metadata
dataset_info:
features:
- name: depth
dtype: image
- name: rgb
dtype: image
- name: gt
dtype: image
- name: name
dtype: string
config_name: v1
splits:
- name: train
num_bytes: 7378488019
num_examples: 8025
- name: validation
num_bytes: 4190272788
num_examples: 4600
download_size: 3506288426
dataset_size: 11568760807
RGB-D Salient Object Detection Dataset (RGB-D SOD)
RGB-D Salient Object Detection (RGB-D SOD) aims to detect and segment objects that visually attract the most human interest from a pair of color and depth images.
Train
- COME-8K [8025 samples]
Dev
- COME-E [4600 samples]
Test
- Coming soon
How to use
from datasets import load_dataset
dataset = load_dataset(
"RGBD-SOD/rgbdsod_datasets", "v1", split="train", cache_dir="data"
)
print(dataset[0])
BibTeX entry and citation info
@inproceedings{zhang2021rgb,
title={RGB-D saliency detection via cascaded mutual information minimization},
author={Zhang, Jing and Fan, Deng-Ping and Dai, Yuchao and Yu, Xin and Zhong, Yiran and Barnes, Nick and Shao, Ling},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={4338--4347},
year={2021}
}