File size: 5,756 Bytes
ea8a129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""WozDialogue: a dataset for training task-oriented dialogue systems"""


import json

import datasets


_CITATION = """\
@misc{wen2017networkbased,
      title={A Network-based End-to-End Trainable Task-oriented Dialogue System},
      author={Tsung-Hsien Wen and David Vandyke and Nikola Mrksic and Milica Gasic and Lina M. Rojas-Barahona and Pei-Hao Su and Stefan Ultes and Steve Young},
      year={2017},
      eprint={1604.04562},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
"""

_DESCRIPTION = """\
Wizard-of-Oz (WOZ) is a dataset for training task-oriented dialogue systems. The dataset is designed around the \
task of finding a restaurant in the Cambridge, UK area. There are three informable slots (food, pricerange,area) \
that users can use to constrain the search and six requestable slots (address, phone, postcode plus the three informable slots) \
that the user can ask a value for once a restaurant has been offered.
"""

_HOMEPAGE = "https://github.com/nmrksic/neural-belief-tracker/tree/master/data/woz"

_BASE_URL = "https://raw.githubusercontent.com/nmrksic/neural-belief-tracker/master/data/woz"


class WozDialogue(datasets.GeneratorBasedBuilder):
    """WozDialogue: a dataset for training task-oriented dialogue systems"""

    VERSION = datasets.Version("1.0.0")
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="en",
            version=datasets.Version("1.0.0"),
            description="WOZ English dataset",
        ),
        datasets.BuilderConfig(name="de", version=datasets.Version("1.0.0"), description="WOZ German dataset"),
        datasets.BuilderConfig(
            name="de_en",
            version=datasets.Version("1.0.0"),
            description="WOZ German-English dataset. For this config, the dialogues are in German and the labels in English ",
        ),
        datasets.BuilderConfig(name="it", version=datasets.Version("1.0.0"), description="WOZ Italian dataset"),
        datasets.BuilderConfig(
            name="it_en",
            version=datasets.Version("1.0.0"),
            description="WOZ Italian-English dataset. For this config, the dialogues are in Italian and the labels in English ",
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "dialogue_idx": datasets.Value("int32"),
                    "dialogue": [
                        {
                            "turn_label": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
                            "asr": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
                            "system_transcript": datasets.Value("string"),
                            "turn_idx": datasets.Value("int32"),
                            "belief_state": [
                                {
                                    "slots": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
                                    "act": datasets.Value("string"),
                                }
                            ],
                            "transcript": datasets.Value("string"),
                            "system_acts": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
                        }
                    ],
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        urls = {
            "train": f"{_BASE_URL}/woz_train_{self.config.name}.json",
            "dev": f"{_BASE_URL}/woz_validate_{self.config.name}.json",
            "test": f"{_BASE_URL}/woz_test_{self.config.name}.json",
        }
        downloaded_paths = dl_manager.download(urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": downloaded_paths["train"]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filepath": downloaded_paths["dev"]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": downloaded_paths["test"]},
            ),
        ]

    def _generate_examples(self, filepath):
        with open(filepath, encoding="utf-8") as f:
            examples = json.load(f)
            for i, example in enumerate(examples):
                for dialogue in example["dialogue"]:
                    # exclude the second element which is same for every instance and is of type int
                    dialogue["asr"] = [asr[:1] for asr in dialogue["asr"]]
                    # some system_acts is either to string or list of strings,
                    # converting all to list of strings
                    dialogue["system_acts"] = [
                        [act] if isinstance(act, str) else act for act in dialogue["system_acts"]
                    ]

                yield example["dialogue_idx"], example