self.last_pose_total = None self.last_pose = dict() def odometry_to_pose(odometry): return [ odometry.pose.pose.position.x, odometry.pose.pose.position.y, odometry.pose.pose.position.z, ] # Subscribe callbacks def make_pose_callback(robot): def on_pose(msg): self.last_pose[robot.uuid] = odometry_to_pose(msg) return on_pose def on_pose_total(msg): self.last_pose_total = odometry_to_pose(msg) self.subs = [rospy.Subscriber("/position", Odometry, on_pose_total)] cal_robots = [] root = self.robot_dir() config = robots.Config() for cfg in config.robots: robot = Robot(cfg) name = robot.uuid + ".json" path = os.path.join(root, name) if os.path.exists(path): with open(path) as f: robot.decode_from_json(json.load(f)) else: with open(path, "w") as f: json.dump(robot.encode_to_json(), f) topic = "/{0}/{1}".format(cfg.topic_prefix, cfg.topics["darpa_tf"]) robot.darpa_tf_pub = rospy.Publisher(topic, Odometry, queue_size=10) topic = "/{0}/{1}".format(cfg.topic_prefix, cfg.topics["calibration"]) sub = rospy.Subscriber(topic, Odometry, make_pose_callback(robot)) self.subs.append(sub) cal_robots.append(robot) self.view = CalibrationView(self, cal_robots) context.add_widget(self.view) def shutdown_plugin(self): for s in self.subs: s.unregister() #################### private methods #################### def add_pose(self, robot, pose, total): robot.points.append([pose, total]) robot.last_save = str(datetime.datetime.now()) self.persist(robot) return robot def robot_dir(self): """Robot_dir returns the directory where Robot objects are archived.""" p = rospkg.RosPack().get_path("basestation_gui_python") return os.path.join(p, "data", "calibration") def robot_filename(self, robot): """Robot_filename returns the full file path of where a Robot object should be archived.""" return os.path.join(self.robot_dir(), robot.uuid + ".json") def persist(self, robot): """Persist archives _robot_ as json to the path specificed by robot_filename.""" try: fn = self.robot_filename(robot) with open(fn, "w") as f: json.dump(robot.encode_to_json(), f) except Exception as e: MB = qt.QMessageBox MB.critical( None, "Basestation", "Calibration persist error: {0}: ".format(e), buttons=MB.Ok, defaultButton=MB.Ok, ) #################### CalibrationView interface methods #################### def name_changed(self, robot): self.persist(robot) def on_save(self, robot): have_pose = self.last_pose.has_key(robot.uuid) have_total = self.last_pose_total != None if have_pose and have_total: p = self.last_pose.get(robot.uuid) return self.add_pose(robot, p, self.last_pose_total) elif have_pose: return "Have not received total pose. No point saved." else: return "Have not received robot pose. No point saved." def on_reset(self, robot): robot.points = [] robot.last_save = "" robot.transform = [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]] robot.quaternion = [0, 0, 0, 1] qt = Quaternion(0, 0, 0, 1) tf = Odometry() tf.pose.pose.position.x = 0 tf.pose.pose.position.y = 0 tf.pose.pose.position.z = 0 tf.pose.pose.orientation = qt self.persist(robot) robot.darpa_tf_pub.publish(tf) return robot def on_calibrate(self, robot): RPKG = rospkg.RosPack() ECAL = "entrance_calib" if ECAL not in RPKG.list(): m = "The ROS '{0}' package was not found in the package list. Ensure that it is installed and sourced." return (True, m.format(ECAL)) if len(robot.points) < 2: # This error was from reading the calibration code and we perform it here in # order to get a fast and clear error message to the user. The drawback is # that if someone modifies the calibration process and changes the number of # points required for a calibration then this has to change as well. C'est la vie. return ( True, "Not enough points. Need 2 or more points for a calibration.", ) # In a previous implementation the GUI program would record the data into the # calibration's data folder on the go while keeping separate files for the ground and # aerial vehicle. Here we choose a different strategy where we already have the # necessary points cached in memory and persisted in our JSON files so we just # dump the output to the same location where the calibration process expects to # find the data. Note that we always dump to the exact output location regardless # if the robot is a UGV or UAV as the calibration makes no differentiation in the # matter. This keeps us from having to modify ROS parameters to tell the calibration # which files to load and just its defaults listed in its launch file. cal_data = os.path.join(RPKG.get_path("entrance_calib"), "data") est_path = os.path.join(cal_data, "data_points.txt") tot_path = os.path.join(cal_data, "reference_points.txt") with open(est_path, "w") as est: with open(tot_path, "w") as tot: this = "{0}\n".format(len(robot.points)) est.write(this) tot.write(this) # Example of what robot.points looks like: # [ # [ [1,2,3], [4,5,6] ], # ... # [ [1,2,3], [4,5,6] ], # ] for e, t in robot.points: e_pt = "{0} {1} {2}\n".format(e[0], e[1], e[2]) t_pt = "{0} {1} {2}\n".format(t[0], t[1], t[2]) est.write(e_pt) tot.write(t_pt) # Call the actual calibration process. Previously this step had to be done manually # as the user had to use both the terminal and GUI in conjuction with each other # to perform the calibration and upload the transformed frame to DARPA. out = "" try: out = subprocess.check_output( ["roslaunch", ECAL, ECAL + ".launch"], stderr=subprocess.STDOUT ) except subprocess.CalledProcessError as e: bad = str(e) + ":\n\n" + out rospy.logerr(bad) return (True, bad) # This check is for the case when subprocess.CalledProcessError is not thrown. # A test was made to have 'entrance_calib' exit with a code of one by having one # of the files it was looking for not exist. When doing so the exception was # thrown and it apppeared that ROS was 'swallowing' the exit code itself and # returning a new code of zero. if "exit code 1" in out: rospy.logerr(out) return (True, "'entrance_calib' has shutdown unexpectedly:\n\n" + out) # At this point we have successfully run the calibration and are now able # to proceed on transforming its results and save the DARPA transform. # Extract the mean error from the process standard output. match = re.search( "Mean error:\s*([.\w]+)", out, flags=re.MULTILINE | re.IGNORECASE ) if not match: return (True, "No mean error detected in calibration output.") mean_error = float(match.group(1)) # save for later in case of other errors cal_path = os.path.join(cal_data, "calib.txt") # Example of what's in calib.txt: # 1 2 3 # 4 5 6 # 7 8 9 # # 10 # 11 # 12 # # The first three rows (items 1 thru 9) represent a 3x3 rotation matrix # while elements 10, 11, and 12 represents the translation vector. lines = [] with open(cal_path) as f: lines = f.readlines() if len(lines) < 7: return ( True, "Calibration output is missing necessary matrix data. Transform unchanged.", ) lines = [line.strip() for line in lines] # strip newlines # Note that lines[3] is the empty string. r0 = map(float, lines[0].split(" ")) r1 = map(float, lines[1].split(" ")) r2 = map(float, lines[2].split(" ")) r0.append(float(lines[4])) r1.append(float(lines[5])) r2.append(float(lines[6])) if len(r0) < 4 and len(r1) < 4 and len(r2) < 4: return ( True, "Calibration output is missing necessary data. Transform unchanged.", ) robot.transform[0] = r0 robot.transform[1] = r1 robot.transform[2] = r2 robot.mean_error = mean_error # The robot accepts transform as a combination of the translation # vector and a quaternion for the rotation. pt = Point(r0[3], r1[3], r2[3]) qw = math.sqrt(1.0 + r0[0] + r1[1] + r2[2]) / 2.0 qx = (r2[1] - r1[2]) / (4.0 * qw) qy = (r0[2] - r2[0]) / (4.0 * qw) qz = (r1[0] - r0[1]) / (4.0 * qw) qt = Quaternion(qx, qy, qz, qw) tf = Odometry() robot.quaternion = [qx, qy, qz, qw] tf.pose.pose.position = pt tf.pose.pose.orientation = qt self.persist(robot) robot.darpa_tf_pub.publish(tf) return (False, robot) # The following constants represent the columns in the table of the calibration UI. NAME_COL = 0 AERIAL_COL = 1 POINT_COL = 2 SAVE_COL = 3 RESET_COL = 4 TRANS_COL = 5 TIME_COL = 6 def confirm(title, message): """ Presents a simple message box to the asking to confirm the operation. Returns QtWidgets.QMessageBox. Yes if the user confirms; otherwise, returns QtWidgest.QMessageBox.Cancel. """ MB = QtWidgets.QMessageBox return MB.warning( None, title, message, buttons=MB.Yes | MB.Cancel, defaultButton=MB.Yes ) class CalibrationView(QtWidgets.QWidget): """ Everything UI to calibrate a robot and transforms its coordinate frame to be uploaded to DARPA. The controller, the second argument to the constructor is expected to have the following interface: - def name_changed(robot): The user at any time may change the name of the robot in the table. When this occurs an object of type Robot is passed to this function and the name property of the passed in robot will be the new name. - def on_save(robot): Called whenever the user presses the save button for a particular robot. The passed robot will be of type of Robot and the contoller is expected to add another point to the robot's points list, update the last_save field, and return the updated robot object. If an error occurs then a string indicating the error message should be returned which will cause an informational dialog to be presented to the user. - def on_reset(robot): Whenever the user presses the save button its number of points in the Robot object is incremented by one if the save was successful. The resetting operation resets eliminates all previously accumulated points when the user accepts the confirmation. The object of type Robot will be passed to this function that should reset the points field to the empty list and return the updated robot object. Note that this method is also called when the user checks or unchecks the 'Aerial' checkbox as it is expected that currently accumulated points are not valid for a different type of robot. - def on_calibrate(robot): After collecting a number of points the user will want to finish the calibration and save the transformed DARPA coordinate frame. They achieve this by clicking on the 'Calibrate' button on the UI which then calls this method. The return value should be a tuple where the first element is a boolean that is True when an error has occurred and the second element is a string that describes the error. If the first value of the returned tuple is false then the second element should be the robot with its updated transform frame. The only 'public' method exposed is the constructor which expects the controller and existing list of robots that may have been previously persisted. That list is expected to have robots of type Robot and will be used to initially populate the robot table. """ def __init__(self, controller, robots): super(CalibrationView, self).__init__() rp = rospkg.RosPack() ui = os.path.join( rp.get_path("basestation_gui_python"), "resources", "calibration.ui" ) loadUi(ui, self, {}) self.controller = controller self.setObjectName("CalibrationView") self.robot_table.itemChanged[QtWidgets.QTableWidgetItem].connect( self.name_changed ) self.robot_table.setColumnWidth(AERIAL_COL, 60) self.robot_table.setColumnWidth(POINT_COL, 60) self.robot_table.setColumnWidth(SAVE_COL, 60) self.robot_table.setColumnWidth(RESET_COL, 60) self.robot_table.setColumnWidth(TRANS_COL, 85) for r in robots: self.add_robot(r) def add_robot(self, robot): tab = self.robot_table row = tab.rowCount() item = self.non_editable(robot.name) item.robot = robot points = self.non_editable(str(len(robot.points))) time = self.non_editable(robot.last_save) checkbox = QtWidgets.QCheckBox() # The following are callbacks for the newly added UI controls. Since # adding a row creates new widgets/buttons, we need new callbacks that # refer to these widgets and the robot object in question as certain # operations want to mutate the robot. def update(): points.setText(str(len(item.robot.points))) time.setText(item.robot.last_save) def reset(): item.robot = self.controller.on_reset(item.robot) update() def on_save(): result = self.controller.on_save(item.robot) if type(result) is str: QtWidgets.QMessageBox.critical(None, "Saved Point Failed", result) else: item.robot = result update() def on_reset(): answer = confirm( "Reset Robot", "Really reset " + item.robot.name + "'s points?" ) if answer == QtWidgets.QMessageBox.Yes: reset() def on_calibrate(): (has_err, result) = self.controller.on_calibrate(item.robot) if has_err: QtWidgets.QMessageBox.critical(None, "Calibration Failed", result) else: MEAN_ERROR_THRESHOLD = 0.02 item.robot = result mbox = QtWidgets.QMessageBox.information msg = "Mean error: {0}\n\n".format(result.mean_error) if result.mean_error > MEAN_ERROR_THRESHOLD: mbox = QtWidgets.QMessageBox.warning msg += "Error greater than {0}. Consider re-calibrating.\n\n".format( MEAN_ERROR_THRESHOLD ) M = result.transform row = " {: 10.6f} {: 10.6f} {: 10.6f} {: 10.6f} \n" msg += "Transform matrix:\n\n" msg += row.format(M[0][0], M[0][1], M[0][2], M[0][3]) msg += row.format(M[1][0], M[1][1], M[1][2], M[1][3]) msg += row.format(M[2][0], M[2][1], M[2][2], M[2][3]) msg += row.format(M[3][0], M[3][1], M[3][2], M[3][3]) mbox(None, "Calibration Complete", msg) checkbox.setChecked(robot.is_aerial) checkbox.setEnabled(False) tab.insertRow(row) tab.setItem(row, NAME_COL, item) tab.setItem(row, POINT_COL, points) tab.setItem(row, TIME_COL, time) tab.setCellWidget(row, AERIAL_COL, checkbox) tab.setCellWidget( row, SAVE_COL, self.make_btn("stock_save", "Save pose from station", on_save), ) tab.setCellWidget( row, RESET_COL, self.make_btn("stock_refresh", "Clear saved pose points", on_reset), ) tab.setCellWidget( row, TRANS_COL, self.make_btn("system", "Calibrate and save DARPA transform", on_calibrate), ) def name_changed(self, item): """ Called whenever the user edits the name cell for a robot. This callback handler can not be part 'add_robot' method due to the fact that this handler has to be attached to the entire table itself and this same handler in that method will cause it to be called multiple times for each attached handler (each robot). To differentiate which robot where are referring to the 'add_robot' will add the robot as a property to itself which is accessed here. This handler will then only be set in the constructor for this view. """ if item.column() == NAME_COL: robot = item.robot name = item.text() if robot.name != name: robot.name = name self.controller.name_changed(robot) def make_btn(self, theme, tip, callback): b = QtWidgets.QToolButton() b.setIcon(QtGui.QIcon.fromTheme(theme)) b.clicked[bool].connect(callback) if tip is not "": b.setToolTip(tip) return b def non_editable(self, what): item = QtWidgets.QTableWidgetItem(what) flags = item.flags() item.setFlags(flags ^ QtCore.Qt.ItemIsEditable) return item
85f7d9eaace33e3aa4d27ed43863e1f564756294
e19704c2098066c58a45112f0978c84cb5b0abfb
/웹 크롤링 해본 것/2. StarBucks Address/starbucks.py
1d1602055e77c5cb5dbe55da50b976ec88b86456
[]
no_license
Aqudi/HTML-and-python-crawling
ab911a15350562ac28b7a633dfbcf6554a54af21
0249dad99f690737c37bc89c0a67a6f0bfb9a938
refs/heads/master
2021-09-27T19:52:47.429625
2018-11-11T04:18:55
2018-11-11T04:18:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,565
py
import sys import io from selenium import webdriver from selenium.webdriver.chrome.options import Options import time from bs4 import BeautifulSoup import requests import os sys.stdout = io.TextIOWrapper(sys.stdout.detach(), encoding = 'utf-8') sys.stderr = io.TextIOWrapper(sys.stderr.detach(), encoding = 'utf-8') chrome_options = Options() chrome_options.add_argument("--headless") chrome_options.add_argument('--log-level=3') #driver = webdriver.Chrome(chrome_options=chrome_options, executable_path=r'C:\Users\gjdigj145\PycharmProjects\programming project\Section3\webdriver\chromedriver.exe') driver = webdriver.Chrome(r'C:\Users\gjdigj145\PycharmProjects\programming project\Section3\webdriver\chromedriver.exe') s = requests.Session() for i in range(1, 18): driver.get('http://www.istarbucks.co.kr/store/store_map.do') time.sleep(3) driver.find_element_by_xpath('//*[@id="container"]/div/form/fieldset/div/section/article[1]/article/header[2]/h3/a').click() time.sleep(2) xpath = """//*[@id="container"]/div/form/fieldset/div/section/article[1]/article/article[2]/div[1]/div[2]/ul/li["""+ str(i) +''']/a''' driver.find_element_by_xpath(xpath).click() time.sleep(2) driver.find_element_by_xpath('//*[@id="mCSB_2_container"]/ul/li[1]/a').click() time.sleep(3) #html저장하기 html = driver.page_source fulfilename = os.path.join("C:/", "C:/"+str(i)+'.html') with open(fulfilename, 'w', encoding='UTF8') as f: f.write(html) time.sleep(10) driver.quit()
2b40ae5ae6fe610502c28aa2772491f48e6e5c52
6ad9d8ff71dd0261d91d04859bbf99e003177a79
/learn/test.py
4caec70226a305c26049a711a388d06eb592096d
[]
no_license
youzeliang/Crwal
4901f6fb13017ec4b95813eb21b7da55765588b9
ae1e4243466e4ebc066f81e131d712d26215f994
refs/heads/master
2021-09-17T21:09:45.636029
2018-07-05T13:42:01
2018-07-05T13:42:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
254
py
classmate = ['fdf','fff','aa'] classmate.append("admin") classmate.insert(1,"d") print (classmate[-2]) classmate.pop(1) print (len(classmate)) age = 1 if age < 3: print ("ff") sum = 0 for x in [1,2,3,4,5,66,7]: print(x) print(list(range(7)))
e2bd7f6056a49e659124e5499e35dcc66db14362
0ba5622abc2125ac8a9907757680da4d7cb7b47e
/Knowrob/indigo/indigo-knowrob-dev/catkin_ws/devel/lib/python2.7/dist-packages/scanning_table_msgs/msg/_scanning_tableResult.py
b244c5b9a487f7423cb2420f13c20b29c231dd57
[]
no_license
IoT-Lab-Minden/docker-ros
c2a327117bdf1d0b861d4580156e595a079ec5d5
5c57c15717cbcae515d82c3dc75470587bb2508e
refs/heads/master
2021-01-18T03:33:22.128596
2017-05-17T13:48:05
2017-05-17T13:48:05
85,809,457
0
0
null
null
null
null
UTF-8
Python
false
false
127
py
/root/catkin_ws/devel/.private/scanning_table_msgs/lib/python2.7/dist-packages/scanning_table_msgs/msg/_scanning_tableResult.py
52044bae579c7563300a029eaebfea9252bd78bd
2ca8409e3e575c65754e54948ada9a00a9c02a7e
/Arrays/maxDiff.py
3e951ef1852d667e8cc1578f9af7b0d3a2686603
[]
no_license
wmaxlloyd/CodingQuestions
0fc230e1861d5d33768d453c11c377221ae65a05
805e522f0e2077ffef36edb44b6b605fd727c3d8
refs/heads/master
2020-08-26T19:47:54.904406
2020-06-29T02:45:54
2020-06-29T02:45:54
217,126,563
0
0
null
null
null
null
UTF-8
Python
false
false
480
py
# Given an array,find the maximum j – i such that arr[j] > arr[i] inputArray = [100,200,8,4,6,3,6,9,8,3,5,3,6,3,5,7,8,5,0] pointerDifference = len(inputArray) - 1 answer = None while pointerDifference > 0: p1 = 0 p2 = p1 + pointerDifference while p2 < len(inputArray): if inputArray[p2] > inputArray[p1]: answer = (p1,p2) break p1 += 1 p2 += 1 if answer: break pointerDifference -= 1 print(answer)
e77f286f9171f97ede448b137bb6a79cd31e0429
85a9ffeccb64f6159adbd164ff98edf4ac315e33
/pysnmp-with-texts/RUCKUS-ZD-EVENT-MIB.py
f63918726cf10f7df19477dc47046783d777c829
[ "LicenseRef-scancode-warranty-disclaimer", "LicenseRef-scancode-proprietary-license", "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
agustinhenze/mibs.snmplabs.com
5d7d5d4da84424c5f5a1ed2752f5043ae00019fb
1fc5c07860542b89212f4c8ab807057d9a9206c7
refs/heads/master
2020-12-26T12:41:41.132395
2019-08-16T15:51:41
2019-08-16T15:53:57
237,512,469
0
0
Apache-2.0
2020-01-31T20:41:36
2020-01-31T20:41:35
null
UTF-8
Python
false
false
47,858
py
# # PySNMP MIB module RUCKUS-ZD-EVENT-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/RUCKUS-ZD-EVENT-MIB # Produced by pysmi-0.3.4 at Wed May 1 14:59:13 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # ObjectIdentifier, OctetString, Integer = mibBuilder.importSymbols("ASN1", "ObjectIdentifier", "OctetString", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsUnion, SingleValueConstraint, ValueRangeConstraint, ValueSizeConstraint, ConstraintsIntersection = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsUnion", "SingleValueConstraint", "ValueRangeConstraint", "ValueSizeConstraint", "ConstraintsIntersection") ruckusEvents, = mibBuilder.importSymbols("RUCKUS-ROOT-MIB", "ruckusEvents") ModuleCompliance, ObjectGroup, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "ObjectGroup", "NotificationGroup") MibScalar, MibTable, MibTableRow, MibTableColumn, TimeTicks, Counter64, IpAddress, NotificationType, iso, ObjectIdentity, ModuleIdentity, Unsigned32, Counter32, Gauge32, MibIdentifier, Bits, Integer32 = mibBuilder.importSymbols("SNMPv2-SMI", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "TimeTicks", "Counter64", "IpAddress", "NotificationType", "iso", "ObjectIdentity", "ModuleIdentity", "Unsigned32", "Counter32", "Gauge32", "MibIdentifier", "Bits", "Integer32") MacAddress, TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "MacAddress", "TextualConvention", "DisplayString") ruckusZDEventMIB = ModuleIdentity((1, 3, 6, 1, 4, 1, 25053, 2, 2)) if mibBuilder.loadTexts: ruckusZDEventMIB.setLastUpdated('201010150800Z') if mibBuilder.loadTexts: ruckusZDEventMIB.setOrganization('Ruckus Wireless, Inc.') if mibBuilder.loadTexts: ruckusZDEventMIB.setContactInfo('Ruckus Wireless Inc. Postal: 880 W Maude Ave Sunnyvale, CA 94085 USA EMail: [email protected] Phone: +1-650-265-4200') if mibBuilder.loadTexts: ruckusZDEventMIB.setDescription('Ruckus ZD event objects, including trap OID and trap payload.') ruckusZDEventTraps = MibIdentifier((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1)) ruckusZDEventObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 25053, 2, 2, 2)) ruckusZDEventAPJoinTrap = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 1)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventAPMacAddr")) if mibBuilder.loadTexts: ruckusZDEventAPJoinTrap.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventAPJoinTrap.setDescription("Trigger when there is a AP join event. The AP's MAC address is enclosed.") ruckusZDEventSSIDSpoofTrap = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 2)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSSID")) if mibBuilder.loadTexts: ruckusZDEventSSIDSpoofTrap.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventSSIDSpoofTrap.setDescription("Trigger when a SSID-spoofing rogue AP is detected. The rogue AP's MAC address and SSID are enclosed.") ruckusZDEventMACSpoofTrap = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 3)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSSID")) if mibBuilder.loadTexts: ruckusZDEventMACSpoofTrap.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventMACSpoofTrap.setDescription("Trigger when a MAC-spoofing rogue AP is detected. The rogue AP's MAC address and SSID are enclosed.") ruckusZDEventRogueAPTrap = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 4)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSSID")) if mibBuilder.loadTexts: ruckusZDEventRogueAPTrap.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventRogueAPTrap.setDescription("Trigger when a rogue AP is detected. The rogue AP's MAC address and SSID are enclosed.") ruckusZDEventAPLostTrap = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 5)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventAPMacAddr")) if mibBuilder.loadTexts: ruckusZDEventAPLostTrap.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventAPLostTrap.setDescription("Trigger when AP lost contact. The AP's MAC address is enclosed.") ruckusZDEventAPLostHeartbeatTrap = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 6)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventAPMacAddr")) if mibBuilder.loadTexts: ruckusZDEventAPLostHeartbeatTrap.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventAPLostHeartbeatTrap.setDescription("Trigger when AP lost heartbeats. The AP's MAC address is enclosed.") ruckusZDEventClientAuthFailBlockTrap = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 7)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventClientMacAddr"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventAPMacAddr"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSSID")) if mibBuilder.loadTexts: ruckusZDEventClientAuthFailBlockTrap.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventClientAuthFailBlockTrap.setDescription("Triggered when a client fails authentication too many times in a row. The client's MAC address, AP's MAC address and SSID are enclosed.") ruckusZDEventAPResetTrap = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 8)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventContent"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventAPMacAddr")) if mibBuilder.loadTexts: ruckusZDEventAPResetTrap.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventAPResetTrap.setDescription('Trigger when AP reboots.') ruckusZDEventIPChangeTrap = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 9)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventContent")) if mibBuilder.loadTexts: ruckusZDEventIPChangeTrap.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventIPChangeTrap.setDescription('Trigger when IP changes.') ruckusZDEventSystemColdStartTrap = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 10)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventContent")) if mibBuilder.loadTexts: ruckusZDEventSystemColdStartTrap.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventSystemColdStartTrap.setDescription('Trigger when system performs cold start.') ruckusZDEventAPChannelChangeTrap = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 11)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventContent"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventAPMacAddr")) if mibBuilder.loadTexts: ruckusZDEventAPChannelChangeTrap.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventAPChannelChangeTrap.setDescription('Trigger when AP channel changes.') ruckusZDEventRadiusAuthUnavailableTrap = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 12)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventContent")) if mibBuilder.loadTexts: ruckusZDEventRadiusAuthUnavailableTrap.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventRadiusAuthUnavailableTrap.setDescription('Trigger when RADIUS authentication server unavailable.') ruckusZDEventRadiusAcctUnavailableTrap = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 13)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventContent")) if mibBuilder.loadTexts: ruckusZDEventRadiusAcctUnavailableTrap.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventRadiusAcctUnavailableTrap.setDescription('Trigger when RADIUS accounting server unavailable.') ruckusZDEventClientJoinFailAPBusyTrap = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 14)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventContent")) if mibBuilder.loadTexts: ruckusZDEventClientJoinFailAPBusyTrap.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventClientJoinFailAPBusyTrap.setDescription('Trigger when client joins fail because AP is busy.') ruckusZDEventInterferenceADHoc = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 15)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventContent")) if mibBuilder.loadTexts: ruckusZDEventInterferenceADHoc.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventInterferenceADHoc.setDescription('Trigger when an interference AD hoc is detected.') ruckusZDEventImageUpgradeFailTrap = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 16)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventContent")) if mibBuilder.loadTexts: ruckusZDEventImageUpgradeFailTrap.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventImageUpgradeFailTrap.setDescription('Trigger when AP image upgrade fails.') ruckusZDEventHeartbeatTrap = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 22)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventContent")) if mibBuilder.loadTexts: ruckusZDEventHeartbeatTrap.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventHeartbeatTrap.setDescription('Trigger with trap heartbeat sent.') ruckusZDEventAttackedTrap = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 24)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventContent")) if mibBuilder.loadTexts: ruckusZDEventAttackedTrap.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventAttackedTrap.setDescription('Trigger with a malicious attack is found.') ruckusZDEventSystemWarmStartTrap = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 25)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventContent")) if mibBuilder.loadTexts: ruckusZDEventSystemWarmStartTrap.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventSystemWarmStartTrap.setDescription('Trigger when system performs warm start.') ruckusZDEventInterfereAPTrap = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 26)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventContent")) if mibBuilder.loadTexts: ruckusZDEventInterfereAPTrap.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventInterfereAPTrap.setDescription('Trigger when a rogue AP used same channel with current AP is detected.') ruckusZDEventAPSystemColdStartTrap = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 31)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventContent")) if mibBuilder.loadTexts: ruckusZDEventAPSystemColdStartTrap.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventAPSystemColdStartTrap.setDescription('Trigger when an AP performs cold start.') ruckusZDEventAPSystemWarmStartTrap = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 32)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventContent")) if mibBuilder.loadTexts: ruckusZDEventAPSystemWarmStartTrap.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventAPSystemWarmStartTrap.setDescription('Trigger when an AP performs warm start.') ruckusZDEventAPSSIDChangedTrap = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 33)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventContent")) if mibBuilder.loadTexts: ruckusZDEventAPSSIDChangedTrap.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventAPSSIDChangedTrap.setDescription('Trigger when an AP SSID changed.') ruckusZDEventAPClientExceedValve = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 34)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventContent"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventAPMacAddr")) if mibBuilder.loadTexts: ruckusZDEventAPClientExceedValve.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventAPClientExceedValve.setDescription('Triggered when AP online client exceed valve.') ruckusZDEventAPAvailableStatusTrap = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 35)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventContent")) if mibBuilder.loadTexts: ruckusZDEventAPAvailableStatusTrap.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventAPAvailableStatusTrap.setDescription('Trigger when AP is available.') ruckusZDEventAPWirelessInterfaceFaultTrap = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 36)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventContent")) if mibBuilder.loadTexts: ruckusZDEventAPWirelessInterfaceFaultTrap.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventAPWirelessInterfaceFaultTrap.setDescription('Trigger when AP wireless interface is fault.') ruckusZDEventSystemCpuUtilExceedValve = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 37)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventContent")) if mibBuilder.loadTexts: ruckusZDEventSystemCpuUtilExceedValve.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventSystemCpuUtilExceedValve.setDescription('Trigger when System CPU utilization is exceed valve.') ruckusZDEventSystemMemUtilExceedValve = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 38)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventContent")) if mibBuilder.loadTexts: ruckusZDEventSystemMemUtilExceedValve.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventSystemMemUtilExceedValve.setDescription('Trigger when System memory utilization is exceed valve.') ruckusZDEventSystemBandwidthUtilExceedValve = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 39)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventContent")) if mibBuilder.loadTexts: ruckusZDEventSystemBandwidthUtilExceedValve.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventSystemBandwidthUtilExceedValve.setDescription('Trigger when System bandwidth utilization is exceed valve.') ruckusZDEventSystemDropPacketRateExceedValve = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 40)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventContent")) if mibBuilder.loadTexts: ruckusZDEventSystemDropPacketRateExceedValve.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventSystemDropPacketRateExceedValve.setDescription('Trigger when System drop packet rate is exceed valve.') ruckusZDEventAPSyncTimeFail = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 41)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventContent")) if mibBuilder.loadTexts: ruckusZDEventAPSyncTimeFail.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventAPSyncTimeFail.setDescription('Trigger when AP sync clock failure with AC.') ruckusZDEventSystemCpuUtilClrWarn = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 42)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventContent")) if mibBuilder.loadTexts: ruckusZDEventSystemCpuUtilClrWarn.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventSystemCpuUtilClrWarn.setDescription('Trigger when System CPU utilization is under the valve.') ruckusZDEventSystemMemUtilClrwarn = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 43)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventContent")) if mibBuilder.loadTexts: ruckusZDEventSystemMemUtilClrwarn.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventSystemMemUtilClrwarn.setDescription('Trigger when System memory utilization is under the valve.') ruckusZDEventClientJoin = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 60)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventClientMacAddr"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventAPMacAddr"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSSID")) if mibBuilder.loadTexts: ruckusZDEventClientJoin.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventClientJoin.setDescription("Triggered when a client join a AP success. The client's MAC address, AP's MAC address and SSID are enclosed.") ruckusZDEventClientJoinFailed = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 61)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventClientMacAddr"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventAPMacAddr"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSSID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventReason")) if mibBuilder.loadTexts: ruckusZDEventClientJoinFailed.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventClientJoinFailed.setDescription("Triggered when a client join a AP failed. The client's MAC address, AP's MAC address and SSID are enclosed.") ruckusZDEventClientJoinFailedAPBusy = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 62)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventClientMacAddr"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventAPMacAddr"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSSID")) if mibBuilder.loadTexts: ruckusZDEventClientJoinFailedAPBusy.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventClientJoinFailedAPBusy.setDescription("Triggered when a client join a AP failed because of AP too busy. The client's MAC address, AP's MAC address and SSID are enclosed.") ruckusZDEventClientDisconnect = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 63)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventClientMacAddr"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventAPMacAddr"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSSID")) if mibBuilder.loadTexts: ruckusZDEventClientDisconnect.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventClientDisconnect.setDescription("Triggered when a client disconnect from AP. The client's MAC address, AP's MAC address and SSID are enclosed.") ruckusZDEventClientRoamOut = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 64)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventClientMacAddr"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventAPMacAddr"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSSID")) if mibBuilder.loadTexts: ruckusZDEventClientRoamOut.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventClientRoamOut.setDescription("Triggered when a client roam out from AP. The client's MAC address, AP's MAC address and SSID are enclosed.") ruckusZDEventClientRoamIn = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 65)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventClientMacAddr"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventAPMacAddr"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSSID")) if mibBuilder.loadTexts: ruckusZDEventClientRoamIn.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventClientRoamIn.setDescription("Triggered when a client roam in from AP. The client's MAC address, AP's MAC address and SSID are enclosed.") ruckusZDEventClientAuthFailed = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 66)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventClientMacAddr"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventAPMacAddr"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSSID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventReason")) if mibBuilder.loadTexts: ruckusZDEventClientAuthFailed.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventClientAuthFailed.setDescription("Triggered when a client authenticate failure . The client's MAC address, AP's MAC address and SSID are enclosed.Failure reason.") ruckusZDEventClientAuthorizationFailed = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 67)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventClientMacAddr"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventAPMacAddr"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSSID")) if mibBuilder.loadTexts: ruckusZDEventClientAuthorizationFailed.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventClientAuthorizationFailed.setDescription("Triggered when a client has no authorization to join a AP. The client's MAC address, AP's MAC address and SSID are enclosed.") ruckusZDEventAPCPUvalve = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 83)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventContent"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventAPMacAddr")) if mibBuilder.loadTexts: ruckusZDEventAPCPUvalve.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventAPCPUvalve.setDescription('Triggered when AP cpu util exceed valve.') ruckusZDEventAPMEMvalve = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 84)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventContent"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventAPMacAddr")) if mibBuilder.loadTexts: ruckusZDEventAPMEMvalve.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventAPMEMvalve.setDescription('Triggered when AP memory util exceed valve.') ruckusZDEventAPCPUvalveClrwarn = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 85)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventContent"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventAPMacAddr")) if mibBuilder.loadTexts: ruckusZDEventAPCPUvalveClrwarn.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventAPCPUvalveClrwarn.setDescription('Trigger when AP cpu utilization is under the valve.') ruckusZDEventAPMEMvalveClrwarn = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 86)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventContent"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventAPMacAddr")) if mibBuilder.loadTexts: ruckusZDEventAPMEMvalveClrwarn.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventAPMEMvalveClrwarn.setDescription('Trigger when AP memory utilization is under the valve.') ruckusZDEventAPNumStaExceedValveClrwarn = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 87)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventContent"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventAPMacAddr")) if mibBuilder.loadTexts: ruckusZDEventAPNumStaExceedValveClrwarn.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventAPNumStaExceedValveClrwarn.setDescription('Trigger when online client clr warning.') ruckusZDEventDhcpPoolFull = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 88)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventContent")) if mibBuilder.loadTexts: ruckusZDEventDhcpPoolFull.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventDhcpPoolFull.setDescription('Trigger when DHCP pool is full.') ruckusZDEventDhcpPoolAbun = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 89)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSerial"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventNEID"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventSeverity"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventType"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTime"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventStatus"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventTitle"), ("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventContent")) if mibBuilder.loadTexts: ruckusZDEventDhcpPoolAbun.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventDhcpPoolAbun.setDescription('Trigger when DHCP pool is abundant.') ruckusZDEventSmartRedundancyChangetoActive = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 100)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventIpAddr")) if mibBuilder.loadTexts: ruckusZDEventSmartRedundancyChangetoActive.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventSmartRedundancyChangetoActive.setDescription('[Smart Redundancy] Peer ZoneDirector peer ip not found, system changed to active state') ruckusZDEventSmartRedundancyActiveConnected = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 101)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventIpAddr")) if mibBuilder.loadTexts: ruckusZDEventSmartRedundancyActiveConnected.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventSmartRedundancyActiveConnected.setDescription('[Smart Redundancy] connected, system is in active state') ruckusZDEventSmartRedundancyActiveDisconnected = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 102)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventIpAddr")) if mibBuilder.loadTexts: ruckusZDEventSmartRedundancyActiveDisconnected.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventSmartRedundancyActiveDisconnected.setDescription('[Smart Redundancy] disconnected, system is in active state') ruckusZDEventSmartRedundancyStandbyConnected = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 103)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventIpAddr")) if mibBuilder.loadTexts: ruckusZDEventSmartRedundancyStandbyConnected.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventSmartRedundancyStandbyConnected.setDescription('[Smart Redundancy] connected, system is in standby state') ruckusZDEventSmartRedundancyStandbyDisconnected = NotificationType((1, 3, 6, 1, 4, 1, 25053, 2, 2, 1, 104)).setObjects(("RUCKUS-ZD-EVENT-MIB", "ruckusZDEventIpAddr")) if mibBuilder.loadTexts: ruckusZDEventSmartRedundancyStandbyDisconnected.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventSmartRedundancyStandbyDisconnected.setDescription('[Smart Redundancy] disconnected, system is in standby state') ruckusZDEventSerial = MibScalar((1, 3, 6, 1, 4, 1, 25053, 2, 2, 2, 1), OctetString()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: ruckusZDEventSerial.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventSerial.setDescription('Trap serial number.') ruckusZDEventNEID = MibScalar((1, 3, 6, 1, 4, 1, 25053, 2, 2, 2, 2), OctetString()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: ruckusZDEventNEID.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventNEID.setDescription('Network element ID.') ruckusZDEventSeverity = MibScalar((1, 3, 6, 1, 4, 1, 25053, 2, 2, 2, 3), OctetString()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: ruckusZDEventSeverity.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventSeverity.setDescription('Severity level of the trap.') ruckusZDEventType = MibScalar((1, 3, 6, 1, 4, 1, 25053, 2, 2, 2, 4), OctetString()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: ruckusZDEventType.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventType.setDescription('Trap type.') ruckusZDEventTime = MibScalar((1, 3, 6, 1, 4, 1, 25053, 2, 2, 2, 5), OctetString()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: ruckusZDEventTime.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventTime.setDescription('Time when trap occured.') ruckusZDEventStatus = MibScalar((1, 3, 6, 1, 4, 1, 25053, 2, 2, 2, 6), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("raise", 1), ("clear", 2)))).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: ruckusZDEventStatus.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventStatus.setDescription('Trap status.') ruckusZDEventTitle = MibScalar((1, 3, 6, 1, 4, 1, 25053, 2, 2, 2, 7), OctetString()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: ruckusZDEventTitle.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventTitle.setDescription('Trap title.') ruckusZDEventContent = MibScalar((1, 3, 6, 1, 4, 1, 25053, 2, 2, 2, 8), OctetString()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: ruckusZDEventContent.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventContent.setDescription('Trap content.') ruckusZDEventClientMacAddr = MibScalar((1, 3, 6, 1, 4, 1, 25053, 2, 2, 2, 15), OctetString()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: ruckusZDEventClientMacAddr.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventClientMacAddr.setDescription("The client's MAC address.") ruckusZDEventAPMacAddr = MibScalar((1, 3, 6, 1, 4, 1, 25053, 2, 2, 2, 18), OctetString()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: ruckusZDEventAPMacAddr.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventAPMacAddr.setDescription("The AP's MAC address.") ruckusZDEventRogueMacAddr = MibScalar((1, 3, 6, 1, 4, 1, 25053, 2, 2, 2, 20), OctetString()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: ruckusZDEventRogueMacAddr.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventRogueMacAddr.setDescription("The rogue AP's MAC address.") ruckusZDEventSSID = MibScalar((1, 3, 6, 1, 4, 1, 25053, 2, 2, 2, 23), OctetString()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: ruckusZDEventSSID.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventSSID.setDescription('SSID.') ruckusZDEventChannel = MibScalar((1, 3, 6, 1, 4, 1, 25053, 2, 2, 2, 25), Unsigned32()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: ruckusZDEventChannel.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventChannel.setDescription('Channel.') ruckusZDEventReason = MibScalar((1, 3, 6, 1, 4, 1, 25053, 2, 2, 2, 28), OctetString()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: ruckusZDEventReason.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventReason.setDescription('Failure Reason.') ruckusZDEventIpAddr = MibScalar((1, 3, 6, 1, 4, 1, 25053, 2, 2, 2, 30), OctetString()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: ruckusZDEventIpAddr.setStatus('current') if mibBuilder.loadTexts: ruckusZDEventIpAddr.setDescription('IpAddress (ipv4 and ipv6).') mibBuilder.exportSymbols("RUCKUS-ZD-EVENT-MIB", ruckusZDEventClientRoamIn=ruckusZDEventClientRoamIn, ruckusZDEventSystemWarmStartTrap=ruckusZDEventSystemWarmStartTrap, PYSNMP_MODULE_ID=ruckusZDEventMIB, ruckusZDEventAPLostTrap=ruckusZDEventAPLostTrap, ruckusZDEventImageUpgradeFailTrap=ruckusZDEventImageUpgradeFailTrap, ruckusZDEventSmartRedundancyStandbyConnected=ruckusZDEventSmartRedundancyStandbyConnected, ruckusZDEventClientJoinFailed=ruckusZDEventClientJoinFailed, ruckusZDEventIPChangeTrap=ruckusZDEventIPChangeTrap, ruckusZDEventClientAuthorizationFailed=ruckusZDEventClientAuthorizationFailed, ruckusZDEventAPMEMvalveClrwarn=ruckusZDEventAPMEMvalveClrwarn, ruckusZDEventAPClientExceedValve=ruckusZDEventAPClientExceedValve, ruckusZDEventRadiusAuthUnavailableTrap=ruckusZDEventRadiusAuthUnavailableTrap, ruckusZDEventSystemMemUtilExceedValve=ruckusZDEventSystemMemUtilExceedValve, ruckusZDEventAPLostHeartbeatTrap=ruckusZDEventAPLostHeartbeatTrap, ruckusZDEventAPSSIDChangedTrap=ruckusZDEventAPSSIDChangedTrap, ruckusZDEventType=ruckusZDEventType, ruckusZDEventClientMacAddr=ruckusZDEventClientMacAddr, ruckusZDEventRogueAPTrap=ruckusZDEventRogueAPTrap, ruckusZDEventSeverity=ruckusZDEventSeverity, ruckusZDEventSSID=ruckusZDEventSSID, ruckusZDEventAPMEMvalve=ruckusZDEventAPMEMvalve, ruckusZDEventDhcpPoolAbun=ruckusZDEventDhcpPoolAbun, ruckusZDEventMIB=ruckusZDEventMIB, ruckusZDEventAPChannelChangeTrap=ruckusZDEventAPChannelChangeTrap, ruckusZDEventAPSyncTimeFail=ruckusZDEventAPSyncTimeFail, ruckusZDEventStatus=ruckusZDEventStatus, ruckusZDEventSystemCpuUtilExceedValve=ruckusZDEventSystemCpuUtilExceedValve, ruckusZDEventAPMacAddr=ruckusZDEventAPMacAddr, ruckusZDEventDhcpPoolFull=ruckusZDEventDhcpPoolFull, ruckusZDEventSerial=ruckusZDEventSerial, ruckusZDEventClientJoinFailAPBusyTrap=ruckusZDEventClientJoinFailAPBusyTrap, ruckusZDEventIpAddr=ruckusZDEventIpAddr, ruckusZDEventAPJoinTrap=ruckusZDEventAPJoinTrap, ruckusZDEventTraps=ruckusZDEventTraps, ruckusZDEventTitle=ruckusZDEventTitle, ruckusZDEventClientDisconnect=ruckusZDEventClientDisconnect, ruckusZDEventSystemCpuUtilClrWarn=ruckusZDEventSystemCpuUtilClrWarn, ruckusZDEventAPResetTrap=ruckusZDEventAPResetTrap, ruckusZDEventContent=ruckusZDEventContent, ruckusZDEventRogueMacAddr=ruckusZDEventRogueMacAddr, ruckusZDEventObjects=ruckusZDEventObjects, ruckusZDEventRadiusAcctUnavailableTrap=ruckusZDEventRadiusAcctUnavailableTrap, ruckusZDEventClientJoinFailedAPBusy=ruckusZDEventClientJoinFailedAPBusy, ruckusZDEventClientAuthFailBlockTrap=ruckusZDEventClientAuthFailBlockTrap, ruckusZDEventAPSystemColdStartTrap=ruckusZDEventAPSystemColdStartTrap, ruckusZDEventAPCPUvalveClrwarn=ruckusZDEventAPCPUvalveClrwarn, ruckusZDEventSystemColdStartTrap=ruckusZDEventSystemColdStartTrap, ruckusZDEventSystemMemUtilClrwarn=ruckusZDEventSystemMemUtilClrwarn, ruckusZDEventClientAuthFailed=ruckusZDEventClientAuthFailed, ruckusZDEventAPCPUvalve=ruckusZDEventAPCPUvalve, ruckusZDEventClientRoamOut=ruckusZDEventClientRoamOut, ruckusZDEventSmartRedundancyStandbyDisconnected=ruckusZDEventSmartRedundancyStandbyDisconnected, ruckusZDEventAPWirelessInterfaceFaultTrap=ruckusZDEventAPWirelessInterfaceFaultTrap, ruckusZDEventNEID=ruckusZDEventNEID, ruckusZDEventTime=ruckusZDEventTime, ruckusZDEventInterfereAPTrap=ruckusZDEventInterfereAPTrap, ruckusZDEventSmartRedundancyChangetoActive=ruckusZDEventSmartRedundancyChangetoActive, ruckusZDEventMACSpoofTrap=ruckusZDEventMACSpoofTrap, ruckusZDEventSSIDSpoofTrap=ruckusZDEventSSIDSpoofTrap, ruckusZDEventClientJoin=ruckusZDEventClientJoin, ruckusZDEventSmartRedundancyActiveConnected=ruckusZDEventSmartRedundancyActiveConnected, ruckusZDEventSystemBandwidthUtilExceedValve=ruckusZDEventSystemBandwidthUtilExceedValve, ruckusZDEventAttackedTrap=ruckusZDEventAttackedTrap, ruckusZDEventSmartRedundancyActiveDisconnected=ruckusZDEventSmartRedundancyActiveDisconnected, ruckusZDEventHeartbeatTrap=ruckusZDEventHeartbeatTrap, ruckusZDEventAPAvailableStatusTrap=ruckusZDEventAPAvailableStatusTrap, ruckusZDEventChannel=ruckusZDEventChannel, ruckusZDEventAPSystemWarmStartTrap=ruckusZDEventAPSystemWarmStartTrap, ruckusZDEventReason=ruckusZDEventReason, ruckusZDEventSystemDropPacketRateExceedValve=ruckusZDEventSystemDropPacketRateExceedValve, ruckusZDEventInterferenceADHoc=ruckusZDEventInterferenceADHoc, ruckusZDEventAPNumStaExceedValveClrwarn=ruckusZDEventAPNumStaExceedValveClrwarn)
292803bf884231c3e3166c8b4fb1fdcad553334b
974f13d47d2ff698e663698eee20c3d8b1030410
/taobao/taobao/pipelines.py
3e8419f5f9e4c13656b879bf3e4ebde26fda9bed
[]
no_license
zhengdongge/Spider
76d538f8914eb2d071e1b540e42869c1470e20c5
e1ae195af7a800584066fa6c5ac282ec55adad84
refs/heads/master
2020-03-28T05:05:44.529874
2018-08-30T10:19:59
2018-08-30T10:19:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,008
py
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html import pymongo class TaobaoPipeline(object): def __init__(self,mongo_url,mongo_db): self.mongo_url=mongo_url self.mongo_db=mongo_db @classmethod def from_crawler(cls,crawler): return cls( mongo_url=crawler.settings.get("MONGO_URL"), mongo_db=crawler.settings.get("MONGODB_DATABASE") ) def open_spider(self, spider): self.client = pymongo.MongoClient(self.mongo_url) self.db = self.client[self.mongo_db] def process_item(self, item, spider): sheet=self.db[item['goods_class']] if sheet.find_one({'goods_url':item['goods_url']}): print('数据已存在') else: sheet.insert(dict(item)) return item def close_spider(self, spider): self.client.close()
50dc83a0e57be73f6f4fa4c42dd70fbe8deaa155
aaf8069252f781bc8b9b541da568f8fcc1232d6a
/camera_handler.py
b653766d68b5c3ee4f42cff97b345bd4a82853e2
[]
no_license
KoheiEnju/streaming-cam
4748e1543cbbbc210e95769f6cf9545d5a83957b
0d5eb7e3c75f231d438bfa098de6cca739b3532b
refs/heads/master
2023-07-04T09:48:47.223525
2021-08-04T13:33:42
2021-08-04T13:33:42
392,699,278
0
0
null
null
null
null
UTF-8
Python
false
false
408
py
import cv2 from base_camera import BaseCamera class Camera(BaseCamera): def __init__(self): super().__init__() @staticmethod def frames(): camera = cv2.VideoCapture(0) if not camera.isOpened(): raise RuntimeError("Could not start camera.") while True: _, frame = camera.read() yield cv2.imencode(".png", frame)[1].tobytes()
be7c7c03c5f9a32d601d32946e75bb0fa31897e3
f73dbdd567664f94a0d954d51fb469b522386b07
/data.py
26ac26ce2cf642bb97198f96ff6ae30be1d92d46
[]
no_license
SoundsSerious/BeemClient
20a7c4f1bf3b8507be6f6174dd050b19008648d9
2048b49e1639d6c54a9c556293af258379e25159
refs/heads/master
2022-05-02T15:50:32.925779
2018-10-14T20:05:39
2018-10-14T20:05:39
141,741,705
0
0
null
null
null
null
UTF-8
Python
false
false
9,187
py
# -*- coding: utf-8 -*- """ Created on Tue Dec 5 13:26:26 2017 @author: Cabin """ from kivy.lang import Builder from plyer import gps from kivy.uix.widget import Widget from kivy.uix.floatlayout import FloatLayout from kivy.properties import * from kivy.event import * from kivy.clock import Clock, mainthread from kivy.clock import Clock from kivy.graphics import Color, Point, Mesh from kivy.uix.widget import Widget from kivy.uix.boxlayout import BoxLayout from kivy.utils import * from log import RingBuffer from graph import Graph, MeshLinePlot, Plot, LinePlot from kivy.graphics.context_instructions import * import traceback class RealTimeGraph(Widget): _max = 100 _amin,_amax = -4, 4 _ytick = 1 def __init__(self,ymin=-1,ymax=1,pmax=1000,ytick = 1,**kwargs): super(RealTimeGraph,self).__init__(**kwargs) self._amin , self._amax = ymin, ymax self._max = pmax self._ytick= ytick self._inx = 0 #self.bind(size = self.update_rect) self._buffer = RingBuffer(self._max) super(RealTimeGraph,self).__init__(**kwargs) self.graph = Graph(xlabel='X', ylabel='Y', x_ticks_minor=self._max / 8, x_ticks_major=self._max / 4, y_ticks_major=self._ytick, y_grid_label=True, x_grid_label=True, padding=5, x_grid=True, y_grid=True, xmin=-0, xmax=self._max, ymin=self._amin, ymax=self._amax, label_options = {'color': [0,0,0,1]}) # with self.graph.canvas.before: # PushMatrix() # Rotate(angle=-90, origin=self.graph.pos) # # with self.graph.canvas.after: # PopMatrix() self.bind(size = self.update_rect, pos = self.update_rect) self.graph.background_color = [1,1,1,1] self.graph.border_color = [0,0,0,1] self.graph.tick_color = [0.75,0.75,0.75,1] self.plot_x = MeshLinePlot(color=[0.3, 1, 0.3, 1]) self.plot_x.mode ='points' self.plot_y = MeshLinePlot(color=[1, 0, 0.3, 1]) self.plot_y.mode ='points' self.plot_z = MeshLinePlot(color=[0.3, 0, 1, 1]) self.plot_z.mode = 'points' self.graph.add_plot(self.plot_x) self.graph.add_plot(self.plot_y) self.graph.add_plot(self.plot_z) self.add_widget(self.graph) for i in range(100): self.addData(i/100.0,-i/100.0+1,0) def update_rect(self,*args): self.graph.size = self.size # print self.size, self.graph.size # print self.center, self.graph.center # size = self.graph.size # self.graph.size = self.size[1],self.size[0] # self.graph.pos = self.pos[0]-self.graph.size[0],self.pos[1]#+self.graph.size[1] # print self.size, self.graph.size # print self.center, self.graph.center def addData(self,x,y,z): self._inx += 1 if self._inx > self._max: self._inx = 0 self._buffer.append( (self._inx, x, y, z) ) i_,x_,y_,z_ = zip(*self._buffer.get()) self.plot_x.points = zip(i_,x_) self.plot_y.points = zip(i_,y_) self.plot_z.points = zip(i_,z_) Builder.load_string(''' <MotionData@Widget>: BoxLayout: id:lay orientation: 'vertical' Label: text: root.gps_location Label: height: 10 text: root.gps_status Label: height: 10 text: root.ble_string Label: height: 10 text: root.cal_rssi Label: height: 10 text: root.distance_str BoxLayout: size_hint_y: None height: '48dp' padding: '4dp' ToggleButton: text: 'Start' if self.state == 'normal' else 'Stop' on_state: root.start(1000, 0) if self.state == 'down' else \ root.stop() BoxLayout: size_hint_y: None height: '48dp' padding: '4dp' ToggleButton: text: 'Calibrate' on_press: root.calibrate_ble() ''') class MotionData(Widget): #Utilities Logic gps_status = StringProperty() gps_active = False ble = ObjectProperty() bluetooth_active = False ble_poll = None #BLE Signal Strenght & Distance ble_rssi = NumericProperty() ble_string = StringProperty('BLE:') rssi_cal_m1 = NumericProperty(-45.0) #Motion Data: lat = NumericProperty() lon = NumericProperty() speed = NumericProperty() altitude = NumericProperty() bearing = NumericProperty() accuracy = NumericProperty() est_distance = NumericProperty() gps_location = StringProperty('GPS LOC:') distance_str = StringProperty('DIST:') cal_rssi = StringProperty('CAL:') GPS_RATE = 1000 #ms BLE_RATE = 10 #ms ENF = 2.0 rssi_alpha = 0.975 app = ObjectProperty() def __init__(self,app,**kwargs): super(MotionData,self).__init__(**kwargs) self.app = app try: #pyobjus.dylib_manager.load_framework('LibKivyBLE.framework') if platform == 'ios': import pyobjus pyobjus.dylib_manager.load_dylib('LibKivyBLE.dylib') kvble = pyobjus.autoclass('KivyBLE') self.ble = kvble.alloc().init() self.bluetooth_active = True except Exception as e: print e self.bluetooth_active = False try: gps.configure(on_location=self.on_location, on_status=self.on_status) self.gps_active = True except NotImplementedError: print 'GPS is not implemented for your platform' self.gps_active = False self.lay = self.ids['lay'] self.bind(size = self.update_rect, pos = self.update_rect) def poll_BLE_RSSI(self): self.ble_poll = Clock.schedule_interval(self.get_rssi, self.BLE_RATE/1000.0) def stop_BLE_Poll(self): Clock.unschedule( self.ble_poll ) self.ble_poll = None def get_rssi(self,dt): rssi = self.ble.getFrisbeemRSSI() if rssi: new_rssi = float(rssi.doubleValue()) #Use Low Pass Filter self.ble_rssi = self.rssi_alpha*self.ble_rssi + (1.0-self.rssi_alpha)*new_rssi #Calc Distance self.est_distance = 10.0**((self.rssi_cal_m1 - self.ble_rssi)/(10.0 * self.ENF)) self.app.distance = self.est_distance def calibrate_ble(self): self.rssi_cal_m1 = self.ble_rssi self.cal_rssi = 'Calibrate Value: {}'.format(self.rssi_cal_m1) def on_ble_rssi(self,instance ,value): self.ble_string = "Frisbeem RSSI: {:3.4f}".format( value ) def on_est_distance(self,instance,value): self.distance_str = "Frisbeem Dist: {:3.4f}".format( value ) def on_rssi_cal_m1(self,instance,value): self.cal_rssi = "Cal RSSI: {:3.4f}".format( value ) def start(self, minTime, minDistance): if self.gps_active: gps.start(minTime, minDistance) if self.bluetooth_active: self.ble.startTheScan() self.poll_BLE_RSSI() def stop(self): if self.gps_active: gps.stop() if self.bluetooth_active: self.ble.stopTheScan() self.stop_BLE_Poll() @mainthread def on_location(self, **kwargs): self.gps_location = '\n'.join([ '{}={}'.format(k, v) for k, v in kwargs.items()]) if 'lat' in kwargs: self.lat = kwargs['lat'] if 'lon' in kwargs: self.lon = kwargs['lon'] if 'altitude' in kwargs: self.altitude = kwargs['altitude'] if 'speed' in kwargs: self.speed = kwargs['speed'] if 'bearing' in kwargs: self.bearing = kwargs['bearing'] if 'accuracy' in kwargs: self.gps_accuracy = kwargs['accuracy'] #Update App self.app.lat = self.lat self.app.lon = self.lon @mainthread def on_status(self, stype, status): self.gps_status = 'type={}\n{}'.format(stype, status) def on_pause(self): gps.stop() return True def on_resume(self): gps.start(1000, 0) pass def update_rect(self,instance,value): self.lay.size = self.size if __name__ == '__main__': from math import sin from kivy.app import App class DataApp(App): time = 0 x = 0 def build(self): self.graph = RealTimeGraph() Clock.schedule_interval(self.updatePlot,1) return self.graph def updatePlot(self,dt): self.time += dt self.graph.addData( sin( (self.time/5.0) / 10.) , \ sin( (self.time/3.0) / 15.), \ sin( (self.time/7.0) / 15.)) Clock.schedule_interval(self.updatePlot,0.1) DataApp().run() #if __name__ == '__main__': # app = GpsTest() # app.run()
c71be37264e1828fb4eb25125e16964b72926553
b1a3b2d113693af130595911255ec7c349fbb341
/netbox_ddns/tables.py
8cbef21564842cddd75e769a9918f086490449fc
[ "Apache-2.0" ]
permissive
k4mil666/netbox-ddns
741a426a4d4351629ede197b741884d0594143fc
c183152a8d66aff07126c5d991c08025432b8bd7
refs/heads/main
2023-02-04T00:02:51.044356
2020-12-26T18:56:53
2020-12-26T18:56:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,498
py
import django_tables2 as tables from netbox_ddns.models import ExtraDNSName from utilities.tables import BaseTable, ToggleColumn FORWARD_DNS = """ {% if record.forward_action is not None %} {{ record.get_forward_action_display }}: {{ record.get_forward_rcode_html_display }} {% else %} <span class="text-muted">Not created</span> {% endif %} """ ACTIONS = """ {% if perms.dcim.change_extradnsname %} <a href="{% url 'plugins:netbox_ddns:extradnsname_edit' ipaddress_pk=record.ip_address.pk pk=record.pk %}" class="btn btn-xs btn-warning"> <i class="glyphicon glyphicon-pencil" aria-hidden="true"></i> </a> {% endif %} {% if perms.dcim.delete_extradnsname %} <a href="{% url 'plugins:netbox_ddns:extradnsname_delete' ipaddress_pk=record.ip_address.pk pk=record.pk %}" class="btn btn-xs btn-danger"> <i class="glyphicon glyphicon-trash" aria-hidden="true"></i> </a> {% endif %} """ class PrefixTable(BaseTable): pk = ToggleColumn() name = tables.Column() last_update = tables.Column() forward_dns = tables.TemplateColumn(template_code=FORWARD_DNS) actions = tables.TemplateColumn( template_code=ACTIONS, attrs={'td': {'class': 'text-right text-nowrap noprint'}}, verbose_name='' ) class Meta(BaseTable.Meta): model = ExtraDNSName fields = ('pk', 'name', 'last_update', 'forward_dns', 'actions')
7cadad47c0c6452d14ef654bb3cebead5bf6b731
a8dc53e3b078c526cd19563b98decc5acc581962
/Newbie_experiments/Ex_Files_Programming_Realworld/Exercise Files/Ch01/01_01/start_01_01_breakfast_functions.py
e4e4a6cc50bb4ae1059eff67a4beca1da5cef645
[]
no_license
cristianbostan/Developer
46c7dca6949a864e25e050e72c5c5bef87b0be9e
a6ffa79dda54cc22956fdee4eba31b74416d0536
refs/heads/master
2021-09-11T01:21:29.605868
2018-04-05T15:18:19
2018-04-05T15:18:19
126,076,162
0
0
null
null
null
null
UTF-8
Python
false
false
348
py
""" A Functional Breakfast """ def make_omelette(): print('Mixing the ingredients') print('Pouring the mixture into a frying pan') print('Cooking the first side') print('Flipping it!') print('Cooking the other side') omelette = 'a tasty omelette' return omelette omelette1 = make_omelette() omelette2 = make_omelette()
398fc4fe8205b361ca80d37fda8461fb36a5fc9d
48f43a3eee114a5684c2c869b4e030ba27b8540b
/BridgeDataAnalysis/PyVision/dummydata.py
a2f107801350ea4a4b73474f858388bfffe350e0
[]
no_license
ishjain/Traffic-Inference
294a3c3cd3b07ee389cfd336e4e0cb95ec251915
d86dd999bf3ec1541e51f79f38622a8ed79b6764
refs/heads/master
2021-01-21T16:38:33.080214
2017-05-20T22:57:53
2017-05-20T22:57:53
91,900,605
0
0
null
null
null
null
UTF-8
Python
false
false
608
py
''' Ish Kumar Jain: I ran logistic regression on this dummy data set and got train accuracy = 40% test accuracy = 40% validate accuracy = 60% default learning rate (.13) ''' import numpy as np x_tr = np.array([[1,2,3,4,5],[2,1,4,5,4]]) y_tr = np.array([1,-1,1,1,-1]) x_te = np.array([[4,5,6,7,8],[3,4,5,8,9]]) y_te = np.array([-1,-1,-1,1,1]) x_va = np.array([[4,5,6,7,8],[3,4,5,8,9]]) y_va = np.array([-1,-1,-1,1,1]) x_tr=np.transpose(x_tr) x_te=np.transpose(x_te) x_va=np.transpose(x_va) test = [x_te,y_te]; train = [x_tr,y_tr]; validate = [x_va,y_va]; print x_tr.shape, y_tr.shape, train[0].shape
daf21b1fd3bfbf1438347e86182f777cbd1d1ccc
0f69325ad7cba43146df33955076d3fd7aee29d9
/generate_content_df.py
e52d014f32bc3f4c8a5594fd047cea1ca6705993
[]
no_license
I85YL64/dashboardom
25db8357774045904d95a1acef272a746f67b9e6
e279fbc6245edef64e6e023f20724e61a5101a33
refs/heads/master
2022-04-10T21:21:11.000157
2020-02-04T21:02:41
2020-02-04T21:02:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,723
py
import pandas as pd dashboard_df = pd.DataFrame({ 'dashboard': [ 'migration-population', 'gold-reserves', 'google-serp', 'twitterdash', 'trending-twitter', 'us-baby-names', 'advertools', 'boxofficemojo', 'health-spending', 'life-exp', 'massacres', 'median-age-world', 'migration-by-country', 'mothersday-map', 'pop-growth', 'terrorism', '', ], 'title': [ 'Migration and Population Density - WorldBank Data', 'Gold Reserves per Country & Quarter - IMF Data', 'Search Engine Results Pages - Google SERP Dashboard', 'Twitter Dashboard - Text Analysis & Mining - Twitter API', 'Trending on Twitter Now, Anywhere - Twitter Dashboard', 'US Baby Names Data & Trends', 'Generate SEM Keywords for AdWords Campaigns', 'BoxofficeMojo Dashboard Alltime Data', 'Healthcare Spending 2014 - CIA Factbook', 'Life Expectancy 2017 - CIA Factbook', 'World Massacres', 'Median Age 2017 - CIA Factbook', 'Migration Stats 2017 - CIA Factbook', 'Mothers Day Celebrations', 'Population Growth 2017 - CIA Factbook', 'Global Terrorism Database', 'Dashboardom', ], 'h1': [ 'Migration Stats by Country and Year', 'Gold Reserves per Country & Quarter', 'Search Engine Results Pages - Google', 'Search and Analyze Twitter, Create a Dataset', 'Trending on Twitter Now, Anywhere', 'US Baby Names', 'SEM Keyword Generator', 'BoxofficeMojo Dashboard Alltime Data', 'Healthcare Spending 2014 - CIA Factbook', 'Life Expectancy 2017 - CIA Factbook', 'World Massacres', 'Median Age 2017 - CIA Factbook', 'Migration Stats 2017 - CIA Factbook', 'Mothers Day Celebrations', 'Population Growth 2017 - CIA Factbook', 'Global Terrorism Database', 'Dashboardom', ], 'h2': [ 'Visualize changes in population density and migration', 'Analyze changes in official gold reserves - IMF Data', 'Get SERPs for multiple keywords and parameters, in one DataFrame', 'Search Twitter & generate a filterable downloadable dataset of tweets', 'Trending hashtags and topics on Twitter - all locations', 'Annual births by name in the US 1910 - 2016', 'Generate keywords for your campaigns on a massive scale', 'BoxofficeMojo domestic box-office data all-time', 'Healthcare spending by country in 2014', 'Life expectancy per country in 2017', 'Wikipedia\'s list of events named massacres', 'Median age and age distribution by country in 2017', 'Net migration by country in 2017', 'Mothers day celebrations in the world', 'Population growth per country in 2017', 'World terrorist attacks during 1970 - 2016', 'This website!', ], 'data': [ 'WorldBank', 'International Monetary Fund', 'Google Custom Search Engine', 'Twitter API', 'Twitter API', 'Social Security Agency', 'https://github.com/eliasdabbas/advertools', 'BoxofficeMojo', 'CIA World Factbook', 'CIA World Factbook', 'Wikipedia', 'CIA World Factbook', 'CIA World Factbook', 'Wikipedia', 'CIA World Factbook', 'START Consortium', ' ', ], 'data_link': [ 'https://data.worldbank.org/', 'https://data.imf.org/', 'https://developers.google.com/custom-search/v1/cse/list', 'https://developer.twitter.com', 'https://developer.twitter.com', 'https://www.ssa.gov/oact/babynames/', 'NA', 'http://www.boxofficemojo.com/alltime/domestic.htm', 'https://www.cia.gov/library/publications/the-world-factbook/fields/2225.html', 'https://www.cia.gov/library/publications/the-world-factbook/fields/2102.html', 'https://en.wikipedia.org/wiki/List_of_events_named_massacres', 'https://www.cia.gov/library/publications/the-world-factbook/fields/2010.html', 'https://www.cia.gov/library/publications/the-world-factbook/fields/2112.html', 'https://en.wikipedia.org/wiki/Mother%27s_Day', 'https://www.cia.gov/library/publications/the-world-factbook/fields/2002.html', 'https://www.kaggle.com/START-UMD/gtd', ' ', ], 'tags': [ 'population, migration, world', 'gold, economics, IMF, central banks', 'google, SEO, search engine optimization, keywords', 'twitter, social media, text mining', 'twitter, social media', 'population, statistics, data-viz, names, USA', 'advertising, PPC, marketing, adwords, bingads, SEM, keywords', 'movies, hollywood, box-office', 'healthcare, world, cia-factbook', 'population, age, world, cia-factbook', 'terrorism, massacres, wikipedia, world', 'population, age, world, cia-factbook', 'migration, world, cia-factbook', 'world, mothers, wikipedia', 'population, world, cia-factbook', 'terrorism, world', 'tools, website', ], 'git_repo': [ 'https://github.com/eliasdabbas/migration-population', 'https://github.com/eliasdabbas/gold-reserves', 'https://github.com/eliasdabbas/google-serp', 'https://github.com/eliasdabbas/twitterdash', 'https://github.com/eliasdabbas/trending-twitter', 'https://github.com/eliasdabbas/baby_names', 'https://github.com/eliasdabbas/advertools_app', 'https://github.com/eliasdabbas/boxofficemojo', 'https://github.com/eliasdabbas/health_spending', 'https://github.com/eliasdabbas/life_expectancy', 'https://github.com/eliasdabbas/wikipedia_list_of_massacres', 'https://github.com/eliasdabbas/median_age_dashboard', 'https://github.com/eliasdabbas/migration_dashboard', 'https://github.com/eliasdabbas/mothers_day', 'https://github.com/eliasdabbas/population_growth', 'https://github.com/eliasdabbas/terrorism', 'https://github.com/eliasdabbas/dashboardom' ], 'height': [ '1336px', '1561px', '1338px', '1735px', '850px', '750px', '793px', '2500px', '800px', '1500px', '1600px', '1000px', '1300px', '800px', '1500px', '2360px', '800px', ] }) dashboard_df.to_csv('data/dashboards_df.csv', index=False)
ae0c8a6c7c2349018e3c51f99c07684073579d6f
5b51f7d73ee14e40017d27be91dc4fe2212c58ff
/config/wsgi.py
0c7c70440644e97cb10eac5e47e5f609f4c562e9
[]
no_license
yatemmma/grock
527037d5163d4a8ee17d0a924863d9a55c5e9db6
9cf2b1d4889b2379a6f6ead57e04302ca245ed26
refs/heads/master
2021-05-22T06:01:26.550664
2020-04-25T16:41:40
2020-04-25T16:41:40
32,218,890
0
0
null
2018-05-27T11:50:07
2015-03-14T15:40:14
CSS
UTF-8
Python
false
false
572
py
""" WSGI config for grock project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application from django.conf import settings from wsgi_basic_auth import BasicAuth os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'config.settings') DEBUG = getattr(settings, "DEBUG", None) if DEBUG: application = get_wsgi_application() else: application = BasicAuth(get_wsgi_application())
5f3251561f4d13abe9c031bc4b769ee6145896fe
a46f40398d398f001e78fba6f6c3606ed0a87759
/02-Livros/IntroduçãoAProgramaçãoComPython/CapituloV/Exercicio5.10.py
b028d55a0dbcb0c58aa7e6e99c27e6c01cb536b1
[]
no_license
jocelinoFG017/IntroducaoAoPython
b2b95b392eba14d92192f95d1a6720306223c780
e0672bd1ed376795e13b5f44f2fc6e3bcc350a6d
refs/heads/main
2023-08-21T10:06:32.079082
2021-09-19T01:03:41
2021-09-19T01:03:41
322,012,658
0
0
null
null
null
null
UTF-8
Python
false
false
982
py
""" # Programa anterior pontos = 0 questao = 1 while questao <= 3: resposta = input("Resposta da questao {} : ".format(questao)) if questao == 1 and resposta == "b": pontos = pontos +1 if questao == 2 and resposta == "a" pontos = pontos + 1 if questao == 3 and resposta == "d" pontos = pontos + 1 questao = questao +1 print("O aluno fez {} ponto(s)".format(pontos)) Modifique o programa anterior para que aceite respostas com letras maiúsculas e minúsculas em todas as questões """ pontos = 0 questao = 1 while questao <= 3: resposta = input("Resposta da questao {} : ".format(questao)) if questao == 1 and (resposta == "b" or resposta == "B"): pontos = pontos +1 if questao == 2 and (resposta == "a" or resposta == "A"): pontos = pontos + 1 if questao == 3 and (resposta == "d" or resposta == "D"): pontos = pontos + 1 questao = questao +1 print("O aluno fez {} ponto(s)".format(pontos))
721e4acbc32086ba414b5491823839e1b328d854
0617f0626b09840805a2f4edbd1e3278c2883702
/pytorch-工作中遇到的函数/98-transpose().py
5b2ba5fd5e4f55f23dc1f4b21ec9b46a3266c26c
[]
no_license
yflfly/learn_pytorch
29b920f59f18f95ee396c82442fe8cfd69fe2314
daae77d1bf7cd9e03b236737d6ee0dd53b1831e9
refs/heads/master
2023-03-07T17:08:43.024056
2021-02-25T02:31:50
2021-02-25T02:31:50
284,202,495
0
0
null
null
null
null
UTF-8
Python
false
false
1,203
py
# coding:utf-8 import torch ''' 官方文档: torch.transpose(input, dim0, dim1, out=None) → Tensor 函数返回输入矩阵input的转置。交换维度dim0和dim1 参数: input (Tensor) – 输入张量,必填 dim0 (int) – 转置的第一维,默认0,可选 dim1 (int) – 转置的第二维,默认1,可选 ''' # 创造二维数据x,dim=0时候2,dim=1时候3 x = torch.randn(2, 3) # 'x.shape → [2,3]' # 创造三维数据y,dim=0时候2,dim=1时候3,dim=2时候4 y = torch.randn(2, 3, 4) # 'y.shape → [2,3,4]' print(x.size()) # ([2, 3]) print(y.size()) # ([2, 3, 4]) print('------------------') # 对于transpose z1 = x.transpose(0, 1) # 'shape→[3,2] ' print(x.size()) # ([2, 3]) print('z1', z1.size()) # [3, 2]) x.transpose(1, 0) # 'shape→[3,2] ' print(x.size()) # ([2, 3]) y1 = y.transpose(0, 1) # 'shape→[3,2,4]' print(y.size()) # ([2, 3, 4]) print('y1', y1.size()) # ([3, 2, 4]) ''' 输出结果如下所示: torch.Size([2, 3]) torch.Size([2, 3, 4]) ------------------ torch.Size([2, 3]) z1 torch.Size([3, 2]) torch.Size([2, 3]) torch.Size([2, 3, 4]) y1 torch.Size([3, 2, 4]) 记住:转置之后的tensor进行赋值给新的变量 '''
447dd2afc75fa1a182e314360b7a37bca96e2bc3
1cae26aeed8f3f8ea3864521d441958cb8fa9e3f
/Email/models.py
13d413504b2da002fa6d929194b60eaaacdcb0c2
[]
no_license
gledong12/Email-subscribe-system
5d13dcb08ea21a7f96f4900d042f2ab25985d4ac
ac317f16778f764ad538d1d230a7e4a7bbaea780
refs/heads/main
2023-05-28T21:50:58.798610
2021-06-09T01:21:34
2021-06-09T01:21:34
373,383,310
0
0
null
null
null
null
UTF-8
Python
false
false
1,177
py
from django.db import models from user.models import models class Category(models.Model): name = models.CharField(max_length=50) class Meta: db_table = 'categories' class Email(models.Model): subject = models.CharField(max_length=100) content = models.TextField() created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) deleted_at = models.DateTimeField(null=True) sender = models.ForeignKey('user.User', on_delete=models.CASCADE, related_name='sender') receiver = models.ManyToManyField('user.User', through='UserEmail', related_name='receiver') class Meta: db_table = 'emails' class UserCategory(models.Model): user = models.ForeignKey('user.User', on_delete=models.CASCADE) category = models.ForeignKey('Category', on_delete=models.CASCADE) class Meta: db_table = 'subscribe' class UserEmail(models.Model): user = models.ForeignKey('user.User', on_delete=models.CASCADE) email = models.ForeignKey('Email', on_delete=models.CASCADE) class Meta: db_table = 'receive_user'
8957de375ffde3cf6e3756ac194445e31145a999
b490f3d5219812127b0af77c447e4bc80c616f73
/aleph/index/entities.py
9de0b0f81c226d98c88e71490a9b623bf62a27ec
[ "MIT" ]
permissive
batman59/aleph
30a72bec9143c437baf0ddebece4416370066ef0
d02068ece529ce86219387f7d078b7a97e2ef643
refs/heads/main
2023-04-07T15:58:08.958163
2021-04-12T22:45:12
2021-04-12T22:45:12
356,256,707
0
0
null
null
null
null
UTF-8
Python
false
false
8,589
py
import logging import fingerprints import warnings from pprint import pprint, pformat # noqa from banal import ensure_list, first from followthemoney import model from followthemoney.types import registry from elasticsearch.helpers import scan from aleph.core import es, cache from aleph.model import Entity from aleph.index.indexes import entities_write_index, entities_read_index from aleph.index.util import unpack_result, delete_safe from aleph.index.util import authz_query, bulk_actions from aleph.index.util import MAX_PAGE, NUMERIC_TYPES from aleph.index.util import MAX_REQUEST_TIMEOUT, MAX_TIMEOUT log = logging.getLogger(__name__) PROXY_INCLUDES = [ "schema", "properties", "collection_id", "profile_id", "role_id", "mutable", "created_at", "updated_at", ] ENTITY_SOURCE = {"includes": PROXY_INCLUDES} def _source_spec(includes, excludes): includes = ensure_list(includes) excludes = ensure_list(excludes) return {"includes": includes, "excludes": excludes} def _entities_query(filters, authz, collection_id, schemata): filters = filters or [] if authz is not None: filters.append(authz_query(authz)) if collection_id is not None: filters.append({"term": {"collection_id": collection_id}}) # if ensure_list(schemata): # filters.append({"terms": {"schemata": ensure_list(schemata)}}) return {"bool": {"filter": filters}} def get_field_type(field): field = field.split(".")[-1] if field in registry.groups: return registry.groups[field] for prop in model.properties: if prop.name == field: return prop.type return registry.string def iter_entities( authz=None, collection_id=None, schemata=None, includes=PROXY_INCLUDES, excludes=None, filters=None, sort=None, randomize=False, random_seed=None, ): """Scan all entities matching the given criteria.""" query = { "_source": _source_spec(includes, excludes), } q = _entities_query(filters, authz, collection_id, schemata) preserve_order = False if randomize: if sort is not None: warnings.warn( "iter_entities: randomize and sort are mutually exclusive. ignoring sort order.", RuntimeWarning, ) seed_q = {"field": "_seq_no"} if random_seed: seed_q["seed"] = random_seed query["query"] = {"function_score": {"query": q, "random_score": seed_q}} else: query["query"] = q if sort is not None: query["sort"] = ensure_list(sort) preserve_order = True index = entities_read_index(schema=schemata) for res in scan( es, index=index, query=query, timeout=MAX_TIMEOUT, request_timeout=MAX_REQUEST_TIMEOUT, preserve_order=preserve_order, ): entity = unpack_result(res) if entity is not None: yield entity def iter_proxies(**kw): for data in iter_entities(**kw): schema = model.get(data.get("schema")) if schema is None: continue yield model.get_proxy(data) def iter_adjacent(collection_id, entity_id): """Used for recursively deleting entities and their linked associations.""" yield from iter_entities( includes=["collection_id"], collection_id=collection_id, filters=[{"term": {"entities": entity_id}}], ) def entities_by_ids( ids, schemata=None, cached=False, includes=PROXY_INCLUDES, excludes=None ): """Iterate over unpacked entities based on a search for the given entity IDs.""" ids = ensure_list(ids) if not len(ids): return cached = cached and excludes is None and includes == PROXY_INCLUDES entities = {} if cached: keys = [cache.object_key(Entity, i) for i in ids] for _, entity in cache.get_many_complex(keys): if entity is not None: entities[entity.get("id")] = entity missing = [i for i in ids if entities.get(id) is None] index = entities_read_index(schema=schemata) query = { "query": {"ids": {"values": missing}}, "_source": _source_spec(includes, excludes), "size": MAX_PAGE, } result = es.search(index=index, body=query) for doc in result.get("hits", {}).get("hits", []): entity = unpack_result(doc) if entity is not None: entity_id = entity.get("id") entities[entity_id] = entity if cached: key = cache.object_key(Entity, entity_id) cache.set_complex(key, entity, expires=60 * 60 * 2) for i in ids: entity = entities.get(i) if entity is not None: yield entity def get_entity(entity_id, **kwargs): """Fetch an entity from the index.""" for entity in entities_by_ids(entity_id, cached=True, **kwargs): return entity def index_entity(entity, sync=False): """Index an entity.""" return index_proxy(entity.collection, entity.to_proxy(), sync=sync) def index_proxy(collection, proxy, sync=False): delete_entity(proxy.id, exclude=proxy.schema, sync=False) return index_bulk(collection, [proxy], sync=sync) def index_bulk(collection, entities, sync=False): """Index a set of entities.""" entities = (format_proxy(p, collection) for p in entities) entities = (e for e in entities if e is not None) bulk_actions(entities, sync=sync) def _numeric_values(type_, values): values = [type_.to_number(v) for v in ensure_list(values)] return [v for v in values if v is not None] def format_proxy(proxy, collection): """Apply final denormalisations to the index.""" # Abstract entities can appear when profile fragments for a missing entity # are present. if proxy.schema.abstract: return None data = proxy.to_full_dict() data["schemata"] = list(proxy.schema.names) data["caption"] = proxy.caption names = data.get("names", []) fps = set([fingerprints.generate(name) for name in names]) fps.update(names) data["fingerprints"] = [fp for fp in fps if fp is not None] # Slight hack: a magic property in followthemoney that gets taken out # of the properties and added straight to the index text. properties = data.get("properties") data["text"] = properties.pop("indexText", []) # integer casting numeric = {} for prop in proxy.iterprops(): if prop.type in NUMERIC_TYPES: values = proxy.get(prop) numeric[prop.name] = _numeric_values(prop.type, values) # also cast group field for dates numeric["dates"] = _numeric_values(registry.date, data.get("dates")) data["numeric"] = numeric # Context data - from aleph system, not followthemoney. data["collection_id"] = collection.id data["role_id"] = first(data.get("role_id")) data["profile_id"] = first(data.get("profile_id")) data["mutable"] = max(ensure_list(data.get("mutable")), default=False) data["origin"] = ensure_list(data.get("origin")) # Logical simplifications of dates: created_at = ensure_list(data.get("created_at")) if len(created_at) > 0: data["created_at"] = min(created_at) updated_at = ensure_list(data.get("updated_at")) or created_at if len(updated_at) > 0: data["updated_at"] = max(updated_at) # log.info("%s", pformat(data)) entity_id = data.pop("id") return { "_id": entity_id, "_index": entities_write_index(proxy.schema), "_source": data, } def delete_entity(entity_id, exclude=None, sync=False): """Delete an entity from the index.""" if exclude is not None: exclude = entities_write_index(exclude) for entity in entities_by_ids(entity_id, excludes="*"): index = entity.get("_index") if index == exclude: continue delete_safe(index, entity_id) def checksums_count(checksums): """Query how many documents mention a checksum.""" schemata = model.get_type_schemata(registry.checksum) index = entities_read_index(schemata) body = [] for checksum in checksums: body.append({"index": index}) query = {"term": {registry.checksum.group: checksum}} body.append({"size": 0, "query": query}) results = es.msearch(body=body) for checksum, result in zip(checksums, results.get("responses", [])): total = result.get("hits", {}).get("total", {}).get("value", 0) yield checksum, total
836bb34a019039ab8c3df90c6fe0873bb8d46d15
c94ab5242d3ca5c95a7227219ab8e42145b37cce
/db/__init__.py
6f868c9c9aa4ef7ef381888ff376ae57fa3aede7
[ "MIT" ]
permissive
kekecoco/py_text_to_audio
7d7e84662caedd14248110c37ac18528c701a273
399a685318e19992cd932efe804d7508af9e4a25
refs/heads/develop_dev
2021-04-06T00:22:27.337565
2018-03-20T08:02:20
2018-03-20T08:02:20
124,878,403
1
0
MIT
2018-03-19T09:33:31
2018-03-12T11:24:28
Python
UTF-8
Python
false
false
90
py
# -*- coding: utf-8 -*- # @author Wu Lihua # @email [email protected] from db import *
0f4027eae87108f86b40e63e93b1c8d5a28ceee0
eac7ae395c4832ac394087054ab014d1d6a9f6a6
/python_experiments/run_experiments/ppscan/run_ppSCAN_gen_gt.py
8e301fa2e3767c47b2d15889cde0cfe23caaa991
[ "MIT" ]
permissive
mexuaz/AccTrussDecomposition
21be22007e1c50ca4b7df6fbbad1dfbf4c2fffae
15a9e8fd2f123f5acace5f3b40b94f1a74eb17d4
refs/heads/master
2022-12-14T03:41:05.133564
2020-09-03T00:35:33
2020-09-03T00:35:33
291,565,779
0
0
MIT
2020-08-30T22:57:55
2020-08-30T22:57:55
null
UTF-8
Python
false
false
2,983
py
import subprocess import socket import sys import time from exec_utilities import time_out_util from config import * my_splitter = '-'.join(['*' for _ in range(20)]) def kill_all(): exec_name_lst = [] for exec_name in exec_name_lst: err_code, output = subprocess.getstatusoutput("ps -ef | grep " + exec_name + " | awk '{print $2}'") for pid in output.strip().split('\n'): os.system('kill -9 ' + pid) time.sleep(5) def write_split(statistics_file_path): with open(statistics_file_path, 'a+') as ifs: ifs.write(my_splitter + my_splitter + '\n') ifs.write(my_splitter + my_splitter + '\n') def signal_handler(signal, frame): # print 'You pressed Ctrl+C!' kill_all() sys.exit(0) def run_exp(env_tag=knl_tag): with open('config.json') as ifs: my_config_dict = json.load(ifs)[env_tag] # print my_config_dict data_set_path = my_config_dict[data_set_path_tag] data_set_lst = filter(lambda name: 'rmat' in name, my_config_dict[data_set_lst_tag]) # print data_set_path, data_set_lst # eps_lst = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] # mu_lst = [2, 5, 10, 15] eps_lst = [0.2] mu_lst = [5] root_path = my_config_dict[exp_res_root_path_tag] + '/log/' def one_round(reorder_method='.'): statistics_file_path = root_path + 'han-' + reorder_method + '.log' for data_set_name in data_set_lst: for eps in eps_lst: for mu in mu_lst: algorithm_path = my_config_dict[ppSCAN_exec_path_tag] params_lst = map(str, [algorithm_path, os.sep.join([data_set_path, data_set_name, reorder_method]), eps, mu, 'output', '> /dev/null 2>&1']) cmd = ' '.join(params_lst) # print cmd time_out = 7000 tle_flag, info, correct_info = time_out_util.run_with_timeout(cmd, timeout_sec=time_out) with open(statistics_file_path, 'a+') as ifs: ifs.write(info) ifs.write(correct_info) ifs.write('\nis_time_out:' + str(tle_flag)) ifs.write(my_splitter + time.ctime() + my_splitter) ifs.write('\n\n\n\n') # for reorder_method in ['cache', 'gro']: # for reorder_method in ['hybrid', 'slashburn', 'bfsr', 'dfs']: # for reorder_method in ['cache', 'rcm-cache']: # for reorder_method in ['slashburn']: for reorder_method in ['.']: one_round(reorder_method) if __name__ == '__main__': hostname = socket.gethostname() if hostname.startswith('lccpu12'): run_exp(env_tag=lccpu12_tag) elif hostname.startswith('gpu23'): run_exp(env_tag=gpu23_tag) elif hostname.startswith('gpu'): run_exp(env_tag=gpu_other_tag) else: run_exp(knl_tag)
d29f550b849772338f52473d7c5d0a6fe2bc584b
b9134f1aa6e98afc52d9b08eaa1dc48921fff262
/django_backend/project/urls.py
9aea40e1dd5b79c63933bc3856dfc5fc7363fcc3
[]
no_license
parvez301/document-management-system
e208e6786105001a2c12f6c294bb6205b789daac
e9aae1188c864eaf624fb1b7266f8805175257ff
refs/heads/master
2022-12-10T14:42:34.531767
2018-04-17T06:00:51
2018-04-17T06:00:51
128,873,553
0
0
null
null
null
null
UTF-8
Python
false
false
714
py
from django.conf.urls import include, url from django.contrib import admin from django.views.generic import TemplateView from rest_framework import routers from user_profile.views import UserViewSet router = routers.DefaultRouter() router.register(r'user', UserViewSet,) urlpatterns = [ url(r'^admin/', include(admin.site.urls)), # This is used for user reset password url(r'^', include('django.contrib.auth.urls')), url(r'^rest-auth/', include('rest_auth.urls')), url(r'^rest-auth/registration/', include('rest_auth.registration.urls')), url(r'^account/', include('allauth.urls')), url(r'^api/', include(router.urls)), url(r'', include('doqman.urls', namespace='doqman')), ]
9b47a510e8d1feddca50084cb85b99f69648aaaf
a5a88a49c5537fb979fce54699402e76f7e6b25f
/tm_manager_backend/contrib/sites/migrations/0003_set_site_domain_and_name.py
72b33de57583dcd1501a052e012c2b27dd81dafb
[ "MIT" ]
permissive
nachos5/tm_manager_backend
053bbad2fb9bedd8b4dbb844e78e1185a9b8fc68
27b0479b239a6ce3073b4de2f76b402ec986975c
refs/heads/master
2020-08-28T13:41:34.184528
2020-04-16T07:27:28
2020-04-16T07:27:28
217,715,259
0
0
MIT
2019-11-28T00:51:59
2019-10-26T13:47:53
Python
UTF-8
Python
false
false
1,016
py
""" To understand why this file is here, please read: http://cookiecutter-django.readthedocs.io/en/latest/faq.html#why-is-there-a-django-contrib-sites-directory-in-cookiecutter-django """ from django.conf import settings from django.db import migrations def update_site_forward(apps, schema_editor): """Set site domain and name.""" Site = apps.get_model("sites", "Site") Site.objects.update_or_create( id=settings.SITE_ID, defaults={ "domain": "example.com", "name": "tm-manager-backend", }, ) def update_site_backward(apps, schema_editor): """Revert site domain and name to default.""" Site = apps.get_model("sites", "Site") Site.objects.update_or_create( id=settings.SITE_ID, defaults={"domain": "example.com", "name": "example.com"} ) class Migration(migrations.Migration): dependencies = [("sites", "0002_alter_domain_unique")] operations = [migrations.RunPython(update_site_forward, update_site_backward)]
1862703f8c01562c66bd7a1c6efecc2f6807570c
b2c8ccbf7466f7a920a2b19c64dcfb4f2b72f836
/api/app/models.py
9b98473ee096164d1e3ba48ded2991b1f17b7a67
[ "MIT" ]
permissive
duranlopes/k8s-iac
534f056c9a076e0c7f7a2291a99c56ffbd327d39
5bdc872b19a9117d48c0f1777a4c5d4246ea7b3b
refs/heads/main
2023-05-12T00:14:40.956062
2021-04-14T02:52:26
2021-04-14T02:52:26
338,554,678
2
0
null
null
null
null
UTF-8
Python
false
false
750
py
from sqlalchemy import Boolean, Column, ForeignKey, Integer, String from sqlalchemy.orm import relationship from .database import Base class User(Base): __tablename__ = "users" id = Column(Integer, primary_key=True, index=True) email = Column(String(100), unique=True, index=True) hashed_password = Column(String(100)) is_active = Column(Boolean, default=True) items = relationship("Item", back_populates="owner") class Item(Base): __tablename__ = "items" id = Column(Integer, primary_key=True, index=True) title = Column(String(100), index=True) description = Column(String(100), index=True) owner_id = Column(Integer, ForeignKey("users.id")) owner = relationship("User", back_populates="items")
fdb72ad1d70d9151373c79a0df8aafb4db9eb3eb
75af5903e789ba0c50336e802d4828d8eb69c269
/src/variational_strategies.py
d4d9ae73fe9fab669314225c225e60849fe53a46
[ "MIT" ]
permissive
jackgoffinet/poe-vae
a7a990c893bb29b532c565bf1af3f654754b6f85
18ca2cd4cffe3259e19525c2dc65c84d7219e9d6
refs/heads/master
2023-09-06T09:45:30.037720
2021-11-15T16:39:27
2021-11-15T16:39:27
329,687,476
8
3
null
null
null
null
UTF-8
Python
false
false
8,940
py
""" Define strategies for combining evidence into variational distributions. These strategies all subclass `torch.nn.Module`. Their job is to convert parameter values straight out of the encoder into a variational posterior, combining evidence across the different modalities in some way. TO DO ----- * The GaussianPoeStrategy assumes a unit normal prior. Generalize this. """ __date__ = "January - May 2021" import torch import torch.nn.functional as F class AbstractVariationalStrategy(torch.nn.Module): """Abstract variational strategy class""" def __init__(self): super(AbstractVariationalStrategy, self).__init__() def forward(self, *modality_params, nan_mask=None): """ Combine the information from each modality into prior parameters. Parameters ---------- modality_params : ... nan_mask : torch.Tensor Indicates where data is missing. Shape: [b,m] Returns ------- prior_parameters : ... """ raise NotImplementedError class GaussianPoeStrategy(AbstractVariationalStrategy): EPS = 1e-5 def __init__(self, **kwargs): """ Gaussian product of experts strategy Note ---- * Assumes a standard normal prior! """ super(GaussianPoeStrategy, self).__init__() def forward(self, means, log_precisions, nan_mask=None, collapse=True): """ Given means and log precisions, output the product mean and precision. Parameters ---------- means : torch.Tensor or list of torch.Tensor Shape: [batch,modality,z_dim] if vectorized [modality][batch,z_dim] otherwise log_precisions : torch.Tensor or list of torch.Tensor Shape: [batch,modality,z_dim] if vectorized [modality][batch,z_dim] otherwise nan_mask : torch.Tensor Indicates where data is missing. Shape: [batch,modality] collapse : bool, optional Whether to collapse across modalities. Returns ------- if `collapse`: prec_mean : torch.Tensor Shape: [batch, z_dim] precision : torch.Tensor Shape: [batch, z_dim] else: prec_means : torch.Tensor Shape: [b,m,z] precisions : torch.Tensor Does not include the prior expert! Shape: [b,m,z] """ if isinstance(means, (tuple,list)): # not vectorized means = torch.stack(means, dim=1) # [b,m,z] log_precisions = torch.stack(log_precisions, dim=1) # [b,m,z] precisions = torch.exp(log_precisions) # [b,m,z] if nan_mask is not None: temp_mask = nan_mask assert len(precisions.shape) == 3, f"len({precisions.shape}) != 3" temp_mask = (~temp_mask).float().unsqueeze(-1) temp_mask = temp_mask.expand(-1,-1,precisions.shape[2]) precisions = precisions * temp_mask prec_means = means * precisions if collapse: return self.collapse(prec_means, precisions) return prec_means, precisions def collapse(self, prec_means, precisions, include_prior=True): """ Collapse across modalities, combining evidence. Parameters ---------- prec_means : torch.Tensor Shape: [b,m,z] precisions : torch.Tensor Shape: [b,m,z] include_prior : bool, optional Whether to include the effect of the prior expert. Returns ------- prec_mean : torch.Tensor Shape: [b,z] precision : torch.Tensor Shape: [b,z] """ precision = torch.sum(precisions, dim=1) # [b,m,z] -> [b,z] if include_prior: precision = precision + 1.0 prec_mean = torch.sum(prec_means, dim=1) # [b,m,z] -> [b,z] return prec_mean, precision class GaussianMoeStrategy(torch.nn.Module): def __init__(self, **kwargs): """ Gaussian mixture of experts strategy Note ---- * Assumes a standard normal prior! """ super(GaussianMoeStrategy, self).__init__() def forward(self, means, log_precisions, nan_mask=None): """ Given means and log precisions, output mixture parameters. Parameters ---------- means : torch.Tenosr or tuple of torch.Tensor Shape: [b,m,z] if vectorized [m][b,z] otherwise log_precisions : torch.Tensor ot tuple of torch.Tensor Shape: [b,m,z] if vectorized [m][b,z] otherwise nan_mask : torch.Tensor Indicates where data is missing. Shape: [batch,modality] Returns ------- mean : torch.Tensor Shape: [batch, m, z_dim] precision : torch.Tensor Shape: [batch, m, z_dim] """ tuple_flag = isinstance(means, (tuple,list)) # not vectorized if tuple_flag: means = torch.stack(means, dim=1) # [b,m,z] log_precisions = torch.stack(log_precisions, dim=1) precisions = torch.exp(log_precisions) # [b,m,z] # Where modalities are missing, sample from the prior. if nan_mask is not None: temp_mask = nan_mask assert len(precisions.shape) == 3 temp_mask = (~temp_mask).float().unsqueeze(-1) temp_mask = temp_mask.expand(-1,-1,precisions.shape[2]) precisions = precisions * temp_mask means = means * temp_mask precisions = precisions + 1.0 # Add the prior expert. return means, precisions class VmfPoeStrategy(AbstractVariationalStrategy): EPS = 1e-5 def __init__(self, n_vmfs=5, vmf_dim=4, **kwargs): """ von Mises Fisher product of experts strategy Parameters ---------- n_vmfs : int, optional vmf_dim : int, optional """ super(VmfPoeStrategy, self).__init__() self.n_vmfs = n_vmfs self.vmf_dim = vmf_dim def forward(self, kappa_mus, nan_mask=None): """ Multiply the vMF's given by the kappa_mus. Parameters ---------- kappa_mus : torch.Tensor or list of torch.Tensor Shape: [b,m,n_vmfs*(vmf_dim+1)] if vectorized [m][b,n_vmfs*(vmf_dim+1)] otherwise nan_mask : torch.Tensor Indicates where data is missing. Shape: [b,m] Returns ------- kappa_mu : tuple of torch.Tensor Shape: [1][b,n_vmfs,vmf_dim+1] """ tuple_flag = isinstance(kappa_mus, tuple) # not vectorized if tuple_flag: kappa_mus = torch.stack(kappa_mus, dim=1) # [b,m,n_vmf*(vmf_dim+1)] assert len(kappa_mus.shape) == 3, f"len({kappa_mus.shape}) != 3" assert kappa_mus.shape[2] == self.n_vmfs * (self.vmf_dim+1), \ f"error: {kappa_mus.shape}, {self.n_vmfs}, {self.vmf_dim}" new_shape = kappa_mus.shape[:2]+(self.n_vmfs, self.vmf_dim+1) kappa_mus = kappa_mus.view(new_shape) # [b,m,n_vmfs,vmf_dim+1] if nan_mask is not None: temp_mask = nan_mask # [b,m] temp_mask = (~temp_mask).float().unsqueeze(-1).unsqueeze(-1) temp_mask = temp_mask.expand( -1, -1, kappa_mus.shape[2], kappa_mus.shape[3], ) # [b,m,n_vmfs,vmf_dim+1] kappa_mus = kappa_mus * temp_mask # Combine all the experts. kappa_mu = torch.sum(kappa_mus, dim=1) # [b,n_vmfs,vmf_dim+1] return (kappa_mu,) class LocScaleEbmStrategy(AbstractVariationalStrategy): EPS = 1e-5 def __init__(self, **kwargs): """ Location/Scale EBM strategy: multiply the Gaussian proposals """ super(LocScaleEbmStrategy, self).__init__() def forward(self, thetas, means, log_precisions, nan_mask=None, \ collapse=True): """ Mostly just pass the parameters and apply NaN mask. Parameters ---------- thetas: torch.Tensor or tuple of torch.Tensor Describes deviations from the Gaussian proposal Shape: [b,m,theta_dim] if vectorized [m][b,theta_dim] otherwise means : torch.Tensor or tuple of torch.Tensor Means of the Gaussian proposals Shape: [batch,m,z_dim] if vectorized [m][batch,z_dim] otherwise log_precisions : torch.Tensor or tuple of torch.Tensor log precisions of the Gaussian proposals Shape: [batch,m,z_dim] if vectorized [m][batch,z_dim] otherwise nan_mask : torch.Tensor Indicates where data is missing. Shape: [b,m] collapse : bool, optional Doesn't do anything. Here because AR-ELBO expects it. Returns ------- thetas : torch.Tensor Shape: [b,m,theta_dim] means : torch.Tensor Shape: [b,m,z] prec_means : torch.Tensor Shape: [b,m,z] precisions : torch.Tensor Shape: [b,m,z] nan_mask : torch.Tensor Shape : [b,m] """ if isinstance(means, (tuple,list)): thetas = torch.stack(thetas, dim=1) # [b,m,theta] means = torch.stack(means, dim=1) # [b,m,z] log_precisions = torch.stack(log_precisions, dim=1) # [b,m,z] thetas = torch.sigmoid(thetas) # restrict range of thetas precisions = log_precisions.exp() # [b,m,z] precisions = torch.clamp(precisions, max=50.0) if nan_mask is not None: assert len(precisions.shape) == 3, f"len({precisions.shape}) != 3" temp_mask = (~nan_mask).float().unsqueeze(-1) temp_mask = temp_mask.expand(-1,-1,precisions.shape[2]) precisions = precisions * temp_mask prec_means = means * precisions if torch.isnan(precisions).sum() > 0: print("LocScaleEbmStrategy NaN") print("prec_means", torch.isnan(prec_means).sum()) print("thetas", torch.isnan(thetas).sum()) print("means", torch.isnan(means).sum()) print("precisions", torch.isnan(precisions).sum()) print("log_precisions", torch.isnan(log_precisions).sum()) print() return thetas, means, prec_means, precisions, nan_mask if __name__ == '__main__': pass ###
29ca1331b2e363267325dd1a0b8e07a808ab8d0b
aea28642b2f680c1597bf73dd0025e5be2837919
/fizzbuzz.py
93786563960931a8a454b6f2663d87cbb36a327d
[]
no_license
krushigada/fizzbuzz
cd0134be0caabfb8536f5d71287743e893263f4c
bcbc0359b0e5556db42158f0cf616d4ae38e4b1a
refs/heads/master
2020-06-15T13:52:44.395878
2016-12-01T12:26:08
2016-12-01T12:26:08
75,288,114
0
0
null
null
null
null
UTF-8
Python
false
false
1,060
py
play="start" while(play=="start"): print("Multiples of 3 represented by Fizz\nMultiples of 5 represented by Buzz\n") n=input("Enter number limit:") i=1 while(i<=n): if(i%2!=0): if(i%3!=0 and i%5!=0): print "Computer: ",i elif(i%3==0 and i%5==0): print("Computer: FizzBuzz") elif(i%3==0): print("Computer: Fizz") elif(i%5==0): print("Computer: Buzz") else: j=raw_input("Player: ") if(i%3==0 and i%5==0 and j!="FizzBuzz"): print("Computer Wins!") break elif(i%5==0 and j!="Buzz"): print("Computer Wins!") break elif(i%3==0 and j!="Fizz"): print("Computer Wins!") break elif(i!=int(j)): print("Computer Wins!") break i=i+1 print("Enter 'start' to start again!\n") play=raw_input()
5328383760e66d74cccabfe70245b53bafd48034
5ae88a0a197a52086edffe9c031bc424634b55d4
/AizuOnlineJudge/ITP1/4/C.py
4c5a62f99eaf85c97dcbe26bf43acbd39a709a6d
[]
no_license
muck0120/contest
1b1226f62e0fd4cf3bd483e40ad6559a6f5401cb
de3877822def9e0fe91d21fef0fecbf025bb1583
refs/heads/master
2022-07-17T17:31:50.934829
2020-05-18T09:55:30
2020-05-18T09:55:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
264
py
a, op, b = 0, '', 0 while op != '?': a, op, b = input().split() if op == '+': print(int(a) + int(b)) if op == '-': print(int(a) - int(b)) if op == '*': print(int(a) * int(b)) if op == '/': print(int(a) // int(b))
57fbff1ecd278da221595af255f9a54d9e4a0ef2
452c698c426c45b306b4959f89799d9560601449
/polynomial_regression.py
7d7d63f6a732f4852bf1f998dfc362de2a495c0e
[]
no_license
khushipathak/ML_templates
a0f54f357b108903c3e422ca5b0c56a2aba913a1
e9928c0c81cffffa925070a062c173e0c1868d13
refs/heads/master
2022-04-16T07:55:30.651556
2020-04-16T13:05:09
2020-04-16T13:05:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,279
py
# Polynomial Regression # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # Importing the dataset dataset = pd.read_csv('Position_Salaries.csv') X = dataset.iloc[:, 1:2].values y = dataset.iloc[:, 2].values # Splitting the dataset into the Training set and Test set # WE WONT DO THIS BECAUSE OUR DATASET IS VERY SMALL """from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)""" # Feature Scaling """from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test = sc_X.transform(X_test)""" # Fitting Linear Regression to the dataset from sklearn.linear_model import LinearRegression lin_reg = LinearRegression() lin_reg.fit(X, y) # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures poly_reg = PolynomialFeatures(degree = 4) X_poly = poly_reg.fit_transform(X) #poly_reg.fit(X_poly, y) lin_reg_poly = LinearRegression() lin_reg_poly.fit(X_poly, y) # Visualising the Linear Regression results plt.scatter(X, y, color = 'red') plt.plot(X, lin_reg.predict(X), color = 'blue') plt.title('Truth or Bluff (Linear Regression)') plt.xlabel('Position level') plt.ylabel('Salary') plt.show() # Visualising the Polynomial Regression results plt.scatter(X, y, color = 'red') plt.plot(X, lin_reg_poly.predict(poly_reg.fit_transform(X)), color = 'blue') plt.title('Truth or Bluff (Polynomial Regression)') plt.xlabel('Position level') plt.ylabel('Salary') plt.show() # Visualising the Polynomial Regression results (for higher resolution and smoother curve) X_grid = np.arange(min(X), max(X), 0.1) X_grid = X_grid.reshape((len(X_grid), 1)) plt.scatter(X, y, color = 'red') plt.plot(X_grid, lin_reg_poly.predict(poly_reg.fit_transform(X_grid)), color = 'blue') plt.title('Truth or Bluff (Polynomial Regression) smoother') plt.xlabel('Position level') plt.ylabel('Salary') plt.show() # Predicting a new result with Linear Regression lin_reg.predict([[6.5]]) # Predicting a new result with Polynomial Regression lin_reg_poly.predict(poly_reg.fit_transform([[6.5]])) # #linReg.predict([[6.5]]) #linReg2.predict(polyReg.fit_transform([[6.5]]))
d2fec5ef863a58ae882b3eaa5bf73ef6f3839f05
bc76caf747d4de910de768a9809c85e57ee45ebc
/nba_automation/utilities/CustomListener.py
283a50dc6fc411591c4e4fa8aedb5487e68bbad8
[ "MIT" ]
permissive
sohailchd/RobotAndLocust
48b7491f227ee97bd618b0a6df292a626c58dc67
9ae953e293e12129db761b553691da935f6db89f
refs/heads/master
2020-04-17T01:30:44.986583
2019-01-17T17:25:01
2019-01-17T17:25:01
166,095,392
0
0
null
null
null
null
UTF-8
Python
false
false
1,757
py
from utilities.BrowserManager import BrowserManager from robot.libraries.BuiltIn import BuiltIn from robot.libraries.Screenshot import Screenshot import conf from utilities.CustomUtils import CustomUtils from robot.api import logger class CustomListener(object): ROBOT_LIBRARY_SCOPE = 'TEST SUITE' ROBOT_LISTENER_API_VERSION = 2 def __init__(self): self.ROBOT_LIBRARY_LISTENER = self print("init_listener called...") BrowserManager.initialize_browser() def start_suite(self,data, suite): print("start_suite listener called...") if not BrowserManager.get_browser(): BrowserManager.initialize_browser() def end_suite(self,data, suite): print("end_suite listener called...") # def _end_suite(self, name, attrs): # print('Suite %s (%s) ending.' % (name, attrs['id'])) def log_message(self,message): ''' ''' if message['level'] == 'FAIL': fname = "./failed_screenshots/" + self.test_name + ".png" logger.info(f'<a href="{fname}"> <i> SCREENSHOT </i></a>', html=True) def start_test(self,name,attributes): ''' Using hooks to save the test name to be used other methods. ''' self.test_name = name pass def end_test(self, name, attributes): """ The `end test` hook """ print(f"test ended with result : {attributes['status']} ") if attributes['status'] == "FAIL": CustomUtils.take_screenshot(f"{name}.png") def close(self): ''' ''' print("close called.........") BrowserManager.teardown_suite()
d9cf2daff3cef138e42f78dcdd0a82fc58ac3ee8
4cf9acba6ef4ec25eee76ad66cb595cacb09c181
/server.py
7cd81008afe6486f5138f1688fc885a555765e0d
[]
no_license
jscott1989/BlueBallsInc
f8c6a0b3cbe9b3701dc16f91daa05b06650331e3
2e8b2dfae6053dc7d286cddc26faefcf60e0d1a3
refs/heads/master
2016-09-05T18:13:41.568795
2012-08-09T06:47:20
2012-08-09T06:47:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,484
py
""" Server side of Blue Balls Inc. """ from sys import argv import os import bottle from bottle import get, post, view, static_file, route, redirect, abort, request from couchdbkit import Server import json bottle.debug(True) bottle.reload = True bottle.TEMPLATE_PATH = ["./templates"] root_directory = os.path.dirname(os.path.realpath(__file__)) db_host = os.environ.get('CLOUDANT_URL', "http://localhost:5984") db = Server(db_host).get_or_create_db("blueballs") @get('/') @view("wrap") def wrap_index(): return {"inner": "/inner/"} @get('/inner/') @view("index") def inner_index(): # The main page return {"level": 1, "auto_load_game": "false", "replay_mode": False} @post('/replay/new') def post_replay(): # Save the replay to the database try: # We decode then encode to ensure there's nothing bad in it replay = {"replay_flag": True, "name": request.POST['name'], "state": json.loads(request.POST['state'])} except: # TODO: Exception type abort(400, "Invalid state data") db.save_doc(replay) return redirect('/replay/%s' % replay['_id']) @get('/replay/:replay_id') @view("wrap") def wrap_replay(replay_id): return {"inner": "/inner/replay/%s" % replay_id} @get('/inner/replay/:replay_id') @view("index") def replay(replay_id): if not db.doc_exist(replay_id): abort(404, "Replay not found") replay = db.get(replay_id) if not replay.get('replay_flag'): abort(404, "Replay not found") return {"level": 1, "auto_load_game": "false", "replay_mode": True, "replay": json.dumps(replay)} @get('/level/:level_name') @view("wrap") def wrap_level(level_name): return {"inner": "/inner/level/%s" % level_name} @get('/inner/level/:level_name') @view("index") def play_level(level_name): # Jump to a particular level return {"level": level_name, "auto_load_game": "true", "replay_mode": False} @route('/css/<filepath:path>') def static_css(filepath): return static_file(filepath, root=root_directory + '/static/css/') @route('/img/<filepath:path>') def static_img(filepath): return static_file(filepath, root=root_directory + '/static/img/') @route('/js/<filepath:path>') def static_js(filepath): return static_file(filepath, root=root_directory + '/static/js/') @route('/sound/<filepath:path>') def static_sound(filepath): return static_file(filepath, root=root_directory + '/static/sound/') @route('/levels/<level>') def level(level): return static_file(level + '.js', root=root_directory + '/levels/') bottle.run(host='0.0.0.0', port=argv[1])
2b880ed1f82c06098d72ea38fd63ef4dfa9eb407
bc09d43caaa31697c8099bfafefb56e48504bfea
/occurrence_of_ME_and_MY.py
bfff98cdb76a53df5988df6df9f276e1105f805f
[]
no_license
FatemaBohra/python-program
103f2584eb2a31de0080059d013051e415ce23c9
ce647be15245098ae562099475cac52582e1b30f
refs/heads/main
2023-09-04T06:22:41.012712
2021-11-04T15:00:25
2021-11-04T15:00:25
418,728,284
0
0
null
null
null
null
UTF-8
Python
false
false
349
py
# Quetion-8(FILE HANDLING) def occurrence_of_ME_MY(file_name): file = open(file_name, 'r') file_list = file.read().split() count = 0 for i in range(0, len(file_list)): if file_list[i] == 'MY' or file_list[i] == 'ME': count = count + 1 file.close() return count print(occurrence_of_ME_MY('DATA.DAT.txt'))
6643171f45a1abb55c1f08e0b88e1f793f5b599c
5efc306e30024bc0490bb3e22810669b590e19a4
/baidupic/spiders/baidupic.py
1beec79e7951c617777c0053ece0ba847e79f253
[]
no_license
ZGC-demo/Baidupic
2aa127ed771214dc3c07db9c198d216cb2cc8943
312239fda0284220304370d1397f8846afe5cb87
refs/heads/master
2020-03-19T20:40:00.995880
2018-06-11T07:58:42
2018-06-11T07:58:42
136,910,843
1
0
null
2018-06-11T10:27:33
2018-06-11T10:27:33
null
UTF-8
Python
false
false
948
py
import scrapy import json from ..items import BaidupicItem class BaidupicSpider(scrapy.Spider): name = 'baidupicspider' allowed_domains = ['image.baidu.com'] pn = 0 def __init__(self, keywords=None, page=None, *args, **kwargs): super(BaidupicSpider, self).__init__(*args, **kwargs) self.init_url = 'https://image.baidu.com/search/acjson?tn=resultjson_com&ipn=rj&ct=201326592&is=&fp=result&queryWord=%s&cl=2&lm=-1&ie=utf-8&oe=utf-8&adpicid=&st=&z=&ic=&word=%s&s=&se=&tab=&width=&height=&face=&istype=&qc=&nc=1&fr=&rn=30&gsm=&1525406929428=&pn=0' % (keywords, keywords) self.start_urls = [self.init_url + str(30*x) for x in range(1, int(page))] def parse(self, response): data = json.loads(response.text)["data"] for each in data: if not each.__contains__('thumbURL'): continue item = BaidupicItem(url=each['thumbURL']) yield item
b08740255346a53fa8ec7c2417b89339512cad71
c16ea32a4cddb6b63ad3bacce3c6db0259d2bacd
/google/ads/googleads/v5/googleads-py/google/ads/googleads/v5/services/types/carrier_constant_service.py
f2b6d5375d401f3038ed62a7fe4870b6286bb9b8
[ "Apache-2.0" ]
permissive
dizcology/googleapis-gen
74a72b655fba2565233e5a289cfaea6dc7b91e1a
478f36572d7bcf1dc66038d0e76b9b3fa2abae63
refs/heads/master
2023-06-04T15:51:18.380826
2021-06-16T20:42:38
2021-06-16T20:42:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,276
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore __protobuf__ = proto.module( package='google.ads.googleads.v5.services', marshal='google.ads.googleads.v5', manifest={ 'GetCarrierConstantRequest', }, ) class GetCarrierConstantRequest(proto.Message): r"""Request message for [CarrierConstantService.GetCarrierConstant][google.ads.googleads.v5.services.CarrierConstantService.GetCarrierConstant]. Attributes: resource_name (str): Required. Resource name of the carrier constant to fetch. """ resource_name = proto.Field( proto.STRING, number=1, ) __all__ = tuple(sorted(__protobuf__.manifest))
[ "bazel-bot-development[bot]@users.noreply.github.com" ]
bazel-bot-development[bot]@users.noreply.github.com
6a1b449d48374d0236e01a797249dc7ed36bda8f
fcd965c9333ee328ec51bc41f5bc0300cc06dc33
/Trees/BinaryTrees/invertBinaryTree.py
ff36aca852fde299f4c691638ebff0e31c239ed8
[]
no_license
henrylin2008/Coding_Problems
699bb345481c14dc3faa8bab439776c7070a1cb0
281067e872f73a27f76ae10ab0f1564916bddd28
refs/heads/master
2023-01-11T11:55:47.936163
2022-12-24T07:50:17
2022-12-24T07:50:17
170,151,972
2
0
null
null
null
null
UTF-8
Python
false
false
2,260
py
# Invert Binary Tree # Level: Medium # https://www.algoexpert.io/questions/Invert%20Binary%20Tree # Write a function that takes in a Binary Tree and inverts it. In other words, the function should swap every left node # in the tree for its corresponding (mirrored) right node. Each Binary Tree node has a value stored in a property called # "value" and two children nodes stored in properties called "left" and "right," respectively. Children nodes can either # be Binary Tree nodes themselves or the None (null) value. # # Sample Input: # 1 # / \ # 2 3 # / \ / \ # 4 5 6 7 # / \ # 8 9 # # Sample Output: # 1 # / \ # 3 2 # / \ / \ # 7 6 5 4 # / \ # 9 8 # Method 1: iterative | Breadth first search, go through nodes level by level, swap left and right nodes, then append it # to the queue # Time: O(n) # Space: O(n) def invertBinaryTree(tree): queue = [tree] # using queue to store nodes while len[queue]: # if there's still node/s in the queue current = queue.pop(0) # current is first node in the queue if current is None: # skip if the node is null node continue swapLeftAndRight(current) # call helper function to swap left and right nodes queue.append(current.left) # add left node to the queue queue.append(current.right) # add right node to the queue def swapLeftAndRight(tree): # helper function that swap left and right nodes tree.left, tree.right = tree.right, tree.left # Method 2: Recursive | Efficient in Space; # Logic: start at the root node, recursive calls on invertBinaryTree for its left and right nodes # Time: O(n); n is number of nodes # Space: O(d): d is depth of the tree def invertBinaryTree(tree): if tree is None: # if tree is null, then skip it return swapLeftAndRight(tree) # call helper function to swap left and right nodes invertBinaryTree(tree.left) # recursive call on left side of the tree invertBinaryTree(tree.right) # recursive call on right side of the tree def swapLeftAndRight(tree): # helper function that swap left and right nodes tree.left, tree.right = tree.right, tree.left
2d1867c309751c37b717ebd8c792178e29f3ec0b
8afb5afd38548c631f6f9536846039ef6cb297b9
/_REPO/MICROSOFT/c9-python-getting-started/python-for-beginners/03_-_Comments/comments_for_debugging.py
0e556337e3699fa7ccc4a48a6c38132b1035d9e2
[ "MIT", "LicenseRef-scancode-generic-cla" ]
permissive
bgoonz/UsefulResourceRepo2.0
d87588ffd668bb498f7787b896cc7b20d83ce0ad
2cb4b45dd14a230aa0e800042e893f8dfb23beda
refs/heads/master
2023-03-17T01:22:05.254751
2022-08-11T03:18:22
2022-08-11T03:18:22
382,628,698
10
12
MIT
2022-10-10T14:13:54
2021-07-03T13:58:52
null
UTF-8
Python
false
false
59
py
print('Hello world') print('It's a small world after all')
40c900c79c7327d8f8160ca53984e624ccd1db22
06ee5a5d83466896bbfd1653206da0151d6aa81a
/apps/business/serializers/reason_serializer.py
163498465bee80f27fd29bf7a66b1577347785ed
[]
no_license
fengjy96/rest_task
201421a40ce42031223f61135d1d5e85809188e6
db1d7c4eb2d5d229ab54c6d5775f96fc1843716e
refs/heads/master
2020-07-22T19:48:19.940094
2019-09-02T13:40:11
2019-09-02T13:40:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
741
py
from rest_framework import serializers from business.models.reason import Reason class ReasonsListSerializer(serializers.ModelSerializer): """ 原因:增删改查 """ sender = serializers.SerializerMethodField() receiver = serializers.SerializerMethodField() def get_sender(self, obj): if obj.sender: return { 'id': obj.sender.id, 'name': obj.sender.name, } def get_receiver(self, obj): if obj.receiver: return { 'id': obj.receiver.id, 'name': obj.receiver.name, } class Meta: model = Reason fields = '__all__' depth = 1
6ff1780b3c83117a2da2abf8d6d4dbed1e39d2c7
4727dc81850451f9bb0578bccb24731f10d0b225
/file_cache/app.py
4d0dc4fcc58c08d187aea3502dc97c0507962e9d
[ "MIT" ]
permissive
Chise1/file_cache
27bac3b1e8116829f6f265d1466878cc060f01ca
3fa3da64ffb414102c1db454fcb5abc59ac74162
refs/heads/main
2023-04-15T07:27:50.530564
2021-04-24T01:56:41
2021-04-24T01:56:41
359,651,364
0
0
null
null
null
null
UTF-8
Python
false
false
1,007
py
from fastapi import FastAPI, File, UploadFile from pydantic import BaseModel from file_cache import settings try: import asyncio import uvloop asyncio.set_event_loop_policy(uvloop.EventLoopPolicy()) except: pass if settings.CACHE == "MEMORY": from file_cache.memory_cache import default_file_path, get_file_path app = FastAPI(title="文件缓存系统") class FileID(BaseModel): file_id: str class FilePath(BaseModel): file_path: str @app.post("/file/{project_id}", response_model=FileID) async def write_file(project_id: str, file: UploadFile = File(...,)): """ 写入文件 """ file_id = await default_file_path(project_id, file) return FileID(file_id=file_id) @app.get("/file/{project_id}/{file_id}", response_model=FilePath) async def file_path(project_id: str, file_id: str): file_path = await get_file_path(project_id, file_id) return FilePath(file_path=file_path) if __name__ == "__main__": import uvicorn uvicorn.run(app)