Datasets:
Tasks:
Sentence Similarity
Modalities:
Text
Formats:
csv
Languages:
Arabic
Size:
100K - 1M
ArXiv:
Tags:
sentence-transformers
License:
license: apache-2.0 | |
task_categories: | |
- sentence-similarity | |
language: | |
- ar | |
size_categories: | |
- 100K<n<1M | |
tags: | |
- sentence-transformers | |
dataset_info: | |
features: | |
- name: premise | |
dtype: string | |
- name: hypothesis | |
dtype: string | |
- name: label | |
dtype: | |
class_label: | |
names: | |
'0': entailment | |
'1': neutral | |
'2': contradiction | |
# Arabic NLI Pair-Class | |
## Dataset Summary | |
- The Arabic Version of SNLI and MultiNLI datasets. (Pair-Class Subset) | |
- Originally used for Natural Language Inference (NLI), | |
- Dataset may be used for training/finetuning an embedding model for semantic textual similarity. | |
## Pair-Class Subset | |
- Columns: "premise", "hypothesis", "label" | |
- Column types: str, str, class with {"0": "entailment", "1": "neutral", "2": "contradiction"} | |
## Arabic Examples: | |
```python | |
{ | |
"premise": "شخص على حصان يقفز فوق طائرة معطلة", | |
"hypothesis": "شخص يقوم بتدريب حصانه للمنافسة", | |
"label": 1, | |
}, | |
{ | |
"premise": "شخص على حصان يقفز فوق طائرة معطلة", | |
"hypothesis": "شخص في مطعم، يطلب عجة.", | |
"label": 2, | |
}, | |
{ | |
"premise": "شخص على حصان يقفز فوق طائرة معطلة", | |
"hypothesis": "شخص في الهواء الطلق، على حصان.", | |
"label": 0, | |
} | |
``` | |
## Disclaimer | |
Please note that the translated sentences are generated using neural machine translation and may not always convey the intended meaning accurately. | |
## Contact | |
[Contact Me](https://www.omarai.co) if you have any questions or you want to use thid dataset | |
## Note | |
Original work done by [SentenceTransformers](https://www.sbert.net) | |
## Citation | |
If you use the Arabic Matryoshka Embeddings Dataset, please cite it as follows: | |
```bibtex | |
@misc{nacar2024enhancingsemanticsimilarityunderstanding, | |
title={Enhancing Semantic Similarity Understanding in Arabic NLP with Nested Embedding Learning}, | |
author={Omer Nacar and Anis Koubaa}, | |
year={2024}, | |
eprint={2407.21139}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CL}, | |
url={https://arxiv.org/abs/2407.21139}, | |
} |