license: apache-2.0
tags:
- natural-language-understanding
language_creators:
- expert-generated
- machine-generated
multilinguality:
- multilingual
pretty_name: Polyglot or Not? Fact-Completion Benchmark
size_categories:
- 100K<n<1M
task_categories:
- text-generation
- fill-mask
- text2text-generation
dataset_info:
features:
- name: dataset_id
dtype: string
- name: stem
dtype: string
- name: 'true'
dtype: string
- name: 'false'
dtype: string
- name: relation
dtype: string
- name: subject
dtype: string
- name: object
dtype: string
splits:
- name: English
num_bytes: 3474255
num_examples: 26254
- name: Spanish
num_bytes: 3175733
num_examples: 18786
- name: French
num_bytes: 3395566
num_examples: 18395
- name: Russian
num_bytes: 659526
num_examples: 3289
- name: Portuguese
num_bytes: 4158146
num_examples: 22974
- name: German
num_bytes: 2611160
num_examples: 16287
- name: Italian
num_bytes: 3709786
num_examples: 20448
- name: Ukrainian
num_bytes: 1868358
num_examples: 7918
- name: Polish
num_bytes: 1683647
num_examples: 9484
- name: Romanian
num_bytes: 2846002
num_examples: 17568
- name: Czech
num_bytes: 1631582
num_examples: 9427
- name: Bulgarian
num_bytes: 4597410
num_examples: 20577
- name: Swedish
num_bytes: 3226502
num_examples: 21576
- name: Serbian
num_bytes: 1327674
num_examples: 5426
- name: Hungarian
num_bytes: 865409
num_examples: 4650
- name: Croatian
num_bytes: 1195097
num_examples: 7358
- name: Danish
num_bytes: 3580458
num_examples: 23365
- name: Slovenian
num_bytes: 1299653
num_examples: 7873
- name: Dutch
num_bytes: 3732795
num_examples: 22590
- name: Catalan
num_bytes: 3319466
num_examples: 18898
download_size: 27090222
dataset_size: 52358225
language:
- en
- fr
- es
- de
- uk
- bg
- ca
- da
- hr
- hu
- it
- nl
- pl
- pt
- ro
- ru
- sl
- sr
- sv
- cs
Dataset Card
- Homepage: https://bit.ly/ischool-berkeley-capstone
- Repository: https://github.com/daniel-furman/Capstone
- Point of Contact: [email protected]
Dataset Summary
This is the dataset for Polyglot or Not?: Measuring Multilingual Encyclopedic Knowledge Retrieval from Foundation Language Models.
Test Description
Given a factual association such as The capital of France is Paris, we determine whether a model adequately "knows" this information with the following test:
Step 1: prompt the model to predict the likelihood of the token Paris following The Capital of France is
Step 2: prompt the model to predict the average likelihood of a set of false, counterfactual tokens following the same stem.
If the value from 1 is greater than the value from 2 we conclude that model adequately recalls that fact. Formally, this is an application of the Contrastive Knowledge Assessment proposed in [[1][bib]].
For every foundation model of interest (like LLaMA), we perform this assessment on a set of facts translated into 20 languages. All told, we score foundation models on 303k fact-completions (results).
We also score monolingual models (like GPT-2) on English-only fact-completion (results).
Languages
The dataset covers 20 languages, which use either the Latin or Cyrillic scripts: bg, ca, cs, da, de, en, es, fr, hr, hu, it, nl, pl, pt, ro, ru, sl, sr, sv, uk.
Data Splits
The dataset splits correspond to the 20 languages above.
Source Data
We sourced the English cut of the dataset from [1] and [2] and used the Google Translate API to produce the other 19 language cuts.
Licensing Information
The dataset is licensed under the Apache 2.0 license and may be used with the corresponding affordances without limit.
Citation Information
@misc{polyglot_or_not,
author = {Daniel Furman and Tim Schott and Shreshta Bhat},
title = {Polyglot or Not?: Measuring Multilingual Encyclopedic Knowledge Retrieval from Foundation Language Models},
year = {2023}
publisher = {GitHub},
howpublished = {\url{https://github.com/daniel-furman/Capstone}},
}
Bibliography
[1] Dong, Qingxiu, Damai Dai, Yifan Song, Jingjing Xu, Zhifang Sui, and Lei Li. "Calibrating Factual Knowledge in Pretrained Language Models". In Findings of the Association for Computational Linguistics: EMNLP 2022. [arXiv:2210.03329][cka] (2022).
@misc{dong2022calibrating,
doi = {10.48550/arXiv.2210.03329},
title={Calibrating Factual Knowledge in Pretrained Language Models},
author={Qingxiu Dong and Damai Dai and Yifan Song and Jingjing Xu and Zhifang Sui and Lei Li},
year={2022},
eprint={2210.03329},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
[2] Meng, Kevin, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. "Mass Editing Memory in a Transformer." arXiv preprint [arXiv:2210.07229][memit] (2022).
@misc{meng2022massediting,
doi = {10.48550/arXiv.2210.07229},
title={Mass-Editing Memory in a Transformer},
author={Kevin Meng and Arnab Sen Sharma and Alex Andonian and Yonatan Belinkov and David Bau},
year={2022},
eprint={2210.07229},
archivePrefix={arXiv},
primaryClass={cs.CL}
}