Datasets:
license: apache-2.0
dataset_info:
features:
- name: message_id
dtype: string
- name: parent_id
dtype: string
- name: user_id
dtype: string
- name: created_date
dtype: string
- name: text
dtype: string
- name: role
dtype: string
- name: lang
dtype: string
- name: review_count
dtype: int32
- name: review_result
dtype: bool
- name: deleted
dtype: bool
- name: rank
dtype: int32
- name: synthetic
dtype: bool
- name: model_name
dtype: string
- name: detoxify
struct:
- name: toxicity
dtype: float64
- name: severe_toxicity
dtype: float64
- name: obscene
dtype: float64
- name: identity_attack
dtype: float64
- name: insult
dtype: float64
- name: threat
dtype: float64
- name: sexual_explicit
dtype: float64
- name: message_tree_id
dtype: string
- name: tree_state
dtype: string
- name: emojis
sequence:
- name: name
dtype: string
- name: count
dtype: int32
- name: labels
sequence:
- name: name
dtype: string
- name: value
dtype: float64
- name: count
dtype: int32
splits:
- name: train
num_bytes: 100367999
num_examples: 84437
- name: validation
num_bytes: 5243405
num_examples: 4401
download_size: 41596430
dataset_size: 105611404
language:
- en
- es
- ru
- de
- pl
- th
- vi
- sv
- bn
- da
- he
- it
- fa
- sk
- id
- nb
- el
- nl
- hu
- eu
- zh
- eo
- ja
- ca
- cs
- bg
- fi
- pt
- tr
- ro
- ar
- uk
- gl
- fr
- ko
tags:
- human-feedback
size_categories:
- 100K<n<1M
pretty_name: OpenAssistant Conversations
OpenAssistant Conversations Dataset (OASST1)
Dataset Description
- Homepage: https://www.open-assistant.io/
- Repository: https://github.com/LAION-AI/Open-Assistant
- Paper: https://arxiv.org/abs/2304.07327
Dataset Summary
In an effort to democratize research on large-scale alignment, we release OpenAssistant Conversations (OASST1), a human-generated, human-annotated assistant-style conversation corpus consisting of 161,443 messages in 35 different languages, annotated with 461,292 quality ratings, resulting in over 10,000 fully annotated conversation trees. The corpus is a product of a worldwide crowd-sourcing effort involving over 13,500 volunteers.
Please refer to our paper for further details.
Dataset Structure
This dataset contains message trees. Each message tree has an initial prompt message as the root node, which can have multiple child messages as replies, and these child messages can have multiple replies.
All messages have a role property: this can either be "assistant" or "prompter". The roles in conversation threads from prompt to leaf node strictly alternate between "prompter" and "assistant".
This version of the dataset contains data collected on the open-assistant.io website until April 12 2023.
JSON Example: Message
For readability, the following JSON examples are shown formatted with indentation on multiple lines. Objects are stored without indentation (on single lines) in the actual jsonl files.
{
"message_id": "218440fd-5317-4355-91dc-d001416df62b",
"parent_id": "13592dfb-a6f9-4748-a92c-32b34e239bb4",
"user_id": "8e95461f-5e94-4d8b-a2fb-d4717ce973e4",
"text": "It was the winter of 2035, and artificial intelligence (..)",
"role": "assistant",
"lang": "en",
"review_count": 3,
"review_result": true,
"deleted": false,
"rank": 0,
"synthetic": true,
"model_name": "oasst-sft-0_3000,max_new_tokens=400 (..)",
"labels": {
"spam": { "value": 0.0, "count": 3 },
"lang_mismatch": { "value": 0.0, "count": 3 },
"pii": { "value": 0.0, "count": 3 },
"not_appropriate": { "value": 0.0, "count": 3 },
"hate_speech": { "value": 0.0, "count": 3 },
"sexual_content": { "value": 0.0, "count": 3 },
"quality": { "value": 0.416, "count": 3 },
"toxicity": { "value": 0.16, "count": 3 },
"humor": { "value": 0.0, "count": 3 },
"creativity": { "value": 0.33, "count": 3 },
"violence": { "value": 0.16, "count": 3 }
}
}
JSON Example: Conversation Tree
For readability, only a subset of the message properties is shown here.
{
"message_tree_id": "14fbb664-a620-45ce-bee4-7c519b16a793",
"tree_state": "ready_for_export",
"prompt": {
"message_id": "14fbb664-a620-45ce-bee4-7c519b16a793",
"text": "Why can't we divide by 0? (..)",
"role": "prompter",
"lang": "en",
"replies": [
{
"message_id": "894d30b6-56b4-4605-a504-89dd15d4d1c8",
"text": "The reason we cannot divide by zero is because (..)",
"role": "assistant",
"lang": "en",
"replies": [
// ...
]
},
{
"message_id": "84d0913b-0fd9-4508-8ef5-205626a7039d",
"text": "The reason that the result of a division by zero is (..)",
"role": "assistant",
"lang": "en",
"replies": [
{
"message_id": "3352725e-f424-4e3b-a627-b6db831bdbaa",
"text": "Math is confusing. Like those weird Irrational (..)",
"role": "prompter",
"lang": "en",
"replies": [
{
"message_id": "f46207ca-3149-46e9-a466-9163d4ce499c",
"text": "Irrational numbers are simply numbers (..)",
"role": "assistant",
"lang": "en",
"replies": []
},
// ...
]
}
]
}
]
}
}
Please refer to oasst-data for details about the data structure and Python code to read and write jsonl files containing oasst data objects.
Main Dataset Files
Conversation data is provided either as nested messages in trees (extension .trees.jsonl.gz
)
or as a flat list (table) of messages (extension .messages.jsonl.gz
).
Ready For Export Trees
2023-04-12_oasst_ready.trees.jsonl.gz 10,364 trees with 88,838 total messages
2023-04-12_oasst_ready.messages.jsonl.gz 88,838 messages
Trees in ready_for_export
state without spam and deleted messages including message labels.
The oasst_ready-trees file usually is sufficient for supervised fine-tuning (SFT) & reward model (RM) training.
All Trees
2023-04-12_oasst_all.trees.jsonl.gz 66,497 trees with 161,443 total messages
2023-04-12_oasst_all.messages.jsonl.gz 161,443 messages
All trees, including those in states prompt_lottery_waiting
(trees that consist of only one message, namely the initial prompt),
aborted_low_grade
(trees that stopped growing because the messages had low quality), and halted_by_moderator
.
Supplemental Exports: Spam & Prompts
2023-04-12_oasst_spam.messages.jsonl.gz
These are messages which were deleted or have a negative review result ("review_result": false
).
Besides low quality, a frequent reason for message deletion is a wrong language tag.
2023-04-12_oasst_prompts.messages.jsonl.gz
These are all the kept initial prompt messages with positive review result (no spam) of trees in ready_for_export
or prompt_lottery_waiting
state.
Using the Huggingface Datasets
While HF datasets is ideal for tabular datasets, it is not a natural fit for nested data structures like the OpenAssistant conversation trees.
Nevertheless, we make all messages which can also be found in the file 2023-04-12_oasst_ready.trees.jsonl.gz
available in parquet as train/validation splits.
These are directly loadable by Huggingface Datasets.
To load the oasst1 train & validation splits use:
from datasets import load_dataset
ds = load_dataset("OpenAssistant/oasst1")
train = ds['train'] # len(train)=84437 (95%)
val = ds['validation'] # len(val)=4401 (5%)
The messages appear in depth-first order of the message trees.
Full conversation trees can be reconstructed from the flat messages table by using the parent_id
and message_id
properties to identify the parent-child relationship of messages. The message_tree_id
and tree_state
properties (only present in flat messages files) can be used to find all messages of a message tree or to select trees by their state.
Languages
OpenAssistant Conversations incorporates 35 different languages with a distribution of messages as follows:
Languages with over 1000 messages
- English: 71956
- Spanish: 43061
- Russian: 9089
- German: 5279
- Chinese: 4962
- French: 4251
- Thai: 3042
- Portuguese (Brazil): 2969
- Catalan: 2260
- Korean: 1553
- Ukrainian: 1352
- Italian: 1320
- Japanese: 1018
Languages with under 1000 messages
- Vietnamese: 952
- Basque: 947
- Polish: 886
- Hungarian: 811
- Arabic: 666
- Dutch: 628
- Swedish: 512
- Turkish: 454
- Finnish: 386
- Czech: 372
- Danish: 358
- Galician: 339
- Hebrew: 255
- Romanian: 200
- Norwegian Bokmål: 133
- Indonesian: 115
- Bulgarian: 95
- Bengali: 82
- Persian: 72
- Greek: 66
- Esperanto: 59
- Slovak: 19
Contact
- Discord Open Assistant Discord Server
- GitHub: LAION-AI/Open-Assistant
- E-Mail: [email protected] (yes, with e)