|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""WozDialogue: a dataset for training task-oriented dialogue systems""" |
|
|
|
|
|
import json |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@misc{wen2017networkbased, |
|
title={A Network-based End-to-End Trainable Task-oriented Dialogue System}, |
|
author={Tsung-Hsien Wen and David Vandyke and Nikola Mrksic and Milica Gasic and Lina M. Rojas-Barahona and Pei-Hao Su and Stefan Ultes and Steve Young}, |
|
year={2017}, |
|
eprint={1604.04562}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Wizard-of-Oz (WOZ) is a dataset for training task-oriented dialogue systems. The dataset is designed around the \ |
|
task of finding a restaurant in the Cambridge, UK area. There are three informable slots (food, pricerange,area) \ |
|
that users can use to constrain the search and six requestable slots (address, phone, postcode plus the three informable slots) \ |
|
that the user can ask a value for once a restaurant has been offered. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/nmrksic/neural-belief-tracker/tree/master/data/woz" |
|
|
|
_BASE_URL = "https://raw.githubusercontent.com/nmrksic/neural-belief-tracker/master/data/woz" |
|
|
|
|
|
class WozDialogue(datasets.GeneratorBasedBuilder): |
|
"""WozDialogue: a dataset for training task-oriented dialogue systems""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="en", |
|
version=datasets.Version("1.0.0"), |
|
description="WOZ English dataset", |
|
), |
|
datasets.BuilderConfig(name="de", version=datasets.Version("1.0.0"), description="WOZ German dataset"), |
|
datasets.BuilderConfig( |
|
name="de_en", |
|
version=datasets.Version("1.0.0"), |
|
description="WOZ German-English dataset. For this config, the dialogues are in German and the labels in English ", |
|
), |
|
datasets.BuilderConfig(name="it", version=datasets.Version("1.0.0"), description="WOZ Italian dataset"), |
|
datasets.BuilderConfig( |
|
name="it_en", |
|
version=datasets.Version("1.0.0"), |
|
description="WOZ Italian-English dataset. For this config, the dialogues are in Italian and the labels in English ", |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"dialogue_idx": datasets.Value("int32"), |
|
"dialogue": [ |
|
{ |
|
"turn_label": datasets.Sequence(datasets.Sequence(datasets.Value("string"))), |
|
"asr": datasets.Sequence(datasets.Sequence(datasets.Value("string"))), |
|
"system_transcript": datasets.Value("string"), |
|
"turn_idx": datasets.Value("int32"), |
|
"belief_state": [ |
|
{ |
|
"slots": datasets.Sequence(datasets.Sequence(datasets.Value("string"))), |
|
"act": datasets.Value("string"), |
|
} |
|
], |
|
"transcript": datasets.Value("string"), |
|
"system_acts": datasets.Sequence(datasets.Sequence(datasets.Value("string"))), |
|
} |
|
], |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
urls = { |
|
"train": f"{_BASE_URL}/woz_train_{self.config.name}.json", |
|
"dev": f"{_BASE_URL}/woz_validate_{self.config.name}.json", |
|
"test": f"{_BASE_URL}/woz_test_{self.config.name}.json", |
|
} |
|
downloaded_paths = dl_manager.download(urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": downloaded_paths["train"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": downloaded_paths["dev"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": downloaded_paths["test"]}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
with open(filepath, encoding="utf-8") as f: |
|
examples = json.load(f) |
|
for i, example in enumerate(examples): |
|
for dialogue in example["dialogue"]: |
|
|
|
dialogue["asr"] = [asr[:1] for asr in dialogue["asr"]] |
|
|
|
|
|
dialogue["system_acts"] = [ |
|
[act] if isinstance(act, str) else act for act in dialogue["system_acts"] |
|
] |
|
|
|
yield example["dialogue_idx"], example |
|
|