Omartificial-Intelligence-Space's picture
update readme.md
c04c74b verified
---
license: apache-2.0
task_categories:
- sentence-similarity
language:
- ar
size_categories:
- 100K<n<1M
tags:
- sentence-transformers
dataset_info:
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
---
# Arabic NLI Pair-Class
## Dataset Summary
- The Arabic Version of SNLI and MultiNLI datasets. (Pair-Class Subset)
- Originally used for Natural Language Inference (NLI),
- Dataset may be used for training/finetuning an embedding model for semantic textual similarity.
## Pair-Class Subset
- Columns: "premise", "hypothesis", "label"
- Column types: str, str, class with {"0": "entailment", "1": "neutral", "2": "contradiction"}
## Arabic Examples:
```python
{
"premise": "شخص على حصان يقفز فوق طائرة معطلة",
"hypothesis": "شخص يقوم بتدريب حصانه للمنافسة",
"label": 1,
},
{
"premise": "شخص على حصان يقفز فوق طائرة معطلة",
"hypothesis": "شخص في مطعم، يطلب عجة.",
"label": 2,
},
{
"premise": "شخص على حصان يقفز فوق طائرة معطلة",
"hypothesis": "شخص في الهواء الطلق، على حصان.",
"label": 0,
}
```
## Disclaimer
Please note that the translated sentences are generated using neural machine translation and may not always convey the intended meaning accurately.
## Contact
[Contact Me](https://www.omarai.co) if you have any questions or you want to use thid dataset
## Note
Original work done by [SentenceTransformers](https://www.sbert.net)
## Citation
If you use the Arabic Matryoshka Embeddings Dataset, please cite it as follows:
```bibtex
@misc{nacar2024enhancingsemanticsimilarityunderstanding,
title={Enhancing Semantic Similarity Understanding in Arabic NLP with Nested Embedding Learning},
author={Omer Nacar and Anis Koubaa},
year={2024},
eprint={2407.21139},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2407.21139},
}