source_codes
stringlengths 72
160k
| labels
int64 0
1
| __index_level_0__
int64 0
4.4k
|
---|---|---|
pragma solidity ^0.4.23;
contract ERC20Basic {
function totalSupply() public view returns (uint256);
function balanceOf(address who) public view returns (uint256);
function transfer(address to, uint256 value) public returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
}
library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns (uint256 c) {
if (a == 0) {
return 0;
}
c = a * b;
assert(c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return a / b;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal pure returns (uint256 c) {
c = a + b;
assert(c >= a);
return c;
}
}
contract BasicToken is ERC20Basic {
using SafeMath for uint256;
mapping(address => uint256) balances;
uint256 totalSupply_;
function totalSupply() public view returns (uint256) {
return totalSupply_;
}
function transfer(address _to, uint256 _value) public returns (bool) {
require(_to != address(0));
require(_value <= balances[msg.sender]);
balances[msg.sender] = balances[msg.sender].sub(_value);
balances[_to] = balances[_to].add(_value);
emit Transfer(msg.sender, _to, _value);
return true;
}
function balanceOf(address _owner) public view returns (uint256) {
return balances[_owner];
}
}
contract ERC20 is ERC20Basic {
function allowance(address owner, address spender)
public view returns (uint256);
function transferFrom(address from, address to, uint256 value)
public returns (bool);
function approve(address spender, uint256 value) public returns (bool);
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
}
contract StandardToken is ERC20, BasicToken {
mapping (address => mapping (address => uint256)) internal allowed;
function transferFrom(
address _from,
address _to,
uint256 _value
)
public
returns (bool)
{
require(_to != address(0));
require(_value <= balances[_from]);
require(_value <= allowed[_from][msg.sender]);
balances[_from] = balances[_from].sub(_value);
balances[_to] = balances[_to].add(_value);
allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value);
emit Transfer(_from, _to, _value);
return true;
}
function approve(address _spender, uint256 _value) public returns (bool) {
allowed[msg.sender][_spender] = _value;
emit Approval(msg.sender, _spender, _value);
return true;
}
function allowance(
address _owner,
address _spender
)
public
view
returns (uint256)
{
return allowed[_owner][_spender];
}
function increaseApproval(
address _spender,
uint _addedValue
)
public
returns (bool)
{
allowed[msg.sender][_spender] = (
allowed[msg.sender][_spender].add(_addedValue));
emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
function decreaseApproval(
address _spender,
uint _subtractedValue
)
public
returns (bool)
{
uint oldValue = allowed[msg.sender][_spender];
if (_subtractedValue > oldValue) {
allowed[msg.sender][_spender] = 0;
} else {
allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue);
}
emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
}
contract Ownable {
address public owner;
event OwnershipRenounced(address indexed previousOwner);
event OwnershipTransferred(
address indexed previousOwner,
address indexed newOwner
);
constructor() public {
owner = msg.sender;
}
modifier onlyOwner() {
require(msg.sender == owner);
_;
}
function renounceOwnership() public onlyOwner {
emit OwnershipRenounced(owner);
owner = address(0);
}
function transferOwnership(address _newOwner) public onlyOwner {
_transferOwnership(_newOwner);
}
function _transferOwnership(address _newOwner) internal {
require(_newOwner != address(0));
emit OwnershipTransferred(owner, _newOwner);
owner = _newOwner;
}
}
contract FreezableToken is StandardToken {
mapping (bytes32 => uint64) internal chains;
mapping (bytes32 => uint) internal freezings;
mapping (address => uint) internal freezingBalance;
event Freezed(address indexed to, uint64 release, uint amount);
event Released(address indexed owner, uint amount);
function balanceOf(address _owner) public view returns (uint256 balance) {
return super.balanceOf(_owner) + freezingBalance[_owner];
}
function actualBalanceOf(address _owner) public view returns (uint256 balance) {
return super.balanceOf(_owner);
}
function freezingBalanceOf(address _owner) public view returns (uint256 balance) {
return freezingBalance[_owner];
}
function freezingCount(address _addr) public view returns (uint count) {
uint64 release = chains[toKey(_addr, 0)];
while (release != 0) {
count++;
release = chains[toKey(_addr, release)];
}
}
function getFreezing(address _addr, uint _index) public view returns (uint64 _release, uint _balance) {
for (uint i = 0; i < _index + 1; i++) {
_release = chains[toKey(_addr, _release)];
if (_release == 0) {
return;
}
}
_balance = freezings[toKey(_addr, _release)];
}
function freezeTo(address _to, uint _amount, uint64 _until) public {
require(_to != address(0));
require(_amount <= balances[msg.sender]);
balances[msg.sender] = balances[msg.sender].sub(_amount);
bytes32 currentKey = toKey(_to, _until);
freezings[currentKey] = freezings[currentKey].add(_amount);
freezingBalance[_to] = freezingBalance[_to].add(_amount);
freeze(_to, _until);
emit Transfer(msg.sender, _to, _amount);
emit Freezed(_to, _until, _amount);
}
function releaseOnce() public {
bytes32 headKey = toKey(msg.sender, 0);
uint64 head = chains[headKey];
require(head != 0);
require(uint64(block.timestamp) > head);
bytes32 currentKey = toKey(msg.sender, head);
uint64 next = chains[currentKey];
uint amount = freezings[currentKey];
delete freezings[currentKey];
balances[msg.sender] = balances[msg.sender].add(amount);
freezingBalance[msg.sender] = freezingBalance[msg.sender].sub(amount);
if (next == 0) {
delete chains[headKey];
} else {
chains[headKey] = next;
delete chains[currentKey];
}
emit Released(msg.sender, amount);
}
function releaseAll() public returns (uint tokens) {
uint release;
uint balance;
(release, balance) = getFreezing(msg.sender, 0);
while (release != 0 && block.timestamp > release) {
releaseOnce();
tokens += balance;
(release, balance) = getFreezing(msg.sender, 0);
}
}
function toKey(address _addr, uint _release) internal pure returns (bytes32 result) {
result = 0x5749534800000000000000000000000000000000000000000000000000000000;
assembly {
result := or(result, mul(_addr, 0x10000000000000000))
result := or(result, _release)
}
}
function freeze(address _to, uint64 _until) internal {
require(_until > block.timestamp);
bytes32 key = toKey(_to, _until);
bytes32 parentKey = toKey(_to, uint64(0));
uint64 next = chains[parentKey];
if (next == 0) {
chains[parentKey] = _until;
return;
}
bytes32 nextKey = toKey(_to, next);
uint parent;
while (next != 0 && _until > next) {
parent = next;
parentKey = nextKey;
next = chains[nextKey];
nextKey = toKey(_to, next);
}
if (_until == next) {
return;
}
if (next != 0) {
chains[key] = next;
}
chains[parentKey] = _until;
}
}
contract BurnableToken is BasicToken {
event Burn(address indexed burner, uint256 value);
function burn(uint256 _value) public {
_burn(msg.sender, _value);
}
function _burn(address _who, uint256 _value) internal {
require(_value <= balances[_who]);
balances[_who] = balances[_who].sub(_value);
totalSupply_ = totalSupply_.sub(_value);
emit Burn(_who, _value);
emit Transfer(_who, address(0), _value);
}
}
contract Pausable is Ownable {
event Pause();
event Unpause();
bool public paused = false;
modifier whenNotPaused() {
require(!paused);
_;
}
modifier whenPaused() {
require(paused);
_;
}
function pause() onlyOwner whenNotPaused public {
paused = true;
emit Pause();
}
function unpause() onlyOwner whenPaused public {
paused = false;
emit Unpause();
}
}
contract TCNXToken is FreezableToken, BurnableToken, Pausable
{
address public fundsWallet = 0x368E1ED074e2F6bBEca5731C8BaE8460d1cA2529;
uint256 public totalSupply = 20 * 1000000000 ether;
uint256 public blockDate = 1561852800;
constructor() public {
transferOwnership(fundsWallet);
balances[fundsWallet] = totalSupply;
Transfer(0x0, fundsWallet, totalSupply);
}
function name() public pure returns (string _name) {
return "Tercet Network";
}
function symbol() public pure returns (string _symbol) {
return "TCNX";
}
function decimals() public pure returns (uint8 _decimals) {
return 18;
}
function transferFrom(address _from, address _to, uint256 _value) public returns (bool _success) {
require(!paused);
require(!isBlocked(_from, _value));
return super.transferFrom(_from, _to, _value);
}
function transfer(address _to, uint256 _value) public returns (bool _success) {
require(!paused);
require(!isBlocked(msg.sender, _value));
return super.transfer(_to, _value);
}
function isBlocked(address _from, uint256 _value) returns(bool _blocked){
if(_from != fundsWallet || now > blockDate){
return false;
}
if(balances[_from].sub(_value) < totalSupply.mul(50).div(100)){
return true;
}
return false;
}
} | 0 | 1,769 |
pragma solidity ^0.4.18;
contract FUTX {
uint256 constant MAX_UINT256 = 2**256 - 1;
uint256 MAX_SUBMITTED = 5000671576194550000000;
uint256 _totalSupply = 0;
uint256[] levels = [
87719298245614000000,
198955253301794000000,
373500707847248000000,
641147766670778000000,
984004909527921000000,
1484004909527920000000,
2184004909527920000000,
3084004909527920000000,
4150671576194590000000,
5000671576194550000000
];
uint256[] ratios = [
114,
89,
55,
34,
21,
13,
8,
5,
3,
2 ];
uint256 _submitted = 0;
uint256 public tier = 0;
event Transfer(address indexed _from, address indexed _to, uint _value);
event Approval(address indexed _owner, address indexed _spender, uint _value);
event Mined(address indexed _miner, uint _value);
event WaitStarted(uint256 endTime);
event SwapStarted(uint256 endTime);
event MiningStart(uint256 end_time, uint256 swap_time, uint256 swap_end_time);
event MiningExtended(uint256 end_time, uint256 swap_time, uint256 swap_end_time);
string public name = "Futereum X";
uint8 public decimals = 18;
string public symbol = "FUTX";
bool public swap = false;
bool public wait = false;
bool public extended = false;
uint256 public endTime;
uint256 swapTime;
uint256 swapEndTime;
uint256 endTimeExtended;
uint256 swapTimeExtended;
uint256 swapEndTimeExtended;
uint256 public payRate = 0;
uint256 submittedFeesPaid = 0;
uint256 penalty = 0;
uint256 reservedFees = 0;
mapping (address => uint256) balances;
mapping (address => mapping (address => uint256)) allowed;
function () external payable {
require(msg.sender != address(0) &&
tier != 10 &&
swap == false &&
wait == false);
uint256 issued = mint(msg.sender, msg.value);
Mined(msg.sender, issued);
Transfer(this, msg.sender, issued);
}
function FUTX() public {
_start();
}
function _start() internal
{
swap = false;
wait = false;
extended = false;
endTime = now + 90 days;
swapTime = endTime + 30 days;
swapEndTime = swapTime + 5 days;
endTimeExtended = now + 270 days;
swapTimeExtended = endTimeExtended + 90 days;
swapEndTimeExtended = swapTimeExtended + 5 days;
submittedFeesPaid = 0;
_submitted = 0;
reservedFees = 0;
payRate = 0;
tier = 0;
MiningStart(endTime, swapTime, swapEndTime);
}
function restart() public {
require(swap && now >= endTime);
penalty = this.balance * 2000 / 10000;
payFees();
_start();
}
function totalSupply() public constant returns (uint)
{
return _totalSupply;
}
function mint(address _to, uint256 _value) internal returns (uint256)
{
uint256 total = _submitted + _value;
if (total > MAX_SUBMITTED)
{
uint256 refund = total - MAX_SUBMITTED - 1;
_value = _value - refund;
_to.transfer(refund);
}
_submitted += _value;
total -= refund;
uint256 tokens = calculateTokens(total, _value);
balances[_to] += tokens;
_totalSupply += tokens;
return tokens;
}
function calculateTokens(uint256 total, uint256 _value) internal returns (uint256)
{
if (tier == 10)
{
return 74000000;
}
uint256 tokens = 0;
if (total > levels[tier])
{
uint256 remaining = total - levels[tier];
_value -= remaining;
tokens = (_value) * ratios[tier];
tier += 1;
tokens += calculateTokens(total, remaining);
}
else
{
tokens = _value * ratios[tier];
}
return tokens;
}
function currentTier() public view returns (uint256) {
if (tier == 10)
{
return 10;
}
else
{
return tier + 1;
}
}
function leftInTier() public view returns (uint256) {
if (tier == 10) {
return 0;
}
else
{
return levels[tier] - _submitted;
}
}
function submitted() public view returns (uint256) {
return _submitted;
}
function balanceMinusFeesOutstanding() public view returns (uint256) {
return this.balance - (penalty + (_submitted - submittedFeesPaid) * 1530 / 10000);
}
function calulateRate() internal {
reservedFees = penalty + (_submitted - submittedFeesPaid) * 1530 / 10000;
uint256 tokens = _totalSupply / 1 ether;
payRate = (this.balance - reservedFees);
payRate = payRate / tokens;
}
function _updateState() internal {
if (now >= endTime)
{
if(!swap && !wait)
{
if (extended)
{
wait = true;
endTime = swapTimeExtended;
WaitStarted(endTime);
}
else if (tier == 10)
{
wait = true;
endTime = swapTime;
WaitStarted(endTime);
}
else
{
endTime = endTimeExtended;
extended = true;
MiningExtended(endTime, swapTime, swapEndTime);
}
}
else if (wait)
{
swap = true;
wait = false;
if (extended)
{
endTime = swapEndTimeExtended;
}
else
{
endTime = swapEndTime;
}
SwapStarted(endTime);
}
}
}
function transfer(address _to, uint256 _value) public returns (bool success) {
require(balances[msg.sender] >= _value);
_updateState();
if (_to == address(this))
{
require(swap);
if (payRate == 0)
{
calulateRate();
}
uint256 amount = _value * payRate;
amount /= 1 ether;
balances[msg.sender] -= _value;
_totalSupply -= _value;
Transfer(msg.sender, _to, _value);
msg.sender.transfer(amount);
} else
{
balances[msg.sender] -= _value;
balances[_to] += _value;
Transfer(msg.sender, _to, _value);
}
return true;
}
function transferFrom(address _from, address _to, uint256 _value) public returns (bool success) {
uint256 allowance = allowed[_from][msg.sender];
require(balances[_from] >= _value && allowance >= _value);
balances[_to] += _value;
balances[_from] -= _value;
if (allowance < MAX_UINT256) {
allowed[_from][msg.sender] -= _value;
}
Transfer(_from, _to, _value);
return true;
}
function balanceOf(address _owner) view public returns (uint256 balance) {
return balances[_owner];
}
function approve(address _spender, uint256 _value) public returns (bool success) {
allowed[msg.sender][_spender] = _value;
Approval(msg.sender, _spender, _value);
return true;
}
function allowance(address _owner, address _spender) view public returns (uint256 remaining) {
return allowed[_owner][_spender];
}
address public foundation = 0x950ec4ef693d90f8519c4213821e462426d30905;
address public owner = 0x78BFCA5E20B0D710EbEF98249f68d9320eE423be;
address public dev = 0x5d2b9f5345e69e2390ce4c26ccc9c2910a097520;
function payFees() public {
_updateState();
uint256 fees = penalty + (_submitted - submittedFeesPaid) * 1530 / 10000;
submittedFeesPaid = _submitted;
reservedFees = 0;
penalty = 0;
if (fees > 0)
{
foundation.transfer(fees / 3);
owner.transfer(fees / 3);
dev.transfer(fees / 3);
}
}
function changeFoundation (address _receiver) public
{
require(msg.sender == foundation);
foundation = _receiver;
}
function changeOwner (address _receiver) public
{
require(msg.sender == owner);
owner = _receiver;
}
function changeDev (address _receiver) public
{
require(msg.sender == dev);
dev = _receiver;
}
} | 0 | 1,220 |
pragma solidity ^0.4.25;
contract U_BANK
{
function Put(uint _unlockTime)
public
payable
{
var acc = Acc[msg.sender];
acc.balance += msg.value;
acc.unlockTime = _unlockTime>now?_unlockTime:now;
LogFile.AddMessage(msg.sender,msg.value,"Put");
}
function Collect(uint _am)
public
payable
{
var acc = Acc[msg.sender];
if( acc.balance>=MinSum && acc.balance>=_am && now>acc.unlockTime)
{
if(msg.sender.call.value(_am)())
{
acc.balance-=_am;
LogFile.AddMessage(msg.sender,_am,"Collect");
}
}
}
function()
public
payable
{
Put(0);
}
struct Holder
{
uint unlockTime;
uint balance;
}
mapping (address => Holder) public Acc;
Log LogFile;
uint public MinSum = 2 ether;
function U_BANK(address log) public{
LogFile = Log(log);
}
}
contract Log
{
struct Message
{
address Sender;
string Data;
uint Val;
uint Time;
}
Message[] public History;
Message LastMsg;
function AddMessage(address _adr,uint _val,string _data)
public
{
LastMsg.Sender = _adr;
LastMsg.Time = now;
LastMsg.Val = _val;
LastMsg.Data = _data;
History.push(LastMsg);
}
} | 0 | 44 |
pragma solidity ^0.4.25;
contract ERC20 {
bytes32 public standard;
bytes32 public name;
bytes32 public symbol;
uint256 public totalSupply;
uint8 public decimals;
bool public allowTransactions;
mapping (address => uint256) public balanceOf;
mapping (address => mapping (address => uint256)) public allowance;
function transfer(address _to, uint256 _value) returns (bool success);
function approveAndCall(address _spender, uint256 _value, bytes _extraData) returns (bool success);
function approve(address _spender, uint256 _value) returns (bool success);
function transferFrom(address _from, address _to, uint256 _value) returns (bool success);
}
contract ExToke {
string public name = "ExToke Token";
string public symbol = "XTE";
uint8 public decimals = 18;
uint256 public crowdSaleSupply = 500000000 * (uint256(10) ** decimals);
uint256 public tokenSwapSupply = 3000000000 * (uint256(10) ** decimals);
uint256 public dividendSupply = 2400000000 * (uint256(10) ** decimals);
uint256 public totalSupply = 7000000000 * (uint256(10) ** decimals);
mapping(address => uint256) public balanceOf;
address public oldAddress = 0x28925299Ee1EDd8Fd68316eAA64b651456694f0f;
address tokenAdmin = 0xEd86f5216BCAFDd85E5875d35463Aca60925bF16;
uint256 public finishTime = 1548057600;
uint256[] public releaseDates =
[1543665600, 1546344000, 1549022400, 1551441600, 1554120000, 1556712000,
1559390400, 1561982400, 1564660800, 1567339200, 1569931200, 1572609600,
1575201600, 1577880000, 1580558400, 1583064000, 1585742400, 1588334400,
1591012800, 1593604800, 1596283200, 1598961600, 1601553600, 1604232000];
uint256 public nextRelease = 0;
function ExToke() public {
balanceOf[tokenAdmin] = 1100000000 * (uint256(10) ** decimals);
emit Transfer(address(0), msg.sender, totalSupply);
}
uint256 public scaling = uint256(10) ** 8;
mapping(address => uint256) public scaledDividendBalanceOf;
uint256 public scaledDividendPerToken;
mapping(address => uint256) public scaledDividendCreditedTo;
function update(address account) internal {
if(nextRelease < 24 && block.timestamp > releaseDates[nextRelease]){
releaseDivTokens();
}
uint256 owed =
scaledDividendPerToken - scaledDividendCreditedTo[account];
scaledDividendBalanceOf[account] += balanceOf[account] * owed;
scaledDividendCreditedTo[account] = scaledDividendPerToken;
}
event Transfer(address indexed from, address indexed to, uint256 value);
event Approval(address indexed owner, address indexed spender, uint256 value);
mapping(address => mapping(address => uint256)) public allowance;
function transfer(address to, uint256 value) public returns (bool success) {
require(balanceOf[msg.sender] >= value);
update(msg.sender);
update(to);
balanceOf[msg.sender] -= value;
balanceOf[to] += value;
emit Transfer(msg.sender, to, value);
return true;
}
function transferFrom(address from, address to, uint256 value)
public
returns (bool success)
{
require(value <= balanceOf[from]);
require(value <= allowance[from][msg.sender]);
update(from);
update(to);
balanceOf[from] -= value;
balanceOf[to] += value;
allowance[from][msg.sender] -= value;
emit Transfer(from, to, value);
return true;
}
uint256 public scaledRemainder = 0;
function() public payable{
if(finishTime >= block.timestamp && crowdSaleSupply >= msg.value * 100000){
balanceOf[msg.sender] += msg.value * 100000;
crowdSaleSupply -= msg.value * 100000;
}
else if(finishTime < block.timestamp){
balanceOf[tokenAdmin] += crowdSaleSupply;
crowdSaleSupply = 0;
}
}
function releaseDivTokens() public payable {
require(block.timestamp > releaseDates[nextRelease]);
uint256 releaseAmount = 100000000 * (uint256(10) ** decimals);
dividendSupply -= 100000000 * (uint256(10) ** decimals);
uint256 available = (releaseAmount * scaling) + scaledRemainder;
scaledDividendPerToken += available / totalSupply;
scaledRemainder = available % totalSupply;
nextRelease += 1;
}
function withdraw() public {
update(msg.sender);
uint256 amount = scaledDividendBalanceOf[msg.sender] / scaling;
scaledDividendBalanceOf[msg.sender] %= scaling;
balanceOf[msg.sender] += amount;
}
function approve(address spender, uint256 value)
public
returns (bool success)
{
allowance[msg.sender][spender] = value;
emit Approval(msg.sender, spender, value);
return true;
}
function swap(uint256 sendAmount) returns (bool success){
require(tokenSwapSupply >= sendAmount * 3);
if(ERC20(oldAddress).transferFrom(msg.sender, tokenAdmin, sendAmount)){
balanceOf[msg.sender] += sendAmount * 3;
tokenSwapSupply -= sendAmount * 3;
}
}
} | 0 | 289 |
pragma solidity ^0.4.18;
contract SafeMath {
function safeAdd(uint a, uint b) public pure returns (uint c) {
c = a + b;
require(c >= a);
}
function safeSub(uint a, uint b) public pure returns (uint c) {
require(b <= a);
c = a - b;
}
function safeMul(uint a, uint b) public pure returns (uint c) {
c = a * b;
require(a == 0 || c / a == b);
}
function safeDiv(uint a, uint b) public pure returns (uint c) {
require(b > 0);
c = a / b;
}
}
contract ERC20Interface {
function totalSupply() public constant returns (uint);
function balanceOf(address tokenOwner) public constant returns (uint balance);
function allowance(address tokenOwner, address spender) public constant returns (uint remaining);
function transfer(address to, uint tokens) public returns (bool success);
function approve(address spender, uint tokens) public returns (bool success);
function transferFrom(address from, address to, uint tokens) public returns (bool success);
event Transfer(address indexed from, address indexed to, uint tokens);
event Approval(address indexed tokenOwner, address indexed spender, uint tokens);
}
contract ApproveAndCallFallBack {
function receiveApproval(address from, uint256 tokens, address token, bytes data) public;
}
contract Owned {
address public owner;
address public newOwner;
event OwnershipTransferred(address indexed _from, address indexed _to);
function Owned() public {
owner = msg.sender;
}
modifier onlyOwner {
require(msg.sender == owner);
_;
}
function transferOwnership(address _newOwner) public onlyOwner {
newOwner = _newOwner;
}
function acceptOwnership() public {
require(msg.sender == newOwner);
OwnershipTransferred(owner, newOwner);
owner = newOwner;
newOwner = address(0);
}
}
contract SatoMotive is ERC20Interface, Owned, SafeMath {
string public symbol;
string public name;
uint8 public decimals;
uint public _totalSupply;
mapping(address => uint) balances;
mapping(address => mapping(address => uint)) allowed;
function SatoMotive() public {
symbol = "SV2X";
name = "SatoMotive Token";
decimals = 18;
_totalSupply = 100000000000000000000000000;
balances[0xf44970e29510EDE8fFED726CF8C447F7512fb59f] = _totalSupply;
Transfer(address(0), 0xf44970e29510EDE8fFED726CF8C447F7512fb59f, _totalSupply);
}
function totalSupply() public constant returns (uint) {
return _totalSupply - balances[address(0)];
}
function balanceOf(address tokenOwner) public constant returns (uint balance) {
return balances[tokenOwner];
}
function transfer(address to, uint tokens) public returns (bool success) {
balances[msg.sender] = safeSub(balances[msg.sender], tokens);
balances[to] = safeAdd(balances[to], tokens);
Transfer(msg.sender, to, tokens);
return true;
}
function approve(address spender, uint tokens) public returns (bool success) {
allowed[msg.sender][spender] = tokens;
Approval(msg.sender, spender, tokens);
return true;
}
function transferFrom(address from, address to, uint tokens) public returns (bool success) {
balances[from] = safeSub(balances[from], tokens);
allowed[from][msg.sender] = safeSub(allowed[from][msg.sender], tokens);
balances[to] = safeAdd(balances[to], tokens);
Transfer(from, to, tokens);
return true;
}
function allowance(address tokenOwner, address spender) public constant returns (uint remaining) {
return allowed[tokenOwner][spender];
}
function approveAndCall(address spender, uint tokens, bytes data) public returns (bool success) {
allowed[msg.sender][spender] = tokens;
Approval(msg.sender, spender, tokens);
ApproveAndCallFallBack(spender).receiveApproval(msg.sender, tokens, this, data);
return true;
}
function () public payable {
revert();
}
function transferAnyERC20Token(address tokenAddress, uint tokens) public onlyOwner returns (bool success) {
return ERC20Interface(tokenAddress).transfer(owner, tokens);
}
} | 1 | 2,486 |
pragma solidity ^0.4.11;
library SafeMath {
function mul(uint256 a, uint256 b) internal constant returns (uint256) {
uint256 c = a * b;
assert(a == 0 || c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal constant returns (uint256) {
uint256 c = a / b;
return c;
}
function sub(uint256 a, uint256 b) internal constant returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal constant returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;
}
}
contract ERC20Basic {
uint256 public totalSupply;
function balanceOf(address who) public constant returns (uint256);
function transfer(address to, uint256 value) public returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
}
contract ERC20 is ERC20Basic {
function allowance(address owner, address spender) public constant returns (uint256);
function transferFrom(address from, address to, uint256 value) public returns (bool);
function approve(address spender, uint256 value) public returns (bool);
event Approval(address indexed owner, address indexed spender, uint256 value);
}
contract BasicToken is ERC20Basic {
using SafeMath for uint256;
mapping(address => uint256) balances;
function transfer(address _to, uint256 _value) public returns (bool) {
require(_to != address(0));
balances[msg.sender] = balances[msg.sender].sub(_value);
balances[_to] = balances[_to].add(_value);
Transfer(msg.sender, _to, _value);
return true;
}
function balanceOf(address _owner) public constant returns (uint256 balance) {
return balances[_owner];
}
}
contract StandardToken is ERC20, BasicToken {
mapping (address => mapping (address => uint256)) allowed;
function transferFrom(address _from, address _to, uint256 _value) public returns (bool) {
require(_to != address(0));
uint256 _allowance = allowed[_from][msg.sender];
balances[_from] = balances[_from].sub(_value);
balances[_to] = balances[_to].add(_value);
allowed[_from][msg.sender] = _allowance.sub(_value);
Transfer(_from, _to, _value);
return true;
}
function approve(address _spender, uint256 _value) public returns (bool) {
allowed[msg.sender][_spender] = _value;
Approval(msg.sender, _spender, _value);
return true;
}
function allowance(address _owner, address _spender) public constant returns (uint256 remaining) {
return allowed[_owner][_spender];
}
function increaseApproval (address _spender, uint _addedValue)
returns (bool success) {
allowed[msg.sender][_spender] = allowed[msg.sender][_spender].add(_addedValue);
Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
function decreaseApproval (address _spender, uint _subtractedValue)
returns (bool success) {
uint oldValue = allowed[msg.sender][_spender];
if (_subtractedValue > oldValue) {
allowed[msg.sender][_spender] = 0;
} else {
allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue);
}
Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
}
library Bonus {
uint256 constant pointMultiplier = 1e18;
uint16 constant ORIGIN_YEAR = 1970;
function getBonusFactor(uint256 basisTokens, uint timestamp)
internal pure returns (uint256 factor)
{
uint256[4][5] memory factors = [[uint256(300), 400, 500, 750],
[uint256(200), 300, 400, 600],
[uint256(150), 250, 300, 500],
[uint256(100), 150, 250, 400],
[uint256(0), 100, 150, 300]];
uint[4] memory cutofftimes = [toTimestamp(2018, 3, 24),
toTimestamp(2018, 4, 5),
toTimestamp(2018, 5, 5),
toTimestamp(2018, 6, 5)];
uint256 tokenAmount = basisTokens / pointMultiplier;
uint256 timeIndex = 4;
uint256 amountIndex = 0;
if (tokenAmount >= 500000000) {
amountIndex = 3;
} else if (tokenAmount >= 100000000) {
amountIndex = 2;
} else if (tokenAmount >= 25000000) {
amountIndex = 1;
} else {
}
uint256 maxcutoffindex = cutofftimes.length;
for (uint256 i = 0; i < maxcutoffindex; i++) {
if (timestamp < cutofftimes[i]) {
timeIndex = i;
break;
}
}
return factors[timeIndex][amountIndex];
}
function toTimestamp(uint16 year, uint8 month, uint8 day)
internal pure returns (uint timestamp) {
uint16 i;
timestamp += (year - ORIGIN_YEAR) * 1 years;
timestamp += (leapYearsBefore(year) - leapYearsBefore(ORIGIN_YEAR)) * 1 days;
uint8[12] memory monthDayCounts;
monthDayCounts[0] = 31;
if (isLeapYear(year)) {
monthDayCounts[1] = 29;
}
else {
monthDayCounts[1] = 28;
}
monthDayCounts[2] = 31;
monthDayCounts[3] = 30;
monthDayCounts[4] = 31;
monthDayCounts[5] = 30;
monthDayCounts[6] = 31;
monthDayCounts[7] = 31;
monthDayCounts[8] = 30;
monthDayCounts[9] = 31;
monthDayCounts[10] = 30;
monthDayCounts[11] = 31;
for (i = 1; i < month; i++) {
timestamp += monthDayCounts[i - 1] * 1 days;
}
timestamp += (day - 1) * 1 days;
return timestamp;
}
function leapYearsBefore(uint year)
internal pure returns (uint) {
year -= 1;
return year / 4 - year / 100 + year / 400;
}
function isLeapYear(uint16 year)
internal pure returns (bool) {
if (year % 4 != 0) {
return false;
}
if (year % 100 != 0) {
return true;
}
if (year % 400 != 0) {
return false;
}
return true;
}
}
contract ClearToken is StandardToken {
enum States {
Initial,
ValuationSet,
Ico,
Underfunded,
Operational,
Paused
}
mapping(address => uint256) public ethPossibleRefunds;
uint256 public soldTokens;
string public constant name = "CLEAR Token";
string public constant symbol = "CLEAR";
uint8 public constant decimals = 18;
mapping(address => bool) public whitelist;
address public reserves;
address public stateControl;
address public whitelistControl;
address public withdrawControl;
address public tokenAssignmentControl;
States public state;
uint256 public startAcceptingFundsBlock;
uint256 public endTimestamp;
uint256 public ETH_CLEAR;
uint256 public constant NZD_CLEAR = 50;
uint256 constant pointMultiplier = 1e18;
uint256 public constant maxTotalSupply = 102400000000 * pointMultiplier;
uint256 public constant percentForSale = 50;
event Mint(address indexed to, uint256 amount);
event MintFinished();
bool public mintingFinished = false;
function ClearToken(
address _stateControl
, address _whitelistControl
, address _withdrawControl
, address _tokenAssignmentControl
, address _reserves
) public
{
stateControl = _stateControl;
whitelistControl = _whitelistControl;
withdrawControl = _withdrawControl;
tokenAssignmentControl = _tokenAssignmentControl;
moveToState(States.Initial);
endTimestamp = 0;
ETH_CLEAR = 0;
totalSupply = maxTotalSupply;
soldTokens = 0;
reserves = _reserves;
balances[reserves] = totalSupply;
Mint(reserves, totalSupply);
Transfer(0x0, reserves, totalSupply);
}
event Whitelisted(address addr);
event StateTransition(States oldState, States newState);
modifier onlyWhitelist() {
require(msg.sender == whitelistControl);
_;
}
modifier onlyStateControl() {
require(msg.sender == stateControl);
_;
}
modifier onlyTokenAssignmentControl() {
require(msg.sender == tokenAssignmentControl);
_;
}
modifier onlyWithdraw() {
require(msg.sender == withdrawControl);
_;
}
modifier requireState(States _requiredState) {
require(state == _requiredState);
_;
}
function() payable
public
requireState(States.Ico)
{
require(whitelist[msg.sender] == true);
require(block.timestamp < endTimestamp);
require(block.number >= startAcceptingFundsBlock);
uint256 soldToTuserWithBonus = calcBonus(msg.value);
issueTokensToUser(msg.sender, soldToTuserWithBonus);
ethPossibleRefunds[msg.sender] = ethPossibleRefunds[msg.sender].add(msg.value);
}
function issueTokensToUser(address beneficiary, uint256 amount)
internal
{
uint256 soldTokensAfterInvestment = soldTokens.add(amount);
require(soldTokensAfterInvestment <= maxTotalSupply.mul(percentForSale).div(100));
balances[beneficiary] = balances[beneficiary].add(amount);
balances[reserves] = balances[reserves].sub(amount);
soldTokens = soldTokensAfterInvestment;
Transfer(reserves, beneficiary, amount);
}
function calcBonus(uint256 weiAmount)
constant
public
returns (uint256 resultingTokens)
{
uint256 basisTokens = weiAmount.mul(ETH_CLEAR);
uint256 perMillBonus = Bonus.getBonusFactor(basisTokens, now);
return basisTokens.mul(per_mill + perMillBonus).div(per_mill);
}
uint256 constant per_mill = 1000;
function moveToState(States _newState)
internal
{
StateTransition(state, _newState);
state = _newState;
}
function updateEthICOVariables(uint256 _new_ETH_NZD, uint256 _newEndTimestamp)
public
onlyStateControl
{
require(state == States.Initial || state == States.ValuationSet);
require(_new_ETH_NZD > 0);
require(block.timestamp < _newEndTimestamp);
endTimestamp = _newEndTimestamp;
ETH_CLEAR = _new_ETH_NZD.mul(NZD_CLEAR);
moveToState(States.ValuationSet);
}
function updateETHNZD(uint256 _new_ETH_NZD)
public
onlyTokenAssignmentControl
requireState(States.Ico)
{
require(_new_ETH_NZD > 0);
ETH_CLEAR = _new_ETH_NZD.mul(NZD_CLEAR);
}
function startICO()
public
onlyStateControl
requireState(States.ValuationSet)
{
require(block.timestamp < endTimestamp);
startAcceptingFundsBlock = block.number;
moveToState(States.Ico);
}
function addPresaleAmount(address beneficiary, uint256 amount)
public
onlyTokenAssignmentControl
{
require(state == States.ValuationSet || state == States.Ico);
issueTokensToUser(beneficiary, amount);
}
function endICO()
public
onlyStateControl
requireState(States.Ico)
{
finishMinting();
moveToState(States.Operational);
}
function anyoneEndICO()
public
requireState(States.Ico)
{
require(block.timestamp > endTimestamp);
finishMinting();
moveToState(States.Operational);
}
function finishMinting()
internal
{
mintingFinished = true;
MintFinished();
}
function addToWhitelist(address _whitelisted)
public
onlyWhitelist
{
whitelist[_whitelisted] = true;
Whitelisted(_whitelisted);
}
function pause()
public
onlyStateControl
requireState(States.Ico)
{
moveToState(States.Paused);
}
function abort()
public
onlyStateControl
requireState(States.Paused)
{
moveToState(States.Underfunded);
}
function resumeICO()
public
onlyStateControl
requireState(States.Paused)
{
moveToState(States.Ico);
}
function requestRefund()
public
requireState(States.Underfunded)
{
require(ethPossibleRefunds[msg.sender] > 0);
uint256 payout = ethPossibleRefunds[msg.sender];
ethPossibleRefunds[msg.sender] = 0;
msg.sender.transfer(payout);
}
function requestPayout(uint _amount)
public
onlyWithdraw
requireState(States.Operational)
{
msg.sender.transfer(_amount);
}
function rescueToken(ERC20Basic _foreignToken, address _to)
public
onlyTokenAssignmentControl
requireState(States.Operational)
{
_foreignToken.transfer(_to, _foreignToken.balanceOf(this));
}
function transfer(address _to, uint256 _value)
public
requireState(States.Operational)
returns (bool success) {
return super.transfer(_to, _value);
}
function transferFrom(address _from, address _to, uint256 _value)
public
requireState(States.Operational)
returns (bool success) {
return super.transferFrom(_from, _to, _value);
}
function balanceOf(address _account)
public
constant
returns (uint256 balance) {
return balances[_account];
}
} | 0 | 907 |
pragma solidity ^0.4.4;
contract ERC223Token {
function transfer(address _from, uint _value, bytes _data) public;
}
contract Operations {
mapping (address => uint) public balances;
mapping (address => bytes32) public activeCall;
mapping (bytes32 => address) public recipientsMap;
mapping (address => uint) public endCallRequestDate;
uint endCallRequestDelay = 1 hours;
ERC223Token public exy;
function Operations() public {
exy = ERC223Token(0xFA74F89A6d4a918167C51132614BbBE193Ee8c22);
}
function tokenFallback(address _from, uint _value, bytes _data) public {
balances[_from] += _value;
}
function withdraw(uint value) public {
require(activeCall[msg.sender] == 0x0);
uint balance = balances[msg.sender];
require(value <= balance);
balances[msg.sender] -= value;
bytes memory empty;
exy.transfer(msg.sender, value, empty);
}
function startCall(uint timestamp, uint8 _v, bytes32 _r, bytes32 _s) public {
address recipient = msg.sender;
bytes32 callHash = keccak256('Experty.io startCall:', recipient, timestamp);
address caller = ecrecover(callHash, _v, _r, _s);
require(activeCall[caller] == 0x0);
activeCall[caller] = callHash;
recipientsMap[callHash] = recipient;
endCallRequestDate[caller] = 0;
}
function endCall(bytes32 callHash, uint amount, uint8 _v, bytes32 _r, bytes32 _s) public {
address recipient = recipientsMap[callHash];
require(recipient == msg.sender);
bytes32 endHash = keccak256('Experty.io endCall:', recipient, callHash, amount);
address caller = ecrecover(endHash, _v, _r, _s);
require(activeCall[caller] == callHash);
uint maxAmount = amount;
if (maxAmount > balances[caller]) {
maxAmount = balances[caller];
}
recipientsMap[callHash] = 0x0;
activeCall[caller] = 0x0;
settlePayment(caller, msg.sender, maxAmount);
}
function requestEndCall() public {
require(activeCall[msg.sender] != 0x0);
endCallRequestDate[msg.sender] = block.timestamp;
}
function forceEndCall() public {
require(activeCall[msg.sender] != 0x0);
require(endCallRequestDate[msg.sender] != 0);
require(endCallRequestDate[msg.sender] + endCallRequestDelay < block.timestamp);
endCallRequestDate[msg.sender] = 0;
recipientsMap[activeCall[msg.sender]] = 0x0;
activeCall[msg.sender] = 0x0;
}
function settlePayment(address sender, address recipient, uint value) private {
balances[sender] -= value;
balances[recipient] += value;
}
} | 0 | 1,289 |
pragma solidity ^0.4.24;
library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0);
uint256 c = a / b;
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a);
uint256 c = a - b;
return c;
}
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a);
return c;
}
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b != 0);
return a % b;
}
}
library SafeDecimalMath {
using SafeMath for uint;
uint8 public constant decimals = 18;
uint8 public constant highPrecisionDecimals = 27;
uint public constant UNIT = 10 ** uint(decimals);
uint public constant PRECISE_UNIT = 10 ** uint(highPrecisionDecimals);
uint private constant UNIT_TO_HIGH_PRECISION_CONVERSION_FACTOR = 10 ** uint(highPrecisionDecimals - decimals);
function unit()
external
pure
returns (uint)
{
return UNIT;
}
function preciseUnit()
external
pure
returns (uint)
{
return PRECISE_UNIT;
}
function multiplyDecimal(uint x, uint y)
internal
pure
returns (uint)
{
return x.mul(y) / UNIT;
}
function _multiplyDecimalRound(uint x, uint y, uint precisionUnit)
private
pure
returns (uint)
{
uint quotientTimesTen = x.mul(y) / (precisionUnit / 10);
if (quotientTimesTen % 10 >= 5) {
quotientTimesTen += 10;
}
return quotientTimesTen / 10;
}
function multiplyDecimalRoundPrecise(uint x, uint y)
internal
pure
returns (uint)
{
return _multiplyDecimalRound(x, y, PRECISE_UNIT);
}
function multiplyDecimalRound(uint x, uint y)
internal
pure
returns (uint)
{
return _multiplyDecimalRound(x, y, UNIT);
}
function divideDecimal(uint x, uint y)
internal
pure
returns (uint)
{
return x.mul(UNIT).div(y);
}
function _divideDecimalRound(uint x, uint y, uint precisionUnit)
private
pure
returns (uint)
{
uint resultTimesTen = x.mul(precisionUnit * 10).div(y);
if (resultTimesTen % 10 >= 5) {
resultTimesTen += 10;
}
return resultTimesTen / 10;
}
function divideDecimalRound(uint x, uint y)
internal
pure
returns (uint)
{
return _divideDecimalRound(x, y, UNIT);
}
function divideDecimalRoundPrecise(uint x, uint y)
internal
pure
returns (uint)
{
return _divideDecimalRound(x, y, PRECISE_UNIT);
}
function decimalToPreciseDecimal(uint i)
internal
pure
returns (uint)
{
return i.mul(UNIT_TO_HIGH_PRECISION_CONVERSION_FACTOR);
}
function preciseDecimalToDecimal(uint i)
internal
pure
returns (uint)
{
uint quotientTimesTen = i / (UNIT_TO_HIGH_PRECISION_CONVERSION_FACTOR / 10);
if (quotientTimesTen % 10 >= 5) {
quotientTimesTen += 10;
}
return quotientTimesTen / 10;
}
}
contract Owned {
address public owner;
address public nominatedOwner;
constructor(address _owner)
public
{
require(_owner != address(0), "Owner address cannot be 0");
owner = _owner;
emit OwnerChanged(address(0), _owner);
}
function nominateNewOwner(address _owner)
external
onlyOwner
{
nominatedOwner = _owner;
emit OwnerNominated(_owner);
}
function acceptOwnership()
external
{
require(msg.sender == nominatedOwner, "You must be nominated before you can accept ownership");
emit OwnerChanged(owner, nominatedOwner);
owner = nominatedOwner;
nominatedOwner = address(0);
}
modifier onlyOwner
{
require(msg.sender == owner, "Only the contract owner may perform this action");
_;
}
event OwnerNominated(address newOwner);
event OwnerChanged(address oldOwner, address newOwner);
}
contract SelfDestructible is Owned {
uint public initiationTime;
bool public selfDestructInitiated;
address public selfDestructBeneficiary;
uint public constant SELFDESTRUCT_DELAY = 4 weeks;
constructor(address _owner)
Owned(_owner)
public
{
require(_owner != address(0), "Owner must not be the zero address");
selfDestructBeneficiary = _owner;
emit SelfDestructBeneficiaryUpdated(_owner);
}
function setSelfDestructBeneficiary(address _beneficiary)
external
onlyOwner
{
require(_beneficiary != address(0), "Beneficiary must not be the zero address");
selfDestructBeneficiary = _beneficiary;
emit SelfDestructBeneficiaryUpdated(_beneficiary);
}
function initiateSelfDestruct()
external
onlyOwner
{
initiationTime = now;
selfDestructInitiated = true;
emit SelfDestructInitiated(SELFDESTRUCT_DELAY);
}
function terminateSelfDestruct()
external
onlyOwner
{
initiationTime = 0;
selfDestructInitiated = false;
emit SelfDestructTerminated();
}
function selfDestruct()
external
onlyOwner
{
require(selfDestructInitiated, "Self destruct has not yet been initiated");
require(initiationTime + SELFDESTRUCT_DELAY < now, "Self destruct delay has not yet elapsed");
address beneficiary = selfDestructBeneficiary;
emit SelfDestructed(beneficiary);
selfdestruct(beneficiary);
}
event SelfDestructTerminated();
event SelfDestructed(address beneficiary);
event SelfDestructInitiated(uint selfDestructDelay);
event SelfDestructBeneficiaryUpdated(address newBeneficiary);
}
contract State is Owned {
address public associatedContract;
constructor(address _owner, address _associatedContract)
Owned(_owner)
public
{
associatedContract = _associatedContract;
emit AssociatedContractUpdated(_associatedContract);
}
function setAssociatedContract(address _associatedContract)
external
onlyOwner
{
associatedContract = _associatedContract;
emit AssociatedContractUpdated(_associatedContract);
}
modifier onlyAssociatedContract
{
require(msg.sender == associatedContract, "Only the associated contract can perform this action");
_;
}
event AssociatedContractUpdated(address associatedContract);
}
contract TokenState is State {
mapping(address => uint) public balanceOf;
mapping(address => mapping(address => uint)) public allowance;
constructor(address _owner, address _associatedContract)
State(_owner, _associatedContract)
public
{}
function setAllowance(address tokenOwner, address spender, uint value)
external
onlyAssociatedContract
{
allowance[tokenOwner][spender] = value;
}
function setBalanceOf(address account, uint value)
external
onlyAssociatedContract
{
balanceOf[account] = value;
}
}
contract Proxy is Owned {
Proxyable public target;
bool public useDELEGATECALL;
constructor(address _owner)
Owned(_owner)
public
{}
function setTarget(Proxyable _target)
external
onlyOwner
{
target = _target;
emit TargetUpdated(_target);
}
function setUseDELEGATECALL(bool value)
external
onlyOwner
{
useDELEGATECALL = value;
}
function _emit(bytes callData, uint numTopics, bytes32 topic1, bytes32 topic2, bytes32 topic3, bytes32 topic4)
external
onlyTarget
{
uint size = callData.length;
bytes memory _callData = callData;
assembly {
switch numTopics
case 0 {
log0(add(_callData, 32), size)
}
case 1 {
log1(add(_callData, 32), size, topic1)
}
case 2 {
log2(add(_callData, 32), size, topic1, topic2)
}
case 3 {
log3(add(_callData, 32), size, topic1, topic2, topic3)
}
case 4 {
log4(add(_callData, 32), size, topic1, topic2, topic3, topic4)
}
}
}
function()
external
payable
{
if (useDELEGATECALL) {
assembly {
let free_ptr := mload(0x40)
calldatacopy(free_ptr, 0, calldatasize)
let result := delegatecall(gas, sload(target_slot), free_ptr, calldatasize, 0, 0)
returndatacopy(free_ptr, 0, returndatasize)
if iszero(result) { revert(free_ptr, returndatasize) }
return(free_ptr, returndatasize)
}
} else {
target.setMessageSender(msg.sender);
assembly {
let free_ptr := mload(0x40)
calldatacopy(free_ptr, 0, calldatasize)
let result := call(gas, sload(target_slot), callvalue, free_ptr, calldatasize, 0, 0)
returndatacopy(free_ptr, 0, returndatasize)
if iszero(result) { revert(free_ptr, returndatasize) }
return(free_ptr, returndatasize)
}
}
}
modifier onlyTarget {
require(Proxyable(msg.sender) == target, "Must be proxy target");
_;
}
event TargetUpdated(Proxyable newTarget);
}
contract Proxyable is Owned {
Proxy public proxy;
address messageSender;
constructor(address _proxy, address _owner)
Owned(_owner)
public
{
proxy = Proxy(_proxy);
emit ProxyUpdated(_proxy);
}
function setProxy(address _proxy)
external
onlyOwner
{
proxy = Proxy(_proxy);
emit ProxyUpdated(_proxy);
}
function setMessageSender(address sender)
external
onlyProxy
{
messageSender = sender;
}
modifier onlyProxy {
require(Proxy(msg.sender) == proxy, "Only the proxy can call this function");
_;
}
modifier optionalProxy
{
if (Proxy(msg.sender) != proxy) {
messageSender = msg.sender;
}
_;
}
modifier optionalProxy_onlyOwner
{
if (Proxy(msg.sender) != proxy) {
messageSender = msg.sender;
}
require(messageSender == owner, "This action can only be performed by the owner");
_;
}
event ProxyUpdated(address proxyAddress);
}
contract ReentrancyPreventer {
bool isInFunctionBody = false;
modifier preventReentrancy {
require(!isInFunctionBody, "Reverted to prevent reentrancy");
isInFunctionBody = true;
_;
isInFunctionBody = false;
}
}
contract TokenFallbackCaller is ReentrancyPreventer {
function callTokenFallbackIfNeeded(address sender, address recipient, uint amount, bytes data)
internal
preventReentrancy
{
uint length;
assembly {
length := extcodesize(recipient)
}
if (length > 0) {
recipient.call(abi.encodeWithSignature("tokenFallback(address,uint256,bytes)", sender, amount, data));
}
}
}
contract ExternStateToken is SelfDestructible, Proxyable, TokenFallbackCaller {
using SafeMath for uint;
using SafeDecimalMath for uint;
TokenState public tokenState;
string public name;
string public symbol;
uint public totalSupply;
uint8 public decimals;
constructor(address _proxy, TokenState _tokenState,
string _name, string _symbol, uint _totalSupply,
uint8 _decimals, address _owner)
SelfDestructible(_owner)
Proxyable(_proxy, _owner)
public
{
tokenState = _tokenState;
name = _name;
symbol = _symbol;
totalSupply = _totalSupply;
decimals = _decimals;
}
function allowance(address owner, address spender)
public
view
returns (uint)
{
return tokenState.allowance(owner, spender);
}
function balanceOf(address account)
public
view
returns (uint)
{
return tokenState.balanceOf(account);
}
function setTokenState(TokenState _tokenState)
external
optionalProxy_onlyOwner
{
tokenState = _tokenState;
emitTokenStateUpdated(_tokenState);
}
function _internalTransfer(address from, address to, uint value, bytes data)
internal
returns (bool)
{
require(to != address(0), "Cannot transfer to the 0 address");
require(to != address(this), "Cannot transfer to the underlying contract");
require(to != address(proxy), "Cannot transfer to the proxy contract");
tokenState.setBalanceOf(from, tokenState.balanceOf(from).sub(value));
tokenState.setBalanceOf(to, tokenState.balanceOf(to).add(value));
callTokenFallbackIfNeeded(from, to, value, data);
emitTransfer(from, to, value);
return true;
}
function _transfer_byProxy(address from, address to, uint value, bytes data)
internal
returns (bool)
{
return _internalTransfer(from, to, value, data);
}
function _transferFrom_byProxy(address sender, address from, address to, uint value, bytes data)
internal
returns (bool)
{
tokenState.setAllowance(from, sender, tokenState.allowance(from, sender).sub(value));
return _internalTransfer(from, to, value, data);
}
function approve(address spender, uint value)
public
optionalProxy
returns (bool)
{
address sender = messageSender;
tokenState.setAllowance(sender, spender, value);
emitApproval(sender, spender, value);
return true;
}
event Transfer(address indexed from, address indexed to, uint value);
bytes32 constant TRANSFER_SIG = keccak256("Transfer(address,address,uint256)");
function emitTransfer(address from, address to, uint value) internal {
proxy._emit(abi.encode(value), 3, TRANSFER_SIG, bytes32(from), bytes32(to), 0);
}
event Approval(address indexed owner, address indexed spender, uint value);
bytes32 constant APPROVAL_SIG = keccak256("Approval(address,address,uint256)");
function emitApproval(address owner, address spender, uint value) internal {
proxy._emit(abi.encode(value), 3, APPROVAL_SIG, bytes32(owner), bytes32(spender), 0);
}
event TokenStateUpdated(address newTokenState);
bytes32 constant TOKENSTATEUPDATED_SIG = keccak256("TokenStateUpdated(address)");
function emitTokenStateUpdated(address newTokenState) internal {
proxy._emit(abi.encode(newTokenState), 1, TOKENSTATEUPDATED_SIG, 0, 0, 0);
}
}
contract LimitedSetup {
uint setupExpiryTime;
constructor(uint setupDuration)
public
{
setupExpiryTime = now + setupDuration;
}
modifier onlyDuringSetup
{
require(now < setupExpiryTime, "Can only perform this action during setup");
_;
}
}
contract SynthetixEscrow is Owned, LimitedSetup(8 weeks) {
using SafeMath for uint;
Synthetix public synthetix;
mapping(address => uint[2][]) public vestingSchedules;
mapping(address => uint) public totalVestedAccountBalance;
uint public totalVestedBalance;
uint constant TIME_INDEX = 0;
uint constant QUANTITY_INDEX = 1;
uint constant MAX_VESTING_ENTRIES = 20;
constructor(address _owner, Synthetix _synthetix)
Owned(_owner)
public
{
synthetix = _synthetix;
}
function setSynthetix(Synthetix _synthetix)
external
onlyOwner
{
synthetix = _synthetix;
emit SynthetixUpdated(_synthetix);
}
function balanceOf(address account)
public
view
returns (uint)
{
return totalVestedAccountBalance[account];
}
function numVestingEntries(address account)
public
view
returns (uint)
{
return vestingSchedules[account].length;
}
function getVestingScheduleEntry(address account, uint index)
public
view
returns (uint[2])
{
return vestingSchedules[account][index];
}
function getVestingTime(address account, uint index)
public
view
returns (uint)
{
return getVestingScheduleEntry(account,index)[TIME_INDEX];
}
function getVestingQuantity(address account, uint index)
public
view
returns (uint)
{
return getVestingScheduleEntry(account,index)[QUANTITY_INDEX];
}
function getNextVestingIndex(address account)
public
view
returns (uint)
{
uint len = numVestingEntries(account);
for (uint i = 0; i < len; i++) {
if (getVestingTime(account, i) != 0) {
return i;
}
}
return len;
}
function getNextVestingEntry(address account)
public
view
returns (uint[2])
{
uint index = getNextVestingIndex(account);
if (index == numVestingEntries(account)) {
return [uint(0), 0];
}
return getVestingScheduleEntry(account, index);
}
function getNextVestingTime(address account)
external
view
returns (uint)
{
return getNextVestingEntry(account)[TIME_INDEX];
}
function getNextVestingQuantity(address account)
external
view
returns (uint)
{
return getNextVestingEntry(account)[QUANTITY_INDEX];
}
function withdrawSynthetix(uint quantity)
external
onlyOwner
onlyDuringSetup
{
synthetix.transfer(synthetix, quantity);
}
function purgeAccount(address account)
external
onlyOwner
onlyDuringSetup
{
delete vestingSchedules[account];
totalVestedBalance = totalVestedBalance.sub(totalVestedAccountBalance[account]);
delete totalVestedAccountBalance[account];
}
function appendVestingEntry(address account, uint time, uint quantity)
public
onlyOwner
onlyDuringSetup
{
require(now < time, "Time must be in the future");
require(quantity != 0, "Quantity cannot be zero");
totalVestedBalance = totalVestedBalance.add(quantity);
require(totalVestedBalance <= synthetix.balanceOf(this), "Must be enough balance in the contract to provide for the vesting entry");
uint scheduleLength = vestingSchedules[account].length;
require(scheduleLength <= MAX_VESTING_ENTRIES, "Vesting schedule is too long");
if (scheduleLength == 0) {
totalVestedAccountBalance[account] = quantity;
} else {
require(getVestingTime(account, numVestingEntries(account) - 1) < time, "Cannot add new vested entries earlier than the last one");
totalVestedAccountBalance[account] = totalVestedAccountBalance[account].add(quantity);
}
vestingSchedules[account].push([time, quantity]);
}
function addVestingSchedule(address account, uint[] times, uint[] quantities)
external
onlyOwner
onlyDuringSetup
{
for (uint i = 0; i < times.length; i++) {
appendVestingEntry(account, times[i], quantities[i]);
}
}
function vest()
external
{
uint numEntries = numVestingEntries(msg.sender);
uint total;
for (uint i = 0; i < numEntries; i++) {
uint time = getVestingTime(msg.sender, i);
if (time > now) {
break;
}
uint qty = getVestingQuantity(msg.sender, i);
if (qty == 0) {
continue;
}
vestingSchedules[msg.sender][i] = [0, 0];
total = total.add(qty);
}
if (total != 0) {
totalVestedBalance = totalVestedBalance.sub(total);
totalVestedAccountBalance[msg.sender] = totalVestedAccountBalance[msg.sender].sub(total);
synthetix.transfer(msg.sender, total);
emit Vested(msg.sender, now, total);
}
}
event SynthetixUpdated(address newSynthetix);
event Vested(address indexed beneficiary, uint time, uint value);
}
contract SynthetixState is State, LimitedSetup {
using SafeMath for uint;
using SafeDecimalMath for uint;
struct IssuanceData {
uint initialDebtOwnership;
uint debtEntryIndex;
}
mapping(address => IssuanceData) public issuanceData;
uint public totalIssuerCount;
uint[] public debtLedger;
uint public importedXDRAmount;
uint public issuanceRatio = SafeDecimalMath.unit() / 5;
uint constant MAX_ISSUANCE_RATIO = SafeDecimalMath.unit();
mapping(address => bytes4) public preferredCurrency;
constructor(address _owner, address _associatedContract)
State(_owner, _associatedContract)
LimitedSetup(1 weeks)
public
{}
function setCurrentIssuanceData(address account, uint initialDebtOwnership)
external
onlyAssociatedContract
{
issuanceData[account].initialDebtOwnership = initialDebtOwnership;
issuanceData[account].debtEntryIndex = debtLedger.length;
}
function clearIssuanceData(address account)
external
onlyAssociatedContract
{
delete issuanceData[account];
}
function incrementTotalIssuerCount()
external
onlyAssociatedContract
{
totalIssuerCount = totalIssuerCount.add(1);
}
function decrementTotalIssuerCount()
external
onlyAssociatedContract
{
totalIssuerCount = totalIssuerCount.sub(1);
}
function appendDebtLedgerValue(uint value)
external
onlyAssociatedContract
{
debtLedger.push(value);
}
function setPreferredCurrency(address account, bytes4 currencyKey)
external
onlyAssociatedContract
{
preferredCurrency[account] = currencyKey;
}
function setIssuanceRatio(uint _issuanceRatio)
external
onlyOwner
{
require(_issuanceRatio <= MAX_ISSUANCE_RATIO, "New issuance ratio cannot exceed MAX_ISSUANCE_RATIO");
issuanceRatio = _issuanceRatio;
emit IssuanceRatioUpdated(_issuanceRatio);
}
function importIssuerData(address[] accounts, uint[] sUSDAmounts)
external
onlyOwner
onlyDuringSetup
{
require(accounts.length == sUSDAmounts.length, "Length mismatch");
for (uint8 i = 0; i < accounts.length; i++) {
_addToDebtRegister(accounts[i], sUSDAmounts[i]);
}
}
function _addToDebtRegister(address account, uint amount)
internal
{
Synthetix synthetix = Synthetix(associatedContract);
uint xdrValue = synthetix.effectiveValue("sUSD", amount, "XDR");
uint totalDebtIssued = importedXDRAmount;
uint newTotalDebtIssued = xdrValue.add(totalDebtIssued);
importedXDRAmount = newTotalDebtIssued;
uint debtPercentage = xdrValue.divideDecimalRoundPrecise(newTotalDebtIssued);
uint delta = SafeDecimalMath.preciseUnit().sub(debtPercentage);
uint existingDebt = synthetix.debtBalanceOf(account, "XDR");
if (existingDebt > 0) {
debtPercentage = xdrValue.add(existingDebt).divideDecimalRoundPrecise(newTotalDebtIssued);
}
if (issuanceData[account].initialDebtOwnership == 0) {
totalIssuerCount = totalIssuerCount.add(1);
}
issuanceData[account].initialDebtOwnership = debtPercentage;
issuanceData[account].debtEntryIndex = debtLedger.length;
if (debtLedger.length > 0) {
debtLedger.push(
debtLedger[debtLedger.length - 1].multiplyDecimalRoundPrecise(delta)
);
} else {
debtLedger.push(SafeDecimalMath.preciseUnit());
}
}
function debtLedgerLength()
external
view
returns (uint)
{
return debtLedger.length;
}
function lastDebtLedgerEntry()
external
view
returns (uint)
{
return debtLedger[debtLedger.length - 1];
}
function hasIssued(address account)
external
view
returns (bool)
{
return issuanceData[account].initialDebtOwnership > 0;
}
event IssuanceRatioUpdated(uint newRatio);
}
contract ExchangeRates is SelfDestructible {
using SafeMath for uint;
mapping(bytes4 => uint) public rates;
mapping(bytes4 => uint) public lastRateUpdateTimes;
address public oracle;
uint constant ORACLE_FUTURE_LIMIT = 10 minutes;
uint public rateStalePeriod = 3 hours;
bytes4[5] public xdrParticipants;
struct InversePricing {
uint entryPoint;
uint upperLimit;
uint lowerLimit;
bool frozen;
}
mapping(bytes4 => InversePricing) public inversePricing;
bytes4[] public invertedKeys;
constructor(
address _owner,
address _oracle,
bytes4[] _currencyKeys,
uint[] _newRates
)
SelfDestructible(_owner)
public
{
require(_currencyKeys.length == _newRates.length, "Currency key length and rate length must match.");
oracle = _oracle;
rates["sUSD"] = SafeDecimalMath.unit();
lastRateUpdateTimes["sUSD"] = now;
xdrParticipants = [
bytes4("sUSD"),
bytes4("sAUD"),
bytes4("sCHF"),
bytes4("sEUR"),
bytes4("sGBP")
];
internalUpdateRates(_currencyKeys, _newRates, now);
}
function updateRates(bytes4[] currencyKeys, uint[] newRates, uint timeSent)
external
onlyOracle
returns(bool)
{
return internalUpdateRates(currencyKeys, newRates, timeSent);
}
function internalUpdateRates(bytes4[] currencyKeys, uint[] newRates, uint timeSent)
internal
returns(bool)
{
require(currencyKeys.length == newRates.length, "Currency key array length must match rates array length.");
require(timeSent < (now + ORACLE_FUTURE_LIMIT), "Time is too far into the future");
for (uint i = 0; i < currencyKeys.length; i++) {
require(newRates[i] != 0, "Zero is not a valid rate, please call deleteRate instead.");
require(currencyKeys[i] != "sUSD", "Rate of sUSD cannot be updated, it's always UNIT.");
if (timeSent < lastRateUpdateTimes[currencyKeys[i]]) {
continue;
}
newRates[i] = rateOrInverted(currencyKeys[i], newRates[i]);
rates[currencyKeys[i]] = newRates[i];
lastRateUpdateTimes[currencyKeys[i]] = timeSent;
}
emit RatesUpdated(currencyKeys, newRates);
updateXDRRate(timeSent);
return true;
}
function rateOrInverted(bytes4 currencyKey, uint rate) internal returns (uint) {
InversePricing storage inverse = inversePricing[currencyKey];
if (inverse.entryPoint <= 0) {
return rate;
}
uint newInverseRate = rates[currencyKey];
if (!inverse.frozen) {
uint doubleEntryPoint = inverse.entryPoint.mul(2);
if (doubleEntryPoint <= rate) {
newInverseRate = 0;
} else {
newInverseRate = doubleEntryPoint.sub(rate);
}
if (newInverseRate >= inverse.upperLimit) {
newInverseRate = inverse.upperLimit;
} else if (newInverseRate <= inverse.lowerLimit) {
newInverseRate = inverse.lowerLimit;
}
if (newInverseRate == inverse.upperLimit || newInverseRate == inverse.lowerLimit) {
inverse.frozen = true;
emit InversePriceFrozen(currencyKey);
}
}
return newInverseRate;
}
function updateXDRRate(uint timeSent)
internal
{
uint total = 0;
for (uint i = 0; i < xdrParticipants.length; i++) {
total = rates[xdrParticipants[i]].add(total);
}
rates["XDR"] = total;
lastRateUpdateTimes["XDR"] = timeSent;
bytes4[] memory eventCurrencyCode = new bytes4[](1);
eventCurrencyCode[0] = "XDR";
uint[] memory eventRate = new uint[](1);
eventRate[0] = rates["XDR"];
emit RatesUpdated(eventCurrencyCode, eventRate);
}
function deleteRate(bytes4 currencyKey)
external
onlyOracle
{
require(rates[currencyKey] > 0, "Rate is zero");
delete rates[currencyKey];
delete lastRateUpdateTimes[currencyKey];
emit RateDeleted(currencyKey);
}
function setOracle(address _oracle)
external
onlyOwner
{
oracle = _oracle;
emit OracleUpdated(oracle);
}
function setRateStalePeriod(uint _time)
external
onlyOwner
{
rateStalePeriod = _time;
emit RateStalePeriodUpdated(rateStalePeriod);
}
function setInversePricing(bytes4 currencyKey, uint entryPoint, uint upperLimit, uint lowerLimit)
external onlyOwner
{
require(entryPoint > 0, "entryPoint must be above 0");
require(lowerLimit > 0, "lowerLimit must be above 0");
require(upperLimit > entryPoint, "upperLimit must be above the entryPoint");
require(upperLimit < entryPoint.mul(2), "upperLimit must be less than double entryPoint");
require(lowerLimit < entryPoint, "lowerLimit must be below the entryPoint");
if (inversePricing[currencyKey].entryPoint <= 0) {
invertedKeys.push(currencyKey);
}
inversePricing[currencyKey].entryPoint = entryPoint;
inversePricing[currencyKey].upperLimit = upperLimit;
inversePricing[currencyKey].lowerLimit = lowerLimit;
inversePricing[currencyKey].frozen = false;
emit InversePriceConfigured(currencyKey, entryPoint, upperLimit, lowerLimit);
}
function removeInversePricing(bytes4 currencyKey) external onlyOwner {
inversePricing[currencyKey].entryPoint = 0;
inversePricing[currencyKey].upperLimit = 0;
inversePricing[currencyKey].lowerLimit = 0;
inversePricing[currencyKey].frozen = false;
for (uint8 i = 0; i < invertedKeys.length; i++) {
if (invertedKeys[i] == currencyKey) {
delete invertedKeys[i];
invertedKeys[i] = invertedKeys[invertedKeys.length - 1];
invertedKeys.length--;
break;
}
}
emit InversePriceConfigured(currencyKey, 0, 0, 0);
}
function rateForCurrency(bytes4 currencyKey)
public
view
returns (uint)
{
return rates[currencyKey];
}
function ratesForCurrencies(bytes4[] currencyKeys)
public
view
returns (uint[])
{
uint[] memory _rates = new uint[](currencyKeys.length);
for (uint8 i = 0; i < currencyKeys.length; i++) {
_rates[i] = rates[currencyKeys[i]];
}
return _rates;
}
function lastRateUpdateTimeForCurrency(bytes4 currencyKey)
public
view
returns (uint)
{
return lastRateUpdateTimes[currencyKey];
}
function lastRateUpdateTimesForCurrencies(bytes4[] currencyKeys)
public
view
returns (uint[])
{
uint[] memory lastUpdateTimes = new uint[](currencyKeys.length);
for (uint8 i = 0; i < currencyKeys.length; i++) {
lastUpdateTimes[i] = lastRateUpdateTimes[currencyKeys[i]];
}
return lastUpdateTimes;
}
function rateIsStale(bytes4 currencyKey)
external
view
returns (bool)
{
if (currencyKey == "sUSD") return false;
return lastRateUpdateTimes[currencyKey].add(rateStalePeriod) < now;
}
function rateIsFrozen(bytes4 currencyKey)
external
view
returns (bool)
{
return inversePricing[currencyKey].frozen;
}
function anyRateIsStale(bytes4[] currencyKeys)
external
view
returns (bool)
{
uint256 i = 0;
while (i < currencyKeys.length) {
if (currencyKeys[i] != "sUSD" && lastRateUpdateTimes[currencyKeys[i]].add(rateStalePeriod) < now) {
return true;
}
i += 1;
}
return false;
}
modifier onlyOracle
{
require(msg.sender == oracle, "Only the oracle can perform this action");
_;
}
event OracleUpdated(address newOracle);
event RateStalePeriodUpdated(uint rateStalePeriod);
event RatesUpdated(bytes4[] currencyKeys, uint[] newRates);
event RateDeleted(bytes4 currencyKey);
event InversePriceConfigured(bytes4 currencyKey, uint entryPoint, uint upperLimit, uint lowerLimit);
event InversePriceFrozen(bytes4 currencyKey);
}
contract Synthetix is ExternStateToken {
Synth[] public availableSynths;
mapping(bytes4 => Synth) public synths;
FeePool public feePool;
SynthetixEscrow public escrow;
ExchangeRates public exchangeRates;
SynthetixState public synthetixState;
uint constant SYNTHETIX_SUPPLY = 1e8 * SafeDecimalMath.unit();
string constant TOKEN_NAME = "Synthetix Network Token";
string constant TOKEN_SYMBOL = "SNX";
uint8 constant DECIMALS = 18;
constructor(address _proxy, TokenState _tokenState, SynthetixState _synthetixState,
address _owner, ExchangeRates _exchangeRates, FeePool _feePool
)
ExternStateToken(_proxy, _tokenState, TOKEN_NAME, TOKEN_SYMBOL, SYNTHETIX_SUPPLY, DECIMALS, _owner)
public
{
synthetixState = _synthetixState;
exchangeRates = _exchangeRates;
feePool = _feePool;
}
function addSynth(Synth synth)
external
optionalProxy_onlyOwner
{
bytes4 currencyKey = synth.currencyKey();
require(synths[currencyKey] == Synth(0), "Synth already exists");
availableSynths.push(synth);
synths[currencyKey] = synth;
emitSynthAdded(currencyKey, synth);
}
function removeSynth(bytes4 currencyKey)
external
optionalProxy_onlyOwner
{
require(synths[currencyKey] != address(0), "Synth does not exist");
require(synths[currencyKey].totalSupply() == 0, "Synth supply exists");
require(currencyKey != "XDR", "Cannot remove XDR synth");
address synthToRemove = synths[currencyKey];
for (uint8 i = 0; i < availableSynths.length; i++) {
if (availableSynths[i] == synthToRemove) {
delete availableSynths[i];
availableSynths[i] = availableSynths[availableSynths.length - 1];
availableSynths.length--;
break;
}
}
delete synths[currencyKey];
emitSynthRemoved(currencyKey, synthToRemove);
}
function setEscrow(SynthetixEscrow _escrow)
external
optionalProxy_onlyOwner
{
escrow = _escrow;
}
function setExchangeRates(ExchangeRates _exchangeRates)
external
optionalProxy_onlyOwner
{
exchangeRates = _exchangeRates;
}
function setSynthetixState(SynthetixState _synthetixState)
external
optionalProxy_onlyOwner
{
synthetixState = _synthetixState;
emitStateContractChanged(_synthetixState);
}
function setPreferredCurrency(bytes4 currencyKey)
external
optionalProxy
{
require(currencyKey == 0 || !exchangeRates.rateIsStale(currencyKey), "Currency rate is stale or doesn't exist.");
synthetixState.setPreferredCurrency(messageSender, currencyKey);
emitPreferredCurrencyChanged(messageSender, currencyKey);
}
function effectiveValue(bytes4 sourceCurrencyKey, uint sourceAmount, bytes4 destinationCurrencyKey)
public
view
rateNotStale(sourceCurrencyKey)
rateNotStale(destinationCurrencyKey)
returns (uint)
{
if (sourceCurrencyKey == destinationCurrencyKey) return sourceAmount;
return sourceAmount.multiplyDecimalRound(exchangeRates.rateForCurrency(sourceCurrencyKey))
.divideDecimalRound(exchangeRates.rateForCurrency(destinationCurrencyKey));
}
function totalIssuedSynths(bytes4 currencyKey)
public
view
rateNotStale(currencyKey)
returns (uint)
{
uint total = 0;
uint currencyRate = exchangeRates.rateForCurrency(currencyKey);
require(!exchangeRates.anyRateIsStale(availableCurrencyKeys()), "Rates are stale");
for (uint8 i = 0; i < availableSynths.length; i++) {
uint synthValue = availableSynths[i].totalSupply()
.multiplyDecimalRound(exchangeRates.rateForCurrency(availableSynths[i].currencyKey()))
.divideDecimalRound(currencyRate);
total = total.add(synthValue);
}
return total;
}
function availableCurrencyKeys()
internal
view
returns (bytes4[])
{
bytes4[] memory availableCurrencyKeys = new bytes4[](availableSynths.length);
for (uint8 i = 0; i < availableSynths.length; i++) {
availableCurrencyKeys[i] = availableSynths[i].currencyKey();
}
return availableCurrencyKeys;
}
function availableSynthCount()
public
view
returns (uint)
{
return availableSynths.length;
}
function transfer(address to, uint value)
public
returns (bool)
{
bytes memory empty;
return transfer(to, value, empty);
}
function transfer(address to, uint value, bytes data)
public
optionalProxy
returns (bool)
{
require(value <= transferableSynthetix(messageSender), "Insufficient balance");
_transfer_byProxy(messageSender, to, value, data);
return true;
}
function transferFrom(address from, address to, uint value)
public
returns (bool)
{
bytes memory empty;
return transferFrom(from, to, value, empty);
}
function transferFrom(address from, address to, uint value, bytes data)
public
optionalProxy
returns (bool)
{
require(value <= transferableSynthetix(from), "Insufficient balance");
_transferFrom_byProxy(messageSender, from, to, value, data);
return true;
}
function exchange(bytes4 sourceCurrencyKey, uint sourceAmount, bytes4 destinationCurrencyKey, address destinationAddress)
external
optionalProxy
returns (bool)
{
require(sourceCurrencyKey != destinationCurrencyKey, "Exchange must use different synths");
require(sourceAmount > 0, "Zero amount");
return _internalExchange(
messageSender,
sourceCurrencyKey,
sourceAmount,
destinationCurrencyKey,
destinationAddress == address(0) ? messageSender : destinationAddress,
true
);
}
function synthInitiatedExchange(
address from,
bytes4 sourceCurrencyKey,
uint sourceAmount,
bytes4 destinationCurrencyKey,
address destinationAddress
)
external
onlySynth
returns (bool)
{
require(sourceCurrencyKey != destinationCurrencyKey, "Can't be same synth");
require(sourceAmount > 0, "Zero amount");
return _internalExchange(
from,
sourceCurrencyKey,
sourceAmount,
destinationCurrencyKey,
destinationAddress,
false
);
}
function synthInitiatedFeePayment(
address from,
bytes4 sourceCurrencyKey,
uint sourceAmount
)
external
onlySynth
returns (bool)
{
if (sourceAmount == 0) {
return true;
}
require(sourceAmount > 0, "Source can't be 0");
bool result = _internalExchange(
from,
sourceCurrencyKey,
sourceAmount,
"XDR",
feePool.FEE_ADDRESS(),
false
);
feePool.feePaid(sourceCurrencyKey, sourceAmount);
return result;
}
function _internalExchange(
address from,
bytes4 sourceCurrencyKey,
uint sourceAmount,
bytes4 destinationCurrencyKey,
address destinationAddress,
bool chargeFee
)
internal
notFeeAddress(from)
returns (bool)
{
require(destinationAddress != address(0), "Zero destination");
require(destinationAddress != address(this), "Synthetix is invalid destination");
require(destinationAddress != address(proxy), "Proxy is invalid destination");
synths[sourceCurrencyKey].burn(from, sourceAmount);
uint destinationAmount = effectiveValue(sourceCurrencyKey, sourceAmount, destinationCurrencyKey);
uint amountReceived = destinationAmount;
uint fee = 0;
if (chargeFee) {
amountReceived = feePool.amountReceivedFromExchange(destinationAmount);
fee = destinationAmount.sub(amountReceived);
}
synths[destinationCurrencyKey].issue(destinationAddress, amountReceived);
if (fee > 0) {
uint xdrFeeAmount = effectiveValue(destinationCurrencyKey, fee, "XDR");
synths["XDR"].issue(feePool.FEE_ADDRESS(), xdrFeeAmount);
}
synths[destinationCurrencyKey].triggerTokenFallbackIfNeeded(from, destinationAddress, amountReceived);
emitSynthExchange(from, sourceCurrencyKey, sourceAmount, destinationCurrencyKey, amountReceived, destinationAddress);
return true;
}
function _addToDebtRegister(bytes4 currencyKey, uint amount)
internal
optionalProxy
{
uint xdrValue = effectiveValue(currencyKey, amount, "XDR");
uint totalDebtIssued = totalIssuedSynths("XDR");
uint newTotalDebtIssued = xdrValue.add(totalDebtIssued);
uint debtPercentage = xdrValue.divideDecimalRoundPrecise(newTotalDebtIssued);
uint delta = SafeDecimalMath.preciseUnit().sub(debtPercentage);
uint existingDebt = debtBalanceOf(messageSender, "XDR");
if (existingDebt > 0) {
debtPercentage = xdrValue.add(existingDebt).divideDecimalRoundPrecise(newTotalDebtIssued);
}
if (!synthetixState.hasIssued(messageSender)) {
synthetixState.incrementTotalIssuerCount();
}
synthetixState.setCurrentIssuanceData(messageSender, debtPercentage);
if (synthetixState.debtLedgerLength() > 0) {
synthetixState.appendDebtLedgerValue(
synthetixState.lastDebtLedgerEntry().multiplyDecimalRoundPrecise(delta)
);
} else {
synthetixState.appendDebtLedgerValue(SafeDecimalMath.preciseUnit());
}
}
function issueSynths(bytes4 currencyKey, uint amount)
public
optionalProxy
nonZeroAmount(amount)
{
require(amount <= remainingIssuableSynths(messageSender, currencyKey), "Amount too large");
_addToDebtRegister(currencyKey, amount);
synths[currencyKey].issue(messageSender, amount);
}
function issueMaxSynths(bytes4 currencyKey)
external
optionalProxy
{
uint maxIssuable = remainingIssuableSynths(messageSender, currencyKey);
issueSynths(currencyKey, maxIssuable);
}
function burnSynths(bytes4 currencyKey, uint amount)
external
optionalProxy
{
uint debt = debtBalanceOf(messageSender, currencyKey);
require(debt > 0, "No debt to forgive");
uint amountToBurn = debt < amount ? debt : amount;
_removeFromDebtRegister(currencyKey, amountToBurn);
synths[currencyKey].burn(messageSender, amountToBurn);
}
function _removeFromDebtRegister(bytes4 currencyKey, uint amount)
internal
{
uint debtToRemove = effectiveValue(currencyKey, amount, "XDR");
uint existingDebt = debtBalanceOf(messageSender, "XDR");
uint totalDebtIssued = totalIssuedSynths("XDR");
uint debtPercentage = debtToRemove.divideDecimalRoundPrecise(totalDebtIssued);
uint delta = SafeDecimalMath.preciseUnit().add(debtPercentage);
if (debtToRemove == existingDebt) {
synthetixState.clearIssuanceData(messageSender);
synthetixState.decrementTotalIssuerCount();
} else {
uint newDebt = existingDebt.sub(debtToRemove);
uint newTotalDebtIssued = totalDebtIssued.sub(debtToRemove);
uint newDebtPercentage = newDebt.divideDecimalRoundPrecise(newTotalDebtIssued);
synthetixState.setCurrentIssuanceData(messageSender, newDebtPercentage);
}
synthetixState.appendDebtLedgerValue(
synthetixState.lastDebtLedgerEntry().multiplyDecimalRoundPrecise(delta)
);
}
function maxIssuableSynths(address issuer, bytes4 currencyKey)
public
view
returns (uint)
{
uint destinationValue = effectiveValue("SNX", collateral(issuer), currencyKey);
return destinationValue.multiplyDecimal(synthetixState.issuanceRatio());
}
function collateralisationRatio(address issuer)
public
view
returns (uint)
{
uint totalOwnedSynthetix = collateral(issuer);
if (totalOwnedSynthetix == 0) return 0;
uint debtBalance = debtBalanceOf(issuer, "SNX");
return debtBalance.divideDecimalRound(totalOwnedSynthetix);
}
function debtBalanceOf(address issuer, bytes4 currencyKey)
public
view
returns (uint)
{
uint initialDebtOwnership;
uint debtEntryIndex;
(initialDebtOwnership, debtEntryIndex) = synthetixState.issuanceData(issuer);
if (initialDebtOwnership == 0) return 0;
uint currentDebtOwnership = synthetixState.lastDebtLedgerEntry()
.divideDecimalRoundPrecise(synthetixState.debtLedger(debtEntryIndex))
.multiplyDecimalRoundPrecise(initialDebtOwnership);
uint totalSystemValue = totalIssuedSynths(currencyKey);
uint highPrecisionBalance = totalSystemValue.decimalToPreciseDecimal()
.multiplyDecimalRoundPrecise(currentDebtOwnership);
return highPrecisionBalance.preciseDecimalToDecimal();
}
function remainingIssuableSynths(address issuer, bytes4 currencyKey)
public
view
returns (uint)
{
uint alreadyIssued = debtBalanceOf(issuer, currencyKey);
uint max = maxIssuableSynths(issuer, currencyKey);
if (alreadyIssued >= max) {
return 0;
} else {
return max.sub(alreadyIssued);
}
}
function collateral(address account)
public
view
returns (uint)
{
uint balance = tokenState.balanceOf(account);
if (escrow != address(0)) {
balance = balance.add(escrow.balanceOf(account));
}
return balance;
}
function transferableSynthetix(address account)
public
view
rateNotStale("SNX")
returns (uint)
{
uint balance = tokenState.balanceOf(account);
uint lockedSynthetixValue = debtBalanceOf(account, "SNX").divideDecimalRound(synthetixState.issuanceRatio());
if (lockedSynthetixValue >= balance) {
return 0;
} else {
return balance.sub(lockedSynthetixValue);
}
}
modifier rateNotStale(bytes4 currencyKey) {
require(!exchangeRates.rateIsStale(currencyKey), "Rate stale or nonexistant currency");
_;
}
modifier notFeeAddress(address account) {
require(account != feePool.FEE_ADDRESS(), "Fee address not allowed");
_;
}
modifier onlySynth() {
bool isSynth = false;
for (uint8 i = 0; i < availableSynths.length; i++) {
if (availableSynths[i] == msg.sender) {
isSynth = true;
break;
}
}
require(isSynth, "Only synth allowed");
_;
}
modifier nonZeroAmount(uint _amount) {
require(_amount > 0, "Amount needs to be larger than 0");
_;
}
event SynthExchange(address indexed account, bytes4 fromCurrencyKey, uint256 fromAmount, bytes4 toCurrencyKey, uint256 toAmount, address toAddress);
bytes32 constant SYNTHEXCHANGE_SIG = keccak256("SynthExchange(address,bytes4,uint256,bytes4,uint256,address)");
function emitSynthExchange(address account, bytes4 fromCurrencyKey, uint256 fromAmount, bytes4 toCurrencyKey, uint256 toAmount, address toAddress) internal {
proxy._emit(abi.encode(fromCurrencyKey, fromAmount, toCurrencyKey, toAmount, toAddress), 2, SYNTHEXCHANGE_SIG, bytes32(account), 0, 0);
}
event PreferredCurrencyChanged(address indexed account, bytes4 newPreferredCurrency);
bytes32 constant PREFERREDCURRENCYCHANGED_SIG = keccak256("PreferredCurrencyChanged(address,bytes4)");
function emitPreferredCurrencyChanged(address account, bytes4 newPreferredCurrency) internal {
proxy._emit(abi.encode(newPreferredCurrency), 2, PREFERREDCURRENCYCHANGED_SIG, bytes32(account), 0, 0);
}
event StateContractChanged(address stateContract);
bytes32 constant STATECONTRACTCHANGED_SIG = keccak256("StateContractChanged(address)");
function emitStateContractChanged(address stateContract) internal {
proxy._emit(abi.encode(stateContract), 1, STATECONTRACTCHANGED_SIG, 0, 0, 0);
}
event SynthAdded(bytes4 currencyKey, address newSynth);
bytes32 constant SYNTHADDED_SIG = keccak256("SynthAdded(bytes4,address)");
function emitSynthAdded(bytes4 currencyKey, address newSynth) internal {
proxy._emit(abi.encode(currencyKey, newSynth), 1, SYNTHADDED_SIG, 0, 0, 0);
}
event SynthRemoved(bytes4 currencyKey, address removedSynth);
bytes32 constant SYNTHREMOVED_SIG = keccak256("SynthRemoved(bytes4,address)");
function emitSynthRemoved(bytes4 currencyKey, address removedSynth) internal {
proxy._emit(abi.encode(currencyKey, removedSynth), 1, SYNTHREMOVED_SIG, 0, 0, 0);
}
}
contract FeePool is Proxyable, SelfDestructible {
using SafeMath for uint;
using SafeDecimalMath for uint;
Synthetix public synthetix;
uint public transferFeeRate;
uint constant public MAX_TRANSFER_FEE_RATE = SafeDecimalMath.unit() / 10;
uint public exchangeFeeRate;
uint constant public MAX_EXCHANGE_FEE_RATE = SafeDecimalMath.unit() / 10;
address public feeAuthority;
address public constant FEE_ADDRESS = 0xfeEFEEfeefEeFeefEEFEEfEeFeefEEFeeFEEFEeF;
struct FeePeriod {
uint feePeriodId;
uint startingDebtIndex;
uint startTime;
uint feesToDistribute;
uint feesClaimed;
}
uint8 constant public FEE_PERIOD_LENGTH = 6;
FeePeriod[FEE_PERIOD_LENGTH] public recentFeePeriods;
uint public nextFeePeriodId;
uint public feePeriodDuration = 1 weeks;
uint public constant MIN_FEE_PERIOD_DURATION = 1 days;
uint public constant MAX_FEE_PERIOD_DURATION = 60 days;
mapping(address => uint) public lastFeeWithdrawal;
uint constant TWENTY_PERCENT = (20 * SafeDecimalMath.unit()) / 100;
uint constant TWENTY_FIVE_PERCENT = (25 * SafeDecimalMath.unit()) / 100;
uint constant THIRTY_PERCENT = (30 * SafeDecimalMath.unit()) / 100;
uint constant FOURTY_PERCENT = (40 * SafeDecimalMath.unit()) / 100;
uint constant FIFTY_PERCENT = (50 * SafeDecimalMath.unit()) / 100;
uint constant SEVENTY_FIVE_PERCENT = (75 * SafeDecimalMath.unit()) / 100;
constructor(address _proxy, address _owner, Synthetix _synthetix, address _feeAuthority, uint _transferFeeRate, uint _exchangeFeeRate)
SelfDestructible(_owner)
Proxyable(_proxy, _owner)
public
{
require(_transferFeeRate <= MAX_TRANSFER_FEE_RATE, "Constructed transfer fee rate should respect the maximum fee rate");
require(_exchangeFeeRate <= MAX_EXCHANGE_FEE_RATE, "Constructed exchange fee rate should respect the maximum fee rate");
synthetix = _synthetix;
feeAuthority = _feeAuthority;
transferFeeRate = _transferFeeRate;
exchangeFeeRate = _exchangeFeeRate;
recentFeePeriods[0].feePeriodId = 1;
recentFeePeriods[0].startTime = now;
nextFeePeriodId = 2;
}
function setExchangeFeeRate(uint _exchangeFeeRate)
external
optionalProxy_onlyOwner
{
require(_exchangeFeeRate <= MAX_EXCHANGE_FEE_RATE, "Exchange fee rate must be below MAX_EXCHANGE_FEE_RATE");
exchangeFeeRate = _exchangeFeeRate;
emitExchangeFeeUpdated(_exchangeFeeRate);
}
function setTransferFeeRate(uint _transferFeeRate)
external
optionalProxy_onlyOwner
{
require(_transferFeeRate <= MAX_TRANSFER_FEE_RATE, "Transfer fee rate must be below MAX_TRANSFER_FEE_RATE");
transferFeeRate = _transferFeeRate;
emitTransferFeeUpdated(_transferFeeRate);
}
function setFeeAuthority(address _feeAuthority)
external
optionalProxy_onlyOwner
{
feeAuthority = _feeAuthority;
emitFeeAuthorityUpdated(_feeAuthority);
}
function setFeePeriodDuration(uint _feePeriodDuration)
external
optionalProxy_onlyOwner
{
require(_feePeriodDuration >= MIN_FEE_PERIOD_DURATION, "New fee period cannot be less than minimum fee period duration");
require(_feePeriodDuration <= MAX_FEE_PERIOD_DURATION, "New fee period cannot be greater than maximum fee period duration");
feePeriodDuration = _feePeriodDuration;
emitFeePeriodDurationUpdated(_feePeriodDuration);
}
function setSynthetix(Synthetix _synthetix)
external
optionalProxy_onlyOwner
{
require(address(_synthetix) != address(0), "New Synthetix must be non-zero");
synthetix = _synthetix;
emitSynthetixUpdated(_synthetix);
}
function feePaid(bytes4 currencyKey, uint amount)
external
onlySynthetix
{
uint xdrAmount = synthetix.effectiveValue(currencyKey, amount, "XDR");
recentFeePeriods[0].feesToDistribute = recentFeePeriods[0].feesToDistribute.add(xdrAmount);
}
function closeCurrentFeePeriod()
external
onlyFeeAuthority
{
require(recentFeePeriods[0].startTime <= (now - feePeriodDuration), "It is too early to close the current fee period");
FeePeriod memory secondLastFeePeriod = recentFeePeriods[FEE_PERIOD_LENGTH - 2];
FeePeriod memory lastFeePeriod = recentFeePeriods[FEE_PERIOD_LENGTH - 1];
recentFeePeriods[FEE_PERIOD_LENGTH - 2].feesToDistribute = lastFeePeriod.feesToDistribute
.sub(lastFeePeriod.feesClaimed)
.add(secondLastFeePeriod.feesToDistribute);
for (uint i = FEE_PERIOD_LENGTH - 2; i < FEE_PERIOD_LENGTH; i--) {
uint next = i + 1;
recentFeePeriods[next].feePeriodId = recentFeePeriods[i].feePeriodId;
recentFeePeriods[next].startingDebtIndex = recentFeePeriods[i].startingDebtIndex;
recentFeePeriods[next].startTime = recentFeePeriods[i].startTime;
recentFeePeriods[next].feesToDistribute = recentFeePeriods[i].feesToDistribute;
recentFeePeriods[next].feesClaimed = recentFeePeriods[i].feesClaimed;
}
delete recentFeePeriods[0];
recentFeePeriods[0].feePeriodId = nextFeePeriodId;
recentFeePeriods[0].startingDebtIndex = synthetix.synthetixState().debtLedgerLength();
recentFeePeriods[0].startTime = now;
nextFeePeriodId = nextFeePeriodId.add(1);
emitFeePeriodClosed(recentFeePeriods[1].feePeriodId);
}
function claimFees(bytes4 currencyKey)
external
optionalProxy
returns (bool)
{
uint availableFees = feesAvailable(messageSender, "XDR");
require(availableFees > 0, "No fees available for period, or fees already claimed");
lastFeeWithdrawal[messageSender] = recentFeePeriods[1].feePeriodId;
_recordFeePayment(availableFees);
_payFees(messageSender, availableFees, currencyKey);
emitFeesClaimed(messageSender, availableFees);
return true;
}
function _recordFeePayment(uint xdrAmount)
internal
{
uint remainingToAllocate = xdrAmount;
for (uint i = FEE_PERIOD_LENGTH - 1; i < FEE_PERIOD_LENGTH; i--) {
uint delta = recentFeePeriods[i].feesToDistribute.sub(recentFeePeriods[i].feesClaimed);
if (delta > 0) {
uint amountInPeriod = delta < remainingToAllocate ? delta : remainingToAllocate;
recentFeePeriods[i].feesClaimed = recentFeePeriods[i].feesClaimed.add(amountInPeriod);
remainingToAllocate = remainingToAllocate.sub(amountInPeriod);
if (remainingToAllocate == 0) return;
}
}
assert(remainingToAllocate == 0);
}
function _payFees(address account, uint xdrAmount, bytes4 destinationCurrencyKey)
internal
notFeeAddress(account)
{
require(account != address(0), "Account can't be 0");
require(account != address(this), "Can't send fees to fee pool");
require(account != address(proxy), "Can't send fees to proxy");
require(account != address(synthetix), "Can't send fees to synthetix");
Synth xdrSynth = synthetix.synths("XDR");
Synth destinationSynth = synthetix.synths(destinationCurrencyKey);
xdrSynth.burn(FEE_ADDRESS, xdrAmount);
uint destinationAmount = synthetix.effectiveValue("XDR", xdrAmount, destinationCurrencyKey);
destinationSynth.issue(account, destinationAmount);
destinationSynth.triggerTokenFallbackIfNeeded(FEE_ADDRESS, account, destinationAmount);
}
function transferFeeIncurred(uint value)
public
view
returns (uint)
{
return value.multiplyDecimal(transferFeeRate);
}
function transferredAmountToReceive(uint value)
external
view
returns (uint)
{
return value.add(transferFeeIncurred(value));
}
function amountReceivedFromTransfer(uint value)
external
view
returns (uint)
{
return value.divideDecimal(transferFeeRate.add(SafeDecimalMath.unit()));
}
function exchangeFeeIncurred(uint value)
public
view
returns (uint)
{
return value.multiplyDecimal(exchangeFeeRate);
}
function exchangedAmountToReceive(uint value)
external
view
returns (uint)
{
return value.add(exchangeFeeIncurred(value));
}
function amountReceivedFromExchange(uint value)
external
view
returns (uint)
{
return value.divideDecimal(exchangeFeeRate.add(SafeDecimalMath.unit()));
}
function totalFeesAvailable(bytes4 currencyKey)
external
view
returns (uint)
{
uint totalFees = 0;
for (uint i = 1; i < FEE_PERIOD_LENGTH; i++) {
totalFees = totalFees.add(recentFeePeriods[i].feesToDistribute);
totalFees = totalFees.sub(recentFeePeriods[i].feesClaimed);
}
return synthetix.effectiveValue("XDR", totalFees, currencyKey);
}
function feesAvailable(address account, bytes4 currencyKey)
public
view
returns (uint)
{
uint[FEE_PERIOD_LENGTH] memory userFees = feesByPeriod(account);
uint totalFees = 0;
for (uint i = 1; i < FEE_PERIOD_LENGTH; i++) {
totalFees = totalFees.add(userFees[i]);
}
return synthetix.effectiveValue("XDR", totalFees, currencyKey);
}
function currentPenalty(address account)
public
view
returns (uint)
{
uint ratio = synthetix.collateralisationRatio(account);
if (ratio <= TWENTY_PERCENT) {
return 0;
} else if (ratio > TWENTY_PERCENT && ratio <= THIRTY_PERCENT) {
return TWENTY_FIVE_PERCENT;
} else if (ratio > THIRTY_PERCENT && ratio <= FOURTY_PERCENT) {
return FIFTY_PERCENT;
}
return SEVENTY_FIVE_PERCENT;
}
function feesByPeriod(address account)
public
view
returns (uint[FEE_PERIOD_LENGTH])
{
uint[FEE_PERIOD_LENGTH] memory result;
uint initialDebtOwnership;
uint debtEntryIndex;
(initialDebtOwnership, debtEntryIndex) = synthetix.synthetixState().issuanceData(account);
if (initialDebtOwnership == 0) return result;
uint totalSynths = synthetix.totalIssuedSynths("XDR");
if (totalSynths == 0) return result;
uint debtBalance = synthetix.debtBalanceOf(account, "XDR");
uint userOwnershipPercentage = debtBalance.divideDecimal(totalSynths);
uint penalty = currentPenalty(account);
for (uint i = 0; i < FEE_PERIOD_LENGTH; i++) {
if (recentFeePeriods[i].startingDebtIndex > debtEntryIndex &&
lastFeeWithdrawal[account] < recentFeePeriods[i].feePeriodId) {
uint feesFromPeriodWithoutPenalty = recentFeePeriods[i].feesToDistribute
.multiplyDecimal(userOwnershipPercentage);
uint penaltyFromPeriod = feesFromPeriodWithoutPenalty.multiplyDecimal(penalty);
uint feesFromPeriod = feesFromPeriodWithoutPenalty.sub(penaltyFromPeriod);
result[i] = feesFromPeriod;
}
}
return result;
}
modifier onlyFeeAuthority
{
require(msg.sender == feeAuthority, "Only the fee authority can perform this action");
_;
}
modifier onlySynthetix
{
require(msg.sender == address(synthetix), "Only the synthetix contract can perform this action");
_;
}
modifier notFeeAddress(address account) {
require(account != FEE_ADDRESS, "Fee address not allowed");
_;
}
event TransferFeeUpdated(uint newFeeRate);
bytes32 constant TRANSFERFEEUPDATED_SIG = keccak256("TransferFeeUpdated(uint256)");
function emitTransferFeeUpdated(uint newFeeRate) internal {
proxy._emit(abi.encode(newFeeRate), 1, TRANSFERFEEUPDATED_SIG, 0, 0, 0);
}
event ExchangeFeeUpdated(uint newFeeRate);
bytes32 constant EXCHANGEFEEUPDATED_SIG = keccak256("ExchangeFeeUpdated(uint256)");
function emitExchangeFeeUpdated(uint newFeeRate) internal {
proxy._emit(abi.encode(newFeeRate), 1, EXCHANGEFEEUPDATED_SIG, 0, 0, 0);
}
event FeePeriodDurationUpdated(uint newFeePeriodDuration);
bytes32 constant FEEPERIODDURATIONUPDATED_SIG = keccak256("FeePeriodDurationUpdated(uint256)");
function emitFeePeriodDurationUpdated(uint newFeePeriodDuration) internal {
proxy._emit(abi.encode(newFeePeriodDuration), 1, FEEPERIODDURATIONUPDATED_SIG, 0, 0, 0);
}
event FeeAuthorityUpdated(address newFeeAuthority);
bytes32 constant FEEAUTHORITYUPDATED_SIG = keccak256("FeeAuthorityUpdated(address)");
function emitFeeAuthorityUpdated(address newFeeAuthority) internal {
proxy._emit(abi.encode(newFeeAuthority), 1, FEEAUTHORITYUPDATED_SIG, 0, 0, 0);
}
event FeePeriodClosed(uint feePeriodId);
bytes32 constant FEEPERIODCLOSED_SIG = keccak256("FeePeriodClosed(uint256)");
function emitFeePeriodClosed(uint feePeriodId) internal {
proxy._emit(abi.encode(feePeriodId), 1, FEEPERIODCLOSED_SIG, 0, 0, 0);
}
event FeesClaimed(address account, uint xdrAmount);
bytes32 constant FEESCLAIMED_SIG = keccak256("FeesClaimed(address,uint256)");
function emitFeesClaimed(address account, uint xdrAmount) internal {
proxy._emit(abi.encode(account, xdrAmount), 1, FEESCLAIMED_SIG, 0, 0, 0);
}
event SynthetixUpdated(address newSynthetix);
bytes32 constant SYNTHETIXUPDATED_SIG = keccak256("SynthetixUpdated(address)");
function emitSynthetixUpdated(address newSynthetix) internal {
proxy._emit(abi.encode(newSynthetix), 1, SYNTHETIXUPDATED_SIG, 0, 0, 0);
}
}
contract Synth is ExternStateToken {
FeePool public feePool;
Synthetix public synthetix;
bytes4 public currencyKey;
uint8 constant DECIMALS = 18;
constructor(address _proxy, TokenState _tokenState, Synthetix _synthetix, FeePool _feePool,
string _tokenName, string _tokenSymbol, address _owner, bytes4 _currencyKey
)
ExternStateToken(_proxy, _tokenState, _tokenName, _tokenSymbol, 0, DECIMALS, _owner)
public
{
require(_proxy != 0, "_proxy cannot be 0");
require(address(_synthetix) != 0, "_synthetix cannot be 0");
require(address(_feePool) != 0, "_feePool cannot be 0");
require(_owner != 0, "_owner cannot be 0");
require(_synthetix.synths(_currencyKey) == Synth(0), "Currency key is already in use");
feePool = _feePool;
synthetix = _synthetix;
currencyKey = _currencyKey;
}
function setSynthetix(Synthetix _synthetix)
external
optionalProxy_onlyOwner
{
synthetix = _synthetix;
emitSynthetixUpdated(_synthetix);
}
function setFeePool(FeePool _feePool)
external
optionalProxy_onlyOwner
{
feePool = _feePool;
emitFeePoolUpdated(_feePool);
}
function transfer(address to, uint value)
public
optionalProxy
notFeeAddress(messageSender)
returns (bool)
{
uint amountReceived = feePool.amountReceivedFromTransfer(value);
uint fee = value.sub(amountReceived);
synthetix.synthInitiatedFeePayment(messageSender, currencyKey, fee);
bytes memory empty;
return _internalTransfer(messageSender, to, amountReceived, empty);
}
function transfer(address to, uint value, bytes data)
public
optionalProxy
notFeeAddress(messageSender)
returns (bool)
{
uint amountReceived = feePool.amountReceivedFromTransfer(value);
uint fee = value.sub(amountReceived);
synthetix.synthInitiatedFeePayment(messageSender, currencyKey, fee);
return _internalTransfer(messageSender, to, amountReceived, data);
}
function transferFrom(address from, address to, uint value)
public
optionalProxy
notFeeAddress(from)
returns (bool)
{
uint amountReceived = feePool.amountReceivedFromTransfer(value);
uint fee = value.sub(amountReceived);
tokenState.setAllowance(from, messageSender, tokenState.allowance(from, messageSender).sub(value));
synthetix.synthInitiatedFeePayment(from, currencyKey, fee);
bytes memory empty;
return _internalTransfer(from, to, amountReceived, empty);
}
function transferFrom(address from, address to, uint value, bytes data)
public
optionalProxy
notFeeAddress(from)
returns (bool)
{
uint amountReceived = feePool.amountReceivedFromTransfer(value);
uint fee = value.sub(amountReceived);
tokenState.setAllowance(from, messageSender, tokenState.allowance(from, messageSender).sub(value));
synthetix.synthInitiatedFeePayment(from, currencyKey, fee);
return _internalTransfer(from, to, amountReceived, data);
}
function transferSenderPaysFee(address to, uint value)
public
optionalProxy
notFeeAddress(messageSender)
returns (bool)
{
uint fee = feePool.transferFeeIncurred(value);
synthetix.synthInitiatedFeePayment(messageSender, currencyKey, fee);
bytes memory empty;
return _internalTransfer(messageSender, to, value, empty);
}
function transferSenderPaysFee(address to, uint value, bytes data)
public
optionalProxy
notFeeAddress(messageSender)
returns (bool)
{
uint fee = feePool.transferFeeIncurred(value);
synthetix.synthInitiatedFeePayment(messageSender, currencyKey, fee);
return _internalTransfer(messageSender, to, value, data);
}
function transferFromSenderPaysFee(address from, address to, uint value)
public
optionalProxy
notFeeAddress(from)
returns (bool)
{
uint fee = feePool.transferFeeIncurred(value);
tokenState.setAllowance(from, messageSender, tokenState.allowance(from, messageSender).sub(value.add(fee)));
synthetix.synthInitiatedFeePayment(from, currencyKey, fee);
bytes memory empty;
return _internalTransfer(from, to, value, empty);
}
function transferFromSenderPaysFee(address from, address to, uint value, bytes data)
public
optionalProxy
notFeeAddress(from)
returns (bool)
{
uint fee = feePool.transferFeeIncurred(value);
tokenState.setAllowance(from, messageSender, tokenState.allowance(from, messageSender).sub(value.add(fee)));
synthetix.synthInitiatedFeePayment(from, currencyKey, fee);
return _internalTransfer(from, to, value, data);
}
function _internalTransfer(address from, address to, uint value, bytes data)
internal
returns (bool)
{
bytes4 preferredCurrencyKey = synthetix.synthetixState().preferredCurrency(to);
if (preferredCurrencyKey != 0 && preferredCurrencyKey != currencyKey) {
return synthetix.synthInitiatedExchange(from, currencyKey, value, preferredCurrencyKey, to);
} else {
return super._internalTransfer(from, to, value, data);
}
}
function issue(address account, uint amount)
external
onlySynthetixOrFeePool
{
tokenState.setBalanceOf(account, tokenState.balanceOf(account).add(amount));
totalSupply = totalSupply.add(amount);
emitTransfer(address(0), account, amount);
emitIssued(account, amount);
}
function burn(address account, uint amount)
external
onlySynthetixOrFeePool
{
tokenState.setBalanceOf(account, tokenState.balanceOf(account).sub(amount));
totalSupply = totalSupply.sub(amount);
emitTransfer(account, address(0), amount);
emitBurned(account, amount);
}
function setTotalSupply(uint amount)
external
optionalProxy_onlyOwner
{
totalSupply = amount;
}
function triggerTokenFallbackIfNeeded(address sender, address recipient, uint amount)
external
onlySynthetixOrFeePool
{
bytes memory empty;
callTokenFallbackIfNeeded(sender, recipient, amount, empty);
}
modifier onlySynthetixOrFeePool() {
bool isSynthetix = msg.sender == address(synthetix);
bool isFeePool = msg.sender == address(feePool);
require(isSynthetix || isFeePool, "Only the Synthetix or FeePool contracts can perform this action");
_;
}
modifier notFeeAddress(address account) {
require(account != feePool.FEE_ADDRESS(), "Cannot perform this action with the fee address");
_;
}
event SynthetixUpdated(address newSynthetix);
bytes32 constant SYNTHETIXUPDATED_SIG = keccak256("SynthetixUpdated(address)");
function emitSynthetixUpdated(address newSynthetix) internal {
proxy._emit(abi.encode(newSynthetix), 1, SYNTHETIXUPDATED_SIG, 0, 0, 0);
}
event FeePoolUpdated(address newFeePool);
bytes32 constant FEEPOOLUPDATED_SIG = keccak256("FeePoolUpdated(address)");
function emitFeePoolUpdated(address newFeePool) internal {
proxy._emit(abi.encode(newFeePool), 1, FEEPOOLUPDATED_SIG, 0, 0, 0);
}
event Issued(address indexed account, uint value);
bytes32 constant ISSUED_SIG = keccak256("Issued(address,uint256)");
function emitIssued(address account, uint value) internal {
proxy._emit(abi.encode(value), 2, ISSUED_SIG, bytes32(account), 0, 0);
}
event Burned(address indexed account, uint value);
bytes32 constant BURNED_SIG = keccak256("Burned(address,uint256)");
function emitBurned(address account, uint value) internal {
proxy._emit(abi.encode(value), 2, BURNED_SIG, bytes32(account), 0, 0);
}
} | 1 | 4,364 |
pragma solidity ^0.4.25;
library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0);
uint256 c = a / b;
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a);
uint256 c = a - b;
return c;
}
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a);
return c;
}
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b != 0);
return a % b;
}
}
library SafeERC20 {
using SafeMath for uint256;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
require(token.transfer(to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
require(token.transferFrom(from, to, value));
}
function safeApprove(IERC20 token, address spender, uint256 value) internal {
require((value == 0) || (token.allowance(msg.sender, spender) == 0));
require(token.approve(spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
require(token.approve(spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value);
require(token.approve(spender, newAllowance));
}
}
interface IERC20 {
function totalSupply() external view returns (uint256);
function balanceOf(address who) external view returns (uint256);
function allowance(address owner, address spender) external view returns (uint256);
function transfer(address to, uint256 value) external returns (bool);
function approve(address spender, uint256 value) external returns (bool);
function transferFrom(address from, address to, uint256 value) external returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
event Approval(address indexed owner, address indexed spender, uint256 value);
}
contract ReentrancyGuard {
uint256 private _guardCounter;
constructor () internal {
_guardCounter = 1;
}
modifier nonReentrant() {
_guardCounter += 1;
uint256 localCounter = _guardCounter;
_;
require(localCounter == _guardCounter);
}
}
contract Crowdsale is ReentrancyGuard {
using SafeMath for uint256;
using SafeERC20 for IERC20;
IERC20 private _token;
address private _wallet;
uint256 private _rate;
uint256 private _weiRaised;
event TokensPurchased(address indexed purchaser, address indexed beneficiary, uint256 value, uint256 amount);
constructor (uint256 rate, address wallet, IERC20 token) internal {
require(rate > 0);
require(wallet != address(0));
require(token != address(0));
_rate = rate;
_wallet = wallet;
_token = token;
}
function () external payable {
buyTokens(msg.sender);
}
function token() public view returns (IERC20) {
return _token;
}
function wallet() public view returns (address) {
return _wallet;
}
function rate() public view returns (uint256) {
return _rate;
}
function weiRaised() public view returns (uint256) {
return _weiRaised;
}
function buyTokens(address beneficiary) public nonReentrant payable {
uint256 weiAmount = msg.value;
_preValidatePurchase(beneficiary, weiAmount);
uint256 tokens = _getTokenAmount(weiAmount);
_weiRaised = _weiRaised.add(weiAmount);
_processPurchase(beneficiary, tokens);
emit TokensPurchased(msg.sender, beneficiary, weiAmount, tokens);
_updatePurchasingState(beneficiary, weiAmount);
_forwardFunds();
_postValidatePurchase(beneficiary, weiAmount);
}
function _preValidatePurchase(address beneficiary, uint256 weiAmount) internal view {
require(beneficiary != address(0));
require(weiAmount != 0);
}
function _postValidatePurchase(address beneficiary, uint256 weiAmount) internal view {
}
function _deliverTokens(address beneficiary, uint256 tokenAmount) internal {
_token.safeTransfer(beneficiary, tokenAmount);
}
function _processPurchase(address beneficiary, uint256 tokenAmount) internal {
_deliverTokens(beneficiary, tokenAmount);
}
function _updatePurchasingState(address beneficiary, uint256 weiAmount) internal {
}
function _getTokenAmount(uint256 weiAmount) internal view returns (uint256) {
return weiAmount.mul(_rate);
}
function _forwardFunds() internal {
_wallet.transfer(msg.value);
}
}
contract CappedCrowdsale is Crowdsale {
using SafeMath for uint256;
uint256 private _cap;
constructor (uint256 cap) internal {
require(cap > 0);
_cap = cap;
}
function cap() public view returns (uint256) {
return _cap;
}
function capReached() public view returns (bool) {
return weiRaised() >= _cap;
}
function _preValidatePurchase(address beneficiary, uint256 weiAmount) internal view {
super._preValidatePurchase(beneficiary, weiAmount);
require(weiRaised().add(weiAmount) <= _cap);
}
}
contract TimedCrowdsale is Crowdsale {
using SafeMath for uint256;
uint256 private _openingTime;
uint256 private _closingTime;
modifier onlyWhileOpen {
require(isOpen());
_;
}
constructor (uint256 openingTime, uint256 closingTime) internal {
require(openingTime >= block.timestamp);
require(closingTime > openingTime);
_openingTime = openingTime;
_closingTime = closingTime;
}
function openingTime() public view returns (uint256) {
return _openingTime;
}
function closingTime() public view returns (uint256) {
return _closingTime;
}
function isOpen() public view returns (bool) {
return block.timestamp >= _openingTime && block.timestamp <= _closingTime;
}
function hasClosed() public view returns (bool) {
return block.timestamp > _closingTime;
}
function _preValidatePurchase(address beneficiary, uint256 weiAmount) internal onlyWhileOpen view {
super._preValidatePurchase(beneficiary, weiAmount);
}
}
contract FthCrowdsale is CappedCrowdsale, TimedCrowdsale {
using SafeMath for uint256;
uint256 constant MIN_WEI_AMOUNT = 0.1 ether;
uint256 private _rewardPeriod;
uint256 private _unlockPeriod;
struct Contribution {
uint256 contributeTime;
uint256 buyTokenAmount;
uint256 rewardTokenAmount;
uint256 lastWithdrawTime;
uint256 withdrawPercent;
}
mapping(address => Contribution[]) private _contributions;
constructor (
uint256 rewardPeriod,
uint256 unlockPeriod,
uint256 cap,
uint256 openingTime,
uint256 closingTime,
uint256 rate,
address wallet,
IERC20 token
)
public
CappedCrowdsale(cap)
TimedCrowdsale(openingTime, closingTime)
Crowdsale(rate, wallet, token)
{
_rewardPeriod = rewardPeriod;
_unlockPeriod = unlockPeriod;
}
function contributionsOf(address beneficiary)
public
view
returns (
uint256[] memory contributeTimes,
uint256[] memory buyTokenAmounts,
uint256[] memory rewardTokenAmounts,
uint256[] memory lastWithdrawTimes,
uint256[] memory withdrawPercents
)
{
Contribution[] memory contributions = _contributions[beneficiary];
uint256 length = contributions.length;
contributeTimes = new uint256[](length);
buyTokenAmounts = new uint256[](length);
rewardTokenAmounts = new uint256[](length);
lastWithdrawTimes = new uint256[](length);
withdrawPercents = new uint256[](length);
for (uint256 i = 0; i < length; i++) {
contributeTimes[i] = contributions[i].contributeTime;
buyTokenAmounts[i] = contributions[i].buyTokenAmount;
rewardTokenAmounts[i] = contributions[i].rewardTokenAmount;
lastWithdrawTimes[i] = contributions[i].lastWithdrawTime;
withdrawPercents[i] = contributions[i].withdrawPercent;
}
}
function withdrawTokens(address beneficiary) public {
require(isOver());
if (msg.sender == beneficiary && msg.sender == wallet()) {
_withdrawTokensToWallet();
} else {
_withdrawTokensTo(beneficiary);
}
}
function unlockBalanceOf(address beneficiary) public view returns (uint256) {
uint256 unlockBalance = 0;
Contribution[] memory contributions = _contributions[beneficiary];
for (uint256 i = 0; i < contributions.length; i++) {
uint256 unlockPercent = _unlockPercent(contributions[i]);
if (unlockPercent == 0) {
continue;
}
unlockBalance = unlockBalance.add(
contributions[i].buyTokenAmount.mul(unlockPercent).div(100)
).add(
contributions[i].rewardTokenAmount.mul(unlockPercent).div(100)
);
}
return unlockBalance;
}
function rewardTokenAmount(uint256 buyTokenAmount) public view returns (uint256) {
if (!isOpen()) {
return 0;
}
uint256 rewardTokenPercent = 0;
uint256 timePeriod = block.timestamp.sub(openingTime()).div(_rewardPeriod);
if (timePeriod < 1) {
rewardTokenPercent = 15;
} else if (timePeriod < 2) {
rewardTokenPercent = 10;
} else if (timePeriod < 3) {
rewardTokenPercent = 5;
} else {
return 0;
}
return buyTokenAmount.mul(rewardTokenPercent).div(100);
}
function rewardPeriod() public view returns (uint256) {
return _rewardPeriod;
}
function unlockPeriod() public view returns (uint256) {
return _unlockPeriod;
}
function isOver() public view returns (bool) {
return capReached() || hasClosed();
}
function _preValidatePurchase(address beneficiary, uint256 weiAmount) internal view {
require(weiAmount >= MIN_WEI_AMOUNT);
super._preValidatePurchase(beneficiary, weiAmount);
}
function _processPurchase(address beneficiary, uint256 buyTokenAmount) internal {
Contribution[] storage contributions = _contributions[beneficiary];
require(contributions.length < 100);
contributions.push(Contribution({
contributeTime: block.timestamp,
buyTokenAmount: buyTokenAmount,
rewardTokenAmount: rewardTokenAmount(buyTokenAmount),
lastWithdrawTime: 0,
withdrawPercent: 0
}));
}
function _withdrawTokensToWallet() private {
uint256 balanceTokenAmount = token().balanceOf(address(this));
require(balanceTokenAmount > 0);
_deliverTokens(wallet(), balanceTokenAmount);
}
function _withdrawTokensTo(address beneficiary) private {
uint256 unlockBalance = unlockBalanceOf(beneficiary);
require(unlockBalance > 0);
Contribution[] storage contributions = _contributions[beneficiary];
for (uint256 i = 0; i < contributions.length; i++) {
uint256 unlockPercent = _unlockPercent(contributions[i]);
if (unlockPercent == 0) {
continue;
}
contributions[i].lastWithdrawTime = block.timestamp;
contributions[i].withdrawPercent = contributions[i].withdrawPercent.add(unlockPercent);
}
_deliverTokens(beneficiary, unlockBalance);
}
function _unlockPercent(Contribution memory contribution) private view returns (uint256) {
if (contribution.withdrawPercent >= 100) {
return 0;
}
uint256 baseTimestamp = contribution.contributeTime;
if (contribution.lastWithdrawTime > baseTimestamp) {
baseTimestamp = contribution.lastWithdrawTime;
}
uint256 period = block.timestamp.sub(baseTimestamp);
if (period < _unlockPeriod) {
return 0;
}
uint256 unlockPercent = period.div(_unlockPeriod).sub(1).mul(10);
if (contribution.withdrawPercent == 0) {
unlockPercent = unlockPercent.add(50);
} else {
unlockPercent = unlockPercent.add(10);
}
uint256 max = 100 - contribution.withdrawPercent;
if (unlockPercent > max) {
unlockPercent = max;
}
return unlockPercent;
}
} | 0 | 354 |
pragma solidity ^0.4.16;
interface token {
function transfer(address receiver, uint amount);
}
contract Crowdsale {
address public beneficiary;
uint public fundingGoal;
uint public amountRaised;
uint public deadline;
uint public price;
token public tokenReward;
mapping(address => uint256) public balanceOf;
bool fundingGoalReached = false;
bool crowdsaleClosed = false;
event GoalReached(address recipient, uint totalAmountRaised);
event FundTransfer(address backer, uint amount, bool isContribution);
function Crowdsale(
address ifSuccessfulSendTo,
uint fundingGoalInEthers,
uint durationInMinutes,
uint etherCostOfEachToken,
address addressOfTokenUsedAsReward
) {
beneficiary = ifSuccessfulSendTo;
fundingGoal = fundingGoalInEthers * 1 ether;
deadline = now + durationInMinutes * 1 minutes;
price = etherCostOfEachToken * 1 ether;
tokenReward = token(addressOfTokenUsedAsReward);
}
function () payable {
require(!crowdsaleClosed);
uint amount = msg.value;
balanceOf[msg.sender] += amount;
amountRaised += amount;
tokenReward.transfer(msg.sender, amount / price);
FundTransfer(msg.sender, amount, true);
}
modifier afterDeadline() { if (now >= deadline) _; }
function checkGoalReached() afterDeadline {
if (amountRaised >= fundingGoal){
fundingGoalReached = true;
GoalReached(beneficiary, amountRaised);
}
crowdsaleClosed = true;
}
function safeWithdrawal() afterDeadline {
if (!fundingGoalReached) {
uint amount = balanceOf[msg.sender];
balanceOf[msg.sender] = 0;
if (amount > 0) {
if (msg.sender.send(amount)) {
FundTransfer(msg.sender, amount, false);
} else {
balanceOf[msg.sender] = amount;
}
}
}
if (fundingGoalReached && beneficiary == msg.sender) {
if (beneficiary.send(amountRaised)) {
FundTransfer(beneficiary, amountRaised, false);
} else {
fundingGoalReached = false;
}
}
}
} | 0 | 1,090 |
pragma solidity ^0.4.21;
interface ERC223ReceivingContract {
function tokenFallback(address _from, uint _value, bytes _data) external;
}
library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
assert(c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a / b;
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;
}
}
contract Ownable {
address public owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
function Ownable() public {
owner = msg.sender;
}
modifier onlyOwner() {
require(owner == msg.sender);
_;
}
function transferOwnership(address newOwner) public onlyOwner {
require(newOwner != address(0));
emit OwnershipTransferred(owner, newOwner);
owner = newOwner;
}
}
contract AlphaToken is Ownable {
using SafeMath for uint256;
event Transfer(address indexed from, address indexed to, uint tokens);
event Approval(address indexed tokenOwner, address indexed spender, uint tokens);
mapping(address => uint) balances;
mapping(address => mapping (address => uint256)) allowed;
string _name;
string _symbol;
uint8 DECIMALS = 18;
uint256 _totalSupply;
uint256 _saledTotal = 0;
uint256 _amounToSale = 0;
uint _buyPrice = 4500;
uint256 _totalEther = 0;
function AlphaToken(
string tokenName,
string tokenSymbol
) public
{
_totalSupply = 4000000000 * 10 ** uint256(DECIMALS);
_amounToSale = _totalSupply;
_saledTotal = 0;
_name = tokenName;
_symbol = tokenSymbol;
owner = msg.sender;
}
function name() public constant returns (string) {
return _name;
}
function symbol() public constant returns (string) {
return _symbol;
}
function totalSupply() public constant returns (uint256) {
return _totalSupply;
}
function buyPrice() public constant returns (uint256) {
return _buyPrice;
}
function decimals() public constant returns (uint8) {
return DECIMALS;
}
function _transfer(address _from, address _to, uint _value, bytes _data) internal {
uint codeLength;
require (_to != 0x0);
require(balances[_from]>=_value);
balances[_from] = balances[_from].sub(_value);
balances[_to] = balances[_to].add(_value);
if (codeLength>0) {
ERC223ReceivingContract receiver = ERC223ReceivingContract(_to);
receiver.tokenFallback(msg.sender, _value, _data);
}
emit Transfer(_from, _to, _value);
}
function transfer(address _to, uint _value, bytes _data) public returns (bool ok) {
_transfer(msg.sender, _to, _value, _data);
return true;
}
function transfer(address _to, uint _value) public returns(bool ok) {
bytes memory empty;
_transfer(msg.sender, _to, _value, empty);
return true;
}
function allowance(address tokenOwner, address spender) public constant returns (uint remaining) {
return allowed[tokenOwner][spender];
}
function approve(address spender, uint tokens) public returns (bool success) {
require(balances[msg.sender]>=tokens);
allowed[msg.sender][spender] = tokens;
emit Approval(msg.sender, spender, tokens);
return true;
}
function transferFrom(address _from, address _to, uint _value) onlyOwner public returns (bool success) {
require(_value <= allowed[_from][msg.sender]);
bytes memory empty;
_transfer(_from, _to, _value, empty);
allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value);
return true;
}
function balanceOf(address _owner) public constant returns (uint balance) {
return balances[_owner];
}
function setPrices(uint256 newBuyPrice) onlyOwner public {
_buyPrice = newBuyPrice;
}
function buyCoin() payable public returns (bool ok) {
uint amount = ((msg.value * _buyPrice) * 10 ** uint256(DECIMALS))/1000000000000000000;
require ((_amounToSale - _saledTotal)>=amount);
balances[msg.sender] = balances[msg.sender].add(amount);
_saledTotal = _saledTotal.add(amount);
_totalEther += msg.value;
return true;
}
function dispatchTo(address target, uint256 amount) onlyOwner public returns (bool ok) {
require ((_amounToSale - _saledTotal)>=amount);
balances[target] = balances[target].add(amount);
_saledTotal = _saledTotal.add(amount);
return true;
}
function withdrawTo(address _target, uint256 _value) onlyOwner public returns (bool ok) {
require(_totalEther <= _value);
_totalEther -= _value;
_target.transfer(_value);
return true;
}
function () payable public {
}
} | 1 | 3,744 |
pragma solidity ^0.4.9;
library SafeMath {
function mul(uint256 a, uint256 b) internal returns (uint256) {
uint256 c = a * b;
assert(a == 0 || c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal returns (uint256) {
uint256 c = a / b;
return c;
}
function sub(uint256 a, uint256 b) internal returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;
}
function max64(uint64 a, uint64 b) internal constant returns (uint64) {
return a >= b ? a : b;
}
function min64(uint64 a, uint64 b) internal constant returns (uint64) {
return a < b ? a : b;
}
function max256(uint256 a, uint256 b) internal constant returns (uint256) {
return a >= b ? a : b;
}
function min256(uint256 a, uint256 b) internal constant returns (uint256) {
return a < b ? a : b;
}
}
contract ERC20Basic {
uint256 public totalSupply;
function balanceOf(address who) constant returns (uint256);
function transfer(address to, uint256 value);
event Transfer(address indexed from, address indexed to, uint256 value);
}
contract ERC20 is ERC20Basic {
function allowance(address owner, address spender) constant returns (uint256);
function transferFrom(address from, address to, uint256 value);
function approve(address spender, uint256 value);
event Approval(address indexed owner, address indexed spender, uint256 value);
}
contract BasicToken is ERC20Basic {
using SafeMath for uint256;
mapping(address => uint256) balances;
modifier onlyPayloadSize(uint256 size) {
require(!(msg.data.length < size + 4));
_;
}
function transfer(address _to, uint256 _value) onlyPayloadSize(2 * 32) {
balances[msg.sender] = balances[msg.sender].sub(_value);
balances[_to] = balances[_to].add(_value);
Transfer(msg.sender, _to, _value);
}
function balanceOf(address _owner) constant returns (uint256 balance) {
return balances[_owner];
}
}
contract StandardToken is BasicToken, ERC20 {
mapping (address => mapping (address => uint256)) allowed;
function transferFrom(address _from, address _to, uint256 _value) onlyPayloadSize(3 * 32) {
var _allowance = allowed[_from][msg.sender];
balances[_to] = balances[_to].add(_value);
balances[_from] = balances[_from].sub(_value);
allowed[_from][msg.sender] = _allowance.sub(_value);
Transfer(_from, _to, _value);
}
function approve(address _spender, uint256 _value) {
require(!((_value != 0) && (allowed[msg.sender][_spender] != 0)) );
allowed[msg.sender][_spender] = _value;
Approval(msg.sender, _spender, _value);
}
function allowance(address _owner, address _spender) constant returns (uint256 remaining) {
return allowed[_owner][_spender];
}
}
contract Pixiu_Beta is StandardToken {
uint public decimals = 6;
bool public isPayable = true;
bool public isWithdrawable = true;
struct exchangeRate {
uint time1;
uint time2;
uint value;
}
struct Member {
bool isExists;
bool isDividend;
bool isWithdraw;
uint256 dividend;
uint256 withdraw;
}
exchangeRate[] public exchangeRateArray;
mapping (address => Member) public members;
address[] public adminArray;
address[] public memberArray;
address public deposit_address;
uint256 public INITIAL_SUPPLY = 21000000000000;
uint256 public tokenExchangeRateInWei = 300000000;
uint256 public total_tokenwei = 0;
uint256 public min_pay_wei = 0;
uint256 public total_devidend = 0;
uint256 public total_withdraw = 0;
uint256 public deposit_amount = 0;
uint256 public withdraw_amount = 0;
uint256 public dividend_amount = 0;
function Pixiu_Beta() {
totalSupply = INITIAL_SUPPLY;
adminArray.push(msg.sender);
admin_set_deposit(msg.sender);
}
modifier onlyDeposit() {
require(msg.sender == deposit_address);
_;
}
modifier onlyAdmin() {
bool ok = admin_check(msg.sender);
require(ok);
_;
}
modifier adminExists(address admin) {
bool ok = false;
if(admin != msg.sender){
ok = admin_check(admin);
}
require(ok);
_;
}
modifier adminDoesNotExist(address admin) {
bool ok = admin_check(admin);
require(!ok);
_;
}
function admin_check(address admin) private constant returns(bool){
bool ok = false;
for (uint i = 0; i < adminArray.length; i++) {
if (admin == adminArray[i]) {
ok = true;
break;
}
}
return ok;
}
modifier memberExists(address member) {
bool ok = false;
if (members[member].isExists == true) {
ok = true;
}
require(ok);
_;
}
modifier isMember() {
bool ok = false;
if (members[msg.sender].isExists == true) {
ok = true;
}
require(ok);
_;
}
function admin_deposit(uint xEth) onlyAdmin{
uint256 xwei = xEth * 10**18;
deposit_amount += xwei;
}
function admin_dividend(uint xEth) onlyAdmin{
uint256 xwei = xEth * 10**18;
require(xwei <= (deposit_amount-dividend_amount) );
dividend_amount += xwei;
uint256 len = memberArray.length;
uint i = 0;
address _member;
uint total_balance_dividened=0;
for( i = 0; i < len; i++){
_member = memberArray[i];
if(members[_member].isDividend){
total_balance_dividened = balances[_member];
}
}
uint256 perTokenWei = xwei / (total_balance_dividened / 10 ** 6);
for( i = 0; i < len; i++){
_member = memberArray[i];
if(members[_member].isDividend){
uint256 thisWei = (balances[_member] / 10 ** 6) * perTokenWei;
members[_member].dividend += thisWei;
total_devidend += thisWei;
}
}
}
function admin_set_exchange_rate(uint[] exchangeRates) onlyAdmin{
uint len = exchangeRates.length;
exchangeRateArray.length = 0;
for(uint i = 0; i < len; i += 3){
uint time1 = exchangeRates[i];
uint time2 = exchangeRates[i + 1];
uint value = exchangeRates[i + 2]*1000;
exchangeRateArray.push(exchangeRate(time1, time2, value));
}
}
function get_exchange_wei() constant returns(uint256){
uint len = exchangeRateArray.length;
uint nowTime = block.timestamp;
for(uint i = 0; i < len; i += 3){
exchangeRate memory rate = exchangeRateArray[i];
uint time1 = rate.time1;
uint time2 = rate.time2;
uint value = rate.value;
if (nowTime>= time1 && nowTime<=time2) {
tokenExchangeRateInWei = value;
return value;
}
}
return tokenExchangeRateInWei;
}
function admin_set_min_pay(uint256 _min_pay) onlyAdmin{
require(_min_pay >= 0);
min_pay_wei = _min_pay * 10 ** 18;
}
function get_admin_list() constant returns(address[] _adminArray){
_adminArray = adminArray;
}
function admin_add(address admin) onlyAdmin adminDoesNotExist(admin){
adminArray.push(admin);
}
function admin_del(address admin) onlyAdmin adminExists(admin){
for (uint i = 0; i < adminArray.length - 1; i++)
if (adminArray[i] == admin) {
adminArray[i] = adminArray[adminArray.length - 1];
break;
}
adminArray.length -= 1;
}
function admin_set_deposit(address addr) onlyAdmin{
deposit_address = addr;
}
function admin_active_payable() onlyAdmin{
isPayable = true;
}
function admin_inactive_payable() onlyAdmin{
isPayable = false;
}
function admin_active_withdrawable() onlyAdmin{
isWithdrawable = true;
}
function admin_inactive_withdrawable() onlyAdmin{
isWithdrawable = false;
}
function admin_active_dividend(address _member) onlyAdmin memberExists(_member){
members[_member].isDividend = true;
}
function admin_inactive_dividend(address _member) onlyAdmin memberExists(_member){
members[_member].isDividend = false;
}
function admin_active_withdraw(address _member) onlyAdmin memberExists(_member){
members[_member].isWithdraw = true;
}
function admin_inactive_withdraw(address _member) onlyAdmin memberExists(_member){
members[_member].isWithdraw = false;
}
function get_total_info() constant returns(uint256 _deposit_amount, uint256 _total_devidend, uint256 _total_remain, uint256 _total_withdraw){
_total_remain = total_devidend - total_withdraw;
_deposit_amount = deposit_amount;
_total_devidend = total_devidend;
_total_withdraw = total_withdraw;
}
function get_info(address _member) constant returns (uint256 _balance, uint256 _devidend, uint256 _remain, uint256 _withdraw){
_devidend = members[_member].dividend;
_withdraw = members[_member].withdraw;
_remain = _devidend - _withdraw;
_balance = balances[_member];
}
function withdraw() isMember {
uint256 _remain = members[msg.sender].dividend - members[msg.sender].withdraw;
require(_remain > 0);
require(isWithdrawable);
require(members[msg.sender].isWithdraw);
msg.sender.transfer(_remain);
members[msg.sender].withdraw += _remain;
total_withdraw += _remain;
}
function withdraw_admin(uint xEth) onlyDeposit{
uint256 _withdraw = xEth * 10**18;
require( msg.sender == deposit_address );
require(this.balance > _withdraw);
msg.sender.transfer(_withdraw);
withdraw_amount += _withdraw;
}
function withdraw_all_admin(address _deposit) onlyAdmin {
require( _deposit == deposit_address );
_deposit.transfer(this.balance);
total_devidend = 0;
total_withdraw = 0;
deposit_amount = 0;
withdraw_amount = 0;
dividend_amount = 0;
}
function transfer(address _to, uint256 _value) onlyPayloadSize(2 * 32) {
require(_to != deposit_address);
require(isPayable);
balances[msg.sender] = balances[msg.sender].sub(_value);
balances[_to] = balances[_to].add(_value);
if (members[_to].isExists != true) {
members[_to].isExists = true;
members[_to].isDividend = true;
members[_to].isWithdraw = true;
memberArray.push(_to);
}
Transfer(msg.sender, _to, _value);
}
function transferFrom(address _from, address _to, uint _value) onlyPayloadSize(3 * 32) {
require(_to != deposit_address);
require(_from != deposit_address);
require(isPayable);
var _allowance = allowed[_from][msg.sender];
require(_allowance >= _value);
balances[_to] = balances[_to].add(_value);
balances[_from] = balances[_from].sub(_value);
allowed[_from][msg.sender] = _allowance.sub(_value);
if (members[_to].isExists != true) {
members[_to].isExists = true;
members[_to].isDividend = true;
members[_to].isWithdraw = true;
memberArray.push(_to);
}
Transfer(_from, _to, _value);
}
function () payable {
pay();
}
function pay() public payable returns (bool) {
require(msg.value > min_pay_wei);
require(isPayable);
if(msg.sender == deposit_address){
deposit_amount += msg.value;
}else{
uint256 exchangeWei = get_exchange_wei();
uint256 thisTokenWei = exchangeWei * msg.value / 10**18 ;
if (members[msg.sender].isExists != true) {
members[msg.sender].isExists = true;
members[msg.sender].isDividend = true;
members[msg.sender].isWithdraw = true;
memberArray.push(msg.sender);
}
balances[msg.sender] += thisTokenWei;
total_tokenwei += thisTokenWei;
}
return true;
}
function get_this_balance() constant returns(uint256){
return this.balance;
}
} | 0 | 1,586 |
pragma solidity ^0.4.25;
contract CryptoMinerTokenAlpha {
modifier onlyBagholders {
require(myTokens() > 0);
_;
}
modifier onlyStronghands {
require(myDividends(true) > 0);
_;
}
event onTokenPurchase(
address indexed customerAddress,
uint256 incomingEthereum,
uint256 tokensMinted,
address indexed referredBy,
uint timestamp,
uint256 price
);
event onTokenSell(
address indexed customerAddress,
uint256 tokensBurned,
uint256 ethereumEarned,
uint timestamp,
uint256 price
);
event onReinvestment(
address indexed customerAddress,
uint256 ethereumReinvested,
uint256 tokensMinted
);
event onWithdraw(
address indexed customerAddress,
uint256 ethereumWithdrawn
);
event Transfer(
address indexed from,
address indexed to,
uint256 tokens
);
string public name = "Crypto Miner Token Alpha";
string public symbol = "CMA";
uint8 constant public decimals = 18;
uint8 constant internal entryFee_ = 50;
uint8 constant internal transferFee_ = 0;
uint8 constant internal exitFee_ = 0;
uint8 constant internal refferalFee_ = 33;
uint256 constant internal tokenPriceInitial_ = 0.0000001 ether;
uint256 constant internal tokenPriceIncremental_ = 0.00000001 ether;
uint256 constant internal magnitude = 2 ** 64;
uint256 public stakingRequirement = 50e18;
mapping(address => uint256) internal tokenBalanceLedger_;
mapping(address => uint256) internal referralBalance_;
mapping(address => int256) internal payoutsTo_;
uint256 internal tokenSupply_;
uint256 internal profitPerShare_;
function buy(address _referredBy) public payable returns (uint256) {
purchaseTokens(msg.value, _referredBy);
}
function() payable public {
purchaseTokens(msg.value, 0x0);
}
function reinvest() onlyStronghands public {
uint256 _dividends = myDividends(false);
address _customerAddress = msg.sender;
payoutsTo_[_customerAddress] += (int256) (_dividends * magnitude);
_dividends += referralBalance_[_customerAddress];
referralBalance_[_customerAddress] = 0;
uint256 _tokens = purchaseTokens(_dividends, 0x0);
emit onReinvestment(_customerAddress, _dividends, _tokens);
}
function exit() public {
address _customerAddress = msg.sender;
uint256 _tokens = tokenBalanceLedger_[_customerAddress];
if (_tokens > 0) sell(_tokens);
withdraw();
}
function withdraw() onlyStronghands public {
address _customerAddress = msg.sender;
uint256 _dividends = myDividends(false);
payoutsTo_[_customerAddress] += (int256) (_dividends * magnitude);
_dividends += referralBalance_[_customerAddress];
referralBalance_[_customerAddress] = 0;
_customerAddress.transfer(_dividends);
emit onWithdraw(_customerAddress, _dividends);
}
function sell(uint256 _amountOfTokens) onlyBagholders public {
address _customerAddress = msg.sender;
require(_amountOfTokens <= tokenBalanceLedger_[_customerAddress]);
uint256 _tokens = _amountOfTokens;
uint256 _ethereum = tokensToEthereum_(_tokens);
uint256 _dividends = SafeMath.div(SafeMath.mul(_ethereum, exitFee_), 100);
uint256 _taxedEthereum = SafeMath.sub(_ethereum, _dividends);
tokenSupply_ = SafeMath.sub(tokenSupply_, _tokens);
tokenBalanceLedger_[_customerAddress] = SafeMath.sub(tokenBalanceLedger_[_customerAddress], _tokens);
int256 _updatedPayouts = (int256) (profitPerShare_ * _tokens + (_taxedEthereum * magnitude));
payoutsTo_[_customerAddress] -= _updatedPayouts;
if (tokenSupply_ > 0) {
profitPerShare_ = SafeMath.add(profitPerShare_, (_dividends * magnitude) / tokenSupply_);
}
emit onTokenSell(_customerAddress, _tokens, _taxedEthereum, now, buyPrice());
}
function transfer(address _toAddress, uint256 _amountOfTokens) onlyBagholders public returns (bool) {
address _customerAddress = msg.sender;
require(_amountOfTokens <= tokenBalanceLedger_[_customerAddress]);
if (myDividends(true) > 0) {
withdraw();
}
uint256 _tokenFee = SafeMath.div(SafeMath.mul(_amountOfTokens, transferFee_), 100);
uint256 _taxedTokens = SafeMath.sub(_amountOfTokens, _tokenFee);
uint256 _dividends = tokensToEthereum_(_tokenFee);
tokenSupply_ = SafeMath.sub(tokenSupply_, _tokenFee);
tokenBalanceLedger_[_customerAddress] = SafeMath.sub(tokenBalanceLedger_[_customerAddress], _amountOfTokens);
tokenBalanceLedger_[_toAddress] = SafeMath.add(tokenBalanceLedger_[_toAddress], _taxedTokens);
payoutsTo_[_customerAddress] -= (int256) (profitPerShare_ * _amountOfTokens);
payoutsTo_[_toAddress] += (int256) (profitPerShare_ * _taxedTokens);
profitPerShare_ = SafeMath.add(profitPerShare_, (_dividends * magnitude) / tokenSupply_);
emit Transfer(_customerAddress, _toAddress, _taxedTokens);
return true;
}
function totalEthereumBalance() public view returns (uint256) {
return this.balance;
}
function totalSupply() public view returns (uint256) {
return tokenSupply_;
}
function myTokens() public view returns (uint256) {
address _customerAddress = msg.sender;
return balanceOf(_customerAddress);
}
function myDividends(bool _includeReferralBonus) public view returns (uint256) {
address _customerAddress = msg.sender;
return _includeReferralBonus ? dividendsOf(_customerAddress) + referralBalance_[_customerAddress] : dividendsOf(_customerAddress) ;
}
function balanceOf(address _customerAddress) public view returns (uint256) {
return tokenBalanceLedger_[_customerAddress];
}
function dividendsOf(address _customerAddress) public view returns (uint256) {
return (uint256) ((int256) (profitPerShare_ * tokenBalanceLedger_[_customerAddress]) - payoutsTo_[_customerAddress]) / magnitude;
}
function sellPrice() public view returns (uint256) {
if (tokenSupply_ == 0) {
return tokenPriceInitial_ - tokenPriceIncremental_;
} else {
uint256 _ethereum = tokensToEthereum_(1e18);
uint256 _dividends = SafeMath.div(SafeMath.mul(_ethereum, exitFee_), 100);
uint256 _taxedEthereum = SafeMath.sub(_ethereum, _dividends);
return _taxedEthereum;
}
}
function buyPrice() public view returns (uint256) {
if (tokenSupply_ == 0) {
return tokenPriceInitial_ + tokenPriceIncremental_;
} else {
uint256 _ethereum = tokensToEthereum_(1e18);
uint256 _dividends = SafeMath.div(SafeMath.mul(_ethereum, entryFee_), 100);
uint256 _taxedEthereum = SafeMath.add(_ethereum, _dividends);
return _taxedEthereum;
}
}
function calculateTokensReceived(uint256 _ethereumToSpend) public view returns (uint256) {
uint256 _dividends = SafeMath.div(SafeMath.mul(_ethereumToSpend, entryFee_), 100);
uint256 _taxedEthereum = SafeMath.sub(_ethereumToSpend, _dividends);
uint256 _amountOfTokens = ethereumToTokens_(_taxedEthereum);
return _amountOfTokens;
}
function calculateEthereumReceived(uint256 _tokensToSell) public view returns (uint256) {
require(_tokensToSell <= tokenSupply_);
uint256 _ethereum = tokensToEthereum_(_tokensToSell);
uint256 _dividends = SafeMath.div(SafeMath.mul(_ethereum, exitFee_), 100);
uint256 _taxedEthereum = SafeMath.sub(_ethereum, _dividends);
return _taxedEthereum;
}
function purchaseTokens(uint256 _incomingEthereum, address _referredBy) internal returns (uint256) {
address _customerAddress = msg.sender;
uint256 _undividedDividends = SafeMath.div(SafeMath.mul(_incomingEthereum, entryFee_), 100);
uint256 _referralBonus = SafeMath.div(SafeMath.mul(_undividedDividends, refferalFee_), 100);
uint256 _dividends = SafeMath.sub(_undividedDividends, _referralBonus);
uint256 _taxedEthereum = SafeMath.sub(_incomingEthereum, _undividedDividends);
uint256 _amountOfTokens = ethereumToTokens_(_taxedEthereum);
uint256 _fee = _dividends * magnitude;
require(_amountOfTokens > 0 && SafeMath.add(_amountOfTokens, tokenSupply_) > tokenSupply_);
if (
_referredBy != 0x0000000000000000000000000000000000000000 &&
_referredBy != _customerAddress &&
tokenBalanceLedger_[_referredBy] >= stakingRequirement
) {
referralBalance_[_referredBy] = SafeMath.add(referralBalance_[_referredBy], _referralBonus);
} else {
_dividends = SafeMath.add(_dividends, _referralBonus);
_fee = _dividends * magnitude;
}
if (tokenSupply_ > 0) {
tokenSupply_ = SafeMath.add(tokenSupply_, _amountOfTokens);
profitPerShare_ += (_dividends * magnitude / tokenSupply_);
_fee = _fee - (_fee - (_amountOfTokens * (_dividends * magnitude / tokenSupply_)));
} else {
tokenSupply_ = _amountOfTokens;
}
tokenBalanceLedger_[_customerAddress] = SafeMath.add(tokenBalanceLedger_[_customerAddress], _amountOfTokens);
int256 _updatedPayouts = (int256) (profitPerShare_ * _amountOfTokens - _fee);
payoutsTo_[_customerAddress] += _updatedPayouts;
emit onTokenPurchase(_customerAddress, _incomingEthereum, _amountOfTokens, _referredBy, now, buyPrice());
return _amountOfTokens;
}
function ethereumToTokens_(uint256 _ethereum) internal view returns (uint256) {
uint256 _tokenPriceInitial = tokenPriceInitial_ * 1e18;
uint256 _tokensReceived =
(
(
SafeMath.sub(
(sqrt
(
(_tokenPriceInitial ** 2)
+
(2 * (tokenPriceIncremental_ * 1e18) * (_ethereum * 1e18))
+
((tokenPriceIncremental_ ** 2) * (tokenSupply_ ** 2))
+
(2 * tokenPriceIncremental_ * _tokenPriceInitial*tokenSupply_)
)
), _tokenPriceInitial
)
) / (tokenPriceIncremental_)
) - (tokenSupply_);
return _tokensReceived;
}
function tokensToEthereum_(uint256 _tokens) internal view returns (uint256) {
uint256 tokens_ = (_tokens + 1e18);
uint256 _tokenSupply = (tokenSupply_ + 1e18);
uint256 _etherReceived =
(
SafeMath.sub(
(
(
(
tokenPriceInitial_ + (tokenPriceIncremental_ * (_tokenSupply / 1e18))
) - tokenPriceIncremental_
) * (tokens_ - 1e18)
), (tokenPriceIncremental_ * ((tokens_ ** 2 - tokens_) / 1e18)) / 2
)
/ 1e18);
return _etherReceived;
}
function sqrt(uint256 x) internal pure returns (uint256 y) {
uint256 z = (x + 1) / 2;
y = x;
while (z < y) {
y = z;
z = (x / z + z) / 2;
}
}
}
library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
assert(c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a / b;
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;
}
} | 1 | 2,753 |
pragma solidity ^0.4.20;
contract ERC20Basic {
uint256 public totalSupply;
function balanceOf(address who) public constant returns (uint256);
function transfer(address to, uint256 value) public returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
}
contract ERC20 is ERC20Basic {
function allowance(address owner, address spender) public constant returns (uint256);
function transferFrom(address from, address to, uint256 value) public returns (bool);
function approve(address spender, uint256 value) public returns (bool);
event Approval(address indexed owner, address indexed spender, uint256 value);
}
library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
assert(c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a / b;
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;
}
}
contract Ownable {
address public owner;
function Ownable() public {
owner = msg.sender;
}
modifier onlyOwner() {
require(msg.sender == owner);
_;
}
function transferOwnership(address newOwner) onlyOwner public {
require(newOwner != address(0));
owner = newOwner;
}
}
contract Pausable is Ownable {
address public saleAgent;
address public partner;
modifier onlyAdmin() {
require(msg.sender == owner || msg.sender == saleAgent || msg.sender == partner);
_;
}
function setSaleAgent(address newSaleAgent) onlyOwner public {
require(newSaleAgent != address(0));
saleAgent = newSaleAgent;
}
function setPartner(address newPartner) onlyOwner public {
require(newPartner != address(0));
partner = newPartner;
}
event Pause();
event Unpause();
bool public paused = false;
modifier whenNotPaused() {
require(!paused);
_;
}
modifier whenPaused() {
require(paused);
_;
}
function pause() onlyOwner whenNotPaused public {
paused = true;
Pause();
}
function unpause() onlyOwner whenPaused public {
paused = false;
Unpause();
}
}
contract BasicToken is ERC20Basic, Pausable {
using SafeMath for uint256;
mapping(address => uint256) balances;
uint256 public storageTime = 1522749600;
modifier checkStorageTime() {
require(now >= storageTime);
_;
}
modifier onlyPayloadSize(uint256 numwords) {
assert(msg.data.length >= numwords * 32 + 4);
_;
}
function setStorageTime(uint256 _time) public onlyOwner {
storageTime = _time;
}
function transfer(address _to, uint256 _value) public
onlyPayloadSize(2) whenNotPaused checkStorageTime returns (bool) {
require(_to != address(0));
require(_value <= balances[msg.sender]);
balances[msg.sender] = balances[msg.sender].sub(_value);
balances[_to] = balances[_to].add(_value);
Transfer(msg.sender, _to, _value);
return true;
}
function balanceOf(address _owner) public constant returns (uint256 balance) {
return balances[_owner];
}
}
contract StandardToken is ERC20, BasicToken {
mapping (address => mapping (address => uint256)) allowed;
function transferFrom(address _from, address _to, uint256 _value) public
onlyPayloadSize(3) whenNotPaused checkStorageTime returns (bool) {
require(_to != address(0));
require(_value <= balances[_from]);
require(_value <= allowed[_from][msg.sender]);
balances[_from] = balances[_from].sub(_value);
balances[_to] = balances[_to].add(_value);
allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value);
Transfer(_from, _to, _value);
return true;
}
function approve(address _spender, uint256 _value) public
onlyPayloadSize(2) whenNotPaused returns (bool) {
require((_value == 0) || (allowed[msg.sender][_spender] == 0));
allowed[msg.sender][_spender] = _value;
Approval(msg.sender, _spender, _value);
return true;
}
function allowance(address _owner, address _spender) public constant returns (uint256 remaining) {
return allowed[_owner][_spender];
}
function increaseApproval(address _spender, uint _addedValue) public
onlyPayloadSize(2)
returns (bool) {
allowed[msg.sender][_spender] = allowed[msg.sender][_spender].add(_addedValue);
Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
function decreaseApproval(address _spender, uint _subtractedValue) public
onlyPayloadSize(2)
returns (bool) {
uint oldValue = allowed[msg.sender][_spender];
if (_subtractedValue > oldValue) {
allowed[msg.sender][_spender] = 0;
} else {
allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue);
}
Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
}
contract MintableToken is StandardToken{
event Mint(address indexed to, uint256 amount);
event MintFinished();
bool public mintingFinished = false;
modifier canMint() {
require(!mintingFinished);
_;
}
function mint(address _to, uint256 _amount) public onlyAdmin whenNotPaused canMint returns (bool) {
totalSupply = totalSupply.add(_amount);
balances[_to] = balances[_to].add(_amount);
Mint(_to, _amount);
Transfer(address(this), _to, _amount);
return true;
}
function finishMinting() public onlyOwner returns (bool) {
mintingFinished = true;
MintFinished();
return true;
}
}
contract BurnableToken is MintableToken {
event Burn(address indexed burner, uint256 value);
function burn(uint256 _value) public onlyPayloadSize(1) {
require(_value <= balances[msg.sender]);
address burner = msg.sender;
balances[burner] = balances[burner].sub(_value);
totalSupply = totalSupply.sub(_value);
Burn(burner, _value);
Transfer(burner, address(0), _value);
}
function burnFrom(address _from, uint256 _value) public
onlyPayloadSize(2)
returns (bool success) {
require(balances[_from] >= _value);
require(_value <= allowed[_from][msg.sender]);
balances[_from] = balances[_from].sub(_value);
allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value);
totalSupply = totalSupply.sub(_value);
Burn(_from, _value);
return true;
}
}
contract AlttexToken is BurnableToken {
string public constant name = "Alttex";
string public constant symbol = "ALTX";
uint8 public constant decimals = 8;
} | 1 | 2,994 |
End of preview. Expand
in Data Studio
README.md exists but content is empty.
- Downloads last month
- 49