repo_name
stringlengths
7
79
path
stringlengths
4
179
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
959
798k
license
stringclasses
15 values
marqh/iris
lib/iris/tests/unit/plot/test_contourf.py
11
3169
# (C) British Crown Copyright 2014 - 2016, Met Office # # This file is part of Iris. # # Iris is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Iris is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Iris. If not, see <http://www.gnu.org/licenses/>. """Unit tests for the `iris.plot.contourf` function.""" from __future__ import (absolute_import, division, print_function) from six.moves import (filter, input, map, range, zip) # noqa # Import iris.tests first so that some things can be initialised before # importing anything else. import iris.tests as tests import numpy as np from iris.tests import mock from iris.tests.stock import simple_2d from iris.tests.unit.plot import TestGraphicStringCoord, MixinCoords if tests.MPL_AVAILABLE: import iris.plot as iplt @tests.skip_plot class TestStringCoordPlot(TestGraphicStringCoord): def test_yaxis_labels(self): iplt.contourf(self.cube, coords=('bar', 'str_coord')) self.assertPointsTickLabels('yaxis') def test_xaxis_labels(self): iplt.contourf(self.cube, coords=('str_coord', 'bar')) self.assertPointsTickLabels('xaxis') def test_yaxis_labels_with_axes(self): import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(111) iplt.contourf(self.cube, axes=ax, coords=('bar', 'str_coord')) plt.close(fig) self.assertPointsTickLabels('yaxis', ax) def test_xaxis_labels_with_axes(self): import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(111) iplt.contourf(self.cube, axes=ax, coords=('str_coord', 'bar')) plt.close(fig) self.assertPointsTickLabels('xaxis', ax) def test_geoaxes_exception(self): import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(111) self.assertRaises(TypeError, iplt.contourf, self.lat_lon_cube, axes=ax) plt.close(fig) @tests.skip_plot class TestCoords(tests.IrisTest, MixinCoords): def setUp(self): # We have a 2d cube with dimensionality (bar: 3; foo: 4) self.cube = simple_2d(with_bounds=False) self.foo = self.cube.coord('foo').points self.foo_index = np.arange(self.foo.size) self.bar = self.cube.coord('bar').points self.bar_index = np.arange(self.bar.size) self.data = self.cube.data self.dataT = self.data.T mocker = mock.Mock(alpha=0, antialiased=False) self.mpl_patch = self.patch('matplotlib.pyplot.contourf', return_value=mocker) self.draw_func = iplt.contourf if __name__ == "__main__": tests.main()
lgpl-3.0
BorisJeremic/Real-ESSI-Examples
analytic_solution/test_cases/Contact/Interface_Mesh_Types/Interface_5/HardContact_ElPPlShear/Interface_Test_Shear_Plot.py
23
3513
#!/usr/bin/python import h5py import matplotlib.pylab as plt import matplotlib as mpl import sys import numpy as np; plt.rcParams.update({'font.size': 28}) # set tick width mpl.rcParams['xtick.major.size'] = 10 mpl.rcParams['xtick.major.width'] = 5 mpl.rcParams['xtick.minor.size'] = 10 mpl.rcParams['xtick.minor.width'] = 5 plt.rcParams['xtick.labelsize']=24 mpl.rcParams['ytick.major.size'] = 10 mpl.rcParams['ytick.major.width'] = 5 mpl.rcParams['ytick.minor.size'] = 10 mpl.rcParams['ytick.minor.width'] = 5 plt.rcParams['ytick.labelsize']=24 ############################################################### ## Analytical Solution ############################################################### # Go over each feioutput and plot each one. thefile = "Analytical_Solution_Shear.feioutput"; finput = h5py.File(thefile) # Read the time and displacement times = finput["time"][:] shear_strain_x = finput["/Model/Elements/Element_Outputs"][4,:] shear_strain_y = finput["/Model/Elements/Element_Outputs"][5,:] shear_stress_x = finput["/Model/Elements/Element_Outputs"][7,:] shear_stress_y = finput["/Model/Elements/Element_Outputs"][8,:] normal_stress = -finput["/Model/Elements/Element_Outputs"][9,:]; shear_strain = np.sqrt(shear_strain_x*shear_strain_x + shear_strain_y*shear_strain_y) ; shear_stress = np.sqrt(shear_stress_x*shear_stress_x + shear_stress_y*shear_stress_y ); shear_stress = shear_stress_x; shear_strain = shear_strain_x; # Configure the figure filename, according to the input filename. outfig=thefile.replace("_","-") outfigname=outfig.replace("h5.feioutput","pdf") # Plot the figure. Add labels and titles. plt.figure(figsize=(12,10)) plt.plot(shear_strain*5,shear_stress/normal_stress,'-r',label='Analytical Solution', Linewidth=4) plt.xlabel(r"Shear Displacement $\Delta_t [mm]$") plt.ylabel(r"Normalized Shear Stress $\tau/\sigma_n$") ############################################################### ## Numerical Solution ############################################################### # Go over each feioutput and plot each one. thefile = "Interface_Surface_Interface.h5.feioutput"; finput = h5py.File(thefile) # Read the time and displacement times = finput["time"][:] shear_strain_x = finput["/Model/Elements/Element_Outputs"][4,:] shear_strain_y = finput["/Model/Elements/Element_Outputs"][5,:] shear_stress_x = finput["/Model/Elements/Element_Outputs"][7,:] shear_stress_y = finput["/Model/Elements/Element_Outputs"][8,:] normal_stress = -finput["/Model/Elements/Element_Outputs"][9,:]; shear_strain = np.sqrt(shear_strain_x*shear_strain_x + shear_strain_y*shear_strain_y) ; shear_stress = np.sqrt(shear_stress_x*shear_stress_x + shear_stress_y*shear_stress_y ); shear_stress = shear_stress_x; shear_strain = shear_strain_x; # Configure the figure filename, according to the input filename. outfig=thefile.replace("_","-") outfigname=outfig.replace("h5.feioutput","pdf") # Plot the figure. Add labels and titles. plt.plot(shear_strain*5,shear_stress/normal_stress,'-k',label='Numerical Solution', Linewidth=4) plt.xlabel(r"Shear Displacement $\Delta_t [mm]$") plt.ylabel(r"Normalized Shear Stress $\tau/\sigma_n$") ######################################################## # # axes = plt.gca() # # axes.set_xlim([-7,7]) # # axes.set_ylim([-1,1]) outfigname = "Interface_Test_Shear_Stress.pdf"; legend = plt.legend() legend.get_frame().set_linewidth(0.0) legend.get_frame().set_facecolor('none') plt.savefig(outfigname, bbox_inches='tight') # plt.show()
cc0-1.0
CGATOxford/CGATPipelines
obsolete/reports/pipeline_capseq/trackers/macs.py
1
5174
import os import sys import re import types import itertools import matplotlib.pyplot as plt import numpy import scipy.stats import numpy.ma import Stats import Histogram from CGATReport.Tracker import * from cpgReport import * ########################################################################## class MacsSummary(cpgTracker): pattern = "(macs_summary)" def getTracks(self, subset=None): return self.getValues("SELECT track FROM macs_summary ORDER BY track") def __call__(self, track, slice=None): resultsdir = os.path.join(EXPORTDIR, "MACS") fields = ("ncandidates_positive", "ncandidates_negative", "called_positive", "called_negative", "min_tags", "paired_peaks", "shift") f = ",".join(fields) data = self.getFirstRow( '''SELECT %(f)s FROM macs_summary WHERE track="%(track)s"''' % locals()) result = odict(list(zip(fields, data))) if os.path.exists(resultsdir): print(resultsdir) result[ "link"] = "`pdf <%(resultsdir)s/%(track)s.macs_model.pdf>`_" % locals() return result ########################################################################## class MacsSoloSummary(cpgTracker): pattern = "(macs_solo_summary)" def getTracks(self, subset=None): return self.getValues("SELECT track FROM macs_solo_summary ORDER BY track") def __call__(self, track, slice=None): resultsdir = os.path.join(EXPORTDIR, "MACS") fields = ("ncandidates_positive", "called_positive", "min_tags", "paired_peaks", "shift") f = ",".join(fields) data = self.getFirstRow( '''SELECT %(f)s FROM macs_solo_summary WHERE track="%(track)s"''' % locals()) result = odict(list(zip(fields, data))) if os.path.exists(resultsdir): print(resultsdir) result[ "link"] = "`pdf <%(resultsdir)s/%(track)s.macs_model.pdf>`_" % locals() return result ########################################################################## class MacsIntervalsSummary(cpgTracker): """Summary stats of intervals called by the peak finder. """ mPattern = "_macs_intervals$" def __call__(self, track, slice=None): data = self.getFirstRow( "SELECT COUNT(*), round(AVG(length),0), round(AVG(nprobes),0) FROM %(track)s_macs_intervals" % locals()) return odict(list(zip(("intervals_count", "mean_interval_length", "mean_reads_per_interval"), data))) ########################################################################## class FoldChangeThreshold(cpgTracker): """Count of intervals exceeding fold change threshold for each dataset. """ mPattern = "_foldchange$" # def __call__(self, track, slice=None): data = self.get( "SELECT threshold, intervals FROM %(track)s_foldchange" % locals()) return odict(list(zip(("Threshold", "Intervals"), list(zip(*data))))) ########################################################################## class BackgroundSummary(cpgTracker): """Summary stats of reads mapping inside/outside binding intervals. """ mPattern = "_background$" def __call__(self, track, slice=None): data = self.getFirstRow( '''select in_peaks, out_peaks, (in_peaks+out_peaks) as total, round(((in_peaks+0.00)/(out_peaks+in_peaks+0.00))*100,1) as ratio, round(((out_peaks+0.00)/(out_peaks+in_peaks+0.00))*100,1) as ratio2 from %(track)s_background;''' % locals() ) return odict(list(zip(("Reads Overlapping intervals", "Reads Outwith Intervals", "Total Reads", "Percent in Intervals", "Percent Background"), data))) ########################################################################## class IntervalsSummaryFiltered(cpgTracker): """Summary stats of intervals after filtering by fold change and merging nearby intervals. """ mPattern = "_macs_merged_intervals$" def __call__(self, track, slice=None): data = self.getRow( "SELECT COUNT(*) as Intervals, round(AVG(length),0) as Mean_length, round(AVG(nprobes),0) as Mean_reads FROM %(track)s_macs_merged_intervals" % locals()) return data ########################################################################## class MacsDiagnostics(cpgTracker): """Closest distance of transcript models to gene models in the reference set.""" pattern = "(.*)_macsdiag" def __call__(self, track, slice=None): data = self.get( "SELECT fc,npeaks,p20,p30,p40,p50,p60,p70,p80,p90 FROM %(track)s_macsdiag" % locals()) result = odict() for fc, npeaks, p20, p30, p40, p50, p60, p70, p80, p90 in data: result[fc] = odict() result[fc]["npeaks"] = npeaks result[fc]["proportion of reads"] = list(range(20, 100, 10)) result[fc]["proportion of peaks"] = list(map( float, (p20, p30, p40, p50, p60, p70, p80, p90))) return result
mit
idwaker/sklearn_pydata2015
notebooks/fig_code/helpers.py
74
2301
""" Small helpers for code that is not shown in the notebooks """ from sklearn import neighbors, datasets, linear_model import pylab as pl import numpy as np from matplotlib.colors import ListedColormap # Create color maps for 3-class classification problem, as with iris cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) def plot_iris_knn(): iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target knn = neighbors.KNeighborsClassifier(n_neighbors=3) knn.fit(X, y) x_min, x_max = X[:, 0].min() - .1, X[:, 0].max() + .1 y_min, y_max = X[:, 1].min() - .1, X[:, 1].max() + .1 xx, yy = np.meshgrid(np.linspace(x_min, x_max, 100), np.linspace(y_min, y_max, 100)) Z = knn.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) pl.figure() pl.pcolormesh(xx, yy, Z, cmap=cmap_light) # Plot also the training points pl.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold) pl.xlabel('sepal length (cm)') pl.ylabel('sepal width (cm)') pl.axis('tight') def plot_polynomial_regression(): rng = np.random.RandomState(0) x = 2*rng.rand(100) - 1 f = lambda t: 1.2 * t**2 + .1 * t**3 - .4 * t **5 - .5 * t ** 9 y = f(x) + .4 * rng.normal(size=100) x_test = np.linspace(-1, 1, 100) pl.figure() pl.scatter(x, y, s=4) X = np.array([x**i for i in range(5)]).T X_test = np.array([x_test**i for i in range(5)]).T regr = linear_model.LinearRegression() regr.fit(X, y) pl.plot(x_test, regr.predict(X_test), label='4th order') X = np.array([x**i for i in range(10)]).T X_test = np.array([x_test**i for i in range(10)]).T regr = linear_model.LinearRegression() regr.fit(X, y) pl.plot(x_test, regr.predict(X_test), label='9th order') pl.legend(loc='best') pl.axis('tight') pl.title('Fitting a 4th and a 9th order polynomial') pl.figure() pl.scatter(x, y, s=4) pl.plot(x_test, f(x_test), label="truth") pl.axis('tight') pl.title('Ground truth (9th order polynomial)')
bsd-3-clause
jzt5132/scikit-learn
examples/cluster/plot_agglomerative_clustering_metrics.py
402
4492
""" Agglomerative clustering with different metrics =============================================== Demonstrates the effect of different metrics on the hierarchical clustering. The example is engineered to show the effect of the choice of different metrics. It is applied to waveforms, which can be seen as high-dimensional vector. Indeed, the difference between metrics is usually more pronounced in high dimension (in particular for euclidean and cityblock). We generate data from three groups of waveforms. Two of the waveforms (waveform 1 and waveform 2) are proportional one to the other. The cosine distance is invariant to a scaling of the data, as a result, it cannot distinguish these two waveforms. Thus even with no noise, clustering using this distance will not separate out waveform 1 and 2. We add observation noise to these waveforms. We generate very sparse noise: only 6% of the time points contain noise. As a result, the l1 norm of this noise (ie "cityblock" distance) is much smaller than it's l2 norm ("euclidean" distance). This can be seen on the inter-class distance matrices: the values on the diagonal, that characterize the spread of the class, are much bigger for the Euclidean distance than for the cityblock distance. When we apply clustering to the data, we find that the clustering reflects what was in the distance matrices. Indeed, for the Euclidean distance, the classes are ill-separated because of the noise, and thus the clustering does not separate the waveforms. For the cityblock distance, the separation is good and the waveform classes are recovered. Finally, the cosine distance does not separate at all waveform 1 and 2, thus the clustering puts them in the same cluster. """ # Author: Gael Varoquaux # License: BSD 3-Clause or CC-0 import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import AgglomerativeClustering from sklearn.metrics import pairwise_distances np.random.seed(0) # Generate waveform data n_features = 2000 t = np.pi * np.linspace(0, 1, n_features) def sqr(x): return np.sign(np.cos(x)) X = list() y = list() for i, (phi, a) in enumerate([(.5, .15), (.5, .6), (.3, .2)]): for _ in range(30): phase_noise = .01 * np.random.normal() amplitude_noise = .04 * np.random.normal() additional_noise = 1 - 2 * np.random.rand(n_features) # Make the noise sparse additional_noise[np.abs(additional_noise) < .997] = 0 X.append(12 * ((a + amplitude_noise) * (sqr(6 * (t + phi + phase_noise))) + additional_noise)) y.append(i) X = np.array(X) y = np.array(y) n_clusters = 3 labels = ('Waveform 1', 'Waveform 2', 'Waveform 3') # Plot the ground-truth labelling plt.figure() plt.axes([0, 0, 1, 1]) for l, c, n in zip(range(n_clusters), 'rgb', labels): lines = plt.plot(X[y == l].T, c=c, alpha=.5) lines[0].set_label(n) plt.legend(loc='best') plt.axis('tight') plt.axis('off') plt.suptitle("Ground truth", size=20) # Plot the distances for index, metric in enumerate(["cosine", "euclidean", "cityblock"]): avg_dist = np.zeros((n_clusters, n_clusters)) plt.figure(figsize=(5, 4.5)) for i in range(n_clusters): for j in range(n_clusters): avg_dist[i, j] = pairwise_distances(X[y == i], X[y == j], metric=metric).mean() avg_dist /= avg_dist.max() for i in range(n_clusters): for j in range(n_clusters): plt.text(i, j, '%5.3f' % avg_dist[i, j], verticalalignment='center', horizontalalignment='center') plt.imshow(avg_dist, interpolation='nearest', cmap=plt.cm.gnuplot2, vmin=0) plt.xticks(range(n_clusters), labels, rotation=45) plt.yticks(range(n_clusters), labels) plt.colorbar() plt.suptitle("Interclass %s distances" % metric, size=18) plt.tight_layout() # Plot clustering results for index, metric in enumerate(["cosine", "euclidean", "cityblock"]): model = AgglomerativeClustering(n_clusters=n_clusters, linkage="average", affinity=metric) model.fit(X) plt.figure() plt.axes([0, 0, 1, 1]) for l, c in zip(np.arange(model.n_clusters), 'rgbk'): plt.plot(X[model.labels_ == l].T, c=c, alpha=.5) plt.axis('tight') plt.axis('off') plt.suptitle("AgglomerativeClustering(affinity=%s)" % metric, size=20) plt.show()
bsd-3-clause
rupak0577/ginga
ginga/misc/plugins/MultiDim.py
1
21828
# # MultiDim.py -- Multidimensional plugin for Ginga reference viewer # # This is open-source software licensed under a BSD license. # Please see the file LICENSE.txt for details. # import time import re from distutils import spawn from contextlib import contextmanager from ginga import AstroImage from ginga.gw import Widgets from ginga.misc import Future, Bunch from ginga import GingaPlugin from ginga.util.videosink import VideoSink from ginga.util import iohelper import numpy as np import matplotlib.pyplot as plt import copy have_mencoder = False if spawn.find_executable("mencoder"): have_mencoder = True have_pyfits = False try: from astropy.io import fits as pyfits have_pyfits = True except ImportError: try: import pyfits have_pyfits = True except ImportError: pass class MultiDim(GingaPlugin.LocalPlugin): def __init__(self, fv, fitsimage): # superclass defines some variables for us, like logger super(MultiDim, self).__init__(fv, fitsimage) self.hdu_info = [] self.hdu_db = {} self.curhdu = 0 self.naxispath = [] self.name_pfx = 'NONAME' self.image = None self.orientation = 'vertical' # For animation feature self.play_axis = 2 self.play_idx = 1 self.play_max = 1 self.play_int_sec = 0.1 self.play_min_sec = 0.1 self.timer = fv.get_timer() self.timer.set_callback('expired', self.play_next) # Load plugin preferences prefs = self.fv.get_preferences() self.settings = prefs.createCategory('plugin_MultiDim') self.settings.setDefaults(auto_start_naxis=False) self.settings.load(onError='silent') # register for new image notification in this channel fitsimage.set_callback('image-set', self.new_image_cb) self.gui_up = False def build_gui(self, container): assert have_pyfits == True, \ Exception("Please install astropy/pyfits to use this plugin") top = Widgets.VBox() top.set_border_width(4) vbox, sw, orientation = Widgets.get_oriented_box(container, scrolled=True) self.orientation = orientation vbox.set_border_width(4) vbox.set_spacing(2) self.msgFont = self.fv.getFont("sansFont", 12) tw = Widgets.TextArea(wrap=True, editable=False) tw.set_font(self.msgFont) self.tw = tw fr = Widgets.Expander("Instructions") fr.set_widget(tw) vbox.add_widget(fr, stretch=0) fr = Widgets.Frame("HDU") vb1 = Widgets.VBox() captions = [("Num HDUs:", 'label', "Num HDUs", 'llabel'), ] w, b = Widgets.build_info(captions, orientation=orientation) self.w.numhdu = b.num_hdus self.w.update(b) vb1.add_widget(w) captions = [("Choose HDU", 'combobox'), ] w, b = Widgets.build_info(captions, orientation=orientation) vb1.add_widget(w) self.w.hdu = b.choose_hdu self.w.hdu.set_tooltip("Choose which HDU to view") self.w.hdu.add_callback('activated', self.set_hdu_cb) fr.set_widget(vb1) vbox.add_widget(fr, stretch=0) fr = Widgets.Frame("NAXIS (data cubes)") self.naxisfr = fr vbox.add_widget(fr, stretch=0) captions = [("First", 'button', "Prev", 'button', "Stop", 'button'), ("Last", 'button', "Next", 'button', "Play", 'button'), ("Interval:", 'label', "Interval", 'spinfloat'), ] w, b = Widgets.build_info(captions, orientation=orientation) self.w.update(b) b.next.add_callback('activated', lambda w: self.next_slice()) b.prev.add_callback('activated', lambda w: self.prev_slice()) b.first.add_callback('activated', lambda w: self.first_slice()) b.last.add_callback('activated', lambda w: self.last_slice()) b.play.add_callback('activated', lambda w: self.play_start()) b.stop.add_callback('activated', lambda w: self.play_stop()) lower, upper = 0.1, 8.0 b.interval.set_limits(lower, upper, incr_value=0.1) b.interval.set_value(lower) b.interval.set_decimals(2) b.interval.add_callback('value-changed', self.play_int_cb) b.next.set_enabled(False) b.prev.set_enabled(False) b.first.set_enabled(False) b.last.set_enabled(False) b.play.set_enabled(False) b.stop.set_enabled(False) b.interval.set_enabled(False) vbox.add_widget(w, stretch=0) captions = [("Slice:", 'label', "Slice", 'llabel',), #"Value:", 'label', "Value", 'llabel'), ("Save Slice", 'button'), ] w, b = Widgets.build_info(captions, orientation=orientation) self.w.update(b) b.save_slice.add_callback('activated', lambda w: self.save_slice_cb()) b.save_slice.set_enabled(False) b.save_slice.set_tooltip("Save current slice as RGB image") vbox.add_widget(w, stretch=0) fr = Widgets.Frame("Movie") if have_mencoder: captions = [("Start:", 'label', "Start Slice", 'entry', "End:", 'label', "End Slice", 'entry', 'Save Movie', 'button')] w, b = Widgets.build_info(captions, orientation=orientation) self.w.update(b) b.start_slice.set_tooltip("Starting slice") b.end_slice.set_tooltip("Ending slice") b.start_slice.set_length(6) b.end_slice.set_length(6) b.save_movie.add_callback('activated', lambda w: self.save_movie_cb()) b.save_movie.set_enabled(False) fr.set_widget(w) else: infolbl = Widgets.Label() infolbl.set_text("Please install 'mencoder' to save as movie") fr.set_widget(infolbl) vbox.add_widget(fr, stretch=0) #spacer = Widgets.Label('') #vbox.add_widget(spacer, stretch=1) top.add_widget(sw, stretch=1) btns = Widgets.HBox() btns.set_spacing(4) btn = Widgets.Button("Close") btn.add_callback('activated', lambda w: self.close()) btns.add_widget(btn) btns.add_widget(Widgets.Label(''), stretch=1) top.add_widget(btns, stretch=0) container.add_widget(top, stretch=1) self.gui_up = True def set_hdu_cb(self, w, val): #idx = int(val) idx = w.get_index() idx = max(0, idx) try: self.set_hdu(idx) except Exception as e: self.logger.error("Error loading HDU #%d: %s" % ( idx+1, str(e))) def set_naxis_cb(self, w, idx, n): #idx = int(w.get_value()) - 1 self.set_naxis(idx, n) def build_naxis(self, dims): # build a vbox of NAXIS controls captions = [("NAXIS1:", 'label', 'NAXIS1', 'llabel'), ("NAXIS2:", 'label', 'NAXIS2', 'llabel')] self.naxispath = [] for n in range(2, len(dims)): self.naxispath.append(0) key = 'naxis%d' % (n+1) title = key.upper() maxn = int(dims[n]) self.logger.debug("NAXIS%d=%d" % (n+1, maxn)) if maxn <= 1: captions.append((title+':', 'label', title, 'llabel')) else: captions.append((title+':', 'label', title, 'llabel', #"Choose %s" % (title), 'spinbutton')) "Choose %s" % (title), 'hscale')) if len(dims) > 3: # only add radiobuttons if we have more than 3 dimensions radiobuttons = [] for i in range(2, len(dims)): title = 'AXIS%d' % (i+1) radiobuttons.extend((title,'radiobutton')) captions.append(radiobuttons) # Remove old naxis widgets for key in self.w: if key.startswith('choose_'): self.w[key] = None w, b = Widgets.build_info(captions, orientation=self.orientation) self.w.update(b) for n in range(0, len(dims)): key = 'naxis%d' % (n+1) lbl = b[key] maxn = int(dims[n]) lbl.set_text("%d" % maxn) slkey = 'choose_' + key if slkey in b: slider = b[slkey] lower = 1 upper = maxn slider.set_limits(lower, upper, incr_value=1) slider.set_value(lower) slider.set_tracking(True) #slider.set_digits(0) #slider.set_wrap(True) slider.add_callback('value-changed', self.set_naxis_cb, n) # Add vbox of naxis controls to gui self.naxisfr.set_widget(w) # for storing play_idx for each dim of image. used for going back to # the idx where you left off. self.play_indices = [0 for i in range(len(dims) - 2)] if len(dims) > 3 else None if len(dims) > 3: # dims only exists in here, hence this function exists here def play_axis_change_func_creator(n): # widget callable needs (widget, value) args def play_axis_change(): self.play_indices[self.play_axis - 2] = (self.play_idx - 1) % dims[self.play_axis] self.play_axis = n self.logger.debug("play_axis changed to %d" % n) if self.play_axis < len(dims): self.play_max = dims[self.play_axis] self.play_idx = self.play_indices[n - 2] def check_if_we_need_change(w,v): if self.play_axis is not n: play_axis_change() return check_if_we_need_change for n in range(2, len(dims)): key = 'axis%d' % (n + 1) self.w[key].add_callback('activated', play_axis_change_func_creator(n)) if n == 2: self.w[key].set_state(True) self.play_axis = 2 if self.play_axis < len(dims): self.play_max = dims[self.play_axis] self.play_idx = 1 # Enable or disable NAXIS animation controls is_dc = len(dims) > 2 self.w.next.set_enabled(is_dc) self.w.prev.set_enabled(is_dc) self.w.first.set_enabled(is_dc) self.w.last.set_enabled(is_dc) self.w.play.set_enabled(is_dc) self.w.stop.set_enabled(is_dc) self.w.interval.set_enabled(is_dc) self.w.save_slice.set_enabled(is_dc) if have_mencoder: self.w.save_movie.set_enabled(is_dc) def close(self): self.fv.stop_local_plugin(self.chname, str(self)) return True def new_image_cb(self, fitsimage, image): """We are called when a new image is set in the channel. If our GUI is not up, and auto_start_naxis preference is True, and NAXIS >= 3 then start us up. """ if fitsimage != self.fitsimage: # Focus is not our channel-->not an event for us return False image = fitsimage.get_image() if image is None: return False auto_start = self.settings.get('auto_start_naxis', False) if not hasattr(image, 'naxispath'): return False # Start ourselves if file is multidimensional if len(image.naxispath) <= 0: return False # check preference for auto_start_naxis if not auto_start: return False # Start ourselves if GUI is not up yet if not self.gui_up: self.fv.start_local_plugin(self.chname, str(self), None) return True def instructions(self): self.tw.set_text("""Use mouse wheel to choose HDU or axis of data cube (NAXIS controls).""") def start(self): self.instructions() self.resume() def pause(self): self.play_stop() pass def resume(self): self.redo() def stop(self): self.gui_up = False self.play_stop() try: self.fits_f.close() except: pass self.image = None self.fv.showStatus("") def get_name(self, sfx): return '%s[%s]' % (self.name_pfx, sfx) def set_hdu(self, idx): self.logger.debug("Loading fits hdu #%d" % (idx)) # determine canonical index of this HDU info = self.hdu_info[idx] aidx = (info.name, info.extver) sfx = '%s,%d' % aidx # See if this HDU is still in the channel's datasrc imname = self.get_name(sfx) chname = self.chname chinfo = self.chinfo if imname in chinfo.datasrc: self.curhdu = idx self.image = chinfo.datasrc[imname] self.fv.switch_name(chname, imname) # Still need to build datacube profile hdu = self.fits_f[idx] dims = list(hdu.data.shape) dims.reverse() self.build_naxis(dims) return # Nope, we'll have to load it self.logger.debug("HDU %d not in memory; refreshing from file" % (idx)) # inherit from primary header? inherit_prihdr = self.fv.settings.get('inherit_primary_header', False) image = AstroImage.AstroImage(logger=self.logger, inherit_primary_header=inherit_prihdr) self.image = image try: self.curhdu = idx dims = [0, 0] hdu = self.fits_f[idx] if hdu.data is None: # <- empty data part to this HDU self.logger.warning("Empty data part in HDU #%d" % (idx)) elif info['htype'].lower() not in ('imagehdu', 'primaryhdu'): self.logger.warning("HDU #%d is not an image" % (idx)) else: dims = list(hdu.data.shape) dims.reverse() image.load_hdu(hdu, fobj=self.fits_f) # create a future for reconstituting this HDU future = Future.Future() future.freeze(self.fv.load_image, self.path, idx=aidx) image.set(path=self.path, idx=aidx, name=imname, image_future=future) ## self.fitsimage.set_image(image, ## raise_initialize_errors=False) self.fv.add_image(imname, image, chname=chname) self.build_naxis(dims) self.logger.debug("HDU #%d loaded." % (idx)) except Exception as e: errmsg = "Error loading FITS HDU #%d: %s" % ( idx, str(e)) self.logger.error(errmsg) self.fv.show_error(errmsg, raisetab=False) def set_naxis(self, idx, n): self.play_idx = idx self.w['choose_naxis%d' % (n+1)].set_value(idx) idx = idx - 1 self.logger.debug("naxis %d index is %d" % (n+1, idx+1)) image = self.fitsimage.get_image() try: if image is None: raise ValueError("Please load an image cube") m = n - 2 self.naxispath[m] = idx self.logger.debug("m=%d naxispath=%s" % (m, str(self.naxispath))) image.set_naxispath(self.naxispath) self.logger.debug("NAXIS%d slice %d loaded." % (n+1, idx+1)) if self.play_indices: text = self.play_indices text[m]= idx else: text = idx self.w.slice.set_text(str(text)) except Exception as e: errmsg = "Error loading NAXIS%d slice %d: %s" % ( n+1, idx+1, str(e)) self.logger.error(errmsg) self.fv.error(errmsg) def play_start(self): self._isplaying = True self.play_next(self.timer) def play_next(self, timer): if self._isplaying: time_start = time.time() deadline = time_start + self.play_int_sec self.next_slice() #self.fv.update_pending(0.001) delta = max(deadline - time.time(), 0.001) self.timer.set(delta) def play_stop(self): self._isplaying = False def first_slice(self): play_idx = 1 self.fv.gui_do(self.set_naxis_cb, None, play_idx, self.play_axis) def last_slice(self): play_idx = self.play_max self.fv.gui_do(self.set_naxis_cb, None, play_idx, self.play_axis) def prev_slice(self): play_idx = self.play_idx - 1 if play_idx < 1: play_idx = self.play_max self.fv.gui_do(self.set_naxis_cb, None, play_idx, self.play_axis) def next_slice(self): play_idx = self.play_idx + 1 if play_idx > self.play_max: play_idx = 1 self.fv.gui_do(self.set_naxis_cb, None, play_idx, self.play_axis) def play_int_cb(self, w, val): # force at least play_min_sec, otherwise playback is untenable self.play_int_sec = max(self.play_min_sec, val) def prep_hdu_menu(self, w, info): # clear old TOC w.clear() self.hdu_info = [] self.hdu_db = {} idx = 0 extver_db = {} for tup in info: name = tup[1] # figure out the EXTVER for this HDU extver = extver_db.setdefault(name, 0) extver += 1 extver_db[name] = extver # prepare a record of pertinent info about the HDU for # lookups by numerical index or (NAME, EXTVER) d = Bunch.Bunch(index=idx, name=name, extver=extver, htype=tup[2], dtype=tup[5]) self.hdu_info.append(d) # different ways of accessing this HDU: # by numerical index self.hdu_db[idx] = d # by (hduname, extver) self.hdu_db[(name, extver)] = d toc_ent = "%(index)4d %(name)-12.12s (%(extver)3d) %(htype)-12.12s %(dtype)-8.8s" % d w.append_text(toc_ent) idx += 1 idx = w.get_index() if idx < 0: idx = 0 if idx >= len(self.hdu_info): idx = len(self.hdu_info) - 1 #w.set_index(idx) def redo(self): """Called when an image is set in the channel.""" image = self.fitsimage.get_image() if (image is None) or (image == self.image): return True path = image.get('path', None) if path is None: self.fv.show_error("Cannot open image: no value for metadata key 'path'") return self.path = path name = image.get('name', self.fv.name_image_from_path(path)) idx = image.get('idx', None) # remove index designation from root of name, if any match = re.match(r'^(.+)\[(.+)\]$', name) if match: name = match.group(1) self.name_pfx = name self.fits_f = pyfits.open(path, 'readonly') lower = 0 upper = len(self.fits_f) - 1 info = self.fits_f.info(output=False) self.prep_hdu_menu(self.w.hdu, info) self.num_hdu = upper self.logger.debug("there are %d hdus" % (upper+1)) self.w.numhdu.set_text("%d" % (upper+1)) if idx is not None: # set the HDU in the drop down if known info = self.hdu_db.get(idx, None) if info is not None: index = info.index self.w.hdu.set_index(index) self.set_hdu(index) self.w.hdu.set_enabled(len(self.fits_f) > 0) def save_slice_cb(self): target = Widgets.SaveDialog(title='Save slice', selectedfilter='*.png').get_path() with open(target, 'w') as target_file: hival = self.fitsimage.get_cut_levels()[1] image = self.fitsimage.get_image() curr_slice_data = image.get_data() plt.imsave(target_file, curr_slice_data, vmax=hival, cmap=plt.get_cmap('gray'), origin='lower') self.fv.showStatus("Successfully saved slice") def save_movie_cb(self): start = int(self.w.start_slice.get_text()) end = int(self.w.end_slice.get_text()) if not start or not end: return elif start < 0 or end > self.play_max: self.fv.showStatus("Wrong slice index") return elif start > end: self.fv.showStatus("Wrong slice order") return if start == 1: start = 0 target = Widgets.SaveDialog(title='Save Movie', selectedfilter='*.avi').get_path() if target: self.save_movie(start, end, target) def save_movie(self, start, end, target_file): image = self.fitsimage.get_image() loval, hival = self.fitsimage.get_cut_levels() data = np.array(image.get_mddata()).clip(loval, hival) # http://stackoverflow.com/questions/7042190/plotting-directly-to-movie-with-numpy-and-mencoder data_rescaled = ((data - loval) * 255 / (hival - loval)).astype(np.uint8, copy=False) W, H = image.get_data_size() with self.video_writer(VideoSink((H, W), target_file)) as video: for i in range(start, end): video.write(np.flipud(data_rescaled[i])) self.fv.showStatus("Successfully saved movie") @contextmanager def video_writer(self, v): v.open() try: yield v finally: v.close() return def __str__(self): return 'multidim' #END
bsd-3-clause
liyi193328/seq2seq
seq2seq/contrib/learn/dataframe/dataframe.py
27
4836
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A DataFrame is a container for ingesting and preprocessing data.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from .series import Series from .transform import Transform from tensorflow.python.util.deprecation import deprecated class DataFrame(object): """A DataFrame is a container for ingesting and preprocessing data.""" @deprecated("2017-06-15", "contrib/learn/dataframe/** is deprecated.") def __init__(self): self._columns = {} def columns(self): """Set of the column names.""" return frozenset(self._columns.keys()) def __len__(self): """The number of columns in the DataFrame.""" return len(self._columns) def assign(self, **kwargs): """Adds columns to DataFrame. Args: **kwargs: assignments of the form key=value where key is a string and value is an `inflow.Series`, a `pandas.Series` or a numpy array. Raises: TypeError: keys are not strings. TypeError: values are not `inflow.Series`, `pandas.Series` or `numpy.ndarray`. TODO(jamieas): pandas assign method returns a new DataFrame. Consider switching to this behavior, changing the name or adding in_place as an argument. """ for k, v in kwargs.items(): if not isinstance(k, str): raise TypeError("The only supported type for keys is string; got %s" % type(k)) if v is None: del self._columns[k] elif isinstance(v, Series): self._columns[k] = v elif isinstance(v, Transform) and v.input_valency() == 0: self._columns[k] = v() else: raise TypeError( "Column in assignment must be an inflow.Series, inflow.Transform," " or None; got type '%s'." % type(v).__name__) def select_columns(self, keys): """Returns a new DataFrame with a subset of columns. Args: keys: A list of strings. Each should be the name of a column in the DataFrame. Returns: A new DataFrame containing only the specified columns. """ result = type(self)() for key in keys: result[key] = self._columns[key] return result def exclude_columns(self, exclude_keys): """Returns a new DataFrame with all columns not excluded via exclude_keys. Args: exclude_keys: A list of strings. Each should be the name of a column in the DataFrame. These columns will be excluded from the result. Returns: A new DataFrame containing all columns except those specified. """ result = type(self)() for key, value in self._columns.items(): if key not in exclude_keys: result[key] = value return result def __getitem__(self, key): """Indexing functionality for DataFrames. Args: key: a string or an iterable of strings. Returns: A Series or list of Series corresponding to the given keys. """ if isinstance(key, str): return self._columns[key] elif isinstance(key, collections.Iterable): for i in key: if not isinstance(i, str): raise TypeError("Expected a String; entry %s has type %s." % (i, type(i).__name__)) return [self.__getitem__(i) for i in key] raise TypeError( "Invalid index: %s of type %s. Only strings or lists of strings are " "supported." % (key, type(key))) def __setitem__(self, key, value): if isinstance(key, str): key = [key] if isinstance(value, Series): value = [value] self.assign(**dict(zip(key, value))) def __delitem__(self, key): if isinstance(key, str): key = [key] value = [None for _ in key] self.assign(**dict(zip(key, value))) def build(self, **kwargs): # We do not allow passing a cache here, because that would encourage # working around the rule that DataFrames cannot be expected to be # synced with each other (e.g., they shuffle independently). cache = {} tensors = {name: c.build(cache, **kwargs) for name, c in self._columns.items()} return tensors
apache-2.0
glouppe/scikit-learn
examples/mixture/plot_gmm_classifier.py
22
4015
""" ================== GMM classification ================== Demonstration of Gaussian mixture models for classification. See :ref:`gmm` for more information on the estimator. Plots predicted labels on both training and held out test data using a variety of GMM classifiers on the iris dataset. Compares GMMs with spherical, diagonal, full, and tied covariance matrices in increasing order of performance. Although one would expect full covariance to perform best in general, it is prone to overfitting on small datasets and does not generalize well to held out test data. On the plots, train data is shown as dots, while test data is shown as crosses. The iris dataset is four-dimensional. Only the first two dimensions are shown here, and thus some points are separated in other dimensions. """ print(__doc__) # Author: Ron Weiss <[email protected]>, Gael Varoquaux # License: BSD 3 clause # $Id$ import matplotlib.pyplot as plt import matplotlib as mpl import numpy as np from sklearn import datasets from sklearn.model_selection import StratifiedKFold from sklearn.externals.six.moves import xrange from sklearn.mixture import GMM colors = ['navy', 'turquoise', 'darkorange'] def make_ellipses(gmm, ax): for n, color in enumerate(colors): v, w = np.linalg.eigh(gmm._get_covars()[n][:2, :2]) u = w[0] / np.linalg.norm(w[0]) angle = np.arctan2(u[1], u[0]) angle = 180 * angle / np.pi # convert to degrees v *= 9 ell = mpl.patches.Ellipse(gmm.means_[n, :2], v[0], v[1], 180 + angle, color=color) ell.set_clip_box(ax.bbox) ell.set_alpha(0.5) ax.add_artist(ell) iris = datasets.load_iris() # Break up the dataset into non-overlapping training (75%) and testing # (25%) sets. skf = StratifiedKFold(n_folds=4) # Only take the first fold. train_index, test_index = next(iter(skf.split(iris.data, iris.target))) X_train = iris.data[train_index] y_train = iris.target[train_index] X_test = iris.data[test_index] y_test = iris.target[test_index] n_classes = len(np.unique(y_train)) # Try GMMs using different types of covariances. classifiers = dict((covar_type, GMM(n_components=n_classes, covariance_type=covar_type, init_params='wc', n_iter=20)) for covar_type in ['spherical', 'diag', 'tied', 'full']) n_classifiers = len(classifiers) plt.figure(figsize=(3 * n_classifiers / 2, 6)) plt.subplots_adjust(bottom=.01, top=0.95, hspace=.15, wspace=.05, left=.01, right=.99) for index, (name, classifier) in enumerate(classifiers.items()): # Since we have class labels for the training data, we can # initialize the GMM parameters in a supervised manner. classifier.means_ = np.array([X_train[y_train == i].mean(axis=0) for i in xrange(n_classes)]) # Train the other parameters using the EM algorithm. classifier.fit(X_train) h = plt.subplot(2, n_classifiers / 2, index + 1) make_ellipses(classifier, h) for n, color in enumerate(colors): data = iris.data[iris.target == n] plt.scatter(data[:, 0], data[:, 1], s=0.8, color=color, label=iris.target_names[n]) # Plot the test data with crosses for n, color in enumerate(colors): data = X_test[y_test == n] print(color) plt.scatter(data[:, 0], data[:, 1], marker='x', color=color) y_train_pred = classifier.predict(X_train) train_accuracy = np.mean(y_train_pred.ravel() == y_train.ravel()) * 100 plt.text(0.05, 0.9, 'Train accuracy: %.1f' % train_accuracy, transform=h.transAxes) y_test_pred = classifier.predict(X_test) test_accuracy = np.mean(y_test_pred.ravel() == y_test.ravel()) * 100 plt.text(0.05, 0.8, 'Test accuracy: %.1f' % test_accuracy, transform=h.transAxes) plt.xticks(()) plt.yticks(()) plt.title(name) plt.legend(loc='lower right', prop=dict(size=12)) plt.show()
bsd-3-clause
phobson/statsmodels
statsmodels/tsa/statespace/tests/test_kalman.py
2
23468
""" Tests for _statespace module Author: Chad Fulton License: Simplified-BSD References ---------- Kim, Chang-Jin, and Charles R. Nelson. 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications". MIT Press Books. The MIT Press. Hamilton, James D. 1994. Time Series Analysis. Princeton, N.J.: Princeton University Press. """ from __future__ import division, absolute_import, print_function import numpy as np import pandas as pd import os try: from scipy.linalg.blas import find_best_blas_type except ImportError: # Shim for SciPy 0.11, derived from tag=0.11 scipy.linalg.blas _type_conv = {'f': 's', 'd': 'd', 'F': 'c', 'D': 'z', 'G': 'z'} def find_best_blas_type(arrays): dtype, index = max( [(ar.dtype, i) for i, ar in enumerate(arrays)]) prefix = _type_conv.get(dtype.char, 'd') return (prefix, dtype, None) from statsmodels.tsa.statespace.sarimax import SARIMAX from statsmodels.tsa.statespace import _statespace as ss from .results import results_kalman_filter from numpy.testing import assert_almost_equal, assert_allclose from nose.exc import SkipTest prefix_statespace_map = { 's': ss.sStatespace, 'd': ss.dStatespace, 'c': ss.cStatespace, 'z': ss.zStatespace } prefix_kalman_filter_map = { 's': ss.sKalmanFilter, 'd': ss.dKalmanFilter, 'c': ss.cKalmanFilter, 'z': ss.zKalmanFilter } current_path = os.path.dirname(os.path.abspath(__file__)) class Clark1987(object): """ Clark's (1987) univariate unobserved components model of real GDP (as presented in Kim and Nelson, 1999) Test data produced using GAUSS code described in Kim and Nelson (1999) and found at http://econ.korea.ac.kr/~cjkim/SSMARKOV.htm See `results.results_kalman_filter` for more information. """ @classmethod def setup_class(cls, dtype=float, conserve_memory=0, loglikelihood_burn=0): cls.true = results_kalman_filter.uc_uni cls.true_states = pd.DataFrame(cls.true['states']) # GDP, Quarterly, 1947.1 - 1995.3 data = pd.DataFrame( cls.true['data'], index=pd.date_range('1947-01-01', '1995-07-01', freq='QS'), columns=['GDP'] ) data['lgdp'] = np.log(data['GDP']) # Parameters cls.conserve_memory = conserve_memory cls.loglikelihood_burn = loglikelihood_burn # Observed data cls.obs = np.array(data['lgdp'], ndmin=2, dtype=dtype, order="F") # Measurement equation cls.k_endog = k_endog = 1 # dimension of observed data # design matrix cls.design = np.zeros((k_endog, 4, 1), dtype=dtype, order="F") cls.design[:, :, 0] = [1, 1, 0, 0] # observation intercept cls.obs_intercept = np.zeros((k_endog, 1), dtype=dtype, order="F") # observation covariance matrix cls.obs_cov = np.zeros((k_endog, k_endog, 1), dtype=dtype, order="F") # Transition equation cls.k_states = k_states = 4 # dimension of state space # transition matrix cls.transition = np.zeros((k_states, k_states, 1), dtype=dtype, order="F") cls.transition[([0, 0, 1, 1, 2, 3], [0, 3, 1, 2, 1, 3], [0, 0, 0, 0, 0, 0])] = [1, 1, 0, 0, 1, 1] # state intercept cls.state_intercept = np.zeros((k_states, 1), dtype=dtype, order="F") # selection matrix cls.selection = np.asfortranarray(np.eye(k_states)[:, :, None], dtype=dtype) # state covariance matrix cls.state_cov = np.zeros((k_states, k_states, 1), dtype=dtype, order="F") # Initialization: Diffuse priors cls.initial_state = np.zeros((k_states,), dtype=dtype, order="F") cls.initial_state_cov = np.asfortranarray(np.eye(k_states)*100, dtype=dtype) # Update matrices with given parameters (sigma_v, sigma_e, sigma_w, phi_1, phi_2) = np.array( cls.true['parameters'], dtype=dtype ) cls.transition[([1, 1], [1, 2], [0, 0])] = [phi_1, phi_2] cls.state_cov[ np.diag_indices(k_states)+(np.zeros(k_states, dtype=int),)] = [ sigma_v**2, sigma_e**2, 0, sigma_w**2 ] # Initialization: modification # Due to the difference in the way Kim and Nelson (1999) and Durbin # and Koopman (2012) define the order of the Kalman filter routines, # we need to modify the initial state covariance matrix to match # Kim and Nelson's results, since the *Statespace models follow Durbin # and Koopman. cls.initial_state_cov = np.asfortranarray( np.dot( np.dot(cls.transition[:, :, 0], cls.initial_state_cov), cls.transition[:, :, 0].T ) ) @classmethod def init_filter(cls): # Use the appropriate Statespace model prefix = find_best_blas_type((cls.obs,)) klass = prefix_statespace_map[prefix[0]] # Instantiate the statespace model model = klass( cls.obs, cls.design, cls.obs_intercept, cls.obs_cov, cls.transition, cls.state_intercept, cls.selection, cls.state_cov ) model.initialize_known(cls.initial_state, cls.initial_state_cov) # Initialize the appropriate Kalman filter klass = prefix_kalman_filter_map[prefix[0]] kfilter = klass(model, conserve_memory=cls.conserve_memory, loglikelihood_burn=cls.loglikelihood_burn) return model, kfilter @classmethod def run_filter(cls): # Filter the data cls.filter() # Get results return { 'loglike': lambda burn: np.sum(cls.filter.loglikelihood[burn:]), 'state': np.array(cls.filter.filtered_state), } def test_loglike(self): assert_almost_equal( self.result['loglike'](self.true['start']), self.true['loglike'], 5 ) def test_filtered_state(self): assert_almost_equal( self.result['state'][0][self.true['start']:], self.true_states.iloc[:, 0], 4 ) assert_almost_equal( self.result['state'][1][self.true['start']:], self.true_states.iloc[:, 1], 4 ) assert_almost_equal( self.result['state'][3][self.true['start']:], self.true_states.iloc[:, 2], 4 ) class TestClark1987Single(Clark1987): """ Basic single precision test for the loglikelihood and filtered states. """ @classmethod def setup_class(cls): raise SkipTest('Not implemented') super(TestClark1987Single, cls).setup_class( dtype=np.float32, conserve_memory=0 ) cls.model, cls.filter = cls.init_filter() cls.result = cls.run_filter() def test_loglike(self): assert_allclose( self.result['loglike'](self.true['start']), self.true['loglike'], rtol=1e-3 ) def test_filtered_state(self): assert_allclose( self.result['state'][0][self.true['start']:], self.true_states.iloc[:, 0], atol=1e-2 ) assert_allclose( self.result['state'][1][self.true['start']:], self.true_states.iloc[:, 1], atol=1e-2 ) assert_allclose( self.result['state'][3][self.true['start']:], self.true_states.iloc[:, 2], atol=1e-2 ) class TestClark1987Double(Clark1987): """ Basic double precision test for the loglikelihood and filtered states. """ @classmethod def setup_class(cls): super(TestClark1987Double, cls).setup_class( dtype=float, conserve_memory=0 ) cls.model, cls.filter = cls.init_filter() cls.result = cls.run_filter() class TestClark1987SingleComplex(Clark1987): """ Basic single precision complex test for the loglikelihood and filtered states. """ @classmethod def setup_class(cls): raise SkipTest('Not implemented') super(TestClark1987SingleComplex, cls).setup_class( dtype=np.complex64, conserve_memory=0 ) cls.model, cls.filter = cls.init_filter() cls.result = cls.run_filter() def test_loglike(self): assert_allclose( self.result['loglike'](self.true['start']), self.true['loglike'], rtol=1e-3 ) def test_filtered_state(self): assert_allclose( self.result['state'][0][self.true['start']:], self.true_states.iloc[:, 0], atol=1e-2 ) assert_allclose( self.result['state'][1][self.true['start']:], self.true_states.iloc[:, 1], atol=1e-2 ) assert_allclose( self.result['state'][3][self.true['start']:], self.true_states.iloc[:, 2], atol=1e-2 ) class TestClark1987DoubleComplex(Clark1987): """ Basic double precision complex test for the loglikelihood and filtered states. """ @classmethod def setup_class(cls): super(TestClark1987DoubleComplex, cls).setup_class( dtype=complex, conserve_memory=0 ) cls.model, cls.filter = cls.init_filter() cls.result = cls.run_filter() class TestClark1987Conserve(Clark1987): """ Memory conservation test for the loglikelihood and filtered states. """ @classmethod def setup_class(cls): super(TestClark1987Conserve, cls).setup_class( dtype=float, conserve_memory=0x01 | 0x02 ) cls.model, cls.filter = cls.init_filter() cls.result = cls.run_filter() class Clark1987Forecast(Clark1987): """ Forecasting test for the loglikelihood and filtered states. """ @classmethod def setup_class(cls, dtype=float, nforecast=100, conserve_memory=0): super(Clark1987Forecast, cls).setup_class( dtype, conserve_memory ) cls.nforecast = nforecast # Add missing observations to the end (to forecast) cls._obs = cls.obs cls.obs = np.array(np.r_[cls.obs[0, :], [np.nan]*nforecast], ndmin=2, dtype=dtype, order="F") def test_filtered_state(self): assert_almost_equal( self.result['state'][0][self.true['start']:-self.nforecast], self.true_states.iloc[:, 0], 4 ) assert_almost_equal( self.result['state'][1][self.true['start']:-self.nforecast], self.true_states.iloc[:, 1], 4 ) assert_almost_equal( self.result['state'][3][self.true['start']:-self.nforecast], self.true_states.iloc[:, 2], 4 ) class TestClark1987ForecastDouble(Clark1987Forecast): """ Basic double forecasting test for the loglikelihood and filtered states. """ @classmethod def setup_class(cls): super(TestClark1987ForecastDouble, cls).setup_class() cls.model, cls.filter = cls.init_filter() cls.result = cls.run_filter() class TestClark1987ForecastDoubleComplex(Clark1987Forecast): """ Basic double complex forecasting test for the loglikelihood and filtered states. """ @classmethod def setup_class(cls): super(TestClark1987ForecastDoubleComplex, cls).setup_class( dtype=complex ) cls.model, cls.filter = cls.init_filter() cls.result = cls.run_filter() class TestClark1987ForecastConserve(Clark1987Forecast): """ Memory conservation forecasting test for the loglikelihood and filtered states. """ @classmethod def setup_class(cls): super(TestClark1987ForecastConserve, cls).setup_class( dtype=float, conserve_memory=0x01 | 0x02 ) cls.model, cls.filter = cls.init_filter() cls.result = cls.run_filter() class TestClark1987ConserveAll(Clark1987): """ Memory conservation forecasting test for the loglikelihood and filtered states. """ @classmethod def setup_class(cls): super(TestClark1987ConserveAll, cls).setup_class( dtype=float, conserve_memory=0x01 | 0x02 | 0x04 | 0x08 ) cls.loglikelihood_burn = cls.true['start'] cls.model, cls.filter = cls.init_filter() cls.result = cls.run_filter() def test_loglike(self): assert_almost_equal( self.result['loglike'](0), self.true['loglike'], 5 ) def test_filtered_state(self): end = self.true_states.shape[0] assert_almost_equal( self.result['state'][0][-1], self.true_states.iloc[end-1, 0], 4 ) assert_almost_equal( self.result['state'][1][-1], self.true_states.iloc[end-1, 1], 4 ) class Clark1989(object): """ Clark's (1989) bivariate unobserved components model of real GDP (as presented in Kim and Nelson, 1999) Tests two-dimensional observation data. Test data produced using GAUSS code described in Kim and Nelson (1999) and found at http://econ.korea.ac.kr/~cjkim/SSMARKOV.htm See `results.results_kalman_filter` for more information. """ @classmethod def setup_class(cls, dtype=float, conserve_memory=0, loglikelihood_burn=0): cls.true = results_kalman_filter.uc_bi cls.true_states = pd.DataFrame(cls.true['states']) # GDP and Unemployment, Quarterly, 1948.1 - 1995.3 data = pd.DataFrame( cls.true['data'], index=pd.date_range('1947-01-01', '1995-07-01', freq='QS'), columns=['GDP', 'UNEMP'] )[4:] data['GDP'] = np.log(data['GDP']) data['UNEMP'] = (data['UNEMP']/100) # Observed data cls.obs = np.array(data, ndmin=2, dtype=dtype, order="C").T # Parameters cls.k_endog = k_endog = 2 # dimension of observed data cls.k_states = k_states = 6 # dimension of state space cls.conserve_memory = conserve_memory cls.loglikelihood_burn = loglikelihood_burn # Measurement equation # design matrix cls.design = np.zeros((k_endog, k_states, 1), dtype=dtype, order="F") cls.design[:, :, 0] = [[1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1]] # observation intercept cls.obs_intercept = np.zeros((k_endog, 1), dtype=dtype, order="F") # observation covariance matrix cls.obs_cov = np.zeros((k_endog, k_endog, 1), dtype=dtype, order="F") # Transition equation # transition matrix cls.transition = np.zeros((k_states, k_states, 1), dtype=dtype, order="F") cls.transition[([0, 0, 1, 1, 2, 3, 4, 5], [0, 4, 1, 2, 1, 2, 4, 5], [0, 0, 0, 0, 0, 0, 0, 0])] = [1, 1, 0, 0, 1, 1, 1, 1] # state intercept cls.state_intercept = np.zeros((k_states, 1), dtype=dtype, order="F") # selection matrix cls.selection = np.asfortranarray(np.eye(k_states)[:, :, None], dtype=dtype) # state covariance matrix cls.state_cov = np.zeros((k_states, k_states, 1), dtype=dtype, order="F") # Initialization: Diffuse priors cls.initial_state = np.zeros((k_states,), dtype=dtype) cls.initial_state_cov = np.asfortranarray(np.eye(k_states)*100, dtype=dtype) # Update matrices with given parameters (sigma_v, sigma_e, sigma_w, sigma_vl, sigma_ec, phi_1, phi_2, alpha_1, alpha_2, alpha_3) = np.array( cls.true['parameters'], dtype=dtype ) cls.design[([1, 1, 1], [1, 2, 3], [0, 0, 0])] = [ alpha_1, alpha_2, alpha_3 ] cls.transition[([1, 1], [1, 2], [0, 0])] = [phi_1, phi_2] cls.obs_cov[1, 1, 0] = sigma_ec**2 cls.state_cov[ np.diag_indices(k_states)+(np.zeros(k_states, dtype=int),)] = [ sigma_v**2, sigma_e**2, 0, 0, sigma_w**2, sigma_vl**2 ] # Initialization: modification # Due to the difference in the way Kim and Nelson (1999) and Drubin # and Koopman (2012) define the order of the Kalman filter routines, # we need to modify the initial state covariance matrix to match # Kim and Nelson's results, since the *Statespace models follow Durbin # and Koopman. cls.initial_state_cov = np.asfortranarray( np.dot( np.dot(cls.transition[:, :, 0], cls.initial_state_cov), cls.transition[:, :, 0].T ) ) @classmethod def init_filter(cls): # Use the appropriate Statespace model prefix = find_best_blas_type((cls.obs,)) klass = prefix_statespace_map[prefix[0]] # Instantiate the statespace model model = klass( cls.obs, cls.design, cls.obs_intercept, cls.obs_cov, cls.transition, cls.state_intercept, cls.selection, cls.state_cov ) model.initialize_known(cls.initial_state, cls.initial_state_cov) # Initialize the appropriate Kalman filter klass = prefix_kalman_filter_map[prefix[0]] kfilter = klass(model, conserve_memory=cls.conserve_memory, loglikelihood_burn=cls.loglikelihood_burn) return model, kfilter @classmethod def run_filter(cls): # Filter the data cls.filter() # Get results return { 'loglike': lambda burn: np.sum(cls.filter.loglikelihood[burn:]), 'state': np.array(cls.filter.filtered_state), } def test_loglike(self): assert_almost_equal( # self.result['loglike'](self.true['start']), self.result['loglike'](0), self.true['loglike'], 2 ) def test_filtered_state(self): assert_almost_equal( self.result['state'][0][self.true['start']:], self.true_states.iloc[:, 0], 4 ) assert_almost_equal( self.result['state'][1][self.true['start']:], self.true_states.iloc[:, 1], 4 ) assert_almost_equal( self.result['state'][4][self.true['start']:], self.true_states.iloc[:, 2], 4 ) assert_almost_equal( self.result['state'][5][self.true['start']:], self.true_states.iloc[:, 3], 4 ) class TestClark1989(Clark1989): """ Basic double precision test for the loglikelihood and filtered states with two-dimensional observation vector. """ @classmethod def setup_class(cls): super(TestClark1989, cls).setup_class(dtype=float, conserve_memory=0) cls.model, cls.filter = cls.init_filter() cls.result = cls.run_filter() class TestClark1989Conserve(Clark1989): """ Memory conservation test for the loglikelihood and filtered states with two-dimensional observation vector. """ @classmethod def setup_class(cls): super(TestClark1989Conserve, cls).setup_class( dtype=float, conserve_memory=0x01 | 0x02 ) cls.model, cls.filter = cls.init_filter() cls.result = cls.run_filter() class Clark1989Forecast(Clark1989): """ Memory conservation test for the loglikelihood and filtered states with two-dimensional observation vector. """ @classmethod def setup_class(cls, dtype=float, nforecast=100, conserve_memory=0): super(Clark1989Forecast, cls).setup_class(dtype, conserve_memory) cls.nforecast = nforecast # Add missing observations to the end (to forecast) cls._obs = cls.obs cls.obs = np.array( np.c_[ cls._obs, np.r_[[np.nan, np.nan]*nforecast].reshape(2, nforecast) ], ndmin=2, dtype=dtype, order="F" ) cls.model, cls.filter = cls.init_filter() cls.result = cls.run_filter() def test_filtered_state(self): assert_almost_equal( self.result['state'][0][self.true['start']:-self.nforecast], self.true_states.iloc[:, 0], 4 ) assert_almost_equal( self.result['state'][1][self.true['start']:-self.nforecast], self.true_states.iloc[:, 1], 4 ) assert_almost_equal( self.result['state'][4][self.true['start']:-self.nforecast], self.true_states.iloc[:, 2], 4 ) assert_almost_equal( self.result['state'][5][self.true['start']:-self.nforecast], self.true_states.iloc[:, 3], 4 ) class TestClark1989ForecastDouble(Clark1989Forecast): """ Basic double forecasting test for the loglikelihood and filtered states. """ @classmethod def setup_class(cls): super(TestClark1989ForecastDouble, cls).setup_class() cls.model, cls.filter = cls.init_filter() cls.result = cls.run_filter() class TestClark1989ForecastDoubleComplex(Clark1989Forecast): """ Basic double complex forecasting test for the loglikelihood and filtered states. """ @classmethod def setup_class(cls): super(TestClark1989ForecastDoubleComplex, cls).setup_class( dtype=complex ) cls.model, cls.filter = cls.init_filter() cls.result = cls.run_filter() class TestClark1989ForecastConserve(Clark1989Forecast): """ Memory conservation forecasting test for the loglikelihood and filtered states. """ @classmethod def setup_class(cls): super(TestClark1989ForecastConserve, cls).setup_class( dtype=float, conserve_memory=0x01 | 0x02 ) cls.model, cls.filter = cls.init_filter() cls.result = cls.run_filter() class TestClark1989ConserveAll(Clark1989): """ Memory conservation forecasting test for the loglikelihood and filtered states. """ @classmethod def setup_class(cls): super(TestClark1989ConserveAll, cls).setup_class( dtype=float, conserve_memory=0x01 | 0x02 | 0x04 | 0x08, ) # cls.loglikelihood_burn = cls.true['start'] cls.loglikelihood_burn = 0 cls.model, cls.filter = cls.init_filter() cls.result = cls.run_filter() def test_loglike(self): assert_almost_equal( self.result['loglike'](0), self.true['loglike'], 2 ) def test_filtered_state(self): end = self.true_states.shape[0] assert_almost_equal( self.result['state'][0][-1], self.true_states.iloc[end-1, 0], 4 ) assert_almost_equal( self.result['state'][1][-1], self.true_states.iloc[end-1, 1], 4 ) assert_almost_equal( self.result['state'][4][-1], self.true_states.iloc[end-1, 2], 4 ) assert_almost_equal( self.result['state'][5][-1], self.true_states.iloc[end-1, 3], 4 )
bsd-3-clause
pgroth/independence-indicators
Temporal-Coauthor-Networks/vincent/examples/bar_chart_examples.py
11
2026
# -*- coding: utf-8 -*- """ Vincent Bar Chart Example """ #Build a Bar Chart from scratch from vincent import * import pandas as pd farm_1 = {'apples': 10, 'berries': 32, 'squash': 21, 'melons': 13, 'corn': 18} farm_2 = {'apples': 15, 'berries': 43, 'squash': 17, 'melons': 10, 'corn': 22} farm_3 = {'apples': 6, 'berries': 24, 'squash': 22, 'melons': 16, 'corn': 30} farm_4 = {'apples': 12, 'berries': 30, 'squash': 15, 'melons': 9, 'corn': 15} data = [farm_1, farm_2, farm_3, farm_4] index = ['Farm 1', 'Farm 2', 'Farm 3', 'Farm 4'] df = pd.DataFrame(data, index=index) vis = Visualization(width=500, height=300) vis.scales['x'] = Scale(name='x', type='ordinal', range='width', domain=DataRef(data='table', field="data.idx")) vis.scales['y'] = Scale(name='y', range='height', nice=True, domain=DataRef(data='table', field="data.val")) vis.axes.extend([Axis(type='x', scale='x'), Axis(type='y', scale='y')]) #Marks enter_props = PropertySet(x=ValueRef(scale='x', field="data.idx"), y=ValueRef(scale='y', field="data.val"), width=ValueRef(scale='x', band=True, offset=-1), y2=ValueRef(scale='y', value=0)) update_props = PropertySet(fill=ValueRef(value='steelblue')) mark = Mark(type='rect', from_=MarkRef(data='table'), properties=MarkProperties(enter=enter_props, update=update_props)) vis.marks.append(mark) data = Data.from_pandas(df['apples']) #Using a Vincent KeyedList here vis.data['table'] = data vis.axis_titles(x='Farms', y='Data') vis.to_json('vega.json') #Convenience methods vis = Bar(df['apples']) #Fruit trans = df.T vis = Bar(trans['Farm 1']) #From dict vis = Bar(farm_1) #From dict of iterables vis = Bar({'x': ['apples', 'berries', 'squash', 'melons', 'corn'], 'y': [10, 32, 21, 13, 18]}, iter_idx='x') #Finally, a boring bar chart from a list vis = Bar([10, 20, 30, 15, 35, 10, 20])
gpl-2.0
ville-k/tensorflow
tensorflow/contrib/learn/python/learn/dataframe/transforms/in_memory_source.py
26
6490
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Sources for numpy arrays and pandas DataFrames.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.learn.python.learn.dataframe import transform from tensorflow.contrib.learn.python.learn.dataframe.queues import feeding_functions class BaseInMemorySource(transform.TensorFlowTransform): """Abstract parent class for NumpySource and PandasSource.""" def __init__(self, data, num_threads=None, enqueue_size=None, batch_size=None, queue_capacity=None, shuffle=False, min_after_dequeue=None, seed=None, data_name="in_memory_data"): super(BaseInMemorySource, self).__init__() self._data = data self._num_threads = 1 if num_threads is None else num_threads self._batch_size = (32 if batch_size is None else batch_size) self._enqueue_size = max(1, int(self._batch_size / self._num_threads) ) if enqueue_size is None else enqueue_size self._queue_capacity = (self._batch_size * 10 if queue_capacity is None else queue_capacity) self._shuffle = shuffle self._min_after_dequeue = (batch_size if min_after_dequeue is None else min_after_dequeue) self._seed = seed self._data_name = data_name @transform._parameter # pylint: disable=protected-access def data(self): return self._data @transform._parameter # pylint: disable=protected-access def num_threads(self): return self._num_threads @transform._parameter # pylint: disable=protected-access def enqueue_size(self): return self._enqueue_size @transform._parameter # pylint: disable=protected-access def batch_size(self): return self._batch_size @transform._parameter # pylint: disable=protected-access def queue_capacity(self): return self._queue_capacity @transform._parameter # pylint: disable=protected-access def shuffle(self): return self._shuffle @transform._parameter # pylint: disable=protected-access def min_after_dequeue(self): return self._min_after_dequeue @transform._parameter # pylint: disable=protected-access def seed(self): return self._seed @transform._parameter # pylint: disable=protected-access def data_name(self): return self._data_name @property def input_valency(self): return 0 def _apply_transform(self, transform_input, **kwargs): queue = feeding_functions.enqueue_data(self.data, self.queue_capacity, self.shuffle, self.min_after_dequeue, num_threads=self.num_threads, seed=self.seed, name=self.data_name, enqueue_size=self.enqueue_size, num_epochs=kwargs.get("num_epochs")) dequeued = queue.dequeue_many(self.batch_size) # TODO(jamieas): dequeue and dequeue_many will soon return a list regardless # of the number of enqueued tensors. Remove the following once that change # is in place. if not isinstance(dequeued, (tuple, list)): dequeued = (dequeued,) # pylint: disable=not-callable return self.return_type(*dequeued) class NumpySource(BaseInMemorySource): """A zero-input Transform that produces a single column from a numpy array.""" @property def name(self): return "NumpySource" @property def _output_names(self): return ("index", "value") class OrderedDictNumpySource(BaseInMemorySource): """A zero-input Transform that produces Series from a dict of numpy arrays.""" def __init__(self, ordered_dict_of_arrays, num_threads=None, enqueue_size=None, batch_size=None, queue_capacity=None, shuffle=False, min_after_dequeue=None, seed=None, data_name="pandas_data"): if "index" in ordered_dict_of_arrays.keys(): raise ValueError("Column name `index` is reserved.") super(OrderedDictNumpySource, self).__init__(ordered_dict_of_arrays, num_threads, enqueue_size, batch_size, queue_capacity, shuffle, min_after_dequeue, seed, data_name) @property def name(self): return "OrderedDictNumpySource" @property def _output_names(self): return tuple(["index"] + list(self._data.keys())) class PandasSource(BaseInMemorySource): """A zero-input Transform that produces Series from a DataFrame.""" def __init__(self, dataframe, num_threads=None, enqueue_size=None, batch_size=None, queue_capacity=None, shuffle=False, min_after_dequeue=None, seed=None, data_name="pandas_data"): if "index" in dataframe.columns: raise ValueError("Column name `index` is reserved.") super(PandasSource, self).__init__(dataframe, num_threads, enqueue_size, batch_size, queue_capacity, shuffle, min_after_dequeue, seed, data_name) @property def name(self): return "PandasSource" @property def _output_names(self): return tuple(["index"] + self._data.columns.tolist())
apache-2.0
lukeshingles/artistools
artistools/makemodel/shen2018.py
1
3448
#!/usr/bin/env python3 import argparse import math import os.path import numpy as np import pandas as pd from astropy import units as u import artistools as at def addargs(parser): parser.add_argument('-inputpath', '-i', default='1.00_5050.dat', help='Path of input file') parser.add_argument('-outputpath', '-o', default='.', help='Path for output files') def main(args=None, argsraw=None, **kwargs) -> None: if args is None: parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter, description='Convert Shen et al. 2018 models to ARTIS format.') addargs(parser) parser.set_defaults(**kwargs) args = parser.parse_args(argsraw) with open(args.inputpath) as infile: columns = infile.readline().split() atomicnumberofspecies = {} isotopesofelem = {} for species in columns[5:]: atomic_number = at.get_atomic_number(species.rstrip('0123456789')) atomicnumberofspecies[species] = atomic_number isotopesofelem.setdefault(atomic_number, list()).append(species) datain = pd.read_csv(args.inputpath, delim_whitespace=True, skiprows=0, header=[0]).dropna() dfmodel = pd.DataFrame( columns=[ 'inputcellid', 'velocity_outer', 'logrho', 'X_Fegroup', 'X_Ni56', 'X_Co56', 'X_Fe52', 'X_Cr48', 'X_Ni57', 'X_Co57']) dfmodel.index.name = 'cellid' dfabundances = pd.DataFrame(columns=['inputcellid', *['X_' + at.elsymbols[x] for x in range(1, 31)]]) dfabundances.index.name = 'cellid' t_model_init_seconds = 10. t_model_init_days = t_model_init_seconds / 24 / 60 / 60 v_inner = 0. # velocity at inner boundary of cell m_enc_inner = 0. # mass enclosed at inner boundary tot_ni56mass = 0. for cellid, shell in datain.iterrows(): m_enc_outer = float(shell['m']) * u.solMass.to('g') # convert Solar masses to grams v_outer = float(shell['v']) * 1e-5 # convert cm/s to km/s m_shell_grams = (m_enc_outer - m_enc_inner) r_outer = v_outer * 1e5 * t_model_init_seconds r_inner = v_inner * 1e5 * t_model_init_seconds vol_shell = 4. / 3. * math.pi * (r_outer ** 3 - r_inner ** 3) rho = m_shell_grams / vol_shell tot_ni56mass += m_shell_grams * shell.ni56 abundances = [0. for _ in range(31)] X_fegroup = 0. for atomic_number in range(1, 31): abundances[atomic_number] = sum([float(shell[species]) for species in isotopesofelem[atomic_number]]) if atomic_number >= 26: X_fegroup += abundances[atomic_number] radioabundances = [X_fegroup, shell.ni56, shell.co56, shell.fe52, shell.cr48, shell.ni57, shell.co57] dfmodel.loc[cellid] = [cellid, v_outer, math.log10(rho), *radioabundances] dfabundances.loc[cellid] = [cellid, *abundances[1:31]] v_inner = v_outer m_enc_inner = m_enc_outer print(f'M_tot = {m_enc_outer / u.solMass.to("g"):.3f} solMass') print(f'M_Ni56 = {tot_ni56mass / u.solMass.to("g"):.3f} solMass') at.save_modeldata(dfmodel, t_model_init_days, os.path.join(args.outputpath, 'model.txt')) at.inputmodel.save_initialabundances(dfabundances, os.path.join(args.outputpath, 'abundances.txt')) if __name__ == "__main__": main()
mit
alheinecke/tensorflow-xsmm
tensorflow/contrib/learn/python/learn/tests/dataframe/feeding_queue_runner_test.py
62
5053
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests `FeedingQueueRunner` using arrays and `DataFrames`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.learn.python.learn.dataframe.queues import feeding_functions as ff from tensorflow.python.client import session from tensorflow.python.framework import ops from tensorflow.python.platform import test from tensorflow.python.training import coordinator from tensorflow.python.training import queue_runner_impl # pylint: disable=g-import-not-at-top try: import pandas as pd HAS_PANDAS = True except ImportError: HAS_PANDAS = False def get_rows(array, row_indices): rows = [array[i] for i in row_indices] return np.vstack(rows) class FeedingQueueRunnerTestCase(test.TestCase): """Tests for `FeedingQueueRunner`.""" def testArrayFeeding(self): with ops.Graph().as_default(): array = np.arange(32).reshape([16, 2]) q = ff.enqueue_data(array, capacity=100) batch_size = 3 dq_op = q.dequeue_many(batch_size) with session.Session() as sess: coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(sess=sess, coord=coord) for i in range(100): indices = [ j % array.shape[0] for j in range(batch_size * i, batch_size * (i + 1)) ] expected_dq = get_rows(array, indices) dq = sess.run(dq_op) np.testing.assert_array_equal(indices, dq[0]) np.testing.assert_array_equal(expected_dq, dq[1]) coord.request_stop() coord.join(threads) def testArrayFeedingMultiThread(self): with ops.Graph().as_default(): array = np.arange(256).reshape([128, 2]) q = ff.enqueue_data(array, capacity=128, num_threads=8, shuffle=True) batch_size = 3 dq_op = q.dequeue_many(batch_size) with session.Session() as sess: coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(sess=sess, coord=coord) for _ in range(100): dq = sess.run(dq_op) indices = dq[0] expected_dq = get_rows(array, indices) np.testing.assert_array_equal(expected_dq, dq[1]) coord.request_stop() coord.join(threads) def testPandasFeeding(self): if not HAS_PANDAS: return with ops.Graph().as_default(): array1 = np.arange(32) array2 = np.arange(32, 64) df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(64, 96)) q = ff.enqueue_data(df, capacity=100) batch_size = 5 dq_op = q.dequeue_many(5) with session.Session() as sess: coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(sess=sess, coord=coord) for i in range(100): indices = [ j % array1.shape[0] for j in range(batch_size * i, batch_size * (i + 1)) ] expected_df_indices = df.index[indices] expected_rows = df.iloc[indices] dq = sess.run(dq_op) np.testing.assert_array_equal(expected_df_indices, dq[0]) for col_num, col in enumerate(df.columns): np.testing.assert_array_equal(expected_rows[col].values, dq[col_num + 1]) coord.request_stop() coord.join(threads) def testPandasFeedingMultiThread(self): if not HAS_PANDAS: return with ops.Graph().as_default(): array1 = np.arange(128, 256) array2 = 2 * array1 df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(128)) q = ff.enqueue_data(df, capacity=128, num_threads=8, shuffle=True) batch_size = 5 dq_op = q.dequeue_many(batch_size) with session.Session() as sess: coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(sess=sess, coord=coord) for _ in range(100): dq = sess.run(dq_op) indices = dq[0] expected_rows = df.iloc[indices] for col_num, col in enumerate(df.columns): np.testing.assert_array_equal(expected_rows[col].values, dq[col_num + 1]) coord.request_stop() coord.join(threads) if __name__ == "__main__": test.main()
apache-2.0
cmtm/networkx
examples/drawing/giant_component.py
15
2287
#!/usr/bin/env python """ This example illustrates the sudden appearance of a giant connected component in a binomial random graph. Requires pygraphviz and matplotlib to draw. """ # Copyright (C) 2006-2016 # Aric Hagberg <[email protected]> # Dan Schult <[email protected]> # Pieter Swart <[email protected]> # All rights reserved. # BSD license. try: import matplotlib.pyplot as plt except: raise import networkx as nx import math try: import pygraphviz from networkx.drawing.nx_agraph import graphviz_layout layout = graphviz_layout except ImportError: try: import pydotplus from networkx.drawing.nx_pydot import graphviz_layout layout = graphviz_layout except ImportError: print("PyGraphviz and PyDotPlus not found;\n" "drawing with spring layout;\n" "will be slow.") layout = nx.spring_layout n=150 # 150 nodes # p value at which giant component (of size log(n) nodes) is expected p_giant=1.0/(n-1) # p value at which graph is expected to become completely connected p_conn=math.log(n)/float(n) # the following range of p values should be close to the threshold pvals=[0.003, 0.006, 0.008, 0.015] region=220 # for pylab 2x2 subplot layout plt.subplots_adjust(left=0,right=1,bottom=0,top=0.95,wspace=0.01,hspace=0.01) for p in pvals: G=nx.binomial_graph(n,p) pos=layout(G) region+=1 plt.subplot(region) plt.title("p = %6.3f"%(p)) nx.draw(G,pos, with_labels=False, node_size=10 ) # identify largest connected component Gcc=sorted(nx.connected_component_subgraphs(G), key = len, reverse=True) G0=Gcc[0] nx.draw_networkx_edges(G0,pos, with_labels=False, edge_color='r', width=6.0 ) # show other connected components for Gi in Gcc[1:]: if len(Gi)>1: nx.draw_networkx_edges(Gi,pos, with_labels=False, edge_color='r', alpha=0.3, width=5.0 ) plt.savefig("giant_component.png") plt.show() # display
bsd-3-clause
oknuutti/visnav-py
visnav/algo/image.py
1
16219
from functools import lru_cache import math from scipy import optimize, stats, integrate import numpy as np import quaternion # adds to numpy # noqa # pylint: disable=unused-import import cv2 from scipy.optimize import leastsq from visnav.settings import * class ImageProc: latest_opt = None show_fit = None @staticmethod def add_noise_to_image(image, noise_img_file): tmp = cv2.imread(noise_img_file, cv2.IMREAD_UNCHANGED) noise_img = cv2.resize(tmp, None, fx=image.shape[1] / tmp.shape[1], fy=image.shape[0] / tmp.shape[0], interpolation=cv2.INTER_CUBIC) return cv2.add(image, noise_img[:, :, 3]) @staticmethod def crop_and_zoom_image(image, x_off, y_off, width, height, scale, trg_w_h=None, others=tuple()): tw, th = trg_w_h if scale is None: scale = min(th / height, tw / width) res = [] for img in [image] + list(others): imgc = cv2.resize(img[y_off:y_off + height, x_off:x_off + width], None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA) oh, ow = img.shape ch, cw = imgc.shape if trg_w_h is not None: if x_off + width >= ow: x0 = tw - cw elif x_off <= 0: x0 = 0 else: x0 = (tw - cw) // 2 if y_off + height >= oh: y0 = th - ch elif y_off <= 0: y0 = 0 else: y0 = (th - ch) // 2 imgd = np.zeros((th, tw), dtype=img.dtype) imgd[y0:y0 + ch, x0:x0 + cw] = imgc else: imgd = imgc res.append(imgd) if len(others) > 0: return res return res[0] @staticmethod def single_object_bounds(img, threshold, crop_marg, min_px, debug=False): # binary image _, mask = cv2.threshold(img, threshold, 255, cv2.THRESH_BINARY) # remove stars mask = cv2.erode(mask, ImageProc.bsphkern(9), iterations=1) if np.sum(mask) < min_px: return (None,) * 4 # detect target x_, y_, w_, h_ = cv2.boundingRect(mask) # add margin x, y = max(0, x_ - crop_marg), max(0, y_ - crop_marg) w = min(mask.shape[1] - x, w_ + 2 * crop_marg - (x - x_ + crop_marg)) h = min(mask.shape[0] - y, h_ + 2 * crop_marg - (y - y_ + crop_marg)) if debug: img_color = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) img_color = cv2.rectangle(img_color, (x, y), (x + w, y + h), (0, 0, 255), thickness=1) img_color[y + h // 2, x + w // 2] = (0, 0, 255) cv2.imshow('box', cv2.resize(img_color, (512, 512))) return x, y, w, h @staticmethod def equalize_brightness(image, ref_image, percentile=98, image_gamma=1): image = ImageProc.adjust_gamma(image, 1 / image_gamma) ip = np.percentile(image, percentile) rp = np.percentile(ImageProc.adjust_gamma(ref_image, 1 / image_gamma), percentile) image = cv2.convertScaleAbs(image, None, rp / ip, 0) return ImageProc.adjust_gamma(image, image_gamma) @staticmethod def normalize_brightness(image, quantiles=(0.0005, 0.9999), top_margin=1.2, src_gamma=1.0, gamma=1.0): image = ImageProc.adjust_gamma(image, src_gamma, inverse=True) bot_v, top_v = np.quantile(image, quantiles) top_v = top_v * top_margin if image.dtype == np.uint8: sc = 255 / (top_v - bot_v) image = cv2.convertScaleAbs(image, None, sc, -bot_v * sc) elif image.dtype in (float, np.float32): sc = 1 / (top_v - bot_v) image = np.clip((image - bot_v) * sc, 0, 1) else: assert False, 'unsupported image dtype: %s' % image.dtype return ImageProc.adjust_gamma(image, gamma) @staticmethod def default_preprocess(image, max=255): bg = np.percentile(image, 250 / 1024 * 100) return ImageProc.adjust_gamma(np.clip((image - bg) * max / (max - bg), 0, max), 1.8) @staticmethod def change_color_depth(img, src_bits, dst_bits): if src_bits == dst_bits: return img if str(img.dtype)[:4] == 'uint': new_type = 'uint' + str(math.ceil(dst_bits / 8) * 8) else: new_type = img.dtype if src_bits < dst_bits: img = img.astype(new_type) img = img * (2 ** (dst_bits - src_bits)) if src_bits > dst_bits: img = img.astype(new_type) return img @staticmethod def remove_bg(img, bg_img, gain=None, max_val=None, offset=0): if gain is None: # estimate correct gain cost_fun = lambda g: np.var((img - g[0] * bg_img).reshape((-1, 3)), axis=0) x, _ = leastsq(cost_fun, np.array([1])) gain = x[0] print('estimated bg gain: %f' % gain) imgr = img.astype('float') - gain * bg_img if offset not in (None, False): imgr += offset - np.min(imgr) if max_val and offset is not False: return np.clip(imgr, 0, max_val).astype(img.dtype) return imgr @staticmethod def color_correct(img, bgr_mx, inverse=False, max_val=None): assert img.shape[2] == 3, 'can only do to BGR images' if inverse: bgr_mx = np.linalg.inv(bgr_mx) imgc = bgr_mx.dot(img.reshape((-1, 3)).T).T.reshape(img.shape) if max_val: return np.clip(imgc, 0, max_val).astype(img.dtype) return imgc @staticmethod def adjust_gamma(image, gamma, gamma_break=None, linear_part=True, inverse=False, max_val=255): if gamma == 1: return image # build a lookup table mapping the pixel values [0, 255] to # their adjusted gamma values invGamma = gamma if inverse else 1.0 / gamma gamma_break = gamma_break or 0 if image.dtype == 'uint8' and gamma_break == 0: # apply gamma correction using the lookup table max_val = min(max_val, 255) table = np.array([((i / max_val) ** invGamma) * max_val for i in np.arange(0, max_val + 1)]).astype( image.dtype) adj_img = cv2.LUT(image, table) elif gamma_break == 0: adj_img = np.round(((image / max_val) ** invGamma) * max_val).astype(image.dtype) elif True: # from https://se.mathworks.com/help/vision/ref/gammacorrection.html b_p = gamma_break s_ls = 1 / (gamma / b_p ** (1 / gamma - 1) - gamma * gamma_break + gamma_break) f_s = gamma * s_ls / b_p ** (1 / gamma - 1) c_o = f_s * b_p ** (1 / gamma) - s_ls * b_p img = image.flatten() / max_val I = img <= (s_ls if inverse else 1) * b_p nI = np.logical_not(I) adj_img = np.zeros(image.shape).flatten() adj_img[I] = (img[I] / s_ls) if inverse else (img[I] * s_ls) adj_img[nI] = (((img[nI] + c_o) / f_s) ** gamma) if inverse else (f_s * img[nI] ** (1 / gamma) - c_o) adj_img = (adj_img * max_val).reshape(image.shape).astype(image.dtype) else: # from https://en.wikipedia.org/wiki/SRGB if 1: a = gamma_break K0 = a / (gamma - 1) else: K0 = gamma_break a = K0 * (gamma - 1) alpha = 1 + a th = alpha ** gamma * (gamma - 1) ** (gamma - 1) / a ** (gamma - 1) / gamma ** gamma lim = K0 if inverse else K0 / th img = image.flatten() / max_val I = img <= lim nI = np.logical_not(I) adj_img = np.zeros(image.shape).flatten() adj_img[I] = (img[I] / th) if inverse else (th * img[I]) adj_img[nI] = (((img[nI] + a) / alpha) ** gamma) if inverse else (alpha * img[nI] ** (1 / gamma) - a) adj_img = (adj_img * max_val).reshape(image.shape).astype(image.dtype) # adj_img = np.round(adj_img * max_val).reshape(image.shape).astype(image.dtype) return adj_img @staticmethod def apply_point_spread_fn(img, ratio): # ratio is how many % of power on central pixel sd = 1 / math.sqrt(2 * math.pi * ratio) size = 1 + 2 * math.ceil(sd * 2) kernel = ImageProc.gkern2d(size, sd) cv2.filter2D(img, -1, kernel, img) return img @staticmethod @lru_cache(maxsize=5) def gkern2d(l=5, sig=1.): """ creates gaussian kernel with side length l and a sigma of sig """ w, h = (l[0], l[1]) if '__iter__' in dir(l) else (l, l) sx, sy = (sig[0], sig[1]) if '__iter__' in dir(sig) else (sig, sig) ax = np.arange(-w // 2 + 1., w // 2 + 1.) ay = np.arange(-h // 2 + 1., h // 2 + 1.) xx, yy = np.meshgrid(ax, ay) kernel = np.exp(-((xx / sx) ** 2 + (yy / sy) ** 2) / 2) return kernel / np.sum(kernel) @staticmethod def bsphkern(l=5): """ creates a binary spherical kernel """ gkern = ImageProc.gkern2d(l=l, sig=l) limit = gkern[l // 2 if isinstance(l, int) else l[1] // 2, -1] * 0.995 return np.array(gkern >= limit, dtype=np.uint8) @staticmethod def fuzzy_kernel(kernel, sig): w = int(sig // 2) skernel = np.zeros(tuple(np.array(kernel.shape[:2]) + int(sig)) + kernel.shape[2:3], dtype=kernel.dtype) skernel[w:w + kernel.shape[0], w:w + kernel.shape[1]] = kernel gkrn = ImageProc.gkern2d(sig, sig / 2) skernel = cv2.filter2D(skernel, kernel.shape[2], gkrn) return skernel @staticmethod def _img_max_valid(img): max = 1.0 if 'float' in str(img.dtype) else 255 assert max != 255 or img.dtype == np.uint8, 'wrong datatype for image: %s' % img.dtype return max @staticmethod def add_stars(img, mask, coef=2, cache=False): # add power law distributed stars to image assert img.shape == img.shape[:2], 'works only with grayscale images' if not cache: ImageProc._cached_random_stars.cache_clear() stars = ImageProc._cached_random_stars(coef, img.shape) # can be over 255, will clip later img[mask] = np.clip(stars[mask], 0, 600) return img @staticmethod @lru_cache(maxsize=1) def _cached_random_stars(coef, shape): return np.random.pareto(coef, shape) @staticmethod def add_sensor_noise(img, mean=7, sd=2, cache=False): if not cache: ImageProc._cached_sensor_noise.cache_clear() img += ImageProc._cached_sensor_noise(mean, sd, img.shape) return img @staticmethod @lru_cache(maxsize=1) def _cached_sensor_noise(mean, sd, shape): return np.random.normal(mean, sd, shape) @staticmethod def process_target_image(image_src): hist = cv2.calcHist([image_src], [0], None, [256], [0, 256]) if False: threshold_value = ImageProc.optimal_threshold(hist) else: threshold_value = 50 th, image_dst = cv2.threshold(image_src, threshold_value, 255, cv2.THRESH_TOZERO) return image_dst, hist, threshold_value @staticmethod def optimal_threshold(hist, image=None): if hist is None: hist = cv2.calcHist([image], [0], None, [256], [0, 256]) tot_px = 256 # sum(hist) -- for some reason get error if divide with pixel count x = list(range(1, len(hist) + 1)) loghist = np.array(list(map(lambda x: math.log(x + 1) / tot_px, hist))) def fitfun1(p, x): return stats.gamma.pdf(x, p[0], loc=0, scale=p[1]) * p[2] def fitfun2(p, x): return stats.norm.pdf(x, p[0], p[1]) * p[2] def fitfun(p, x): return fitfun1(p[:3], x) + fitfun2(p[3:], x) def errfun(p, x, y): tmp = y - fitfun(p, x) # assert False, 'p:%s, x:%s, y:%s, ffval:%s'%(p, x[0:50], y[0:50], fitfun(p, x[0:50])) return tmp shape = 1.5 init = [ shape, np.argmax(loghist) / (shape - 1), 1, # for fitfun1 127, 50, 1, # for fitfun2 ] if not BATCH_MODE or DEBUG: print('init: %s' % init) out = optimize.leastsq(errfun, init, args=(x, loghist)) ImageProc.latest_opt = out if not BATCH_MODE or DEBUG: print('result: %s' % list(out)) # threshold value where background makes up roughly a fourth of all pixels bg = reversed(fitfun1(out[0][:3], x)) ast = list(reversed(fitfun2(out[0][3:], x))) threshold_value = 255 - next((i for i, v in enumerate(bg) if v / ast[i] > 0.33), 255 - 100) if not BATCH_MODE or DEBUG: bg_ratio = out[0][:3][2] / out[0][3:][2] print('threshold_value: %s; bg_ratio: %s' % (threshold_value, bg_ratio)) # plot figure with histogram and estimated distributions if DEBUG: from matplotlib import pyplot as plt plt.clf() plt.plot(x, fitfun1(out[0][:3], x), label='background') plt.plot(x, fitfun2(out[0][3:], x), label='foreground') plt.plot(x, fitfun(out[0], x), label='total fit') plt.plot(x, loghist, label='log(hist)') plt.legend() fig = plt.gcf() fig.canvas.draw() data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8) w, h = fig.canvas.get_width_height() data = data.reshape((h * 3, w * 3, 3)) # for some reason get_width_height returns 1/3 of the actual dims cv2.imshow('histogram fitting', data) return threshold_value @staticmethod def overlay_mask(image, mask): sc_img = min(image.shape[0], mask.shape[0])/image.shape[0] sc_mask = min(image.shape[0], mask.shape[0])/mask.shape[0] img_color = cv2.cvtColor(cv2.resize(image, None, fx=sc_img, fy=sc_img, interpolation=cv2.INTER_CUBIC), cv2.COLOR_GRAY2RGB) mask_color = cv2.cvtColor(cv2.resize((mask > 0).astype(np.uint8)*255, None, fx=sc_mask, fy=sc_mask, interpolation=cv2.INTER_CUBIC), cv2.COLOR_GRAY2RGB) mask_color[:, :, 0:2] = 0 return cv2.addWeighted(img_color, 0.5, mask_color, 0.5, 0.0) @staticmethod def merge(images): summed_weights = 1 summed_images = images[0] for i in range(1, len(images)): summed_images = cv2.addWeighted(summed_images, summed_weights / (summed_weights + 1), images[i], 1 / (summed_weights + 1), 0.0) summed_weights += 1 return summed_images @staticmethod def norm_xcorr(sce_img, res_img): """ calculate normalized cross corralation of images """ if sce_img.shape[:2] != res_img.shape[:2]: sce_img = cv2.resize(sce_img, None, fx=res_img.shape[1] / sce_img.shape[1], fy=res_img.shape[0] / sce_img.shape[0], interpolation=cv2.INTER_CUBIC) sce_img = np.atleast_3d(sce_img) res_img = np.atleast_3d(res_img) sce_mean, sce_std = cv2.meanStdDev(sce_img) res_mean, res_std = cv2.meanStdDev(res_img) stds = sce_std * res_std if stds == 0: return 0 corr = (sce_img - sce_mean) * (res_img - res_mean) nxcorr = np.mean(corr) / stds if False: # for debugging tmp = np.log(corr - np.min(corr) + 0.001) mint = np.min(tmp) maxt = np.max(tmp) tmp = (tmp - mint) * (1 / (maxt - mint)) print('sm %.3f, ss %.3f, rm %.3f, rs %.3f, min %.3f, max %.3f, res %.3f' % ( sce_mean, sce_std, res_mean, res_std, mint, maxt, nxcorr)) cv2.imshow('corr', tmp) cv2.waitKey() return nxcorr
mit
rahulraghatate/sp17-i524
project/S17-IO-3012/code/bin/benchmark_replicas_find.py
19
5441
import matplotlib.pyplot as plt import sys import pandas as pd def get_parm(): """retrieves mandatory parameter to program @param: none @type: n/a """ try: return sys.argv[1] except: print ('Must enter file name as parameter') exit() def read_file(filename): """reads a file into a pandas dataframe @param: filename The name of the file to read @type: string """ try: return pd.read_csv(filename) except: print ('Error retrieving file') exit() def select_data(benchmark_df, cloud, config_replicas, mongos_instances, shard_replicas, shards_per_replica): benchmark_df = benchmark_df[benchmark_df.mongo_version == 34] benchmark_df = benchmark_df[benchmark_df.test_size == "large"] if cloud != 'X': benchmark_df = benchmark_df[benchmark_df.cloud == cloud] if config_replicas != 'X': benchmark_df = benchmark_df[benchmark_df.config_replicas == config_replicas] if mongos_instances != 'X': benchmark_df = benchmark_df[benchmark_df.mongos_instances == mongos_instances] if shard_replicas != 'X': benchmark_df = benchmark_df[benchmark_df.shard_replicas == shard_replicas] if shards_per_replica != 'X': benchmark_df = benchmark_df[benchmark_df.shards_per_replica == shards_per_replica] # benchmark_df1 = benchmark_df.groupby(['cloud', 'config_replicas', 'mongos_instances', 'shard_replicas', 'shards_per_replica']).mean() # http://stackoverflow.com/questions/10373660/converting-a-pandas-groupby-object-to-dataframe benchmark_df = benchmark_df.groupby( ['cloud', 'config_replicas', 'mongos_instances', 'shard_replicas', 'shards_per_replica'], as_index=False).mean() # http://stackoverflow.com/questions/10373660/converting-a-pandas-groupby-object-to-dataframe # print benchmark_df1['shard_replicas'] # print benchmark_df1 # print benchmark_df benchmark_df = benchmark_df.sort_values(by='shard_replicas', ascending=1) return benchmark_df def make_figure(find_seconds_kilo, replicas_kilo, find_seconds_chameleon, replicas_chameleon, find_seconds_jetstream, replicas_jetstream): """formats and creates a line chart @param1: find_seconds_kilo Array with find_seconds from kilo @type: numpy array @param2: replicas_kilo Array with replicas from kilo @type: numpy array @param3: find_seconds_chameleon Array with find_seconds from chameleon @type: numpy array @param4: replicas_chameleon Array with replicas from chameleon @type: numpy array """ fig = plt.figure() #plt.title('Average Find Command Runtime by Shard Replication Factor') plt.ylabel('Runtime in Seconds') plt.xlabel('Degree of Replication Per Set') # Make the chart plt.plot(replicas_kilo, find_seconds_kilo, label='Kilo Cloud') plt.plot(replicas_chameleon, find_seconds_chameleon, label='Chameleon Cloud') plt.plot(replicas_jetstream, find_seconds_jetstream, label='Jetstream Cloud') # http://stackoverflow.com/questions/11744990/how-to-set-auto-for-upper-limit-but-keep-a-fixed-lower-limit-with-matplotlib plt.ylim(ymin=0) plt.legend(loc='best') # Show the chart (for testing) # plt.show() # Save the chart fig.savefig('../report/replica_find.png') # Run the program by calling the functions if __name__ == "__main__": filename = get_parm() benchmark_df = read_file(filename) cloud = 'kilo' config_replicas = 1 mongos_instances = 1 shard_replicas = 1 shards_per_replica = 'X' select_df = select_data(benchmark_df, cloud, config_replicas, mongos_instances, shard_replicas, shards_per_replica) # http://stackoverflow.com/questions/31791476/pandas-dataframe-to-numpy-array-valueerror # percentage death=\ find_seconds_kilo = select_df.as_matrix(columns=[select_df.columns[7]]) replicas_kilo = select_df.as_matrix(columns=[select_df.columns[4]]) # http://stackoverflow.com/questions/31791476/pandas-dataframe-to-numpy-array-valueerror cloud = 'chameleon' config_replicas = 1 mongos_instances = 1 shard_replicas = 1 shards_per_replica = 'X' select_df = select_data(benchmark_df, cloud, config_replicas, mongos_instances, shard_replicas, shards_per_replica) # http://stackoverflow.com/questions/31791476/pandas-dataframe-to-numpy-array-valueerror # percentage death=\ find_seconds_chameleon = select_df.as_matrix(columns=[select_df.columns[7]]) replicas_chameleon = select_df.as_matrix(columns=[select_df.columns[4]]) # http://stackoverflow.com/questions/31791476/pandas-dataframe-to-numpy-array-valueerror cloud = 'jetstream' config_replicas = 1 mongos_instances = 1 shard_replicas = 1 shards_per_replica = 'X' select_df = select_data(benchmark_df, cloud, config_replicas, mongos_instances, shard_replicas, shards_per_replica) # http://stackoverflow.com/questions/31791476/pandas-dataframe-to-numpy-array-valueerror # percentage death=\ find_seconds_jetstream = select_df.as_matrix(columns=[select_df.columns[7]]) replicas_jetstream = select_df.as_matrix(columns=[select_df.columns[4]]) # http://stackoverflow.com/questions/31791476/pandas-dataframe-to-numpy-array-valueerror make_figure(find_seconds_kilo, replicas_kilo, find_seconds_chameleon, replicas_chameleon, find_seconds_jetstream, replicas_jetstream)
apache-2.0
nightjean/Deep-Learning
tensorflow/python/estimator/inputs/queues/feeding_queue_runner_test.py
116
5164
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests `FeedingQueueRunner` using arrays and `DataFrames`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.client import session from tensorflow.python.estimator.inputs.queues import feeding_functions as ff from tensorflow.python.framework import ops from tensorflow.python.platform import test from tensorflow.python.training import coordinator from tensorflow.python.training import queue_runner_impl try: # pylint: disable=g-import-not-at-top import pandas as pd HAS_PANDAS = True except IOError: # Pandas writes a temporary file during import. If it fails, don't use pandas. HAS_PANDAS = False except ImportError: HAS_PANDAS = False def get_rows(array, row_indices): rows = [array[i] for i in row_indices] return np.vstack(rows) class FeedingQueueRunnerTestCase(test.TestCase): """Tests for `FeedingQueueRunner`.""" def testArrayFeeding(self): with ops.Graph().as_default(): array = np.arange(32).reshape([16, 2]) q = ff._enqueue_data(array, capacity=100) batch_size = 3 dq_op = q.dequeue_many(batch_size) with session.Session() as sess: coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(sess=sess, coord=coord) for i in range(100): indices = [ j % array.shape[0] for j in range(batch_size * i, batch_size * (i + 1)) ] expected_dq = get_rows(array, indices) dq = sess.run(dq_op) np.testing.assert_array_equal(indices, dq[0]) np.testing.assert_array_equal(expected_dq, dq[1]) coord.request_stop() coord.join(threads) def testArrayFeedingMultiThread(self): with ops.Graph().as_default(): array = np.arange(256).reshape([128, 2]) q = ff._enqueue_data(array, capacity=128, num_threads=8, shuffle=True) batch_size = 3 dq_op = q.dequeue_many(batch_size) with session.Session() as sess: coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(sess=sess, coord=coord) for _ in range(100): dq = sess.run(dq_op) indices = dq[0] expected_dq = get_rows(array, indices) np.testing.assert_array_equal(expected_dq, dq[1]) coord.request_stop() coord.join(threads) def testPandasFeeding(self): if not HAS_PANDAS: return with ops.Graph().as_default(): array1 = np.arange(32) array2 = np.arange(32, 64) df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(64, 96)) q = ff._enqueue_data(df, capacity=100) batch_size = 5 dq_op = q.dequeue_many(5) with session.Session() as sess: coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(sess=sess, coord=coord) for i in range(100): indices = [ j % array1.shape[0] for j in range(batch_size * i, batch_size * (i + 1)) ] expected_df_indices = df.index[indices] expected_rows = df.iloc[indices] dq = sess.run(dq_op) np.testing.assert_array_equal(expected_df_indices, dq[0]) for col_num, col in enumerate(df.columns): np.testing.assert_array_equal(expected_rows[col].values, dq[col_num + 1]) coord.request_stop() coord.join(threads) def testPandasFeedingMultiThread(self): if not HAS_PANDAS: return with ops.Graph().as_default(): array1 = np.arange(128, 256) array2 = 2 * array1 df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(128)) q = ff._enqueue_data(df, capacity=128, num_threads=8, shuffle=True) batch_size = 5 dq_op = q.dequeue_many(batch_size) with session.Session() as sess: coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(sess=sess, coord=coord) for _ in range(100): dq = sess.run(dq_op) indices = dq[0] expected_rows = df.iloc[indices] for col_num, col in enumerate(df.columns): np.testing.assert_array_equal(expected_rows[col].values, dq[col_num + 1]) coord.request_stop() coord.join(threads) if __name__ == "__main__": test.main()
apache-2.0
AsimmHirani/ISpyPi
tensorflow/contrib/tensorflow-master/tensorflow/contrib/learn/python/learn/estimators/kmeans_test.py
3
18489
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for KMeans.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import sys import time # TODO: #6568 Remove this hack that makes dlopen() not crash. if hasattr(sys, 'getdlopenflags') and hasattr(sys, 'setdlopenflags'): import ctypes sys.setdlopenflags(sys.getdlopenflags() | ctypes.RTLD_GLOBAL) import numpy as np from sklearn.cluster import KMeans as SklearnKMeans from tensorflow.contrib import factorization from tensorflow.contrib.learn.python import learn from tensorflow.contrib.learn.python.learn.estimators import kmeans as kmeans_lib from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import random_ops from tensorflow.python.platform import benchmark from tensorflow.python.platform import flags from tensorflow.python.platform import test from tensorflow.python.training import input as input_lib FLAGS = flags.FLAGS def normalize(x): return x / np.sqrt(np.sum(x * x, axis=-1, keepdims=True)) def cosine_similarity(x, y): return np.dot(normalize(x), np.transpose(normalize(y))) def make_random_centers(num_centers, num_dims, center_norm=500): return np.round( np.random.rand(num_centers, num_dims).astype(np.float32) * center_norm) def make_random_points(centers, num_points, max_offset=20): num_centers, num_dims = centers.shape assignments = np.random.choice(num_centers, num_points) offsets = np.round( np.random.randn(num_points, num_dims).astype(np.float32) * max_offset) return (centers[assignments] + offsets, assignments, np.add.reduce(offsets * offsets, 1)) class KMeansTestBase(test.TestCase): def input_fn(self, batch_size=None, points=None, randomize=None, num_epochs=None): """Returns an input_fn that randomly selects batches from given points.""" batch_size = batch_size or self.batch_size points = points if points is not None else self.points num_points = points.shape[0] if randomize is None: randomize = (self.use_mini_batch and self.mini_batch_steps_per_iteration <= 1) def _fn(): x = constant_op.constant(points) if batch_size == num_points: return input_lib.limit_epochs(x, num_epochs=num_epochs), None if randomize: indices = random_ops.random_uniform( constant_op.constant([batch_size]), minval=0, maxval=num_points-1, dtype=dtypes.int32, seed=10) else: # We need to cycle through the indices sequentially. We create a queue # to maintain the list of indices. q = data_flow_ops.FIFOQueue(self.num_points, dtypes.int32, ()) # Conditionally initialize the Queue. def _init_q(): with ops.control_dependencies([q.enqueue_many( math_ops.range(self.num_points))]): return control_flow_ops.no_op() init_q = control_flow_ops.cond(q.size() <= 0, _init_q, control_flow_ops.no_op) with ops.control_dependencies([init_q]): offsets = q.dequeue_many(self.batch_size) with ops.control_dependencies([q.enqueue_many(offsets)]): indices = array_ops.identity(offsets) batch = array_ops.gather(x, indices) return (input_lib.limit_epochs(batch, num_epochs=num_epochs), None) return _fn @staticmethod def config(tf_random_seed): return run_config.RunConfig(tf_random_seed=tf_random_seed) @property def batch_size(self): return self.num_points @property def use_mini_batch(self): return False @property def mini_batch_steps_per_iteration(self): return 1 class KMeansTest(KMeansTestBase): def setUp(self): np.random.seed(3) self.num_centers = 5 self.num_dims = 2 self.num_points = 1000 self.true_centers = make_random_centers(self.num_centers, self.num_dims) self.points, _, self.scores = make_random_points(self.true_centers, self.num_points) self.true_score = np.add.reduce(self.scores) def _kmeans(self, relative_tolerance=None): return kmeans_lib.KMeansClustering( self.num_centers, initial_clusters=factorization.KMEANS_PLUS_PLUS_INIT, distance_metric=factorization.SQUARED_EUCLIDEAN_DISTANCE, use_mini_batch=self.use_mini_batch, mini_batch_steps_per_iteration=self.mini_batch_steps_per_iteration, random_seed=24, relative_tolerance=relative_tolerance) def test_clusters(self): kmeans = self._kmeans() kmeans.fit(input_fn=self.input_fn(), steps=1) clusters = kmeans.clusters() self.assertAllEqual(list(clusters.shape), [self.num_centers, self.num_dims]) def test_fit(self): kmeans = self._kmeans() kmeans.fit(input_fn=self.input_fn(), steps=1) score1 = kmeans.score( input_fn=self.input_fn(batch_size=self.num_points), steps=1) steps = 10 * self.num_points // self.batch_size kmeans.fit(input_fn=self.input_fn(), steps=steps) score2 = kmeans.score( input_fn=self.input_fn(batch_size=self.num_points), steps=1) self.assertTrue(score1 > score2) self.assertNear(self.true_score, score2, self.true_score * 0.05) def test_monitor(self): if self.use_mini_batch: # We don't test for use_mini_batch case since the loss value can be noisy. return kmeans = kmeans_lib.KMeansClustering( self.num_centers, initial_clusters=factorization.KMEANS_PLUS_PLUS_INIT, distance_metric=factorization.SQUARED_EUCLIDEAN_DISTANCE, use_mini_batch=self.use_mini_batch, mini_batch_steps_per_iteration=self.mini_batch_steps_per_iteration, config=learn.RunConfig(tf_random_seed=14), random_seed=12, relative_tolerance=1e-4) kmeans.fit( input_fn=self.input_fn(), # Force it to train until the relative tolerance monitor stops it. steps=None) score = kmeans.score( input_fn=self.input_fn(batch_size=self.num_points), steps=1) self.assertNear(self.true_score, score, self.true_score * 0.01) def test_infer(self): kmeans = self._kmeans() # Make a call to fit to initialize the cluster centers. max_steps = 1 kmeans.fit(input_fn=self.input_fn(), max_steps=max_steps) clusters = kmeans.clusters() # Make a small test set num_points = 10 points, true_assignments, true_offsets = make_random_points(clusters, num_points) # Test predict assignments = list(kmeans.predict_cluster_idx(input_fn=self.input_fn( batch_size=num_points, points=points, num_epochs=1))) self.assertAllEqual(assignments, true_assignments) # Test score score = kmeans.score( input_fn=lambda: (constant_op.constant(points), None), steps=1) self.assertNear(score, np.sum(true_offsets), 0.01 * score) # Test transform transform = kmeans.transform( input_fn=lambda: (constant_op.constant(points), None)) true_transform = np.maximum( 0, np.sum(np.square(points), axis=1, keepdims=True) - 2 * np.dot( points, np.transpose(clusters)) + np.transpose(np.sum(np.square(clusters), axis=1, keepdims=True))) self.assertAllClose(transform, true_transform, rtol=0.05, atol=10) def test_fit_raise_if_num_clusters_larger_than_num_points_random_init(self): points = np.array([[2.0, 3.0], [1.6, 8.2]], dtype=np.float32) with self.assertRaisesOpError('less'): kmeans = learn.KMeansClustering( num_clusters=3, use_mini_batch=self.use_mini_batch, mini_batch_steps_per_iteration=self.mini_batch_steps_per_iteration, initial_clusters=factorization.RANDOM_INIT) kmeans.fit(input_fn=lambda: (constant_op.constant(points), None), steps=10) def test_fit_raise_if_num_clusters_larger_than_num_points_kmeans_plus_plus( self): points = np.array([[2.0, 3.0], [1.6, 8.2]], dtype=np.float32) with self.assertRaisesOpError(AssertionError): kmeans = learn.KMeansClustering( num_clusters=3, use_mini_batch=self.use_mini_batch, mini_batch_steps_per_iteration=self.mini_batch_steps_per_iteration, initial_clusters=factorization.KMEANS_PLUS_PLUS_INIT) kmeans.fit(input_fn=lambda: (constant_op.constant(points), None), steps=10) class MiniBatchKMeansTest(KMeansTest): @property def batch_size(self): return 50 @property def use_mini_batch(self): return True class FullBatchAsyncKMeansTest(KMeansTest): @property def batch_size(self): return 50 @property def use_mini_batch(self): return True @property def mini_batch_steps_per_iteration(self): return self.num_points // self.batch_size class KMeansCosineDistanceTest(KMeansTestBase): def setUp(self): self.points = np.array( [[2.5, 0.1], [2, 0.2], [3, 0.1], [4, 0.2], [0.1, 2.5], [0.2, 2], [0.1, 3], [0.2, 4]], dtype=np.float32) self.num_points = self.points.shape[0] self.true_centers = np.array( [ normalize( np.mean( normalize(self.points)[0:4, :], axis=0, keepdims=True))[0], normalize( np.mean( normalize(self.points)[4:, :], axis=0, keepdims=True))[0] ], dtype=np.float32) self.true_assignments = np.array([0] * 4 + [1] * 4) self.true_score = len(self.points) - np.tensordot( normalize(self.points), self.true_centers[self.true_assignments]) self.num_centers = 2 self.kmeans = kmeans_lib.KMeansClustering( self.num_centers, initial_clusters=factorization.RANDOM_INIT, distance_metric=factorization.COSINE_DISTANCE, use_mini_batch=self.use_mini_batch, mini_batch_steps_per_iteration=self.mini_batch_steps_per_iteration, config=self.config(3)) def test_fit(self): max_steps = 10 * self.num_points // self.batch_size self.kmeans.fit(input_fn=self.input_fn(), max_steps=max_steps) centers = normalize(self.kmeans.clusters()) centers = centers[centers[:, 0].argsort()] true_centers = self.true_centers[self.true_centers[:, 0].argsort()] self.assertAllClose(centers, true_centers, atol=0.04) def test_transform(self): self.kmeans.fit(input_fn=self.input_fn(), steps=10) centers = normalize(self.kmeans.clusters()) true_transform = 1 - cosine_similarity(self.points, centers) transform = self.kmeans.transform(input_fn=self.input_fn( batch_size=self.num_points)) self.assertAllClose(transform, true_transform, atol=1e-3) def test_predict(self): max_steps = 10 * self.num_points // self.batch_size self.kmeans.fit(input_fn=self.input_fn(), max_steps=max_steps) centers = normalize(self.kmeans.clusters()) assignments = list(self.kmeans.predict_cluster_idx( input_fn=self.input_fn(num_epochs=1, batch_size=self.num_points))) self.assertAllClose( centers[assignments], self.true_centers[self.true_assignments], atol=1e-2) centers = centers[centers[:, 0].argsort()] true_centers = self.true_centers[self.true_centers[:, 0].argsort()] self.assertAllClose(centers, true_centers, atol=0.04) score = self.kmeans.score(input_fn=self.input_fn( batch_size=self.num_points), steps=1) self.assertAllClose(score, self.true_score, atol=1e-2) def test_predict_kmeans_plus_plus(self): # Most points are concetrated near one center. KMeans++ is likely to find # the less populated centers. points = np.array( [[2.5, 3.5], [2.5, 3.5], [-2, 3], [-2, 3], [-3, -3], [-3.1, -3.2], [-2.8, -3.], [-2.9, -3.1], [-3., -3.1], [-3., -3.1], [-3.2, -3.], [-3., -3.]], dtype=np.float32) true_centers = np.array( [ normalize( np.mean( normalize(points)[0:2, :], axis=0, keepdims=True))[0], normalize( np.mean( normalize(points)[2:4, :], axis=0, keepdims=True))[0], normalize(np.mean( normalize(points)[4:, :], axis=0, keepdims=True))[0] ], dtype=np.float32) true_assignments = [0] * 2 + [1] * 2 + [2] * 8 true_score = len(points) - np.tensordot( normalize(points), true_centers[true_assignments]) kmeans = kmeans_lib.KMeansClustering( 3, initial_clusters=factorization.KMEANS_PLUS_PLUS_INIT, distance_metric=factorization.COSINE_DISTANCE, use_mini_batch=self.use_mini_batch, mini_batch_steps_per_iteration=self.mini_batch_steps_per_iteration, config=self.config(3)) kmeans.fit(input_fn=lambda: (constant_op.constant(points), None), steps=30) centers = normalize(kmeans.clusters()) self.assertAllClose( sorted(centers.tolist()), sorted(true_centers.tolist()), atol=1e-2) def _input_fn(): return ( input_lib.limit_epochs(constant_op.constant(points), num_epochs=1), None) assignments = list(kmeans.predict_cluster_idx(input_fn=_input_fn)) self.assertAllClose( centers[assignments], true_centers[true_assignments], atol=1e-2) score = kmeans.score( input_fn=lambda: (constant_op.constant(points), None), steps=1) self.assertAllClose(score, true_score, atol=1e-2) class MiniBatchKMeansCosineTest(KMeansCosineDistanceTest): @property def batch_size(self): return 2 @property def use_mini_batch(self): return True class FullBatchAsyncKMeansCosineTest(KMeansCosineDistanceTest): @property def batch_size(self): return 2 @property def use_mini_batch(self): return True @property def mini_batch_steps_per_iteration(self): return self.num_points // self.batch_size class KMeansBenchmark(benchmark.Benchmark): """Base class for benchmarks.""" def SetUp(self, dimension=50, num_clusters=50, points_per_cluster=10000, center_norm=500, cluster_width=20): np.random.seed(123456) self.num_clusters = num_clusters self.num_points = num_clusters * points_per_cluster self.centers = make_random_centers( self.num_clusters, dimension, center_norm=center_norm) self.points, _, scores = make_random_points( self.centers, self.num_points, max_offset=cluster_width) self.score = float(np.sum(scores)) def _report(self, num_iters, start, end, scores): print(scores) self.report_benchmark( iters=num_iters, wall_time=(end - start) / num_iters, extras={'true_sum_squared_distances': self.score, 'fit_scores': scores}) def _fit(self, num_iters=10): pass def benchmark_01_2dim_5center_500point(self): self.SetUp(dimension=2, num_clusters=5, points_per_cluster=100) self._fit() def benchmark_02_20dim_20center_10kpoint(self): self.SetUp(dimension=20, num_clusters=20, points_per_cluster=500) self._fit() def benchmark_03_100dim_50center_50kpoint(self): self.SetUp(dimension=100, num_clusters=50, points_per_cluster=1000) self._fit() def benchmark_03_100dim_50center_50kpoint_unseparated(self): self.SetUp( dimension=100, num_clusters=50, points_per_cluster=1000, cluster_width=250) self._fit() def benchmark_04_100dim_500center_500kpoint(self): self.SetUp(dimension=100, num_clusters=500, points_per_cluster=1000) self._fit(num_iters=4) def benchmark_05_100dim_500center_500kpoint_unseparated(self): self.SetUp( dimension=100, num_clusters=500, points_per_cluster=1000, cluster_width=250) self._fit(num_iters=4) class TensorflowKMeansBenchmark(KMeansBenchmark): def _fit(self, num_iters=10): scores = [] start = time.time() for i in range(num_iters): print('Starting tensorflow KMeans: %d' % i) tf_kmeans = kmeans_lib.KMeansClustering( self.num_clusters, initial_clusters=factorization.KMEANS_PLUS_PLUS_INIT, kmeans_plus_plus_num_retries=int(math.log(self.num_clusters) + 2), random_seed=i * 42, config=run_config.RunConfig(tf_random_seed=3)) tf_kmeans.fit(input_fn=lambda: (constant_op.constant(self.points), None), steps=50, relative_tolerance=1e-6) _ = tf_kmeans.clusters() scores.append( tf_kmeans.score( input_fn=lambda: (constant_op.constant(self.points), None), steps=1)) self._report(num_iters, start, time.time(), scores) class SklearnKMeansBenchmark(KMeansBenchmark): def _fit(self, num_iters=10): scores = [] start = time.time() for i in range(num_iters): print('Starting sklearn KMeans: %d' % i) sklearn_kmeans = SklearnKMeans( n_clusters=self.num_clusters, init='k-means++', max_iter=50, n_init=1, tol=1e-4, random_state=i * 42) sklearn_kmeans.fit(self.points) scores.append(sklearn_kmeans.inertia_) self._report(num_iters, start, time.time(), scores) if __name__ == '__main__': test.main()
apache-2.0
edhuckle/statsmodels
statsmodels/tsa/filters/_utils.py
29
4391
from functools import wraps from statsmodels.tools.data import _is_using_pandas from statsmodels.tsa.base import datetools from statsmodels.tsa.tsatools import freq_to_period def _get_pandas_wrapper(X, trim_head=None, trim_tail=None, names=None): index = X.index #TODO: allow use index labels if trim_head is None and trim_tail is None: index = index elif trim_tail is None: index = index[trim_head:] elif trim_head is None: index = index[:-trim_tail] else: index = index[trim_head:-trim_tail] if hasattr(X, "columns"): if names is None: names = X.columns return lambda x : X.__class__(x, index=index, columns=names) else: if names is None: names = X.name return lambda x : X.__class__(x, index=index, name=names) def _maybe_get_pandas_wrapper(X, trim_head=None, trim_tail=None): """ If using pandas returns a function to wrap the results, e.g., wrapper(X) trim is an integer for the symmetric truncation of the series in some filters. otherwise returns None """ if _is_using_pandas(X, None): return _get_pandas_wrapper(X, trim_head, trim_tail) else: return def _maybe_get_pandas_wrapper_freq(X, trim=None): if _is_using_pandas(X, None): index = X.index func = _get_pandas_wrapper(X, trim) freq = index.inferred_freq return func, freq else: return lambda x : x, None def pandas_wrapper(func, trim_head=None, trim_tail=None, names=None, *args, **kwargs): @wraps(func) def new_func(X, *args, **kwargs): # quick pass-through for do nothing case if not _is_using_pandas(X, None): return func(X, *args, **kwargs) wrapper_func = _get_pandas_wrapper(X, trim_head, trim_tail, names) ret = func(X, *args, **kwargs) ret = wrapper_func(ret) return ret return new_func def pandas_wrapper_bunch(func, trim_head=None, trim_tail=None, names=None, *args, **kwargs): @wraps(func) def new_func(X, *args, **kwargs): # quick pass-through for do nothing case if not _is_using_pandas(X, None): return func(X, *args, **kwargs) wrapper_func = _get_pandas_wrapper(X, trim_head, trim_tail, names) ret = func(X, *args, **kwargs) ret = wrapper_func(ret) return ret return new_func def pandas_wrapper_predict(func, trim_head=None, trim_tail=None, columns=None, *args, **kwargs): pass def pandas_wrapper_freq(func, trim_head=None, trim_tail=None, freq_kw='freq', columns=None, *args, **kwargs): """ Return a new function that catches the incoming X, checks if it's pandas, calls the functions as is. Then wraps the results in the incoming index. Deals with frequencies. Expects that the function returns a tuple, a Bunch object, or a pandas-object. """ @wraps(func) def new_func(X, *args, **kwargs): # quick pass-through for do nothing case if not _is_using_pandas(X, None): return func(X, *args, **kwargs) wrapper_func = _get_pandas_wrapper(X, trim_head, trim_tail, columns) index = X.index freq = index.inferred_freq kwargs.update({freq_kw : freq_to_period(freq)}) ret = func(X, *args, **kwargs) ret = wrapper_func(ret) return ret return new_func def dummy_func(X): return X def dummy_func_array(X): return X.values def dummy_func_pandas_columns(X): return X.values def dummy_func_pandas_series(X): return X['A'] import pandas as pd import numpy as np def test_pandas_freq_decorator(): X = pd.util.testing.makeDataFrame() # in X, get a function back that returns an X with the same columns func = pandas_wrapper(dummy_func) np.testing.assert_equal(func(X.values), X) func = pandas_wrapper(dummy_func_array) pd.util.testing.assert_frame_equal(func(X), X) expected = X.rename(columns=dict(zip('ABCD', 'EFGH'))) func = pandas_wrapper(dummy_func_array, names=list('EFGH')) pd.util.testing.assert_frame_equal(func(X), expected)
bsd-3-clause
ybroze/trading-with-python
cookbook/getDataFromYahooFinance.py
77
1391
# -*- coding: utf-8 -*- """ Created on Sun Oct 16 18:37:23 2011 @author: jev """ from urllib import urlretrieve from urllib2 import urlopen from pandas import Index, DataFrame from datetime import datetime import matplotlib.pyplot as plt sDate = (2005,1,1) eDate = (2011,10,1) symbol = 'SPY' fName = symbol+'.csv' try: # try to load saved csv file, otherwise get from the net fid = open(fName) lines = fid.readlines() fid.close() print 'Loaded from ' , fName except Exception as e: print e urlStr = 'http://ichart.finance.yahoo.com/table.csv?s={0}&a={1}&b={2}&c={3}&d={4}&e={5}&f={6}'.\ format(symbol.upper(),sDate[1]-1,sDate[2],sDate[0],eDate[1]-1,eDate[2],eDate[0]) print 'Downloading from ', urlStr urlretrieve(urlStr,symbol+'.csv') lines = urlopen(urlStr).readlines() dates = [] data = [[] for i in range(6)] #high # header : Date,Open,High,Low,Close,Volume,Adj Close for line in lines[1:]: fields = line.rstrip().split(',') dates.append(datetime.strptime( fields[0],'%Y-%m-%d')) for i,field in enumerate(fields[1:]): data[i].append(float(field)) idx = Index(dates) data = dict(zip(['open','high','low','close','volume','adj_close'],data)) # create a pandas dataframe structure df = DataFrame(data,index=idx).sort() df.plot(secondary_y=['volume'])
bsd-3-clause
jakobworldpeace/scikit-learn
sklearn/svm/tests/test_sparse.py
63
13366
import numpy as np from scipy import sparse from numpy.testing import (assert_array_almost_equal, assert_array_equal, assert_equal) from sklearn import datasets, svm, linear_model, base from sklearn.datasets import make_classification, load_digits, make_blobs from sklearn.svm.tests import test_svm from sklearn.exceptions import ConvergenceWarning from sklearn.utils.extmath import safe_sparse_dot from sklearn.utils.testing import (assert_raises, assert_true, assert_false, assert_warns, assert_raise_message, ignore_warnings) # test sample 1 X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) X_sp = sparse.lil_matrix(X) Y = [1, 1, 1, 2, 2, 2] T = np.array([[-1, -1], [2, 2], [3, 2]]) true_result = [1, 2, 2] # test sample 2 X2 = np.array([[0, 0, 0], [1, 1, 1], [2, 0, 0, ], [0, 0, 2], [3, 3, 3]]) X2_sp = sparse.dok_matrix(X2) Y2 = [1, 2, 2, 2, 3] T2 = np.array([[-1, -1, -1], [1, 1, 1], [2, 2, 2]]) true_result2 = [1, 2, 3] iris = datasets.load_iris() # permute rng = np.random.RandomState(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # sparsify iris.data = sparse.csr_matrix(iris.data) def check_svm_model_equal(dense_svm, sparse_svm, X_train, y_train, X_test): dense_svm.fit(X_train.toarray(), y_train) if sparse.isspmatrix(X_test): X_test_dense = X_test.toarray() else: X_test_dense = X_test sparse_svm.fit(X_train, y_train) assert_true(sparse.issparse(sparse_svm.support_vectors_)) assert_true(sparse.issparse(sparse_svm.dual_coef_)) assert_array_almost_equal(dense_svm.support_vectors_, sparse_svm.support_vectors_.toarray()) assert_array_almost_equal(dense_svm.dual_coef_, sparse_svm.dual_coef_.toarray()) if dense_svm.kernel == "linear": assert_true(sparse.issparse(sparse_svm.coef_)) assert_array_almost_equal(dense_svm.coef_, sparse_svm.coef_.toarray()) assert_array_almost_equal(dense_svm.support_, sparse_svm.support_) assert_array_almost_equal(dense_svm.predict(X_test_dense), sparse_svm.predict(X_test)) assert_array_almost_equal(dense_svm.decision_function(X_test_dense), sparse_svm.decision_function(X_test)) assert_array_almost_equal(dense_svm.decision_function(X_test_dense), sparse_svm.decision_function(X_test_dense)) if isinstance(dense_svm, svm.OneClassSVM): msg = "cannot use sparse input in 'OneClassSVM' trained on dense data" else: assert_array_almost_equal(dense_svm.predict_proba(X_test_dense), sparse_svm.predict_proba(X_test), 4) msg = "cannot use sparse input in 'SVC' trained on dense data" if sparse.isspmatrix(X_test): assert_raise_message(ValueError, msg, dense_svm.predict, X_test) def test_svc(): """Check that sparse SVC gives the same result as SVC""" # many class dataset: X_blobs, y_blobs = make_blobs(n_samples=100, centers=10, random_state=0) X_blobs = sparse.csr_matrix(X_blobs) datasets = [[X_sp, Y, T], [X2_sp, Y2, T2], [X_blobs[:80], y_blobs[:80], X_blobs[80:]], [iris.data, iris.target, iris.data]] kernels = ["linear", "poly", "rbf", "sigmoid"] for dataset in datasets: for kernel in kernels: clf = svm.SVC(kernel=kernel, probability=True, random_state=0, decision_function_shape='ovo') sp_clf = svm.SVC(kernel=kernel, probability=True, random_state=0, decision_function_shape='ovo') check_svm_model_equal(clf, sp_clf, *dataset) def test_unsorted_indices(): # test that the result with sorted and unsorted indices in csr is the same # we use a subset of digits as iris, blobs or make_classification didn't # show the problem digits = load_digits() X, y = digits.data[:50], digits.target[:50] X_test = sparse.csr_matrix(digits.data[50:100]) X_sparse = sparse.csr_matrix(X) coef_dense = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X, y).coef_ sparse_svc = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X_sparse, y) coef_sorted = sparse_svc.coef_ # make sure dense and sparse SVM give the same result assert_array_almost_equal(coef_dense, coef_sorted.toarray()) X_sparse_unsorted = X_sparse[np.arange(X.shape[0])] X_test_unsorted = X_test[np.arange(X_test.shape[0])] # make sure we scramble the indices assert_false(X_sparse_unsorted.has_sorted_indices) assert_false(X_test_unsorted.has_sorted_indices) unsorted_svc = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X_sparse_unsorted, y) coef_unsorted = unsorted_svc.coef_ # make sure unsorted indices give same result assert_array_almost_equal(coef_unsorted.toarray(), coef_sorted.toarray()) assert_array_almost_equal(sparse_svc.predict_proba(X_test_unsorted), sparse_svc.predict_proba(X_test)) def test_svc_with_custom_kernel(): kfunc = lambda x, y: safe_sparse_dot(x, y.T) clf_lin = svm.SVC(kernel='linear').fit(X_sp, Y) clf_mylin = svm.SVC(kernel=kfunc).fit(X_sp, Y) assert_array_equal(clf_lin.predict(X_sp), clf_mylin.predict(X_sp)) def test_svc_iris(): # Test the sparse SVC with the iris dataset for k in ('linear', 'poly', 'rbf'): sp_clf = svm.SVC(kernel=k).fit(iris.data, iris.target) clf = svm.SVC(kernel=k).fit(iris.data.toarray(), iris.target) assert_array_almost_equal(clf.support_vectors_, sp_clf.support_vectors_.toarray()) assert_array_almost_equal(clf.dual_coef_, sp_clf.dual_coef_.toarray()) assert_array_almost_equal( clf.predict(iris.data.toarray()), sp_clf.predict(iris.data)) if k == 'linear': assert_array_almost_equal(clf.coef_, sp_clf.coef_.toarray()) def test_sparse_decision_function(): #Test decision_function #Sanity check, test that decision_function implemented in python #returns the same as the one in libsvm # multi class: svc = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovo') clf = svc.fit(iris.data, iris.target) dec = safe_sparse_dot(iris.data, clf.coef_.T) + clf.intercept_ assert_array_almost_equal(dec, clf.decision_function(iris.data)) # binary: clf.fit(X, Y) dec = np.dot(X, clf.coef_.T) + clf.intercept_ prediction = clf.predict(X) assert_array_almost_equal(dec.ravel(), clf.decision_function(X)) assert_array_almost_equal( prediction, clf.classes_[(clf.decision_function(X) > 0).astype(np.int).ravel()]) expected = np.array([-1., -0.66, -1., 0.66, 1., 1.]) assert_array_almost_equal(clf.decision_function(X), expected, 2) def test_error(): # Test that it gives proper exception on deficient input # impossible value of C assert_raises(ValueError, svm.SVC(C=-1).fit, X, Y) # impossible value of nu clf = svm.NuSVC(nu=0.0) assert_raises(ValueError, clf.fit, X_sp, Y) Y2 = Y[:-1] # wrong dimensions for labels assert_raises(ValueError, clf.fit, X_sp, Y2) clf = svm.SVC() clf.fit(X_sp, Y) assert_array_equal(clf.predict(T), true_result) def test_linearsvc(): # Similar to test_SVC clf = svm.LinearSVC(random_state=0).fit(X, Y) sp_clf = svm.LinearSVC(random_state=0).fit(X_sp, Y) assert_true(sp_clf.fit_intercept) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4) assert_array_almost_equal(clf.predict(X), sp_clf.predict(X_sp)) clf.fit(X2, Y2) sp_clf.fit(X2_sp, Y2) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4) def test_linearsvc_iris(): # Test the sparse LinearSVC with the iris dataset sp_clf = svm.LinearSVC(random_state=0).fit(iris.data, iris.target) clf = svm.LinearSVC(random_state=0).fit(iris.data.toarray(), iris.target) assert_equal(clf.fit_intercept, sp_clf.fit_intercept) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=1) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=1) assert_array_almost_equal( clf.predict(iris.data.toarray()), sp_clf.predict(iris.data)) # check decision_function pred = np.argmax(sp_clf.decision_function(iris.data), 1) assert_array_almost_equal(pred, clf.predict(iris.data.toarray())) # sparsify the coefficients on both models and check that they still # produce the same results clf.sparsify() assert_array_equal(pred, clf.predict(iris.data)) sp_clf.sparsify() assert_array_equal(pred, sp_clf.predict(iris.data)) def test_weight(): # Test class weights X_, y_ = make_classification(n_samples=200, n_features=100, weights=[0.833, 0.167], random_state=0) X_ = sparse.csr_matrix(X_) for clf in (linear_model.LogisticRegression(), svm.LinearSVC(random_state=0), svm.SVC()): clf.set_params(class_weight={0: 5}) clf.fit(X_[:180], y_[:180]) y_pred = clf.predict(X_[180:]) assert_true(np.sum(y_pred == y_[180:]) >= 11) def test_sample_weights(): # Test weights on individual samples clf = svm.SVC() clf.fit(X_sp, Y) assert_array_equal(clf.predict([X[2]]), [1.]) sample_weight = [.1] * 3 + [10] * 3 clf.fit(X_sp, Y, sample_weight=sample_weight) assert_array_equal(clf.predict([X[2]]), [2.]) def test_sparse_liblinear_intercept_handling(): # Test that sparse liblinear honours intercept_scaling param test_svm.test_dense_liblinear_intercept_handling(svm.LinearSVC) def test_sparse_oneclasssvm(): """Check that sparse OneClassSVM gives the same result as dense OneClassSVM""" # many class dataset: X_blobs, _ = make_blobs(n_samples=100, centers=10, random_state=0) X_blobs = sparse.csr_matrix(X_blobs) datasets = [[X_sp, None, T], [X2_sp, None, T2], [X_blobs[:80], None, X_blobs[80:]], [iris.data, None, iris.data]] kernels = ["linear", "poly", "rbf", "sigmoid"] for dataset in datasets: for kernel in kernels: clf = svm.OneClassSVM(kernel=kernel, random_state=0) sp_clf = svm.OneClassSVM(kernel=kernel, random_state=0) check_svm_model_equal(clf, sp_clf, *dataset) def test_sparse_realdata(): # Test on a subset from the 20newsgroups dataset. # This catches some bugs if input is not correctly converted into # sparse format or weights are not correctly initialized. data = np.array([0.03771744, 0.1003567, 0.01174647, 0.027069]) indices = np.array([6, 5, 35, 31]) indptr = np.array( [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4]) X = sparse.csr_matrix((data, indices, indptr)) y = np.array( [1., 0., 2., 2., 1., 1., 1., 2., 2., 0., 1., 2., 2., 0., 2., 0., 3., 0., 3., 0., 1., 1., 3., 2., 3., 2., 0., 3., 1., 0., 2., 1., 2., 0., 1., 0., 2., 3., 1., 3., 0., 1., 0., 0., 2., 0., 1., 2., 2., 2., 3., 2., 0., 3., 2., 1., 2., 3., 2., 2., 0., 1., 0., 1., 2., 3., 0., 0., 2., 2., 1., 3., 1., 1., 0., 1., 2., 1., 1., 3.]) clf = svm.SVC(kernel='linear').fit(X.toarray(), y) sp_clf = svm.SVC(kernel='linear').fit(sparse.coo_matrix(X), y) assert_array_equal(clf.support_vectors_, sp_clf.support_vectors_.toarray()) assert_array_equal(clf.dual_coef_, sp_clf.dual_coef_.toarray()) def test_sparse_svc_clone_with_callable_kernel(): # Test that the "dense_fit" is called even though we use sparse input # meaning that everything works fine. a = svm.SVC(C=1, kernel=lambda x, y: x * y.T, probability=True, random_state=0) b = base.clone(a) b.fit(X_sp, Y) pred = b.predict(X_sp) b.predict_proba(X_sp) dense_svm = svm.SVC(C=1, kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0) pred_dense = dense_svm.fit(X, Y).predict(X) assert_array_equal(pred_dense, pred) # b.decision_function(X_sp) # XXX : should be supported def test_timeout(): sp = svm.SVC(C=1, kernel=lambda x, y: x * y.T, probability=True, random_state=0, max_iter=1) assert_warns(ConvergenceWarning, sp.fit, X_sp, Y) def test_consistent_proba(): a = svm.SVC(probability=True, max_iter=1, random_state=0) with ignore_warnings(category=ConvergenceWarning): proba_1 = a.fit(X, Y).predict_proba(X) a = svm.SVC(probability=True, max_iter=1, random_state=0) with ignore_warnings(category=ConvergenceWarning): proba_2 = a.fit(X, Y).predict_proba(X) assert_array_almost_equal(proba_1, proba_2)
bsd-3-clause
ngoix/OCRF
examples/feature_selection/plot_select_from_model_boston.py
146
1527
""" =================================================== Feature selection using SelectFromModel and LassoCV =================================================== Use SelectFromModel meta-transformer along with Lasso to select the best couple of features from the Boston dataset. """ # Author: Manoj Kumar <[email protected]> # License: BSD 3 clause print(__doc__) import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import load_boston from sklearn.feature_selection import SelectFromModel from sklearn.linear_model import LassoCV # Load the boston dataset. boston = load_boston() X, y = boston['data'], boston['target'] # We use the base estimator LassoCV since the L1 norm promotes sparsity of features. clf = LassoCV() # Set a minimum threshold of 0.25 sfm = SelectFromModel(clf, threshold=0.25) sfm.fit(X, y) n_features = sfm.transform(X).shape[1] # Reset the threshold till the number of features equals two. # Note that the attribute can be set directly instead of repeatedly # fitting the metatransformer. while n_features > 2: sfm.threshold += 0.1 X_transform = sfm.transform(X) n_features = X_transform.shape[1] # Plot the selected two features from X. plt.title( "Features selected from Boston using SelectFromModel with " "threshold %0.3f." % sfm.threshold) feature1 = X_transform[:, 0] feature2 = X_transform[:, 1] plt.plot(feature1, feature2, 'r.') plt.xlabel("Feature number 1") plt.ylabel("Feature number 2") plt.ylim([np.min(feature2), np.max(feature2)]) plt.show()
bsd-3-clause
mzwiessele/applygpy
applygpy/tests/test_plotting.py
1
4489
''' Created on 30 Sep 2015 @author: Max Zwiessele ''' import matplotlib from GPy.testing.plotting_tests import flatten_axis as fl, compare_axis_dicts as cm matplotlib.use('agg') import matplotlib.pyplot as plt # @UnresolvedImport import GPy, numpy as np from applygpy.prediction import PredictionModelSparse, PredictionModel from io import StringIO import unittest class Test(unittest.TestCase): def setUp(self): self.X, self.Y = np.random.normal(0, 1, (10, 1)), np.random.normal(0, 1, (10, 1)) pass def tearDown(self): plt.close('all') def testPlotting(self): m = GPy.models.GPRegression(self.X, self.Y) p = PredictionModel(m) fig, ax1 = plt.subplots() m.plot(plot_training_data=False, ax=ax1) ax1.set_ylim(0, 1) ax1.set_xlim(-2, 2) #i1 = StringIO() #fig.savefig(i1, format='svg') #i1.seek(0) fig, ax2 = plt.subplots() p.plot(plot_training_data=False, ax=ax2) ax2.set_ylim(0, 1) ax2.set_xlim(-2, 2) #i2 = StringIO() #fig.savefig(i2, format='svg') #i2.seek(0) #self.assertEqual(i1.read(), i2.read()) cm(fl(ax1), fl(ax2)) def testPlottingSparse(self): m = GPy.models.SparseGPRegression(self.X, self.Y) p = PredictionModelSparse(m) fig, ax1 = plt.subplots() m.plot(plot_training_data=False, ax=ax1) ax1.set_ylim(0, 1) ax1.set_xlim(-2, 2) #i1 = StringIO() #fig.savefig(i1, format='svg') #i1.seek(0) fig, ax2 = plt.subplots() p.plot(plot_training_data=False, ax=ax2) ax2.set_ylim(0, 1) ax2.set_xlim(-2, 2) #i2 = StringIO() #fig.savefig(i2, format='svg') #i2.seek(0) #self.assertEqual(i1.read(), i2.read()) cm(fl(ax1), fl(ax2)) def testPlottingClass(self): m = GPy.models.GPClassification(self.X, self.Y<0) p = PredictionModel(m) fig, ax1 = plt.subplots() m.plot(plot_training_data=False, ax=ax1) ax1.set_ylim(0, 1) ax1.set_xlim(-2, 2) #i1 = StringIO() #fig.savefig(i1, format='svg') #i1.seek(0) fig, ax2 = plt.subplots() p.plot(plot_training_data=False, ax=ax2) ax2.set_ylim(0, 1) ax2.set_xlim(-2, 2) #i2 = StringIO() #fig.savefig(i2, format='svg') #i2.seek(0) #self.assertEqual(i1.read(), i2.read()) cm(fl(ax1), fl(ax2)) def testPlottingSparseClass(self): m = GPy.models.SparseGPClassification(self.X, self.Y<0) p = PredictionModelSparse(m) fig, ax1 = plt.subplots() m.plot(plot_training_data=False, ax=ax1) ax1.set_ylim(0, 1) ax1.set_xlim(-2, 2) #i1 = StringIO() #fig.savefig(i1, format='svg') #i1.seek(0) fig, ax2 = plt.subplots() p.plot(plot_training_data=False, ax=ax2) ax2.set_ylim(0, 1) ax2.set_xlim(-2, 2) #i2 = StringIO() #fig.savefig(i2, format='svg') #i2.seek(0) #self.assertEqual(i1.read(), i2.read()) cm(fl(ax1), fl(ax2)) def testPlottingDataNotShow(self): m = GPy.models.SparseGPRegression(self.X, self.Y) p = PredictionModelSparse(m) p.plot_data() fig, ax1 = plt.subplots() p.plot(plot_training_data=False, ax=ax1) ax1.set_ylim(0, 1) ax1.set_xlim(-2, 2) #i1 = StringIO() #fig.savefig(i1, format='svg') #i1.seek(0) fig, ax2 = plt.subplots() p.plot(plot_training_data=True, ax=ax2) ax2.set_ylim(0, 1) ax2.set_xlim(-2, 2) #i2 = StringIO() #fig.savefig(i2, format='svg') #i2.seek(0) cm(fl(ax1), fl(ax2)) m = GPy.models.GPRegression(self.X, self.Y) p = PredictionModel(m) p.plot_data() fig, ax1 = plt.subplots() p.plot(plot_training_data=False, ax=ax1) ax1.set_ylim(0, 1) ax1.set_xlim(-2, 2) #i1 = StringIO() #fig.savefig(i1, format='svg') #i1.seek(0) fig, ax2 = plt.subplots() p.plot(plot_training_data=True, ax=ax2) ax2.set_ylim(0, 1) ax2.set_xlim(-2, 2) #i2 = StringIO() #fig.savefig(i2, format='svg') #i2.seek(0) cm(fl(ax1), fl(ax2)) if __name__ == "__main__": #import sys;sys.argv = ['', 'Test.testPlotting'] unittest.main()
bsd-3-clause
rogerblandford/Music
Scripts/_PlotMostProbVals.py
2
3033
#Get the noisless reconstruction execfile ('_MostProbValsBias.py') #-------------------------------------------------- # Now plot the most probable values import matplotlib.pyplot as plt from scipy.stats import norm from scipy.stats import multivariate_normal num=10 postn=np.zeros(numreal) for i in range(numreal): postn[i] = beatbox.You.all_reconstructed_universes[i].fn[num] n, bins, patches = plt.hist(postn, 20, normed=1, facecolor='green', alpha=0.75) plt.xlabel('$f_n$ values for $n=$'+str(num)) plt.ylabel('Probability') plt.title(r'$\mathrm{Histogram\ of\ most\ probable\ reconstructed\ values:}$') plt.axis([-0.1, 0.11, 0, 1]) plt.grid(True) plt.axvline(beatbox.You.all_simulated_universes[-1].fn[num]) plt.axvline(beatbox.You.all_reconstructed_universes[-1].fn[num], color='y') #N = (2.*pi)**(len(beatbox.You.all_simulated_universes[-1-i].fn)/2.) / (np.linalg.det(beatbox.You.A)**0.5) * np.exp(0.5*np.dot(beatbox.You.all_reconstructed_universes[0].fn.T, np.dot(beatbox.You.inv_A, beatbox.You.all_reconstructed_universes[0].fn))) #t = np.linspace(-3.,3.,6./200.) t = np.linspace(-4.5,2,1000) #plt.plot(t, norm.pdf(t, loc=beatbox.You.all_reconstructed_universes[-1].fn[num], scale=1./np.sqrt(beatbox.You.A[num, num])), 'k-', lw=1, label='frozen pdf') #plt.plot(t, np.linalg.det(beatbox.You.A)**0.5/(2.*np.pi)**(0.5*len(beatbox.You.all_reconstructed_universes[0].fn)) *np.exp(-0.5*(beatbox.You.all_reconstructed_universes[0].fn[num]-t)**2. * beatbox.You.A[num, num]), 'k-', lw=2, label='frozen pdf') #xj=np.append(beatbox.You.all_reconstructed_universes[0].fn[:num], beatbox.You.all_reconstructed_universes[0].fn[num+1:]) #Ani=np.append(beatbox.You.A[num, :num], beatbox.You.A[num, 1+num:]) #Aij_1112 = np.append(beatbox.You.A[:num, :num], beatbox.You.A[:num, 1+num:], axis=1) #Aij_2122 = np.append(beatbox.You.A[1+num:, :num], beatbox.You.A[1+num:, 1+num:], axis=1) #Aij = np.append(Aij_1112, Aij_2122, axis=0) #first = (t - 1./beatbox.You.A[num, num]*(beatbox.You.A[num, num]*beatbox.You.all_reconstructed_universes[0].fn[num]-np.dot(Ani,xj)))**2. * beatbox.You.A[num, num] #second = beatbox.You.all_reconstructed_universes[0].fn[num]**2 * beatbox.You.A[num, num] #third = (np.dot(Ani, xj))**2 * 1./beatbox.You.A[num, num] #fourth = np.dot(xj.T , np.dot(Aij,xj)) #plt.plot(t, np.linalg.det(beatbox.You.A)**0.5/(2.*np.pi)**(0.5*len(beatbox.You.all_reconstructed_universes[0].fn)) *np.exp(-0.5 * (first-second+third+fourth )), 'r-', lw=1) plt.plot(t, norm.pdf(t, loc=beatbox.You.all_reconstructed_universes[-1].fn[num], scale=np.sqrt(beatbox.You.inv_A[num, num])), 'r-', lw=1, label='frozen pdf') path_to_save='RobustnessAnalysis/rob_plt_lmax'+str(beatbox.Universe.truncated_lmax)+'_lmin'+str(beatbox.Universe.truncated_lmin)+'_nmax'+str(beatbox.Universe.truncated_nmax)+'_nmin'+str(beatbox.Universe.truncated_nmin) try: os.makedirs(path_to_save) except OSError: if not os.path.isdir(path_to_save): raise plt.savefig(path_to_save +'/mostprobvalues_f11.png') plt.show()
mit
BSchilperoort/BR-DTS-Processing
data_processing/customFunctions.py
1
3861
def index_closest_value(search_list,search_value): import numpy as np search_list = np.array(search_list) idx = (np.abs(search_list-search_value)).argmin() return idx def runningMean(x, N): import numpy as np return np.convolve(x, np.ones((N,))/N, mode='valid') def plotVariable(xtime,y,xlabel='x-axis',ylabel='y-axis'): import matplotlib.pyplot as plt import matplotlib.dates as mdates fig, ax = plt.subplots(1) Plot = ax.plot(xtime,y) ax.xaxis_date() dateFormat = mdates.DateFormatter('%d/%m %H:%M:%S') ax.xaxis.set_major_formatter(dateFormat) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) fig.autofmt_xdate() def plotMultiple(x_list, y_list, xlabel='x-axis', ylabel='y-axis', x_time=True): import matplotlib.pyplot as plt import matplotlib.dates as mdates if len(x_list) != len(y_list): print('Not an equal amount of x and y plots') return colors=['r','g','b']*5 plotAmount = len(x_list) fig, ax = plt.subplots(1) plots = [0]*plotAmount for i in range(0,plotAmount): plots[i] = ax.plot(x_list[i], y_list[i], color=colors[i]) if x_time: ax.xaxis_date() dateFormat = mdates.DateFormatter('%d/%m %H:%M:%S') ax.xaxis.set_major_formatter(dateFormat) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) fig.autofmt_xdate() def timeAveraged2d(avg_list, numAvg): import numpy as np #Average an array over time (x axis) newlength = len(avg_list)//numAvg new_list = np.empty((newlength,np.shape(avg_list)[1])) for i in range(0,newlength): newSum = 0 for j in range(0,numAvg): newSum += avg_list[i*numAvg+j] new_list[i][:] = newSum/numAvg return new_list def timeAverageMiddle(avg_list, numAvg): #Average a list in steps newlength = len(avg_list)//numAvg new_list = [0]*newlength for i in range(0,newlength): new_list[i] = avg_list[i*numAvg+numAvg//2] return new_list def wetTemperature_opt(Twet_est, Tdry, RH): #Tdry, RH = args from math import exp Es_Tw = 0.61*exp(19.9*Twet_est/(Twet_est+273)) Es_Td = 0.61*exp(19.9*Tdry/(Tdry+273)) Ea = Es_Tw - 0.066*(Tdry-Twet_est) RHest = Ea/Es_Td*100 return abs(RHest-RH) #Function to add ticks def addticks(ax,newLocs,newLabels,pos='x'): import matplotlib.pyplot as plt # Draw to get ticks plt.draw() # Get existing ticks if pos=='x': locs = ax.get_xticks().tolist() labels=[x.get_text() for x in ax.get_xticklabels()] elif pos =='y': locs = ax.get_yticks().tolist() labels=[x.get_text() for x in ax.get_yticklabels()] else: print("WRONG pos. Use 'x' or 'y'") return # Build dictionary of ticks Dticks=dict(zip(locs,labels)) # Add/Replace new ticks for Loc,Lab in zip(newLocs,newLabels): Dticks[Loc]=Lab # Get back tick lists locs=list(Dticks.keys()) labels=list(Dticks.values()) # Generate new ticks if pos=='x': ax.set_xticks(locs) ax.set_xticklabels(labels) elif pos =='y': ax.set_yticks(locs) ax.set_yticklabels(labels) def solarAngleCorrection(mtime): from pysolar import solar import pytz from datetime import datetime from datetime import timedelta import numpy as np import matplotlib.pyplot as plt import matplotlib.dates as mdates lat, long = 52.2398473,5.6908362 time = mtime - 2/24 date = mdates.num2date(time) altitude = solar.get_altitude(lat, long, date, elevation = 90) #correctionFactor = np.cos(altitude*np.pi/180) correctionFactor = 1/np.tan(altitude*np.pi/180) return correctionFactor
mit
martinshelton/news_pgp_adoption
dateplot.py
1
4328
# Credit to Randal Olson for the starter code: # http://www.randalolson.com/2014/06/28/how-to-make-beautiful-data-visualizations-in-python-with-matplotlib/ # I've augmented this script to fit my PGP keyserver data. import matplotlib.pyplot as plt import pandas as pd # Read the data into a pandas DataFrame. data = pd.read_csv("newsdata.csv") # These are the "Tableau 20" colors as RGB. tableau20 = [(31, 119, 180), (174, 199, 232), (255, 127, 14), (255, 187, 120), (44, 160, 44), (152, 223, 138), (214, 39, 40), (255, 152, 150), (148, 103, 189), (197, 176, 213), (140, 86, 75), (196, 156, 148), (227, 119, 194), (247, 182, 210), (127, 127, 127), (199, 199, 199), (188, 189, 34), (219, 219, 141), (23, 190, 207), (158, 218, 229)] # Scale the RGB values to the [0, 1] range, which is the format matplotlib accepts. for i in range(len(tableau20)): r, g, b = tableau20[i] tableau20[i] = (r / 255., g / 255., b / 255.) # Set the figure size. plt.figure(figsize=(12, 15)) # Remove the plot frame lines. ax = plt.subplot(111) ax.spines["top"].set_visible(False) ax.spines["bottom"].set_visible(False) ax.spines["right"].set_visible(False) ax.spines["left"].set_visible(False) # Only get tick marks on the left and bottom sides of the graph. ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() # Limit the range of the plot to only where the data is. plt.ylim(0, 202) plt.xlim(0, 256) # Adjust font size and spacing of axis ticks. plt.yticks(range(0, 210, 10), [str(x) for x in range(0, 210, 10)], fontsize=14) plt.xticks(range(0, 256, 23), [str(x) for x in range(1994, 2018, 2)], fontsize=14) # Add tick lines for the y-axis. for y in range(20, 220, 20): plt.plot(range(0, 256), [y] * len(range(0, 256)), "--", lw=0.5, color="black", alpha=0.4) # Remove tick marks. plt.tick_params(axis="both", which="both", bottom="off", top="off", labelbottom="on", left="off", right="off", labelleft="on") # I plotted the news orgs in order of the highest % in the final year. news_orgs = ['CNN', 'New York Times', 'ESPN', 'Huffington Post', 'Fox News', 'Washington Post', 'BuzzFeed', 'USA Today', 'Forbes', 'CNET'] # Plot each line separately with its own color, using tableau20 colors. for rank, column in enumerate(news_orgs): plt.plot(data.Months.values, data[column.replace("\n", " ")].values, lw=2, color=tableau20[rank]) # We assign labels to each line, and offset their positions so they don't overlap. y_pos = data[column.replace("\n", " ")].values[-1] - 1 if column == "CNN": y_pos -= 0.25 elif column == "New York Times": y_pos += 0.25 elif column == "ESPN": y_pos += 0.75 elif column == "Huffington Post": y_pos -= 1.75 elif column == "Fox News": y_pos += 0.5 elif column == "Washington Post": y_pos += 1.75 elif column == "BuzzFeed": y_pos += 0.25 elif column == "USA Today": y_pos += 0.75 elif column == "Forbes": y_pos += 0 elif column == "CNET": y_pos += 0 # Again, make sure that all labels are large enough to be easily read # by the viewer. plt.text(257, y_pos, column, fontsize=14, color=tableau20[rank]) # Plot the title. plt.text(142, 206, "Number of public keys for emails tied to news orgs" ", by organization (12/1994 - 03/2016)", fontsize=17, ha="center") # Plot some descriptive information and credits at the bottom of the graph. plt.text(10, -18, "Data source: pgp.mit.edu. Rankings: alexa.com/topsites" "\nAuthor: Martin Shelton (mshelt.onl / @mshelton)" "\nNote: credit for matplotlib and design genius goes to Randy Olson" "\nhttp://www.randalolson.com/2014/06/28/how-to-make-beautiful-data-visualizations-in-python-with-matplotlib/", fontsize=10) # Save the picture as a PNG. It can also be saved as PDF, JPEG, etc. by changing the file extension. plt.savefig("pgp_adoption.png", bbox_inches="tight")
gpl-3.0
haudren/scipy
scipy/special/c_misc/struve_convergence.py
76
3725
""" Convergence regions of the expansions used in ``struve.c`` Note that for v >> z both functions tend rapidly to 0, and for v << -z, they tend to infinity. The floating-point functions over/underflow in the lower left and right corners of the figure. Figure legend ============= Red region Power series is close (1e-12) to the mpmath result Blue region Asymptotic series is close to the mpmath result Green region Bessel series is close to the mpmath result Dotted colored lines Boundaries of the regions Solid colored lines Boundaries estimated by the routine itself. These will be used for determining which of the results to use. Black dashed line The line z = 0.7*|v| + 12 """ from __future__ import absolute_import, division, print_function import numpy as np import matplotlib.pyplot as plt try: import mpmath except: from sympy import mpmath def err_metric(a, b, atol=1e-290): m = abs(a - b) / (atol + abs(b)) m[np.isinf(b) & (a == b)] = 0 return m def do_plot(is_h=True): from scipy.special._ufuncs import \ _struve_power_series, _struve_asymp_large_z, _struve_bessel_series vs = np.linspace(-1000, 1000, 91) zs = np.sort(np.r_[1e-5, 1.0, np.linspace(0, 700, 91)[1:]]) rp = _struve_power_series(vs[:,None], zs[None,:], is_h) ra = _struve_asymp_large_z(vs[:,None], zs[None,:], is_h) rb = _struve_bessel_series(vs[:,None], zs[None,:], is_h) mpmath.mp.dps = 50 if is_h: sh = lambda v, z: float(mpmath.struveh(mpmath.mpf(v), mpmath.mpf(z))) else: sh = lambda v, z: float(mpmath.struvel(mpmath.mpf(v), mpmath.mpf(z))) ex = np.vectorize(sh, otypes='d')(vs[:,None], zs[None,:]) err_a = err_metric(ra[0], ex) + 1e-300 err_p = err_metric(rp[0], ex) + 1e-300 err_b = err_metric(rb[0], ex) + 1e-300 err_est_a = abs(ra[1]/ra[0]) err_est_p = abs(rp[1]/rp[0]) err_est_b = abs(rb[1]/rb[0]) z_cutoff = 0.7*abs(vs) + 12 levels = [-1000, -12] plt.cla() plt.hold(1) plt.contourf(vs, zs, np.log10(err_p).T, levels=levels, colors=['r', 'r'], alpha=0.1) plt.contourf(vs, zs, np.log10(err_a).T, levels=levels, colors=['b', 'b'], alpha=0.1) plt.contourf(vs, zs, np.log10(err_b).T, levels=levels, colors=['g', 'g'], alpha=0.1) plt.contour(vs, zs, np.log10(err_p).T, levels=levels, colors=['r', 'r'], linestyles=[':', ':']) plt.contour(vs, zs, np.log10(err_a).T, levels=levels, colors=['b', 'b'], linestyles=[':', ':']) plt.contour(vs, zs, np.log10(err_b).T, levels=levels, colors=['g', 'g'], linestyles=[':', ':']) lp = plt.contour(vs, zs, np.log10(err_est_p).T, levels=levels, colors=['r', 'r'], linestyles=['-', '-']) la = plt.contour(vs, zs, np.log10(err_est_a).T, levels=levels, colors=['b', 'b'], linestyles=['-', '-']) lb = plt.contour(vs, zs, np.log10(err_est_b).T, levels=levels, colors=['g', 'g'], linestyles=['-', '-']) plt.clabel(lp, fmt={-1000: 'P', -12: 'P'}) plt.clabel(la, fmt={-1000: 'A', -12: 'A'}) plt.clabel(lb, fmt={-1000: 'B', -12: 'B'}) plt.plot(vs, z_cutoff, 'k--') plt.xlim(vs.min(), vs.max()) plt.ylim(zs.min(), zs.max()) plt.xlabel('v') plt.ylabel('z') def main(): plt.clf() plt.subplot(121) do_plot(True) plt.title('Struve H') plt.subplot(122) do_plot(False) plt.title('Struve L') plt.savefig('struve_convergence.png') plt.show() if __name__ == "__main__": import os import sys if '--main' in sys.argv: main() else: import subprocess subprocess.call([sys.executable, os.path.join('..', '..', '..', 'runtests.py'), '-g', '--python', __file__, '--main'])
bsd-3-clause
robottwo/pyjstat
pyjstat/pyjstat.py
1
30046
# -*- coding: utf-8 -*- """pyjstat is a python module for JSON-stat formatted data manipulation. This module allows reading and writing JSON-stat [1]_ format with python, using data frame structures provided by the widely accepted pandas library [2]_. The JSON-stat format is a simple lightweight JSON format for data dissemination. Pyjstat is inspired in rjstat [3]_, a library to read and write JSON-stat with R, by ajschumacher. pyjstat is written and maintained by `Miguel Expósito Martín <https://twitter.com/predicador37>`_ and is distributed under the Apache 2.0 License (see LICENSE file). .. [1] http://json-stat.org/ for JSON-stat information .. [2] http://pandas.pydata.org for Python Data Analysis Library information .. [3] https://github.com/ajschumacher/rjstat for rjstat library information Example: Importing a JSON-stat file into a pandas data frame can be done as follows:: import urllib2 import json import pyjstat results = pyjstat.from_json_stat(json.load(urllib2.urlopen( 'http://json-stat.org/samples/oecd-canada.json'))) print results """ import json import pandas as pd import numpy as np from collections import OrderedDict import requests import logging import inspect import warnings logging.basicConfig(level=logging.INFO) LOGGER = logging.getLogger(__name__) try: basestring except NameError: basestring = str class NumpyEncoder(json.JSONEncoder): """Custom JSON encoder class for Numpy data types. """ def default(self, obj): if isinstance(obj, np.integer) or isinstance(obj, np.int64): return int(obj) elif isinstance(obj, np.floating): return float(obj) elif isinstance(obj, np.ndarray): return obj.tolist() else: return super(NumpyEncoder, self).default(obj) def to_int(variable): """Convert variable to integer or string depending on the case. Args: variable (string): a string containing a real string or an integer. Returns: variable(int, string): an integer or a string, depending on the content\ of variable. """ try: return int(variable) except ValueError: return variable def to_str(variable): """Convert variable to integer or string depending on the case. Args: variable (string): a string containing a real string or an integer. Returns: variable(int, string): an integer or a string, depending on the content\ of variable. """ try: int(variable) return str(variable) except ValueError: return variable def check_version_2(dataset): """Checks if json-stat version attribute exists and is equal or greater \ than 2.0 for a given dataset. Args: dataset (OrderedDict): data in JSON-stat format, previously \ deserialized to a python object by \ json.load() or json.loads(), Returns: bool: True if version exists and is equal or greater than 2.0, \ False otherwise. For datasets without the version attribute, \ always return False. """ if float(dataset.get('version')) >= 2.0 \ if dataset.get('version') else False: return True else: return False def unnest_collection(collection, df_list): """Unnest collection structure extracting all its datasets and converting \ them to Pandas Dataframes. Args: collection (OrderedDict): data in JSON-stat format, previously \ deserialized to a python object by \ json.load() or json.loads(), df_list (list): list variable which will contain the converted \ datasets. Returns: Nothing. """ for item in collection['link']['item']: if item['class'] == 'dataset': df_list.append(Dataset.read(item['href']).write('dataframe')) elif item['class'] == 'collection': nested_collection = request(item['href']) unnest_collection(nested_collection, df_list) def check_input(naming): """Check and validate input params. Args: naming (string): a string containing the naming type (label or id). Returns: Nothing Raises: ValueError: if the parameter is not in the allowed list. """ if naming not in ['label', 'id']: raise ValueError('naming must be "label" or "id"') def get_dimensions(js_dict, naming): """Get dimensions from input data. Args: js_dict (dict): dictionary containing dataset data and metadata. naming (string, optional): dimension naming. Possible values: 'label' \ or 'id'. Returns: dimensions (list): list of pandas data frames with dimension \ category data. dim_names (list): list of strings with dimension names. """ dimensions = [] dim_names = [] if check_version_2(js_dict): dimension_dict = js_dict else: dimension_dict = js_dict['dimension'] for dim in dimension_dict['id']: dim_name = js_dict['dimension'][dim]['label'] if not dim_name: dim_name = dim if naming == 'label': dim_label = get_dim_label(js_dict, dim) dimensions.append(dim_label) dim_names.append(dim_name) else: dim_index = get_dim_index(js_dict, dim) dimensions.append(dim_index) dim_names.append(dim) return dimensions, dim_names def get_dim_label(js_dict, dim, input="dataset"): """Get label from a given dimension. Args: js_dict (dict): dictionary containing dataset data and metadata. dim (string): dimension name obtained from JSON file. Returns: dim_label(pandas.DataFrame): DataFrame with label-based dimension data. """ if input == 'dataset': input = js_dict['dimension'][dim] label_col = 'label' elif input == 'dimension': label_col = js_dict['label'] input = js_dict else: raise ValueError try: dim_label = input['category']['label'] except KeyError: dim_index = get_dim_index(js_dict, dim) dim_label = pd.concat([dim_index['id'], dim_index['id']], axis=1) dim_label.columns = ['id', 'label'] else: dim_label = pd.DataFrame(list(zip(dim_label.keys(), dim_label.values())), index=dim_label.keys(), columns=['id', label_col]) # index must be added to dim label so that it can be sorted try: dim_index = input['category']['index'] except KeyError: dim_index = pd.DataFrame(list(zip([dim_label['id'][0]], [0])), index=[0], columns=['id', 'index']) else: if type(dim_index) is list: dim_index = pd.DataFrame(list(zip(dim_index, range(0, len(dim_index)))), index=dim_index, columns=['id', 'index']) else: dim_index = pd.DataFrame(list(zip(dim_index.keys(), dim_index.values())), index=dim_index.keys(), columns=['id', 'index']) if pd.__version__ <= '0.16.2': dim_label = pd.merge(dim_label, dim_index, on='id').sort_index(by='index') else: dim_label = pd.merge(dim_label, dim_index, on='id').sort_values(by='index') return dim_label def get_dim_index(js_dict, dim): """Get index from a given dimension. Args: js_dict (dict): dictionary containing dataset data and metadata. dim (string): dimension name obtained from JSON file. Returns: dim_index (pandas.DataFrame): DataFrame with index-based dimension data. """ try: dim_index = js_dict['dimension'][dim]['category']['index'] except KeyError: dim_label = get_dim_label(js_dict, dim) dim_index = pd.DataFrame(list(zip([dim_label['id'][0]], [0])), index=[0], columns=['id', 'index']) else: if type(dim_index) is list: dim_index = pd.DataFrame(list(zip(dim_index, range(0, len(dim_index)))), index=dim_index, columns=['id', 'index']) else: dim_index = pd.DataFrame(list(zip(dim_index.keys(), dim_index.values())), index=dim_index.keys(), columns=['id', 'index']) if pd.__version__ < '0.17': dim_index = dim_index.sort_index(by='index') else: dim_index = dim_index.sort_values(by='index') return dim_index def get_values(js_dict, value='value'): """Get values from input data. Args: js_dict (dict): dictionary containing dataset data and metadata. value (string, optional): name of the value column. Defaults to 'value'. Returns: values (list): list of dataset values. """ values = js_dict[value] if type(values) is list: if type(values[0]) is not dict or tuple: return values # being not a list of dicts or tuples leaves us with a dict... values = {int(key): value for (key, value) in values.items()} if js_dict.get('size'): max_val = np.prod(np.array((js_dict['size']))) else: max_val = np.prod(np.array((js_dict['dimension']['size']))) vals = max_val * [None] for (key, value) in values.items(): vals[key] = value values = vals return values def get_df_row(dimensions, naming='label', i=0, record=None): """Generate row dimension values for a pandas dataframe. Args: dimensions (list): list of pandas dataframes with dimension labels \ generated by get_dim_label or get_dim_index methods. naming (string, optional): dimension naming. Possible values: 'label' \ or 'id'. i (int): dimension list iteration index. Default is 0, it's used in the \ recursive calls to the method. record (list): list of values representing a pandas dataframe row, \ except for the value column. Default is empty, it's used \ in the recursive calls to the method. Yields: list: list with pandas dataframe column values except for value column """ check_input(naming) if i == 0 or record is None: record = [] for dimension in dimensions[i][naming]: record.append(dimension) if len(record) == len(dimensions): yield record if i + 1 < len(dimensions): for row in get_df_row(dimensions, naming, i + 1, record): yield row if len(record) == i + 1: record.pop() def uniquify(seq): """Return unique values in a list in the original order. See: \ http://www.peterbe.com/plog/uniqifiers-benchmark Args: seq (list): original list. Returns: list: list without duplicates preserving original order. """ seen = set() seen_add = seen.add return [x for x in seq if x not in seen and not seen_add(x)] def generate_df(js_dict, naming, value="value"): """Decode JSON-stat dict into pandas.DataFrame object. Helper method \ that should be called inside from_json_stat(). Args: js_dict(OrderedDict): OrderedDict with data in JSON-stat format, \ previously deserialized into a python object by \ json.load() or json.loads(), for example. naming(string): dimension naming. Possible values: 'label' or 'id.' value (string, optional): name of the value column. Defaults to 'value'. Returns: output(DataFrame): pandas.DataFrame with converted data. """ values = [] dimensions, dim_names = get_dimensions(js_dict, naming) values = get_values(js_dict, value=value) output = pd.DataFrame([category + [values[i]] for i, category in enumerate(get_df_row(dimensions, naming))]) output.columns = dim_names + [value] output.index = range(0, len(values)) return output def from_json_stat(datasets, naming='label', value='value'): """Decode JSON-stat formatted data into pandas.DataFrame object. Args: datasets(OrderedDict, list): data in JSON-stat format, previously \ deserialized to a python object by \ json.load() or json.loads(), for example.\ Both List and OrderedDict are accepted \ as inputs. naming(string, optional): dimension naming. Possible values: 'label' or 'id'.Defaults to 'label'. value (string, optional): name of the value column. Defaults to 'value'. Returns: results(list): list of pandas.DataFrame with imported data. """ warnings.warn( "Shouldn't use this function anymore! Now use read() methods of" "Dataset, Collection or Dimension.", DeprecationWarning ) check_input(naming) results = [] if type(datasets) is list: for idx, element in enumerate(datasets): for dataset in element: js_dict = datasets[idx][dataset] results.append(generate_df(js_dict, naming, value)) elif isinstance(datasets, OrderedDict) or type(datasets) is dict or \ isinstance(datasets, Dataset): if 'class' in datasets: if datasets['class'] == 'dataset': js_dict = datasets results.append(generate_df(js_dict, naming, value)) else: # 1.00 bundle type for dataset in datasets: js_dict = datasets[dataset] results.append(generate_df(js_dict, naming, value)) return results def to_json_stat(input_df, value='value', output='list', version='1.3'): """Encode pandas.DataFrame object into JSON-stat format. The DataFrames must have exactly one value column. Args: df(pandas.DataFrame): pandas data frame (or list of data frames) to encode. value (string, optional): name of the value column. Defaults to 'value'. output(string): accepts two values: 'list' or 'dict'. Produce list of\ dicts or dict of dicts as output. version(string): desired json-stat version. 2.0 is preferred now.\ Apart from this, only older 1.3 format is accepted, which is the default parameter in order to preserve backwards compatibility. Returns: output(string): String with JSON-stat object. """ warnings.warn( "Shouldn't use this function anymore! Now use write() methods of" "Dataset, Collection or Dimension.", DeprecationWarning ) data = [] if output == 'list': result = [] elif output == 'dict': result = OrderedDict({}) if isinstance(input_df, pd.DataFrame): data.append(input_df) else: data = input_df for row, dataframe in enumerate(data): dims = data[row].filter([item for item in data[row].columns.values if item not in value]) if len(dims.columns.values) != len(set(dims.columns.values)): raise ValueError('Non-value columns must constitute a unique ID') dim_names = list(dims) categories = [{to_int(i): {"label": to_str(i), "category": {"index": OrderedDict([(to_str(j), to_int(k)) for k, j in enumerate( uniquify(dims[i]))]), "label": OrderedDict([(to_str(j), to_str(j)) for k, j in enumerate( uniquify(dims[i]))])}}} for i in dims.columns.values] if float(version) >= 2.0: dataset = {"dimension": OrderedDict(), value: [None if np.isnan(x) else x for x in dataframe[value].values]} dataset["version"] = version dataset["class"] = "dataset" for category in categories: dataset["dimension"].update(category) dataset.update({"id": dim_names}) dataset.update({"size": [len(dims[i].unique()) for i in dims.columns.values]}) for category in categories: dataset["dimension"].update(category) else: dataset = {"dataset" + str(row + 1): {"dimension": OrderedDict(), value: [None if np.isnan(x) else x for x in dataframe[value].values]}} for category in categories: dataset["dataset" + str(row + 1)][ "dimension"].update(category) dataset["dataset" + str(row + 1)][ "dimension"].update({"id": dim_names}) dataset["dataset" + str(row + 1)][ "dimension"].update({"size": [len(dims[i].unique()) for i in dims.columns.values]}) for category in categories: dataset["dataset" + str(row + 1)][ "dimension"].update(category) if output == 'list': result.append(dataset) elif output == 'dict': result.update(dataset) else: result = None return json.dumps(result, cls=NumpyEncoder) def request(path): """Send a request to a given URL accepting JSON format and return a \ deserialized Python object. Args: path (str): The URI to be requested. Returns: response: Deserialized JSON Python object. Raises: HTTPError: the HTTP error returned by the requested server. InvalidURL: an invalid URL has been requested. Exception: generic exception. """ headers = {'Accept': 'application/json'} try: requested_object = requests.get(path, headers=headers) requested_object.raise_for_status() except requests.exceptions.HTTPError as exception: LOGGER.error((inspect.stack()[0][3]) + ': HTTPError = ' + str(exception.response.status_code) + ' ' + str(exception.response.reason) + ' ' + str(path)) raise except requests.exceptions.InvalidURL as exception: LOGGER.error('URLError = ' + str(exception.reason) + ' ' + str(path)) raise except Exception: import traceback LOGGER.error('Generic exception: ' + traceback.format_exc()) raise else: response = requested_object.json() return response class Dataset(OrderedDict): """A class representing a JSONstat dataset. """ def __init__(self, *args, **kwargs): super(Dataset, self).__init__(*args, **kwargs) @classmethod def read(cls, data): """Reads data from URL, Dataframe, JSON string, JSON file or OrderedDict. Args: data: can be a Pandas Dataframe, a JSON file, a JSON string, an OrderedDict or a URL pointing to a JSONstat file. Returns: An object of class Dataset populated with data. """ if isinstance(data, pd.DataFrame): return cls((json.loads( to_json_stat(data, output='dict', version='2.0'), object_pairs_hook=OrderedDict))) elif isinstance(data, OrderedDict): return cls(data) elif (isinstance(data, basestring) and data.startswith(("http://", "https://", "ftp://", "ftps://"))): # requests will do the rest... return cls(request(data)) elif isinstance(data, basestring): try: json_dict = json.loads(data, object_pairs_hook=OrderedDict) return cls(json_dict) except ValueError: raise else: try: json_dict = json.load(data, object_pairs_hook=OrderedDict) return cls(json_dict) except ValueError: raise def write(self, output='jsonstat'): """Writes data from a Dataset object to JSONstat or Pandas Dataframe. Args: output(string): can accept 'jsonstat' or 'dataframe'. Default to 'jsonstat'. Returns: Serialized JSONstat or a Pandas Dataframe,depending on the \ 'output' parameter. """ if output == 'jsonstat': return json.dumps(OrderedDict(self), cls=NumpyEncoder) elif output == 'dataframe': return from_json_stat(self)[0] else: raise ValueError("Allowed arguments are 'jsonstat' or 'dataframe'") def get_dimension_index(self, name, value): """Converts a dimension ID string and a categody ID string into the \ numeric index of that category in that dimension Args: name(string): ID string of the dimension. value(string): ID string of the category. Returns: ndx[value](int): index of the category in the dimension. """ if 'index' not in self.get('dimension', {}). \ get(name, {}).get('category', {}): return 0 ndx = self['dimension'][name]['category']['index'] if isinstance(ndx, list): return ndx.index(value) else: return ndx[value] def get_dimension_indices(self, query): """Converts a dimension/category list of dicts into a list of \ dimensions’ indices. Args: query(list): dimension/category list of dicts. Returns: indices(list): list of dimensions' indices. """ ids = self['id'] if self.get('id') else self['dimension']['id'] indices = [] for idx, id in enumerate(ids): indices.append(self.get_dimension_index(id, [d.get(id) for d in query if id in d][0])) return indices def get_value_index(self, indices): """Converts a list of dimensions’ indices into a numeric value index. Args: indices(list): list of dimension's indices. Returns: num(int): numeric value index. """ size = self['size'] if self.get('size') else self['dimension']['size'] ndims = len(size) mult = 1 num = 0 for idx, dim in enumerate(size): mult *= size[ndims - idx] if (idx > 0) else 1 num += mult * indices[ndims - idx - 1] return num def get_value_by_index(self, index): """Converts a numeric value index into its data value. Args: index(int): numeric value index. Returns: self['value'][index](float): Numeric data value. """ return self['value'][index] def get_value(self, query): """Converts a dimension/category list of dicts into a data value \ in three steps. Args: query(list): list of dicts with the desired query. Returns: value(float): numeric data value. """ indices = self.get_dimension_indices(query) index = self.get_value_index(indices) value = self.get_value_by_index(index) return value class Dimension(OrderedDict): """A class representing a JSONstat dimension. """ def __init__(self, *args, **kwargs): super(Dimension, self).__init__(*args, **kwargs) @classmethod def read(cls, data): """Reads data from URL, Dataframe, JSON string, JSON file or OrderedDict. Args: data: can be a Pandas Dataframe, a JSON string, a JSON file, an OrderedDict or a URL pointing to a JSONstat file. Returns: An object of class Dimension populated with data. """ if isinstance(data, pd.DataFrame): output = OrderedDict({}) output['version'] = '2.0' output['class'] = 'dimension' [label] = [x for x in list(data.columns.values) if x not in ['id', 'index']] output['label'] = label output['category'] = OrderedDict({}) output['category']['index'] = data.id.tolist() output['category']['label'] = OrderedDict( zip(data.id.values, data[label].values)) return cls(output) elif isinstance(data, OrderedDict): return cls(data) elif isinstance(data, basestring) and data.startswith(("http://", "https://", "ftp://", "ftps://")): return cls(request(data)) elif isinstance(data,basestring): try: json_dict = json.loads(data, object_pairs_hook=OrderedDict) return cls(json_dict) except ValueError: raise else: try: json_dict = json.load(data, object_pairs_hook=OrderedDict) return cls(json_dict) except ValueError: raise def write(self, output='jsonstat'): """Writes data from a Dataset object to JSONstat or Pandas Dataframe. Args: output(string): can accept 'jsonstat' or 'dataframe' Returns: Serialized JSONstat or a Pandas Dataframe,depending on the \ 'output' parameter. """ if output == 'jsonstat': return json.dumps(OrderedDict(self), cls=NumpyEncoder) elif output == 'dataframe': return get_dim_label(self, self['label'], 'dimension') else: raise ValueError("Allowed arguments are 'jsonstat' or 'dataframe'") class Collection(OrderedDict): """A class representing a JSONstat collection. """ def __init__(self, *args, **kwargs): super(Collection, self).__init__(*args, **kwargs) @classmethod def read(cls, data): """Reads data from URL or OrderedDict. Args: data: can be a URL pointing to a JSONstat file, a JSON string or an OrderedDict. Returns: An object of class Collection populated with data. """ if isinstance(data, OrderedDict): return cls(data) elif isinstance(data, basestring)\ and data.startswith(("http://", "https://", "ftp://", "ftps://")): return cls(request(data)) elif isinstance(data, basestring): try: json_dict = json.loads(data, object_pairs_hook=OrderedDict) return cls(json_dict) except ValueError: raise else: try: json_dict = json.load(data, object_pairs_hook=OrderedDict) return cls(json_dict) except ValueError: raise def write(self, output='jsonstat'): """Writes data from a Collection object to JSONstat or list of \ Pandas Dataframes. Args: output(string): can accept 'jsonstat' or 'dataframe_list' Returns: Serialized JSONstat or a list of Pandas Dataframes,depending on \ the 'output' parameter. """ if output == 'jsonstat': return json.dumps(self) elif output == 'dataframe_list': df_list = [] unnest_collection(self, df_list) return df_list else: raise ValueError( "Allowed arguments are 'jsonstat' or 'dataframe_list'") def get(self, element): """Gets ith element of a collection in an object of the corresponding \ class. Args: output(string): can accept 'jsonstat' or 'dataframe_list' Returns: Serialized JSONstat or a list of Pandas Dataframes,depending on \ the 'output' parameter. """ if self['link']['item'][element]['class'] == 'dataset': return Dataset.read(self['link']['item'][element]['href']) elif self['link']['item'][element]['class'] == 'collection': return Collection.read(self['link']['item'][element]['href']) elif self['link']['item'][element]['class'] == 'dimension': return Dimension.read(self['link']['item'][element]['href']) else: raise ValueError( "Class not allowed. Please use dataset, collection or " "dimension'")
apache-2.0
Monika319/EWEF-1
Cw2Rezonans/Karolina/Oscyloskop/OscyloskopZ5W1.py
1
1298
# -*- coding: utf-8 -*- """ Plot oscilloscope files from MultiSim """ import numpy as np import matplotlib.pyplot as plt import sys import os from matplotlib import rc rc('font',family="Consolas") files=["real_zad5_1f.txt"] for NazwaPliku in files: print NazwaPliku Plik=open(NazwaPliku) #print DeltaT Dane=Plik.readlines()#[4:] DeltaT=float(Dane[2].split()[3].replace(",",".")) #M=len(Dane[4].split())/2 M=2 Dane=Dane[5:] Plik.close() print M Ys=[np.zeros(len(Dane)) for i in range(M)] for m in range(M): for i in range(len(Dane)): try: Ys[m][i]=float(Dane[i].split()[2+3*m].replace(",",".")) except: print m, i, 2+3*m, len(Dane[i].split()), Dane[i].split() #print i, Y[i] X=np.zeros_like(Ys[0]) for i in range(len(X)): X[i]=i*DeltaT for y in Ys: print max(y)-min(y) Opis=u"Układ szeregowy\nCzęstotliwośc rezonansowa" Nazwa=u"Z5W1" plt.title(u"Przebieg napięciowy\n"+Opis) plt.xlabel(u"Czas t [s]") plt.ylabel(u"Napięcie [V]") plt.plot(X,Ys[0],label=u"Wejście") plt.plot(X,Ys[1],label=u"Wyjście") plt.grid() plt.legend(loc="best") plt.savefig(Nazwa + ".png", bbox_inches='tight') plt.show()
gpl-2.0
mrcslws/nupic.research
projects/sdr_math/plot_numerical_results.py
3
5606
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2016, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- # This uses plotly to create a nice looking graph of average false positive # error rates as a function of N, the dimensionality of the vectors. I'm sorry # this code is so ugly. import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt # noqa E402 I001 # Observed vs theoretical error values # a=64 cells active, s=24 synapses on segment, dendritic threshold is theta=12 experimental_errors_a64 = [1.09318E-03, 5.74000E-06, 1.10000E-07] theoretical_errors_a64 = [0.00109461662333690, 5.69571108769533e-6, 1.41253230930730e-7] # a=128 cells active, s=24 synapses on segment, dendritic threshold is theta=12 experimental_errors_a128 = [0.292048, 0.00737836, 0.00032014, 0.00002585, 0.00000295, 0.00000059, 0.00000013, 0.00000001, 0.00000001] theoretical_errors_a128 = [0.292078213737764, 0.00736788303358289, 0.000320106080889471, 2.50255519815378e-5, 2.99642102590114e-6, 4.89399786076359e-7, 1.00958512780931e-7, 2.49639031779358e-8, 7.13143762262004e-9] # a=256 cells active, s=24 synapses on segment, dendritic threshold is theta=12 experimental_errors_a256 = [ 9.97368E-01, 6.29267E-01, 1.21048E-01, 1.93688E-02, 3.50879E-03, 7.49560E-04, 1.86590E-04, 5.33200E-05, 1.65000E-05, 5.58000E-06, 2.23000E-06, 9.30000E-07, 3.20000E-07, 2.70000E-07, 7.00000E-08, 4.00000E-08, 2.00000E-08 ] # a=n/2 cells active, s=24 synapses on segment, dendritic threshold is theta=12 errors_dense = [0.584014929308308, 0.582594747080399, 0.582007206016863, 0.581686021979051, 0.581483533877904, 0.581344204898149, 0.581242471033283, 0.581164924569868, 0.581103856001899, 0.581054517612207, 0.581013825794851, 0.580979690688467, 0.580950645707841, 0.580925631309445, 0.580903862938630, 0.580884747253428, 0.580867827216677] theoretical_errors_a256 = [0.999997973443107, 0.629372754740777, 0.121087724790945, 0.0193597645959856, 0.00350549721741729, 0.000748965962032781, 0.000186510373919969, 5.30069204544174e-5, 1.68542688790000e-5, 5.89560747849969e-6, 2.23767020178735e-6, 9.11225564771580e-7, 3.94475072403605e-7, 1.80169987461924e-7, 8.62734957588259e-8, 4.30835081022293e-8, 2.23380881095835e-8] list_of_n_values = [300, 500, 700, 900, 1100, 1300, 1500, 1700, 1900, 2100, 2300, 2500, 2700, 2900, 3100, 3300, 3500] fig, ax = plt.subplots() fig.suptitle("Match probability for sparse binary vectors") ax.set_xlabel("Dimensionality (n)") ax.set_ylabel("Frequency of matches") ax.set_yscale("log") ax.scatter(list_of_n_values[0:3], experimental_errors_a64, label="a=64 (predicted)", marker="o", color="black") ax.scatter(list_of_n_values[0:9], experimental_errors_a128, label="a=128 (predicted)", marker="o", color="black") ax.scatter(list_of_n_values, experimental_errors_a256, label="a=256 (predicted)", marker="o", color="black") ax.plot(list_of_n_values, errors_dense, "k:", label="a=n/2 (predicted)", color="black") ax.plot(list_of_n_values[0:3], theoretical_errors_a64, "k:", label="a=64 (observed)") ax.plot(list_of_n_values[0:9], theoretical_errors_a128, "k:", label="a=128 (observed)", color="black") ax.plot(list_of_n_values, theoretical_errors_a256, "k:", label="a=256 (observed)") ax.annotate(r"$a = 64$", xy=(list_of_n_values[2], theoretical_errors_a64[-1]), xytext=(-5, 2), textcoords="offset points", ha="right", color="black") ax.annotate(r"$a = 128$", xy=(list_of_n_values[8], theoretical_errors_a64[-1]), ha="center", color="black") ax.annotate(r"$a = 256$", xy=(list_of_n_values[-1], theoretical_errors_a64[-1]), xytext=(-10, 0), textcoords="offset points", ha="center", color="black") ax.annotate(r"$a = \frac{n}{2}$", xy=(list_of_n_values[-2], experimental_errors_a256[2]), xytext=(-10, 0), textcoords="offset points", ha="center", color="black") plt.minorticks_off() plt.grid(True, alpha=0.3) plt.savefig("images/effect_of_n.pdf") plt.close()
agpl-3.0
4bic-attic/data_viz
highs_lows.py
1
1170
import csv from datetime import datetime from matplotlib import pyplot as plt #Get dates and high and low temps from files # filename = 'sitka_weather_2014.csv' #use death valley for ERROR CHECKING purposes filename = 'death_valley_2014.csv' with open(filename) as f: reader = csv.reader(f) header_row = next(reader) dates, highs, lows = [], [], [] for row in reader: try: current_date = datetime.strptime(row[0], "%Y-%m-%d") high = int(row[1]) low = int(row[3]) except ValueError: print(current_date, 'missing data') else: dates.append(current_date) highs.append(high) lows.append(low) #plot Data fig = plt.figure(dpi=128, figsize=(10,6)) plt.plot(dates, highs, c='red') plt.plot(dates, lows, c='blue') plt.fill_between(dates, highs, lows, facecolor='blue', alpha=0.1) #format Plot title = "Daily High and Low Temperatures, 2014\nDeath Valley, CA" plt.title(title, fontsize=18) plt.xlabel('', fontsize=16) fig.autofmt_xdate() plt.ylabel("Temperature (F)", fontsize=16) plt.tick_params(axis='both', which='major', labelsize=16) plt.show()
mit
aje/POT
examples/plot_OT_L1_vs_L2.py
3
5000
# -*- coding: utf-8 -*- """ ========================================== 2D Optimal transport for different metrics ========================================== 2D OT on empirical distributio with different gound metric. Stole the figure idea from Fig. 1 and 2 in https://arxiv.org/pdf/1706.07650.pdf """ # Author: Remi Flamary <[email protected]> # # License: MIT License import numpy as np import matplotlib.pylab as pl import ot import ot.plot ############################################################################## # Dataset 1 : uniform sampling # ---------------------------- n = 20 # nb samples xs = np.zeros((n, 2)) xs[:, 0] = np.arange(n) + 1 xs[:, 1] = (np.arange(n) + 1) * -0.001 # to make it strictly convex... xt = np.zeros((n, 2)) xt[:, 1] = np.arange(n) + 1 a, b = ot.unif(n), ot.unif(n) # uniform distribution on samples # loss matrix M1 = ot.dist(xs, xt, metric='euclidean') M1 /= M1.max() # loss matrix M2 = ot.dist(xs, xt, metric='sqeuclidean') M2 /= M2.max() # loss matrix Mp = np.sqrt(ot.dist(xs, xt, metric='euclidean')) Mp /= Mp.max() # Data pl.figure(1, figsize=(7, 3)) pl.clf() pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples') pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples') pl.axis('equal') pl.title('Source and target distributions') # Cost matrices pl.figure(2, figsize=(7, 3)) pl.subplot(1, 3, 1) pl.imshow(M1, interpolation='nearest') pl.title('Euclidean cost') pl.subplot(1, 3, 2) pl.imshow(M2, interpolation='nearest') pl.title('Squared Euclidean cost') pl.subplot(1, 3, 3) pl.imshow(Mp, interpolation='nearest') pl.title('Sqrt Euclidean cost') pl.tight_layout() ############################################################################## # Dataset 1 : Plot OT Matrices # ---------------------------- #%% EMD G1 = ot.emd(a, b, M1) G2 = ot.emd(a, b, M2) Gp = ot.emd(a, b, Mp) # OT matrices pl.figure(3, figsize=(7, 3)) pl.subplot(1, 3, 1) ot.plot.plot2D_samples_mat(xs, xt, G1, c=[.5, .5, 1]) pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples') pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples') pl.axis('equal') # pl.legend(loc=0) pl.title('OT Euclidean') pl.subplot(1, 3, 2) ot.plot.plot2D_samples_mat(xs, xt, G2, c=[.5, .5, 1]) pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples') pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples') pl.axis('equal') # pl.legend(loc=0) pl.title('OT squared Euclidean') pl.subplot(1, 3, 3) ot.plot.plot2D_samples_mat(xs, xt, Gp, c=[.5, .5, 1]) pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples') pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples') pl.axis('equal') # pl.legend(loc=0) pl.title('OT sqrt Euclidean') pl.tight_layout() pl.show() ############################################################################## # Dataset 2 : Partial circle # -------------------------- n = 50 # nb samples xtot = np.zeros((n + 1, 2)) xtot[:, 0] = np.cos( (np.arange(n + 1) + 1.0) * 0.9 / (n + 2) * 2 * np.pi) xtot[:, 1] = np.sin( (np.arange(n + 1) + 1.0) * 0.9 / (n + 2) * 2 * np.pi) xs = xtot[:n, :] xt = xtot[1:, :] a, b = ot.unif(n), ot.unif(n) # uniform distribution on samples # loss matrix M1 = ot.dist(xs, xt, metric='euclidean') M1 /= M1.max() # loss matrix M2 = ot.dist(xs, xt, metric='sqeuclidean') M2 /= M2.max() # loss matrix Mp = np.sqrt(ot.dist(xs, xt, metric='euclidean')) Mp /= Mp.max() # Data pl.figure(4, figsize=(7, 3)) pl.clf() pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples') pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples') pl.axis('equal') pl.title('Source and traget distributions') # Cost matrices pl.figure(5, figsize=(7, 3)) pl.subplot(1, 3, 1) pl.imshow(M1, interpolation='nearest') pl.title('Euclidean cost') pl.subplot(1, 3, 2) pl.imshow(M2, interpolation='nearest') pl.title('Squared Euclidean cost') pl.subplot(1, 3, 3) pl.imshow(Mp, interpolation='nearest') pl.title('Sqrt Euclidean cost') pl.tight_layout() ############################################################################## # Dataset 2 : Plot OT Matrices # ----------------------------- #%% EMD G1 = ot.emd(a, b, M1) G2 = ot.emd(a, b, M2) Gp = ot.emd(a, b, Mp) # OT matrices pl.figure(6, figsize=(7, 3)) pl.subplot(1, 3, 1) ot.plot.plot2D_samples_mat(xs, xt, G1, c=[.5, .5, 1]) pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples') pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples') pl.axis('equal') # pl.legend(loc=0) pl.title('OT Euclidean') pl.subplot(1, 3, 2) ot.plot.plot2D_samples_mat(xs, xt, G2, c=[.5, .5, 1]) pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples') pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples') pl.axis('equal') # pl.legend(loc=0) pl.title('OT squared Euclidean') pl.subplot(1, 3, 3) ot.plot.plot2D_samples_mat(xs, xt, Gp, c=[.5, .5, 1]) pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples') pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples') pl.axis('equal') # pl.legend(loc=0) pl.title('OT sqrt Euclidean') pl.tight_layout() pl.show()
mit
AudreyFrancisco/AliPhysics
PWGPP/FieldParam/fitsol.py
39
8343
#!/usr/bin/env python debug = True # enable trace def trace(x): global debug if debug: print(x) trace("loading...") from itertools import combinations, combinations_with_replacement from glob import glob from math import * import operator from os.path import basename import matplotlib.pyplot as plt import numpy as np import pandas as pd import sklearn.linear_model import sklearn.feature_selection import datetime def prec_from_pathname(path): if '2k' in path: return 0.002 elif '5k' in path: return 0.005 else: raise AssertionError('Unknown field strengh: %s' % path) # ['x', 'y', 'z', 'xx', 'xy', 'xz', 'yy', ...] def combinatrial_vars(vars_str='xyz', length=3): term_list = [] for l in range(length): term_list.extend([''.join(v) for v in combinations_with_replacement(list(vars_str), 1 + l)]) return term_list # product :: a#* => [a] -> a def product(xs): return reduce(operator.mul, xs, 1) # foldl in Haskell # (XYZ, "xx") -> XX def term(dataframe, vars_str): return product(map(lambda x: dataframe[x], list(vars_str))) # (f(X), Y) -> (max deviation, max%, avg dev, avg%) def deviation_stat(fX, Y, prec=0.005): dev = np.abs(fX - Y) (max_dev, avg_dev) = (dev.max(axis=0), dev.mean(axis=0)) (max_pct, avg_pct) = (max_dev / prec * 100, avg_dev / prec * 100) return (max_dev, max_pct, avg_dev, avg_pct) # IO Df def load_samples(path, cylindrical_axis=True, absolute_axis=True, genvars=[]): sample_cols = ['x', 'y', 'z', 'Bx', 'By', 'Bz'] df = pd.read_csv(path, sep=' ', names=sample_cols) if cylindrical_axis: df['r'] = np.sqrt(df.x**2 + df.y**2) df['p'] = np.arctan2(df.y, df.x) df['Bt'] = np.sqrt(df.Bx**2 + df.By**2) df['Bpsi'] = np.arctan2(df.By, df.Bx) - np.arctan2(df.y, df.x) df['Br'] = df.Bt * np.cos(df.Bpsi) df['Bp'] = df.Bt * np.sin(df.Bpsi) if absolute_axis: df['X'] = np.abs(df.x) df['Y'] = np.abs(df.y) df['Z'] = np.abs(df.z) for var in genvars: df[var] = term(df, var) return df def choose(vars, df1, df2): X1 = df1.loc[:, vars].as_matrix() X2 = df2.loc[:, vars].as_matrix() return (X1, X2) # IO () def run_analysis_for_all_fields(): sample_set = glob("dat_z22/*2k*.sample.dat") test_set = glob("dat_z22/*2k*.test.dat") #print(sample_set, test_set) assert(len(sample_set) == len(test_set) and len(sample_set) > 0) result = pd.DataFrame() for i, sample_file in enumerate(sample_set): trace("run_analysis('%s', '%s')" % (sample_file, test_set[i])) df = run_analysis(sample_file, test_set[i]) result = result.append(df, ignore_index=True) write_header(result) def run_analysis(sample_file = 'dat_z22/tpc2k-z0-q2.sample.dat', test_file = 'dat_z22/tpc2k-z0-q2.test.dat'): global precision, df, test, lr, la, xvars_full, xvars, yvars, X, Y, Xtest, Ytest, ana_result precision = prec_from_pathname(sample_file) assert(precision == prec_from_pathname(test_file)) xvars_full = combinatrial_vars('xyz', 3)[3:] # variables except x, y, z upto 3 dims trace("reading training samples... " + sample_file) df = load_samples(sample_file, genvars=xvars_full) trace("reading test samples..." + test_file) test = load_samples(test_file, genvars=xvars_full) trace("linear regression fit...") lr = sklearn.linear_model.LinearRegression() #ri = sklearn.linear_model.RidgeCV() #la = sklearn.linear_model.LassoCV() fs = sklearn.feature_selection.RFE(lr, 1, verbose=0) #xvars = ['x','y','z','xx','yy','zz','xy','yz','xz','xzz','yzz'] #xvars = ["xx", "yy", "zz", 'x', 'y', 'z', 'xzz', 'yzz'] #xvars = ['xxxr', 'xrrX', 'zzrX', 'p', 'xyrr', 'xzzr', 'xrrY', 'xzrX', 'xxxz', 'xzzr'] #xvars=['x', 'xzz', 'xyz', 'yz', 'yy', 'zz', 'xy', 'xx', 'z', 'y', 'xz', 'yzz'] yvars = ['Bx', 'By', 'Bz'] #yvars = ['Bz'] (Y, Ytest) = choose(yvars, df, test) #(Y, Ytest) = (df['Bz'], test['Bz']) xvars = combinatrial_vars('xyz', 3) # use all terms upto 3rd power (X, Xtest) = choose(xvars, df, test) for y in yvars: fs.fit(X, df[y]) res = pd.DataFrame({ "term": xvars, "rank": fs.ranking_ }) trace(y) trace(res.sort_values(by = "rank")) #xvars=list(res.sort_values(by="rank")[:26]['term']) lr.fit(X, Y) trace(', '.join(yvars) + " = 1 + " + ' + '.join(xvars)) test_dev = deviation_stat(lr.predict(Xtest), Ytest, prec=precision) #for i in range(len(yvars)): # arr = [lr.intercept_[i]] + lr.coef_[i] # arr = [ str(x) for x in arr ] # print(yvars[i] + " = { " + ', '.join(arr) + " }") # print("deviation stat [test]: max %.2e (%.1f%%) avg %.2e (%.1f%%)" % # ( test_dev[0][i], test_dev[1][i], test_dev[2][i], test_dev[3][i] )) (sample_score, test_score) = (lr.score(X, Y), lr.score(Xtest, Ytest)) trace("linear regression R^2 [train data]: %.8f" % sample_score) trace("linear regression R^2 [test data] : %.8f" % test_score) return pd.DataFrame( { "xvars": [xvars], "yvars": [yvars], "max_dev": [test_dev[0]], "max%": [test_dev[1]], "avg_dev": [test_dev[2]], "avg%": [test_dev[3]], "sample_score": [sample_score], "score": [test_score], "coeffs": [lr.coef_], "intercept": [lr.intercept_], "sample_file": [sample_file], "test_file": [test_file], "precision": [precision], "volume_id": [volume_id_from_path(sample_file)] }) def volume_id_from_path(path): return basename(path)\ .replace('.sample.dat', '')\ .replace('-', '_') def get_location_by_volume_id(id): if 'its' in id: r_bin = 0 if 'tpc' in id: r_bin = 1 if 'tof' in id: r_bin = 2 if 'tofext' in id: r_bin = 3 if 'cal' in id: r_bin = 4 z_bin = int(id.split('_')[1][1:]) # "tofext2k_z0_q4" -> 0 if 'q1' in id: quadrant = 0 if 'q2' in id: quadrant = 1 if 'q3' in id: quadrant = 2 if 'q4' in id: quadrant = 3 return r_bin, z_bin, quadrant def write_header(result): #result.to_csv("magfield_params.csv") #result.to_html("magfield_params.html") print("# This file was generated from sysid.py at " + str(datetime.datetime.today())) print("# " + ', '.join(result.iloc[0].yvars) + " = 1 + " + ' + '.join(result.iloc[0].xvars)) print("# barrel r: 0 < its < 80 < tpc < 250 < tof < 400 < tofext < 423 < cal < 500") print("# barrel z: -550 < z < 550") print("# phi: 0 < q1 < 0.5pi < q2 < pi < q3 < 1.5pi < q4 < 2pi") print("# header: Rbin Zbin Quadrant Nval_per_compoment(=20)") print("# data: Nval_per_compoment x floats") #print("# R^2: coefficient of determination in multiple linear regression. [0,1]") print("") for index, row in result.iterrows(): #print("// ** %s - R^2 %s" % (row.volume_id, row.score)) print("#" + row.volume_id) r_bin, z_bin, quadrant = get_location_by_volume_id(row.volume_id) print("%s %s %s 20" % (r_bin, z_bin, quadrant)) for i, yvar in enumerate(row.yvars): name = row.volume_id #+ '_' + yvar.lower() print("# precision: tgt %.2e max %.2e (%.1f%%) avg %.2e (%.1f%%)" % (row['precision'], row['max_dev'][i], row['max%'][i], row['avg_dev'][i], row['avg%'][i])) coef = [row['intercept'][i]] + list(row['coeffs'][i]) arr = [ "%.5e" % x for x in coef ] body = ' '.join(arr) #decl = "const double[] %s = { %s };\n" % (name, body) #print(decl) print(body) print("") #write_header(run_analysis()) run_analysis_for_all_fields() #for i in range(10): # for xvars in combinations(xvars_full, i+1): #(X, Xtest) = choose(xvars, df, test) #lr.fit(X, Y) #ri.fit(X, Y) #la.fit(X, Y) #fs.fit(X, Y) #print xvars #(sample_score, test_score) = (lr.score(X, Y), lr.score(Xtest, Ytest)) #print("linear R^2[sample] %.8f" % sample_score) #print("linear R^2[test] %.8f" % test_score) #(sample_score2, test_score2) = (la.score(X, Y), la.score(Xtest, Ytest)) #print("lasso R^2[sample] %.8f" % sample_score2) #print("lasso R^2[test] %.8f" % test_score2) #print(la.coef_) #for i in range(len(yvars)): # print(yvars[i]) # print(pd.DataFrame({"Name": xvars, "Params": lr.coef_[i]}).sort_values(by='Params')) # print("+ %e" % lr.intercept_[i]) #sample_dev = deviation_stat(lr.predict(X), Y, prec=precision) #test_dev = deviation_stat(lr.predict(Xtest), Ytest, prec=precision) #test_dev2 = deviation_stat(la.predict(Xtest), Ytest, prec=precision) #print("[sample] max %.2e (%.1f%%) avg %.2e (%.1f%%)" % sample_dev) #print("[test] max %.2e (%.1f%%) avg %.2e (%.1f%%)" % test_dev ) #print("lasso [test] max %.2e (%.1f%%) avg %.2e (%.1f%%)" % test_dev2 )
bsd-3-clause
eike-welk/clair
src/clairweb/collect/get_ebay.py
1
40390
# -*- coding: utf-8 -*- ############################################################################### # Clair - Project to discover prices on e-commerce sites. # # # # Copyright (C) 2013 by Eike Welk # # [email protected] # # # # License: GPL # # # # This program is free software: you can redistribute it and/or modify # # it under the terms of the GNU General Public License as published by # # the Free Software Foundation, either version 3 of the License, or # # (at your option) any later version. # # # # This program is distributed in the hope that it will be useful, # # but WITHOUT ANY WARRANTY; without even the implied warranty of # # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # # GNU General Public License for more details. # # # # You should have received a copy of the GNU General Public License # # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################### """ Get listings from Ebay through its API. """ import os.path import math import json import logging from datetime import datetime from pprint import pformat import pandas as pd from ebaysdk.finding import Connection as FConnection from ebaysdk.shopping import Connection as SConnection import ebaysdk.exception import requests.exceptions from libclair.dataframes import make_data_frame from libclair.textprocessing import HtmlTool from econdata.models import Listing class EbayError(Exception): pass def to_str_list(list_or_str): """ Convert list of strings to long comma separated string. A single string is returned unaltered. """ if isinstance(list_or_str, str): return list_or_str elif isinstance(list_or_str, list): return ', '.join(list_or_str) else: raise TypeError('Expecting list or str.') class EbayFindingAPIConnector(object): """ Abstraction for Ebay's finding API. Connects to Ebay over the internet and returns listings. Can search with keywords and can return new listings. However it can't get all information, especially not the item's description. Application code should **not** use this class, but rather ``EbayConnector``. Relevant Ebay documentation here: http://developer.ebay.com/DevZone/finding/CallRef/index.html Parameters ------------- keyfile : str Name of the configuration file for the ``python-ebay`` library, that contains the (secret) access keys for the Ebay API. ebay_site : str Ebay site (country) where the search is executed. * Ebay USA: 'EBAY-US' * Ebay Germany: 'EBAY-DE' http://developer.ebay.com/Devzone/finding/Concepts/SiteIDToGlobalID.html ebay_name : str String that will be put into the ``df['site']`` field of the dataframe. For example ``'ebay'``. """ def __init__(self, keyfile, ebay_site, ebay_name): assert isinstance(keyfile, (str, type(None))) assert os.path.isfile(keyfile) assert isinstance(ebay_site, str) assert isinstance(ebay_name, str) self.keyfile = keyfile self.ebay_site = ebay_site self.ebay_name = ebay_name def find_listings(self, keywords, n_listings, price_min=None, price_max=None, currency="USD", time_from=None, time_to=None): """ Find listings on Ebay by keyword. Returns only incomplete information: the description is missing. Calls the Ebay API function 'findItemsAdvanced': https://developer.ebay.com/devzone/finding/CallRef/findItemsAdvanced.html Parameters ----------- keywords : str Search string in Ebay's searching language. See: http://pages.ebay.com/help/search/advanced-search.html#using n_listings : int Number of listings that Ebay should return. Might return fewer or slightly more listings. Currently limited to 100 listings, the maximum number of listings in one page. price_min : float Minimum price for listings, that are returned. price_max : float Maximum price for listings, that are returned. currency : str Currency unit for ``price_min`` and ``price_max``. US Dollar: USD Euro: EUR https://developer.ebay.com/devzone/finding/CallRef/Enums/currencyIdList.html time_from : datetime Earliest end time for listings (auctions) that are returned. Time is in UTC! time_to : datetime Latest end time for listings (auctions) that are returned. Time is in UTC! Returns ------- pandas.DataFrame Table with one row for each listing. Our Id is the index. Some columns are empty (especially "description"), because Ebay's find API call doesn't return this information. These columns can be filled in with a subsequent call to ``update_listings``. """ assert isinstance(keywords, (str)) assert isinstance(n_listings, (int)) assert isinstance(price_min, (float, int, type(None))) assert isinstance(price_max, (float, int, type(None))) assert isinstance(currency, (str, type(None))) assert isinstance(time_from, (datetime, pd.Timestamp, type(None))) assert isinstance(time_to, (datetime, pd.Timestamp, type(None))) # Ebay returns a maximum of 100 listings per call (pagination). # Compute necessary number of calls to Ebay and number of # listings per call. max_per_page = 100 # max number of listings per call - Ebay limit n_pages = math.ceil(n_listings / max_per_page) n_per_page = round(n_listings / n_pages) # Call Ebay repeatedly and concatenate results listings = make_data_frame(Listing, 0) for i_page in range(1, int(n_pages + 1)): resp = self._call_find_api(keywords, n_per_page, i_page, price_min, price_max, currency, time_from, time_to) listings_part = self._parse_find_response(resp) # Stop searching when Ebay returns an empty result. if len(listings_part) == 0: break listings = listings.append(listings_part, ignore_index=True, verify_integrity=False) return listings def _call_find_api(self, keywords, n_per_page, i_page, price_min=None, price_max=None, currency="USD", time_from=None, time_to=None): """ Perform Ebay API call to find listings on Ebay; by keyword. Returns only incomplete information: the description is missing. For documentation on parameters see: ``EbayConnector.find_listings`` * Calls the Ebay API function 'findItemsAdvanced': https://developer.ebay.com/devzone/finding/CallRef/findItemsAdvanced.html * Ebay's searching language. http://pages.ebay.com/help/search/advanced-search.html#using * Currency unit for ``price_min`` and ``price_max``. * US Dollar: USD * Euro: EUR https://developer.ebay.com/devzone/finding/CallRef/Enums/currencyIdList.html """ itemFilters = [] if price_min: itemFilters += [{'name': 'MinPrice', 'value': price_min, 'paramName': 'Currency', 'paramValue': currency}] if price_max: itemFilters += [{'name': 'MaxPrice', 'value': price_max, 'paramName': 'Currency', 'paramValue': currency}] if time_from: itemFilters += [{'name': 'EndTimeFrom', 'value': time_from.strftime("%Y-%m-%dT%H:%M:%S.000Z")}] if time_to: itemFilters += [{'name': 'EndTimeTo', 'value': time_to.strftime("%Y-%m-%dT%H:%M:%S.000Z")}] try: api = FConnection(config_file=self.keyfile, siteid=self.ebay_site) response = api.execute('findItemsAdvanced', {'keywords': keywords, 'descriptionSearch': 'true', 'paginationInput': {'entriesPerPage': n_per_page, 'pageNumber': i_page}, 'itemFilter': itemFilters, }) except (ebaysdk.exception.ConnectionError, requests.exceptions.ConnectionError) as err: err_text = 'Finding items on Ebay failed! Error: ' + str(err) logging.error(err_text) logging.debug(err.response.dict()) raise EbayError(err_text) # #TODO: react on the following status information # # Returns the HTTP response code. # response_code() # # Returns the HTTP response status # response_status() # # Returns an array of eBay response codes # response_codes() resp_dict = response.dict() # Act on resonse status if resp_dict['ack'] == 'Success': logging.debug('Successfully called Ebay finding API.') elif resp_dict['ack'] in ['Warning', 'PartialFailure']: logging.warning('Ebay finding API returned warning.') logging.debug(pformat(resp_dict)) else: logging.error('Ebay finding API returned error.') logging.debug(pformat(resp_dict)) raise EbayError('Ebay finding API returned error.') return resp_dict def _parse_find_response(self, resp_dict): """ Parse response from call to Ebay's finding API. See: https://developer.ebay.com/devzone/finding/CallRef/findItemsAdvanced.html#Output """ # pprint(resp_dict) eb_items = resp_dict['searchResult']['item'] listings = make_data_frame(Listing, len(eb_items)) for i, item in enumerate(eb_items): try: "The ID that uniquely identifies the item listing." eb_id = item['itemId'] # print('itemId: ' + eb_id) listings.loc[i, 'id_site'] = eb_id listings.loc[i, 'title'] = item['title'] listings.loc[i, 'item_url'] = item['viewItemURL'] # https://developer.ebay.com/devzone/finding/CallRef/Enums/conditionIdList.html listings.loc[i, 'condition'] = self.convert_condition(item['condition']['conditionId']) listings.loc[i, 'time'] = pd.Timestamp(item['listingInfo']['endTime']).to_datetime64() # String describing location. For example: 'Pensacola,FL,USA'. listings.loc[i, 'location'] = item['location'] # ISO currency codes. https://en.wikipedia.org/wiki/ISO_4217 # EUR: Euro; GBP: British Pound; USD: US Dollar. listings.loc[i, 'currency'] = item_currency = item['sellingStatus']['convertedCurrentPrice']['_currencyId'] listings.loc[i, 'price'] = item['sellingStatus']['convertedCurrentPrice']['value'] try: # https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2 # List of country codes, to which the item can be delivered. For example: # ['US', 'CA', 'GB', 'AU', 'NO'] or 'Worldwide' or 'US'. listings.loc[i, 'shipping_locations'] = to_str_list(item['shippingInfo']['shipToLocations']) eb_shipping_currency = item['shippingInfo']['shippingServiceCost']['_currencyId'] assert eb_shipping_currency == item_currency, \ 'Prices in a listing must be of the same currency.' listings.loc[i, 'shipping_price'] = item['shippingInfo']['shippingServiceCost']['value'] except KeyError as err: logging.debug('Missing field in "shippingInfo": ' + str(err)) # https://developer.ebay.com/devzone/finding/CallRef/types/ItemFilterType.html listings.loc[i, 'listing_type'] = ltype = self.convert_listing_type(item['listingInfo']['listingType']) # https://developer.ebay.com/devzone/finding/CallRef/types/SellingStatus.html sstate_raw = item['sellingStatus']['sellingState'] listings.loc[i, 'status'] = sstate = self.convert_selling_state(sstate_raw) if ltype in ['fixed-price', 'classified']: listings.loc[i, 'is_real'] = True elif ltype == 'auction' and sstate == 'ended': listings.loc[i, 'is_real'] = True else: listings.loc[i, 'is_real'] = False if sstate_raw == 'EndedWithSales': listings.loc[i, 'is_sold'] = True elif sstate_raw == 'EndedWithoutSales': listings.loc[i, 'is_sold'] = False else: listings.loc[i, 'is_sold'] = None except (KeyError, AssertionError) as err: logging.error('Error while parsing Ebay find result: ' + repr(err)) logging.debug(pformat(item)) listings['site'] = self.ebay_name return listings @staticmethod def convert_condition(ebay_condition): """ Convert Ebay condition numbers to internal condition values. Ebay condition numbers: http://developer.ebay.com/DevZone/finding/CallRef/Enums/conditionIdList.html -------------------------------------------------------------- Ebay code Description Internal code --------- --------------------------- ---------------------- 1000 New, brand-new new 1500 New other new-defects 1750 New with defects (very small new-defects defects of clothes) 2000 Manufacturer refurbished refurbished 2500 Seller refurbished refurbished 3000 Used used 4000 Very Good (books) used-very-good 5000 Good (books) used-good 6000 Acceptable (books) used-acceptable 7000 For parts or not working not-working -------------------------------------------------------------- Parameters ---------- ebay_condition: str Ebay condition code (numeric string). Returns ------- str Internal condition code. """ cond_map = {'1000': 'new', '1500': 'new-defects', '1750': 'new-defects', '2000': 'refurbished', '2500': 'refurbished', '3000': 'used', '4000': 'used-very-good', '5000': 'used-good', '6000': 'used-acceptable', '7000': 'not-working', } return cond_map[ebay_condition] @staticmethod def convert_listing_type(listing_type): """ Convert Ebay listing type (ListingType) codes to internal codes. Ebay listing type numbers: https://developer.ebay.com/devzone/finding/CallRef/types/ItemFilterType.html -------------------------------------------------------------- Ebay code Description Internal code --------- ------------------------ ---------------------- Auction Auction listing. auction AuctionWithBIN Auction listing with auction "Buy It Now" available. Classified Classified Ad. classified FixedPrice Fixed price items. fixed-price StoreInventory Store Inventory format fixed-price items. -------------------------------------------------------------- Parameters ---------- listing_type: str Ebay listing-type code. Returns ------- str Internal listing-type code. """ ltype_map = {'Auction': 'auction', 'AuctionWithBIN': 'auction', 'Classified': 'classified', 'FixedPrice': 'fixed-price', 'StoreInventory': 'fixed-price'} return ltype_map[listing_type] @staticmethod def convert_selling_state(selling_state): """ Convert Ebay selling state codes to internal codes. Ebay selling state codes: https://developer.ebay.com/devzone/finding/CallRef/types/SellingStatus.html --------------------------------------------------------------- Ebay code Description Internal code --------- ------------------------ ------------- Active The listing is still live. active Canceled The listing has been canceled canceled by either the seller or eBay. Ended The listing has ended and eBay ended has completed the processing. EndedWithSales The listing has been ended ended with sales. EndedWithoutSales The listing has been ended ended without sales. --------------------------------------------------------------- Parameters ---------- selling_state: str Ebay selling state code. Returns ------- str Internal selling state code. """ smap = {'Active': 'active', 'Canceled': 'canceled', 'Ended': 'ended', 'EndedWithSales': 'ended', 'EndedWithoutSales': 'ended'} return smap[selling_state] class EbayShoppingAPIConnector(object): """ Abstraction for Ebay's shopping API. Connect to Ebay over the internet and return listings. Can search with keywords and can return new listings. However it can't get all information, especially not the item's description. Application code should not use this class, but rather ``EbayConnector``. http://developer.ebay.com/DevZone/shopping/docs/CallRef/index.html https://github.com/timotheus/ebaysdk-python/wiki/Shopping-API-Class Parameters ------------- keyfile : str Name of the configuration file for the ``python-ebay`` library, that contains the (secret) access keys for the Ebay API. ebay_site : str Ebay site (country) where the search is executed. * Ebay USA: 'EBAY-US' * Ebay Germany: 'EBAY-DE' http://developer.ebay.com/Devzone/finding/Concepts/SiteIDToGlobalID.html ebay_name : str String that will be put into the ``df['site']`` field of the dataframe. For example ``'ebay'``. """ def __init__(self, keyfile, ebay_site, ebay_name): assert isinstance(keyfile, (str, type(None))) assert os.path.isfile(keyfile) assert isinstance(ebay_site, str) assert isinstance(ebay_name, str) self.keyfile = keyfile self.ebay_site = ebay_site self.ebay_name = ebay_name def update_listings(self, listings, ebay_site): """ Update listings by connecting to Ebay over the Internet. Retrieves all columns in listing (as opposed to ``EbayFindingAPIConnector.find_listings``.) Argument -------- listings : pandas.DataFrame Table with listings that should be updated. Expects that column 'id' is used as the table's index. ebay_site : str Localized site that is accessed. Influences shipping costs and currency. Returns ------- pandas.DataFrame New table with updated information. """ assert isinstance(listings, pd.DataFrame) assert isinstance(ebay_site, str) # Get ids from listings that are really from Ebay ebay_listings = listings[listings['site'] == self.ebay_name] ids = ebay_listings["id_site"] # Remove duplicate IDs ids = list(set(ids)) # Download information in chunks of 20 listings. listings = make_data_frame(Listing, 0) for i_start in range(0, len(ids), 20): resp = self._call_shopping_api(ids[i_start:i_start + 20], ebay_site) listings_part = self._parse_shopping_response(resp) listings = listings.append(listings_part, ignore_index=True, verify_integrity=False) return listings def _call_shopping_api(self, ids, ebay_site): """ Call Ebay's shopping API to get complete information about a listing. """ try: api = SConnection(config_file=self.keyfile, siteid=ebay_site) response = api.execute('GetMultipleItems', {'IncludeSelector': 'Description,Details,ItemSpecifics,ShippingCosts', 'ItemID': ids}) except (ebaysdk.exception.ConnectionError, requests.exceptions.ConnectionError) as err: err_text = 'Downloading full item information from Ebay failed! ' \ 'Error: ' + str(err) logging.error(err_text) logging.debug(err.response.dict()) raise EbayError(err_text) # #TODO: react on the following status information # # Returns the HTTP response code. # response_code() # # Returns the HTTP response status # response_status() # # Returns an array of eBay response codes # response_codes() resp_dict = response.dict() # Act on resonse status if resp_dict['Ack'] == 'Success': logging.debug('Successfully called Ebay shopping API.') elif resp_dict['Ack'] in ['Warning', 'PartialFailure']: logging.warning('Ebay shopping API returned warning.') logging.debug(pformat(resp_dict['Errors'])) else: logging.error('Ebay shopping API returned error.') logging.debug(pformat(resp_dict)) raise EbayError('Ebay shopping API returned error.') return resp_dict def _parse_shopping_response(self, resp): """ Parse response from call to Ebay's shopping API. See: http://developer.ebay.com/DevZone/Shopping/docs/CallRef/GetMultipleItems.html """ # pprint(resp) items = resp['Item'] listings = make_data_frame(Listing, len(items)) for i, item in enumerate(items): try: # ID -------------------------------------------------- listings.loc[i, 'id_site'] = item['ItemID'] # Product description -------------------------------------------------- listings.loc[i, 'title'] = item['Title'] listings.loc[i, 'description'] = HtmlTool.to_nice_text(item['Description']) try: listings.loc[i, 'prod_spec'] = self.convert_ItemSpecifics(item['ItemSpecifics']) except KeyError as err: logging.debug("Missing field 'ItemSpecifics': " + str(err)) listings.loc[i, 'condition'] = self.convert_condition(item['ConditionID']) # Price ----------------------------------------------------------- listings.loc[i, 'time'] = pd.Timestamp(item['EndTime']).to_datetime64() listings.loc[i, 'currency'] = item['ConvertedCurrentPrice']['_currencyID'] listings.loc[i, 'price'] = item['ConvertedCurrentPrice']['value'] try: listings.loc[i, 'shipping_price'] = item['ShippingCostSummary']['ShippingServiceCost']['value'] shipping_currency = item['ShippingCostSummary']['ShippingServiceCost']['_currencyID'] assert shipping_currency == listings.loc[i, 'currency'], \ 'Prices in a listing must be of the same currency.' except KeyError as err: logging.debug("Missing field in 'ShippingCostSummary': " + str(err)) # Listing Data ----------------------------------------------------------- listings.loc[i, 'location'] = item['Location'] + ', ' + item['Country'] listings.loc[i, 'shipping_locations'] = to_str_list(item['ShipToLocations']) listings.loc[i, 'seller'] = item['Seller']['UserID'] listings.loc[i, 'item_url'] = item['ViewItemURLForNaturalSearch'] # Status values ----------------------------------------------------------- listings.loc[i, 'status'] = status = self.convert_listing_status_shp(item['ListingStatus']) listings.loc[i, 'listing_type'] = lstype = self.convert_listing_type_shp(item['ListingType']) quantitySold = int(item['QuantitySold']) # is_real - If True: One could really buy the item for this price. if lstype == 'fixed-price': is_real = True elif lstype == 'auction' and status == 'ended' and quantitySold >= 1: is_real = True else: is_real = False listings.loc[i, 'is_real'] = is_real # is_sold - Successful sale if ``True``. if lstype == 'fixed-price' and quantitySold >= 1: is_sold = True elif lstype == 'auction' and status == 'ended' and quantitySold >= 1: is_sold = True else: is_sold = False listings.loc[i, 'is_sold'] = is_sold if is_sold: try: listings.loc[i, 'buyer'] = item['HighBidder']['UserID'] except KeyError as err: logging.debug("Missing field in 'HighBidder': " + str(err)) except (TypeError, KeyError, AssertionError) as err: logging.error('Error while parsing Ebay shopping API result: ' + repr(err)) logging.info(pformat(item)) listings['site'] = self.ebay_name return listings @staticmethod def convert_ItemSpecifics(item_specifics): """Convert the ``ItemSpecifics`` to a suitable JSON representation.""" try: specs = {} for nvpair in item_specifics['NameValueList']: specs[nvpair['Name']] = nvpair['Value'] except TypeError as err: logging.error(str(err) + '\n`item_specifics`:\n' + pformat(item_specifics)) return json.dumps(specs, ensure_ascii=False, check_circular=False, sort_keys=True) # return str(specs) @staticmethod def convert_condition(ebay_condition): """ Convert Ebay condition numbers to internal condition values. Ebay condition numbers: http://developer.ebay.com/DevZone/finding/CallRef/Enums/conditionIdList.html -------------------------------------------------------------- Ebay code Description Internal code --------- --------------------------- ---------------------- 1000 New, brand-new new 1500 New other new-defects 1750 New with defects (very small new-defects defects of clothes) 2000 Manufacturer refurbished refurbished 2500 Seller refurbished refurbished 3000 Used used 4000 Very Good (books) used-very-good 5000 Good (books) used-good 6000 Acceptable (books) used-acceptable 7000 For parts or not working not-working -------------------------------------------------------------- Parameters ---------- ebay_condition: str Ebay condition code (numeric string). Returns ------- str Internal condition code. """ cond_map = {'1000': 'new', '1500': 'new-defects', '1750': 'new-defects', '2000': 'refurbished', '2500': 'refurbished', '3000': 'used', '4000': 'used-very-good', '5000': 'used-good', '6000': 'used-acceptable', '7000': 'not-working', } return cond_map[ebay_condition] @staticmethod def convert_listing_type_shp(listing_type): """ Convert Ebay listing type (ListingType) codes to internal codes. Ebay listing type numbers: http://developer.ebay.com/DevZone/Shopping/docs/CallRef/extra/GtMltplItms.Rspns.Itm.LstngTyp.html ------------------------------------------------------------------------ Ebay code Description Internal code ---------------- --------------------------------------- ------------- AdType Advertisement. Permits no bidding on None that item. Chinese Single-quantity online auction format. auction CustomCode Placeholder value. None Dutch Deprecated. Multiple-quantity online auction auction format. Express Deprecated. Germany only: eBay None Express-only format. FixedPriceItem A basic fixed-price listing with a fixed-price Quantity of 1. LeadGeneration Advertisement-style listing, no bidding None or fixed price. Live Live auction, on-site auction that can auction include non-eBay bidders. PersonalOffer Second chance offer made to a non- auction winning bidder on an ended listing. StoresFixedPrice A fixed-price format for eBay Store fixed-price sellers. ------------------------------------------------------------------------ Parameters ---------- listing_type: str Ebay listing-type code. Returns ------- str Internal listing-type code. """ ltype_map = {'Advertisement': None, 'Chinese': 'auction', 'CustomCode': None, 'Dutch': 'auction', 'Express': None, 'FixedPriceItem': 'fixed-price', 'LeadGeneration': None, 'Live': 'auction', 'PersonalOffer': 'auction', 'StoresFixedPrice': 'fixed-price'} return ltype_map[listing_type] @staticmethod def convert_listing_status_shp(listing_status): """ Convert Ebay selling state codes to internal codes. Ebay listing status codes: http://developer.ebay.com/DevZone/Shopping/docs/CallRef/GetMultipleItems.html#Response.Item.ListingStatus ------------------------------------------------------------------------ Ebay code Description Internal code ---------------- --------------------------------------- ------------- Active The listing is still live. active Completed The listing has ended. You can think of ended Completed and Ended as essentially equivalent. CustomCode Placeholder value. None Ended The listing has ended. ended ------------------------------------------------------------------------ Parameters ---------- listing_status: str Ebay selling state code. Returns ------- str Internal selling state code. """ smap = {'Active': 'active', 'Completed': 'ended', 'Ended': 'ended', 'CustomCode': None} return smap[listing_status] class EbayConnector(object): """ Connect to Ebay over the internet and return listings. This is the class that application code should use to connect to Ebay. """ all_ebay_global_ids = { "EBAY-AT", "EBAY-AU", "EBAY-CH", "EBAY-DE", "EBAY-ENC", "EBAY-ES", "EBAY-FR", "EBAY-FRB", "EBAY-FRC", "EBAY-GB", "EBAY-HK", "EBAY-IE", "EBAY-IN", "EBAY-IT", "EBAY-MOT", "EBAY-MY", "EBAY-NL", "EBAY-NLB", "EBAY-PH", "EBAY-PL", "EBAY-SG", "EBAY-US", } "Legal values for Ebay's global ID." internal_site_name = 'ebay' "Value for the dataframe's 'site' field, to show that the listings come from Ebay." def __init__(self, keyfile): """ Parameters ------------- keyfile : str Name of the configuration file for the ``python-ebay`` library, that contains the (secret) access keys for the Ebay API. """ assert isinstance(keyfile, (str, type(None))) assert os.path.isfile(keyfile) self.keyfile = keyfile def find_listings(self, keywords, n_listings, ebay_site, price_min=None, price_max=None, currency="USD", time_from=None, time_to=None): """ Find listings on Ebay by keyword. Returns only incomplete information: the description is missing. Calls the Ebay API function 'findItemsAdvanced': https://developer.ebay.com/devzone/finding/CallRef/findItemsAdvanced.html Parameters ----------- keywords : str Search string in Ebay's searching language. See: http://pages.ebay.com/help/search/advanced-search.html#using n_listings : int Number of listings that Ebay should return. Might return fewer or slightly more listings. Currently limited to 100 listings, the maximum number of listings in one page. ebay_site : str Ebay site (country) where the search is executed. * Ebay USA: 'EBAY-US' * Ebay Germany: 'EBAY-DE' http://developer.ebay.com/Devzone/finding/Concepts/SiteIDToGlobalID.html price_min : float Minimum price for listings, that are returned. price_max : float Maximum price for listings, that are returned. currency : str Currency unit for ``price_min`` and ``price_max``. US Dollar: USD Euro: EUR https://developer.ebay.com/devzone/finding/CallRef/Enums/currencyIdList.html time_from : datetime Earliest end time for listings (auctions) that are returned. Time is in UTC! time_to : datetime Latest end time for listings (auctions) that are returned. Time is in UTC! Returns ------- pandas.DataFrame Table with one row for each listing. Our Id is the index. Some columns are empty (especially "description"), because Ebay's find API call doesn't return this information. These columns can be filled in with a subsequent call to ``update_listings``. """ assert isinstance(keywords, (str)) assert isinstance(n_listings, (int)) assert ebay_site in self.all_ebay_global_ids assert isinstance(price_min, (float, int, type(None))) assert isinstance(price_max, (float, int, type(None))) assert isinstance(currency, (str, type(None))) assert isinstance(time_from, (datetime, pd.Timestamp, type(None))) assert isinstance(time_to, (datetime, pd.Timestamp, type(None))) fapic = EbayFindingAPIConnector(self.keyfile, ebay_site, self.internal_site_name) listings = fapic.find_listings(keywords, n_listings, price_min, price_max, currency, time_from, time_to) self.create_ids(listings) # Remove duplicate rows: Ebay uses the same ID for variants of the # same product. listings = listings.drop_duplicates(subset="id") # Put internal IDs into index listings.set_index("id", drop=False, inplace=True, verify_integrity=True) return listings def update_listings(self, listings, ebay_site): """ Update listings by connecting to Ebay over the Internet. Retrieves all columns in listing (as opposed to ``find_listings``.) Argument -------- listings : pandas.DataFrame Table with listings that should be updated. Expects that column 'id' is used as the table's index. Returns ------- pandas.DataFrame New table with updated information. """ assert isinstance(listings, pd.DataFrame) assert ebay_site in self.all_ebay_global_ids sapic = EbayShoppingAPIConnector(self.keyfile, ebay_site, self.internal_site_name) listings = sapic.update_listings(listings, ebay_site) listings.dropna(subset=['time'], inplace=True) self.create_ids(listings) listings.drop_duplicates(['id'], keep='first', inplace=True) listings.set_index("id", drop=False, inplace=True, verify_integrity=True) return listings def create_ids(self, listings): """ Create the internal IDs for Ebay listings. The have the form: {date}-ebay-{number} """ # Ebay reuses ``itemId`` values for recurrent listings of professional # sellers. Therefore the date is included in the listing's ID. dates = listings['time'].map(lambda t: t.isoformat().split('T')[0]) listings['id'] = dates + '-' + listings['site'] + '-' + listings['id_site'] # return listings
gpl-3.0
jumc/img_parallax_gif
testes/test3.py
1
1451
from scipy import ndimage as ndi import matplotlib.pyplot as plt from skimage.morphology import watershed, disk from skimage import data, io, color from skimage.filters import rank from skimage.util import img_as_ubyte # image = img_as_ubyte(data.camera()) image = io.imread('test2.jpg') image = color.rgb2gray(image) # denoise image denoised = rank.median(image, disk(6)) # find continuous region (low gradient - # where less than 10 for this image) --> markers # disk(5) is used here to get a more smooth image markers = rank.gradient(denoised, disk(10)) < 10 markers = ndi.label(markers)[0] # local gradient (disk(2) is used to keep edges thin) gradient = rank.gradient(denoised, disk(2)) # process the watershed labels = watershed(gradient, markers) # display results fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(8, 8), sharex=True, sharey=True, subplot_kw={'adjustable':'box-forced'}) ax = axes.ravel() ax[0].imshow(image, cmap=plt.cm.gray, interpolation='nearest') ax[0].set_title("Original") ax[1].imshow(gradient, cmap=plt.cm.spectral, interpolation='nearest') ax[1].set_title("Local Gradient") ax[2].imshow(markers, cmap=plt.cm.spectral, interpolation='nearest') ax[2].set_title("Markers") ax[3].imshow(image, cmap=plt.cm.gray, interpolation='nearest') ax[3].imshow(labels, cmap=plt.cm.spectral, interpolation='nearest', alpha=.7) ax[3].set_title("Segmented") for a in ax: a.axis('off') fig.tight_layout() plt.show()
gpl-3.0
khabibr/human_like_mouse_move
mouse_move.py
1
11007
#!/usr/bin/python3 # -*- coding: utf-8 -*- import sys import time import subprocess import math import random import numpy as np from scipy.misc import comb DEFAULT_MIN_SPEED = 60 # [1..100] DEFAULT_MAX_SPEED = 90 # [1..100] DEFAULT_MAX_X = 639 DEFAULT_MAX_Y = 479 DEFAULT_MIN_PAUSE = 0.5 DEFAULT_MAX_PAUSE = 4 USING_STR = ( '\nUsage:\n' '{0} [COORDINATES] [PARAMS] [KEYS]\n' '\n' 'COORDINATES: x1:y1 x2:y2 ... xM:yM\n' '\tMove cursor sequentially along the COORDINATES\n' '\tendless random movements if no COORDINATES\n' 'PARAMS: param1:val1 param2:val2 ... paramN:valN\n' '\tSet of params:\n' '\tcount - count of random movement\n' '\tmin_pause, max_pause - pause between movements (seconds)\n' '\tmin_speed, max_speed - speed of movements (1..100)\n' '\ttop_left, bottom_right - movements range (top_left:x:y or bottom_right:x:y)\n' 'KEYS:\n' '\t--debug_show_curve : Show mouse path curve (matplotlib figure)\n' '\t--autopilot : Use autopilot mouse move method (default)\n' '\t (https://developer.ubuntu.com/api/autopilot/python/1.5.0/autopilot.input)\n' '\t--xdotool : Use xdotool mouse move method\n' 'Examples:\n' '\t{0} 100:100 500:100 300:250 100:100 max_speed:50\n' '\t{0} count:10 count:10 max_pause:1 top_left:0:0 bottom_right:639:199\n' ) # MOUSE METHODS """ XDOTOOL method Linux universal tool. (medium speed. a lot of process calls). """ class xdotool(object): def get_mouse_location(self): spitted = subprocess.Popen( "xdotool getmouselocation", shell=True, stdout=subprocess.PIPE ).stdout.read().decode().split() if len(spitted) > 1 and 'x:' in spitted[0] and 'y:' in spitted[1]: x = int(spitted[0].partition(':')[2]) y = int(spitted[1].partition(':')[2]) else: x, y = 0, 0 return x, y def move_mouse(self, x_pos, y_pos, speed): subprocess.call(["xdotool", "mousemove", str( x_pos), str(y_pos)]) # ignore speed """ AUTOPILOT method https://developer.ubuntu.com/api/autopilot/python/1.5.0/autopilot.input/ (high speed, great velocity, low resource consumption). """ class autopilot(object): def __init__(self): from autopilot.input import Mouse # apt-get install python3-autopilot self.mouse = Mouse.create() def get_mouse_location(self): return self.mouse.position() def move_mouse(self, x_pos, y_pos, speed): # time_between_events [0.02 (slowest) .. 0.0001 (fastest)] self.mouse.move(x_pos, y_pos, animate=False, time_between_events=(2 - 0.02 * speed) / 99) if speed < 90: # additional random slow down time.sleep(random.uniform(0.001, 0.01)) # BEZIER CURVE def bernstein_poly(i, n, t): """ The Bernstein polynomial of n, i as a function of t """ return comb(n, i) * (t**(n - i)) * (1 - t)**i def bezier_curve(points, dots_cnt): """ Given a set of control points, return the bezier curve defined by the control points. points should be a list of lists, or list of tuples such as [ [1,1], [2,3], [4,5], ..[Xn, Yn] ] dots_cnt is the number of steps See http://processingjs.nihongoresources.com/bezierinfo/ """ nPoints = len(points) xPoints = np.array([p[0] for p in points]) yPoints = np.array([p[1] for p in points]) t = np.linspace(0.0, 1.0, dots_cnt) polynomial_array = np.array( [bernstein_poly(i, nPoints - 1, t) for i in range(0, nPoints)]) xvals = np.dot(xPoints, polynomial_array) yvals = np.dot(yPoints, polynomial_array) return xvals, yvals # HUMAN LIKE MOVE class human_like_mouse_move(object): def __init__(self, mouse_method, top_left_corner, bottom_right_corner, min_spd, max_spd, show_curve): self.mouse_method = mouse_method self.min_spd = min_spd self.max_spd = max_spd self.show_curve = show_curve self.get_resolution() if top_left_corner: self.min_x, self.min_y = top_left_corner if bottom_right_corner: self.max_x, self.max_y = bottom_right_corner def rand_coords(self): """ Infinite random coordinates generator""" while True: yield ( random.randrange(self.min_x, self.max_x), random.randrange(self.min_y, self.max_y) ) def get_resolution(self): spitted = subprocess.Popen( "xrandr | grep '*' | head -1", shell=True, stdout=subprocess.PIPE ).stdout.read().decode().split() self.min_x, self.min_y = 0, 0 if spitted and 'x' in spitted[0]: x, y = spitted[0].split('x') self.res_x, self.res_y = int(x), int(y) else: self.res_x, self.res_y = DEFAULT_MAX_X, DEFAULT_MAX_Y self.max_x, self.max_y = self.res_x, self.res_y def get_move_curve(self, d_to): d_from = self.mouse_method.get_mouse_location() x_dist = d_to[0] - d_from[0] y_dist = d_to[1] - d_from[1] dist = math.hypot(x_dist, y_dist) # first approx deviation = dist * \ random.uniform(0.1, 0.3) * \ (random.randint(0, 1) * 2 - 1) # -1 or +1 middle = ((d_from[0] + d_to[0]) / 2, (d_from[1] + d_to[1]) / 2 + deviation) points = [d_to, middle, d_from] dots_cnt = int(self.dots_per_100 * dist / (100 * 5)) if dots_cnt <= 3: dots_cnt = 4 xvals, yvals = bezier_curve(points, dots_cnt) xvals = [int(p) for p in xvals[1:-1]] yvals = yvals[1:-1] # second approx delta_y = y_dist / dots_cnt if self.show_curve: points = [d_from] rev_points = [d_to] # reveresed points if y_dist == 0: coef = 1 else: coef = abs(x_dist / y_dist) if coef > 1: coef = 1 elif coef < 0.1: coef = 0.1 for i, xval in enumerate(xvals): deviation = delta_y * coef * \ random.uniform(0.5, 5) * \ (random.randint(0, 1) * 2 - 1) # -1 or +1 if self.show_curve: points.append((xval, int(yvals[i] + deviation))) rev_points.insert(1, (xval, int(yvals[i] + deviation))) points.append(d_to) rev_points.append(d_from) if self.show_curve: xpoints = [p[0] for p in points] ypoints = [p[1] for p in points] from matplotlib import pyplot as plt ax = plt.gca() ax.set_xlim([0, self.res_x]) ax.set_ylim([0, self.res_y]) ax.invert_yaxis() # dots and text plt.plot(xpoints, ypoints, "ro") for nr in range(len(points)): plt.text(points[nr][0], points[nr][1], nr) dots_cnt = int(self.dots_per_100 * dist / (100)) xvals, yvals = bezier_curve(rev_points, dots_cnt) # rev_points if self.show_curve: plt.plot(xvals, yvals) plt.show() return xvals, yvals, dots_cnt def move_to(self, point_to): speed = random.uniform(self.min_spd, self.max_spd) # dots_per_100 comfort diapason 5 .. 25 self.dots_per_100 = round((2495 - 20 * speed) / 99) try: xvals, yvals, dots_cnt = self.get_move_curve(point_to) except TypeError: return for idx, xval in enumerate(xvals): self.mouse_method.move_mouse(xval, yvals[idx], speed) def pause_between_moves(self): time.sleep(random.uniform(min_pause, max_pause)) def signal_handler(signal, frame): print(' Cancelled...') exit(0) # MAIN if __name__ == "__main__": import signal signal.signal(signal.SIGINT, signal_handler) # Ctrl-C signal handler # parse_params move_cnt = 0 top_left_corner = None bottom_right_corner = None min_spd = DEFAULT_MIN_SPEED max_spd = DEFAULT_MAX_SPEED min_pause = DEFAULT_MIN_PAUSE max_pause = DEFAULT_MAX_PAUSE coords = [] show_curve = False use_xdotool = False if len(sys.argv) > 1: try: for arg in sys.argv[1:]: if arg == '--debug_show_curve': show_curve = True continue elif arg == '--autopilot': continue elif arg == '--xdotool': use_xdotool = True continue elif ':' not in arg: raise Exception(arg) par_name, par_val, *par_extra = arg.split(':') if par_name == 'count': move_cnt = int(par_val) elif par_name == 'min_pause': min_pause = float(par_val) if max_pause < min_pause: max_pause = min_pause elif par_name == 'max_pause': max_pause = float(par_val) if min_pause > max_pause: min_pause = max_pause elif par_name == 'min_speed': min_spd = int(par_val) if min_spd < 1: min_spd = 1 elif min_spd > 100: min_spd = 100 if max_spd < min_spd: max_spd = min_spd elif par_name == 'max_speed': max_spd = int(par_val) if max_spd < 1: max_spd = 1 elif max_spd > 100: max_spd = 100 if min_spd > max_spd: min_spd = max_spd elif par_name == 'top_left': top_left_corner = (int(par_val), int(par_extra[0])) elif par_name == 'bottom_right': bottom_right_corner = (int(par_val), int(par_extra[0])) else: # just coord coords.append((int(par_name), int(par_val))) except Exception: print(USING_STR.format(sys.argv[0])) sys.exit() if use_xdotool: method = xdotool() else: method = autopilot() human_like = human_like_mouse_move( method, top_left_corner, bottom_right_corner, min_spd, max_spd, show_curve) if not coords: coords = human_like.rand_coords() cnt = 0 for dot in coords: human_like.move_to(dot) cnt += 1 if move_cnt and move_cnt == cnt: break human_like.pause_between_moves()
mit
openfisca/openfisca-france-indirect-taxation
openfisca_france_indirect_taxation/almost_ideal_demand_system/aids_dataframe_builder_energy_no_alime.py
4
12676
# -*- coding: utf-8 -*- """ Created on Fri Feb 05 16:16:20 2016 @author: thomas.douenne """ from __future__ import division import pandas as pd import numpy as np import os import pkg_resources from openfisca_france_indirect_taxation.examples.utils_example import get_input_data_frame from openfisca_france_indirect_taxation.almost_ideal_demand_system.aids_price_index_builder import \ df_indice_prix_produit from openfisca_france_indirect_taxation.almost_ideal_demand_system.utils import \ add_area_dummy, add_stalog_dummy, add_vag_dummy, electricite_only, indices_prix_carbus, price_carbu_pond assets_directory = os.path.join( pkg_resources.get_distribution('openfisca_france_indirect_taxation').location ) # On importe la dataframe qui recense les indices de prix. Notre objectif est de construire une nouvelle dataframe avec # le reste des informations, i.e. la consommation et autres variables pertinentes concernant les ménages. # On commence par cinstruire une dataframe appelée data_conso rassemblant les informations sur les dépenses des ménages. data_frame_for_reg = None data_frame_all_years = pd.DataFrame() for year in [2011]: aggregates_data_frame = get_input_data_frame(year) # Pour estimer QAIDS, on se concentre sur les biens non-durables. # On élimine donc les biens durables de cette dataframe: 442 : redevance d'enlèvement des ordures, 711, 712, 713 : # achat de véhicules, 911, 912, 9122, 913, 9151 : technologies high-tech, 9211, 921, 923: gros équipements loisirs, # 941, 960 : voyages séjours et cadeaux, 10i0 : enseignement, 12.. : articles de soin et bijoux biens_durables = ['poste_coicop_442', 'poste_coicop_711', 'poste_coicop_712', 'poste_coicop_713', 'poste_coicop_911', 'poste_coicop_912', 'poste_coicop_9122', 'poste_coicop_913', 'poste_coicop_9151', 'poste_coicop_9211', 'poste_coicop_921', 'poste_coicop_922', 'poste_coicop_923', 'poste_coicop_960', 'poste_coicop_941', 'poste_coicop_1010', 'poste_coicop_1015', 'poste_coicop_10152', 'poste_coicop_1020', 'poste_coicop_1040', 'poste_coicop_1050', 'poste_coicop_1212', 'poste_coicop_1231', 'poste_coicop_1240', 'poste_coicop_12411', 'poste_coicop_1270'] for bien in biens_durables: try: aggregates_data_frame = aggregates_data_frame.drop(bien, axis = 1) except: aggregates_data_frame = aggregates_data_frame energie_logement = ['poste_coicop_451', 'poste_coicop_4511', 'poste_coicop_452', 'poste_coicop_4522', 'poste_coicop_453', 'poste_coicop_454', 'poste_coicop_455', 'poste_coicop_4552'] produits = [column for column in aggregates_data_frame.columns if column[:13] == 'poste_coicop_'] del column aggregates_data_frame['depenses_carbu'] = aggregates_data_frame['poste_coicop_722'] aggregates_data_frame['depenses_logem'] = 0 for logem in energie_logement: try: aggregates_data_frame['depenses_logem'] += aggregates_data_frame[logem] except: pass aggregates_data_frame['depenses_tot'] = 0 for produit in produits: if produit[13:15] != '99' and produit[13:15] != '13': aggregates_data_frame['depenses_tot'] += aggregates_data_frame[produit] aggregates_data_frame['depenses_autre'] = ( aggregates_data_frame['depenses_tot'] - aggregates_data_frame['depenses_carbu'] - aggregates_data_frame['depenses_logem']) data_conso = aggregates_data_frame[produits + ['vag', 'ident_men', 'depenses_autre', 'depenses_carbu', 'depenses_logem']].copy() # On renverse la dataframe pour obtenir une ligne pour chaque article consommé par chaque personne df = pd.melt(data_conso, id_vars = ['vag', 'ident_men'], value_vars=produits, value_name = 'depense_bien', var_name = 'bien') df_indice_prix_produit = df_indice_prix_produit[['indice_prix_produit', 'prix', 'temps', 'mois']] df['vag'] = df['vag'].astype(str) df['indice_prix_produit'] = df['bien'] + '_' + df['vag'] # On merge les prix des biens avec les dépenses déjà présentes dans df. Le merge se fait sur 'indice_prix_produit' # Indice prix produit correspond à poste_coicop_xyz_vag df_depenses_prix = pd.merge(df, df_indice_prix_produit, on = 'indice_prix_produit') # df_depenses_prix contient les dépenses de consommation et les prix associés à ces dépenses. # Il faut maintenant construire les catégories de biens que l'on souhaite comparer. df_depenses_prix['type_bien'] = 'autre' df_depenses_prix.loc[df_depenses_prix['bien'] == 'poste_coicop_722', 'type_bien'] = 'carbu' for logem in energie_logement: df_depenses_prix.loc[df_depenses_prix['bien'] == logem, 'type_bien'] = 'logem' del logem, produit # Construire les indices de prix pondérés pour les deux catégories df_depenses_prix[['type_bien', 'ident_men']] = df_depenses_prix[['type_bien', 'ident_men']].astype(str) df_depenses_prix['id'] = df_depenses_prix['type_bien'] + '_' + df_depenses_prix['ident_men'] data_conso['ident_men'] = data_conso['ident_men'].astype(str) df_depenses_prix = pd.merge( df_depenses_prix, data_conso[['depenses_autre', 'depenses_carbu', 'depenses_logem', 'ident_men']], on = 'ident_men') del data_conso df_depenses_prix[['depenses_autre', 'depense_bien', 'depenses_carbu', 'depenses_logem', 'prix']] = \ df_depenses_prix[['depenses_autre', 'depense_bien', 'depenses_carbu', 'depenses_logem', 'prix']].astype(float) df_depenses_prix['part_bien_categorie'] = 0 df_depenses_prix.loc[df_depenses_prix['type_bien'] == 'autre', 'part_bien_categorie'] = \ df_depenses_prix['depense_bien'] / df_depenses_prix['depenses_autre'] df_depenses_prix.loc[df_depenses_prix['type_bien'] == 'carbu', 'part_bien_categorie'] = \ df_depenses_prix['depense_bien'] / df_depenses_prix['depenses_carbu'] df_depenses_prix.loc[df_depenses_prix['type_bien'] == 'logem', 'part_bien_categorie'] = \ df_depenses_prix['depense_bien'] / df_depenses_prix['depenses_logem'] df_depenses_prix.fillna(0, inplace=True) # Les parts des biens dans leur catégorie permettent de construire des indices de prix pondérés (Cf. Lewbel) df_depenses_prix['indice_prix_pondere'] = 0 df_depenses_prix['indice_prix_pondere'] = df_depenses_prix['part_bien_categorie'] * df_depenses_prix['prix'] # grouped donne l'indice de prix pondéré pour chacune des deux catégories pour chaque individu # On met cette dataframe en forme pour avoir pour chaque individu l'indice de prix pour chaque catégorie # Cela donne df_prix_to_merge df_depenses_prix.sort_values(by = ['id']) grouped = df_depenses_prix['indice_prix_pondere'].groupby(df_depenses_prix['id']) assert len(grouped) == 3 * len(aggregates_data_frame), 'There is an issue in the aggregation of prices' grouped = grouped.aggregate(np.sum) grouped.index.name = 'id' grouped = grouped.reset_index() grouped['categorie'] = grouped['id'].str[:5] categories = ['autre', 'carbu', 'logem'] for categorie in categories: grouped['prix_' + categorie] = 0 grouped.loc[grouped['categorie'] == categorie, 'prix_' + categorie] = grouped['indice_prix_pondere'] grouped_autre = grouped[grouped['categorie'] == 'autre'].copy() grouped_autre['ident_men'] = grouped_autre['id'].str[6:] grouped_carbu = grouped[grouped['categorie'] == 'carbu'].copy() grouped_carbu['ident_men'] = grouped_carbu['id'].str[6:] grouped_logem = grouped[grouped['categorie'] == 'logem'].copy() grouped_logem['ident_men'] = grouped_logem['id'].str[6:] df_prix_to_merge = pd.merge(grouped_carbu[['ident_men', 'prix_carbu']], grouped_autre[['ident_men', 'prix_autre']], on = 'ident_men') df_prix_to_merge = pd.merge(df_prix_to_merge, grouped_logem[['ident_men', 'prix_logem']], on = 'ident_men') del grouped, grouped_autre, grouped_carbu, grouped_logem # Problème: ceux qui ne consomment pas de carbu ou d'alimentaire se voient affecter un indice de prix égal à 0. Ils # sont traités plus bas. # On crée une variable dummy pour savoir si le ménage ne consomme que de l'électricité ou aussi du gaz. # Si seulement électricité, elle est égale à 1. aggregates_data_frame = electricite_only(aggregates_data_frame) # On récupère les informations importantes sur les ménages, dont les variables démographiques df_info_menage = aggregates_data_frame[['agepr', 'depenses_autre', 'depenses_carbu', 'depenses_logem', 'depenses_tot', 'dip14pr', 'elect_only', 'ident_men', 'nenfants', 'nactifs', 'ocde10', 'revtot', 'situacj', 'situapr', 'stalog', 'strate', 'typmen', 'vag', 'veh_diesel', 'veh_essence']].copy() df_info_menage.index.name = 'ident_men' df_info_menage.reset_index(inplace = True) df_info_menage['ident_men'] = df_info_menage['ident_men'].astype(str) df_info_menage['part_autre'] = df_info_menage['depenses_autre'] / df_info_menage['depenses_tot'] df_info_menage['part_carbu'] = df_info_menage['depenses_carbu'] / df_info_menage['depenses_tot'] df_info_menage['part_logem'] = df_info_menage['depenses_logem'] / df_info_menage['depenses_tot'] # On merge les informations sur les caractéristiques du ménage et leurs consommations avec les indices de prix # pondérés pour les deux catégories dataframe = pd.merge(df_info_menage, df_prix_to_merge, on = 'ident_men') del df_info_menage, df_prix_to_merge # Pour ceux qui ne consomment pas de carburants, on leur associe le prix correspondant à leur vague d'enquête price_carbu = df_indice_prix_produit[df_indice_prix_produit['indice_prix_produit'].str[13:16] == '722'].copy() price_carbu['vag'] = price_carbu['indice_prix_produit'].str[17:].astype(int) price_carbu = price_carbu[['vag', 'prix']] price_carbu['prix'] = price_carbu['prix'].astype(float) dataframe = pd.merge(dataframe, price_carbu, on = 'vag') del price_carbu dataframe.loc[dataframe['prix_carbu'] == 0, 'prix_carbu'] = dataframe['prix'] dataframe['depenses_par_uc'] = dataframe['depenses_tot'] / dataframe['ocde10'] dataframe = dataframe[['ident_men', 'part_carbu', 'part_logem', 'part_autre', 'prix_carbu', 'prix_logem', 'prix_autre', 'depenses_par_uc', 'depenses_tot', 'typmen', 'strate', 'dip14pr', 'agepr', 'situapr', 'situacj', 'stalog', 'nenfants', 'nactifs', 'vag', 'veh_diesel', 'veh_essence', 'elect_only']] # On supprime de la base de données les individus pour lesquels on ne dispose d'aucune consommation alimentaire. # Leur présence est susceptible de biaiser l'analyse puisque de toute évidence s'ils ne dépensent rien pour la # nourriture ce n'est pas qu'ils n'en consomment pas, mais qu'ils n'en ont pas acheté sur la période (réserves, etc) dataframe = dataframe[dataframe['prix_logem'] != 0] # On enlève les outliers, que l'on considère comme les individus dépensant plus de 25% de leur budget en carburants # Cela correspond à 16 et 13 personnes pour 2000 et 2005 ce qui est négligeable, mais 153 i.e. 2% des consommateurs # pour 2011 ce qui est assez important. Cette différence s'explique par la durée des enquêtes (1 semaine en 2011) dataframe = dataframe[dataframe['part_carbu'] < 0.25] indices_prix_carburants = indices_prix_carbus(year) dataframe = pd.merge(dataframe, indices_prix_carburants, on = 'vag') dataframe = price_carbu_pond(dataframe) dataframe = add_area_dummy(dataframe) dataframe = add_stalog_dummy(dataframe) dataframe = add_vag_dummy(dataframe) data_frame_for_reg = dataframe.rename(columns = {'part_carbu': 'w1', 'part_logem': 'w2', 'part_autre': 'w3', 'prix_carbu': 'p1', 'prix_logem': 'p2', 'prix_autre': 'p3'}) data_frame_all_years = pd.concat([data_frame_all_years, data_frame_for_reg]) data_frame_all_years.fillna(0, inplace = True) data_frame_for_reg.to_csv(os.path.join(assets_directory, 'openfisca_france_indirect_taxation', 'assets', 'quaids', 'data_frame_energy_no_alime_{}.csv'.format(year)), sep = ',') data_frame_all_years.to_csv(os.path.join(assets_directory, 'openfisca_france_indirect_taxation', 'assets', 'quaids', 'data_frame_energy_no_alime_all_years.csv'), sep = ',') # Must correct what is useless, improve demographics : dip14 # dip14 : use only dip14pr (good proxy for dip14cj anyway), but change the nomenclature to have just 2 or 3 dummies # describing whether they attended college or not, etc. # Use more functions in utils
agpl-3.0
kabrapratik28/Stanford_courses
cs20si/tf-stanford-tutorials/examples/autoencoder/utils.py
5
1267
import os import sys import tensorflow import numpy as np import matplotlib matplotlib.use('TKAgg') from matplotlib import pyplot as plt from tensorflow.examples.tutorials.mnist import input_data mnist_image_shape = [28, 28, 1] def load_dataset(): return input_data.read_data_sets('MNIST_data') def get_next_batch(dataset, batch_size): # dataset should be mnist.(train/val/test) batch, _ = dataset.next_batch(batch_size) batch_shape = [batch_size] + mnist_image_shape return np.reshape(batch, batch_shape) def visualize(_original, _reconstructions, num_visualize): vis_folder = './vis/' if not os.path.exists(vis_folder): os.makedirs(vis_folder) original = _original[:num_visualize] reconstructions = _reconstructions[:num_visualize] count = 1 for (orig, rec) in zip(original, reconstructions): orig = np.reshape(orig, (mnist_image_shape[0], mnist_image_shape[1])) rec = np.reshape(rec, (mnist_image_shape[0], mnist_image_shape[1])) f, ax = plt.subplots(1,2) ax[0].imshow(orig, cmap='gray') ax[1].imshow(rec, cmap='gray') plt.savefig(vis_folder + "test_%d.png" % count) count += 1
apache-2.0
antgonza/qiime
tests/test_plot_taxa_summary.py
15
16573
#!/usr/bin/env python # file test_plot_taxa_summary.py __author__ = "Jesse Stombaugh" __copyright__ = "Copyright 2011, The QIIME Project" # consider project name __credits__ = ["Jesse Stombaugh", "Julia Goodrich"] # remember to add yourself __license__ = "GPL" __version__ = "1.9.1-dev" __maintainer__ = "Jesse Stombaugh" __email__ = "[email protected]" import matplotlib from matplotlib import use use('Agg', warn=False) from numpy import array from os.path import exists from StringIO import StringIO from unittest import TestCase, main from os import remove, mkdir, removedirs, listdir from qiime.plot_taxa_summary import (make_pie_chart, make_img_name, get_counts, write_html_file, make_HTML_table, get_fracs, make_all_charts, make_area_bar_chart, make_legend, DATA_HTML) class TopLevelTests(TestCase): """Tests of top-level functions""" def setUp(self): """define some top-level data""" self.props = {"title": "Class: from 3 categories"} self.prefs = {'1': {'column': '1'}} self.counts1 = [( 1, "a;b;c", "a<br>b<br>c"), (3, "d;e;f", "d<br>e<br>f"), (4, "a;g;h", "a<br>g<br>h"), (2, "d;e;i", "d<br>e<br>i")] self.sample_ids = ['14FC041', '14FC042', '14FC043', '14FC044'] self.taxa = ["a;b;c", "d;e;i", "d;e;f", "a;g;h"] self.lines_parsed = (['14FC041', '14FC042', '14FC043', '14FC044'], ['a;b;c', 'd;e;f', 'a;g;h', "d;e;i"], [['0.1', '0.3', '0.2'], ['0', '0.2', '0.1'], ['0.4', '0', '0.3'], ['0.5', '0', '0.1']]) self.fracs = [("a;b;c", 1.0 / 10), ("d;e;f", 3.0 / 10), ("a;g;h", 4.0 / 10), ("d;e;i", 2.0 / 10)] self.colors = ['#0000ff', '#00ff00', '#ff0000', '#00ffff'] self.area_fracs = [[0.1, 0.3, 0.2], [0.0, 0.2, 0.1], [0.4, 0.0, 0.3], [0.5, 0.0, 0.1]] self.color_prefs = { "a;b;c": 'blue1', "d;e;i": 'red1', "d;e;f": 'blue2', "a;g;h": 'red2'} self.dpi = 80 self.plot_width = 12 self.plot_height = 6 self.bar_width = 1 self.generate_image_type = 'pdf' self._paths_to_clean_up = [] self._dirs_to_clean_up = [] self.dir_path = "/tmp/qiimewebfiles/" # make the webfile directory try: mkdir(self.dir_path) except OSError: pass # make the charts directory try: mkdir("/tmp/qiimewebfiles/charts") except OSError: pass # define directory to clean up self._dirs_to_clean_up = ["/tmp/qiimewebfiles/charts"] def tearDown(self): map(remove, self._paths_to_clean_up) map(removedirs, self._dirs_to_clean_up) def test_make_legend(self): """make_legend create a legend image given an array of ids and colors""" fpath = '/tmp/qiimewebfiles/area.pdf' filename1 = '/tmp/qiimewebfiles/area_legend.pdf' obs = make_legend(self.sample_ids, self.colors, self.plot_width, self.plot_height, 'black', 'white', fpath, self.generate_image_type, self.dpi) self.assertTrue(exists(filename1), 'The png file was not created in \ the appropriate location') self._paths_to_clean_up = [filename1] def test_get_counts(self): """get_counts should gets all the counts for an input file""" # test the pie charts img_data = get_counts("Phylum", ['14FC041', '14FC042', '14FC043'], 5, "/tmp/qiimewebfiles/", 1, self.lines_parsed, self.prefs, self.color_prefs, 'black', 'white', 'pie', self.generate_image_type, self.plot_width, self.plot_height, self.bar_width, self.dpi, 'file.txt', 0, 'categorical', False) self.assertEqual(len(img_data), 8) # test the area charts img_data = get_counts("Phylum", ['14FC041', '14FC042', '14FC043'], 5, "/tmp/qiimewebfiles/", 1, self.lines_parsed, self.prefs, self.color_prefs, 'black', 'white', 'area', self.generate_image_type, self.plot_width, self.plot_height, self.bar_width, self.dpi, 'file.txt', 0, 'categorical', False) self.assertEqual(len(img_data), 2) # test the area charts img_data = get_counts("Phylum", ['14FC041', '14FC042', '14FC043'], 5, "/tmp/qiimewebfiles/", 1, self.lines_parsed, self.prefs, self.color_prefs, 'black', 'white', 'bar', self.generate_image_type, self.plot_width, self.plot_height, self.bar_width, self.dpi, 'file.txt', 0, 'categorical', False) self.assertEqual(len(img_data), 2) # clean up files generated self._paths_to_clean_up = ["/tmp/qiimewebfiles/charts/" + f for f in listdir("/tmp/qiimewebfiles/charts")] def test_get_fracs(self): """"get_fracs should Return fractions for matplotlib chart""" # test the pie charts exp_all_counts = [DATA_HTML % ( (4.0 / 10) * 100.0, 'a<br>g', 'h', 'h', "a;g;h"), DATA_HTML % ( (3.0 / 10) * 100, 'd<br>e', 'f', 'f', "d;e;f"), DATA_HTML % ( (2.0 / 10) * 100, 'd<br>e', 'i', 'i', "d;e;i"), DATA_HTML % ((1.0 / 10) * 100, 'a<br>b', 'c', 'c', "a;b;c")] fracs_labels_other, fracs_labels, all_counts, other_cat, red, other_frac \ = get_fracs(self.counts1, 5, 10, 'pie') self.assertEqual( fracs_labels_other, [("a;b;c", 1.0 / 10), ("a;g;h", 4.0 / 10), ("d;e;f", 3.0 / 10), ("d;e;i", 2.0 / 10)]) self.assertEqual(fracs_labels, []) self.assertEqual(all_counts, exp_all_counts) self.assertEqual(other_cat, 0) self.assertEqual(red, 10) self.assertEqual(other_frac, 0) fracs_labels_other, fracs_labels, all_counts, other_cat, red, other_frac \ = get_fracs(self.counts1, 3, 10, 'pie') self.assertEqual( fracs_labels_other, [("a;g;h", 4.0 / 10), ("d;e;f", 3.0 / 10)]) self.assertEqual( fracs_labels, [("a;g;h", 4.0 / 7), ("d;e;f", 3.0 / 7)]) self.assertEqual(all_counts, exp_all_counts) self.assertEqual(other_cat, 2) self.assertEqual(red, 7) self.assertEqual(other_frac, 3.0 / 10) # test the area charts exp_all_counts = ['4', '3', '2', '1'] fracs_labels_other, fracs_labels, all_counts, other_cat, red, other_frac \ = get_fracs(self.counts1, 5, 10, 'area') self.assertEqual( fracs_labels_other, [("a;b;c", 1.0 / 10), ("a;g;h", 4.0 / 10), ("d;e;f", 3.0 / 10), ("d;e;i", 2.0 / 10)]) self.assertEqual(fracs_labels, []) self.assertEqual(all_counts, exp_all_counts) self.assertEqual(other_cat, 0) self.assertEqual(red, 10) self.assertEqual(other_frac, 0) fracs_labels_other, fracs_labels, all_counts, other_cat, red, other_frac \ = get_fracs(self.counts1, 3, 10, 'area') self.assertEqual( fracs_labels_other, [("a;g;h", 4.0 / 10), ("d;e;f", 3.0 / 10), ('d;e;i', 2.0 / 10)]) self.assertEqual( fracs_labels, [("a;g;h", 8.0 / 18), ("d;e;f", 6.0 / 18)]) self.assertEqual(all_counts, exp_all_counts) self.assertEqual(other_cat, 2) self.assertEqual(red, 9) self.assertEqual(other_frac, 3.0 / 10) # test bar charts exp_all_counts = ['4', '3', '2', '1'] fracs_labels_other, fracs_labels, all_counts, other_cat, red, other_frac \ = get_fracs(self.counts1, 5, 10, 'bar') self.assertEqual( fracs_labels_other, [("a;b;c", 1.0 / 10), ("a;g;h", 4.0 / 10), ("d;e;f", 3.0 / 10), ("d;e;i", 2.0 / 10)]) self.assertEqual(fracs_labels, []) self.assertEqual(all_counts, exp_all_counts) self.assertEqual(other_cat, 0) self.assertEqual(red, 10) self.assertEqual(other_frac, 0) fracs_labels_other, fracs_labels, all_counts, other_cat, red, other_frac \ = get_fracs(self.counts1, 3, 10, 'bar') self.assertEqual( fracs_labels_other, [("a;g;h", 4.0 / 10), ("d;e;f", 3.0 / 10), ('d;e;i', 2.0 / 10)]) self.assertEqual( fracs_labels, [("a;g;h", 8.0 / 18), ("d;e;f", 6.0 / 18)]) self.assertEqual(all_counts, exp_all_counts) self.assertEqual(other_cat, 2) self.assertEqual(red, 9) self.assertEqual(other_frac, 3.0 / 10) self._paths_to_clean_up = ["/tmp/qiimewebfiles/charts/" + f for f in listdir("/tmp/qiimewebfiles/charts")] def test_make_HTML_table(self): """make_HTML_table should Make HTML tables for one set charts""" # test pie charts fracs_labels_other, fracs_labels, all_counts, other_cat, red, other_frac = \ get_fracs(self.counts1, 5, 10, 'pie') img_data = make_HTML_table("Phylum", other_frac, 10, red, other_cat, fracs_labels_other, fracs_labels, self.dir_path, all_counts, 1, self.prefs, self.color_prefs, 'black', 'white', 'pie', 'Test1', self.generate_image_type, self.plot_width, self.plot_height, self.bar_width, self.dpi, 0, 'categorical', False) self.assertEqual(len(img_data), 2) # test area charts fracs_labels_other, fracs_labels, all_counts, other_cat, red, other_frac = \ get_fracs(self.counts1, 5, 10, 'area') img_data = make_HTML_table("Phylum", other_frac, 10, red, other_cat, fracs_labels_other, fracs_labels, self.dir_path, all_counts, 1, self.prefs, self.color_prefs, 'black', 'white', 'pie', 'Test1', self.generate_image_type, self.plot_width, self.plot_height, self.bar_width, self.dpi, 0, 'categorical', False) self.assertEqual(len(img_data), 2) # test bar charts fracs_labels_other, fracs_labels, all_counts, other_cat, red, other_frac = \ get_fracs(self.counts1, 5, 10, 'bar') img_data = make_HTML_table("Phylum", other_frac, 10, red, other_cat, fracs_labels_other, fracs_labels, self.dir_path, all_counts, 1, self.prefs, self.color_prefs, 'black', 'white', 'pie', 'Test1', self.generate_image_type, self.plot_width, self.plot_height, self.bar_width, self.dpi, 0, 'categorical', False) self.assertEqual(len(img_data), 2) self._paths_to_clean_up = ["/tmp/qiimewebfiles/charts/" + f for f in listdir("/tmp/qiimewebfiles/charts")] def test_make_pie_chart(self): """make_pie_chart should create HTML source and pdfs for pie_charts""" filename1 = '/tmp/qiimewebfiles/charts/pie_chart.png' filename2 = '/tmp/qiimewebfiles/charts/pie_chart_legend.pdf' filename3 = '/tmp/qiimewebfiles/charts/pie_chart.pdf' obs1, obs2, obs3, obs4 = make_pie_chart(self.fracs, self.dir_path, 1, self.prefs, self.color_prefs, "black", "white", self.generate_image_type, self.plot_width, self.plot_height, self.bar_width, self.dpi, False, file_prefix="pie_chart", props=self.props) self.assertTrue(exists(filename1), 'The png file was not created in \ the appropriate location') self.assertTrue(exists(filename2), 'The eps file was not created in \ the appropriate location') self.assertTrue(exists(filename3), 'The pdf file was not created in \ the appropriate location') self._paths_to_clean_up = ["/tmp/qiimewebfiles/charts/" + f for f in listdir("/tmp/qiimewebfiles/charts")] def test_make_area_bar_chart(self): """make_area_bar_chart should create HTML source and pdfs for area and bar charts""" # following is a list of files being generated filename1 = '/tmp/qiimewebfiles/charts/area_chart.png' filename2 = '/tmp/qiimewebfiles/charts/area_chart_legend.pdf' filename3 = '/tmp/qiimewebfiles/charts/area_chart.pdf' filename4 = '/tmp/qiimewebfiles/charts/bar_chart.png' filename5 = '/tmp/qiimewebfiles/charts/bar_chart_legend.pdf' filename6 = '/tmp/qiimewebfiles/charts/bar_chart.pdf' # test area chart obs1, obs2, obs3, obs4 = make_area_bar_chart(self.sample_ids, self.area_fracs, self.taxa, self.dir_path, 1, self.prefs, self.color_prefs, "black", "white", "area", self.generate_image_type, self.plot_width, self.plot_height, self.bar_width, self.dpi, 0, 'categorical', False, "area_chart") self.assertTrue(exists(filename1), 'The png file was not created in \ the appropriate location') self.assertTrue(exists(filename2), 'The eps file was not created in \ the appropriate location') self.assertTrue(exists(filename3), 'The pdf file was not created in \ the appropriate location') # test bar chart obs1, obs2, obs3, obs4 = make_area_bar_chart(self.sample_ids, self.area_fracs, self.taxa, self.dir_path, 1, self.prefs, self.color_prefs, "black", "white", "bar", self.generate_image_type, self.plot_width, self.plot_height, self.bar_width, self.dpi, 0, 'categorical', False, "bar_chart", self.props) self.assertTrue(exists(filename4), 'The png file was not created in \ the appropriate location') self.assertTrue(exists(filename5), 'The eps file was not created in \ the appropriate location') self.assertTrue(exists(filename6), 'The pdf file was not created in \ the appropriate location') self._paths_to_clean_up = ["/tmp/qiimewebfiles/charts/" + f for f in listdir("/tmp/qiimewebfiles/charts")] def test_write_html_file(self): "Write html and make sure it gets cleaned up""" filename1 = '/tmp/test.html' self._paths_to_clean_up = [filename1] write_html_file('Test', '/tmp/test.html') self.assertTrue(exists(filename1), 'The file was not created in \ the appropriate location') self._paths_to_clean_up = [filename1] # run tests if called from command line if __name__ == "__main__": main()
gpl-2.0
louispotok/pandas
pandas/util/_validators.py
4
13041
""" Module that contains many useful utilities for validating data or function arguments """ import warnings from pandas.core.dtypes.common import is_bool def _check_arg_length(fname, args, max_fname_arg_count, compat_args): """ Checks whether 'args' has length of at most 'compat_args'. Raises a TypeError if that is not the case, similar to in Python when a function is called with too many arguments. """ if max_fname_arg_count < 0: raise ValueError("'max_fname_arg_count' must be non-negative") if len(args) > len(compat_args): max_arg_count = len(compat_args) + max_fname_arg_count actual_arg_count = len(args) + max_fname_arg_count argument = 'argument' if max_arg_count == 1 else 'arguments' raise TypeError( "{fname}() takes at most {max_arg} {argument} " "({given_arg} given)".format( fname=fname, max_arg=max_arg_count, argument=argument, given_arg=actual_arg_count)) def _check_for_default_values(fname, arg_val_dict, compat_args): """ Check that the keys in `arg_val_dict` are mapped to their default values as specified in `compat_args`. Note that this function is to be called only when it has been checked that arg_val_dict.keys() is a subset of compat_args """ for key in arg_val_dict: # try checking equality directly with '=' operator, # as comparison may have been overridden for the left # hand object try: v1 = arg_val_dict[key] v2 = compat_args[key] # check for None-ness otherwise we could end up # comparing a numpy array vs None if (v1 is not None and v2 is None) or \ (v1 is None and v2 is not None): match = False else: match = (v1 == v2) if not is_bool(match): raise ValueError("'match' is not a boolean") # could not compare them directly, so try comparison # using the 'is' operator except: match = (arg_val_dict[key] is compat_args[key]) if not match: raise ValueError(("the '{arg}' parameter is not " "supported in the pandas " "implementation of {fname}()". format(fname=fname, arg=key))) def validate_args(fname, args, max_fname_arg_count, compat_args): """ Checks whether the length of the `*args` argument passed into a function has at most `len(compat_args)` arguments and whether or not all of these elements in `args` are set to their default values. fname: str The name of the function being passed the `*args` parameter args: tuple The `*args` parameter passed into a function max_fname_arg_count: int The maximum number of arguments that the function `fname` can accept, excluding those in `args`. Used for displaying appropriate error messages. Must be non-negative. compat_args: OrderedDict A ordered dictionary of keys and their associated default values. In order to accommodate buggy behaviour in some versions of `numpy`, where a signature displayed keyword arguments but then passed those arguments **positionally** internally when calling downstream implementations, an ordered dictionary ensures that the original order of the keyword arguments is enforced. Note that if there is only one key, a generic dict can be passed in as well. Raises ------ TypeError if `args` contains more values than there are `compat_args` ValueError if `args` contains values that do not correspond to those of the default values specified in `compat_args` """ _check_arg_length(fname, args, max_fname_arg_count, compat_args) # We do this so that we can provide a more informative # error message about the parameters that we are not # supporting in the pandas implementation of 'fname' kwargs = dict(zip(compat_args, args)) _check_for_default_values(fname, kwargs, compat_args) def _check_for_invalid_keys(fname, kwargs, compat_args): """ Checks whether 'kwargs' contains any keys that are not in 'compat_args' and raises a TypeError if there is one. """ # set(dict) --> set of the dictionary's keys diff = set(kwargs) - set(compat_args) if diff: bad_arg = list(diff)[0] raise TypeError(("{fname}() got an unexpected " "keyword argument '{arg}'". format(fname=fname, arg=bad_arg))) def validate_kwargs(fname, kwargs, compat_args): """ Checks whether parameters passed to the **kwargs argument in a function `fname` are valid parameters as specified in `*compat_args` and whether or not they are set to their default values. Parameters ---------- fname: str The name of the function being passed the `**kwargs` parameter kwargs: dict The `**kwargs` parameter passed into `fname` compat_args: dict A dictionary of keys that `kwargs` is allowed to have and their associated default values Raises ------ TypeError if `kwargs` contains keys not in `compat_args` ValueError if `kwargs` contains keys in `compat_args` that do not map to the default values specified in `compat_args` """ kwds = kwargs.copy() _check_for_invalid_keys(fname, kwargs, compat_args) _check_for_default_values(fname, kwds, compat_args) def validate_args_and_kwargs(fname, args, kwargs, max_fname_arg_count, compat_args): """ Checks whether parameters passed to the *args and **kwargs argument in a function `fname` are valid parameters as specified in `*compat_args` and whether or not they are set to their default values. Parameters ---------- fname: str The name of the function being passed the `**kwargs` parameter args: tuple The `*args` parameter passed into a function kwargs: dict The `**kwargs` parameter passed into `fname` max_fname_arg_count: int The minimum number of arguments that the function `fname` requires, excluding those in `args`. Used for displaying appropriate error messages. Must be non-negative. compat_args: OrderedDict A ordered dictionary of keys that `kwargs` is allowed to have and their associated default values. Note that if there is only one key, a generic dict can be passed in as well. Raises ------ TypeError if `args` contains more values than there are `compat_args` OR `kwargs` contains keys not in `compat_args` ValueError if `args` contains values not at the default value (`None`) `kwargs` contains keys in `compat_args` that do not map to the default value as specified in `compat_args` See Also -------- validate_args : purely args validation validate_kwargs : purely kwargs validation """ # Check that the total number of arguments passed in (i.e. # args and kwargs) does not exceed the length of compat_args _check_arg_length(fname, args + tuple(kwargs.values()), max_fname_arg_count, compat_args) # Check there is no overlap with the positional and keyword # arguments, similar to what is done in actual Python functions args_dict = dict(zip(compat_args, args)) for key in args_dict: if key in kwargs: raise TypeError("{fname}() got multiple values for keyword " "argument '{arg}'".format(fname=fname, arg=key)) kwargs.update(args_dict) validate_kwargs(fname, kwargs, compat_args) def validate_bool_kwarg(value, arg_name): """ Ensures that argument passed in arg_name is of type bool. """ if not (is_bool(value) or value is None): raise ValueError('For argument "{arg}" expected type bool, received ' 'type {typ}.'.format(arg=arg_name, typ=type(value).__name__)) return value def validate_axis_style_args(data, args, kwargs, arg_name, method_name): """Argument handler for mixed index, columns / axis functions In an attempt to handle both `.method(index, columns)`, and `.method(arg, axis=.)`, we have to do some bad things to argument parsing. This translates all arguments to `{index=., columns=.}` style. Parameters ---------- data : DataFrame or Panel arg : tuple All positional arguments from the user kwargs : dict All keyword arguments from the user arg_name, method_name : str Used for better error messages Returns ------- kwargs : dict A dictionary of keyword arguments. Doesn't modify ``kwargs`` inplace, so update them with the return value here. Examples -------- >>> df._validate_axis_style_args((str.upper,), {'columns': id}, ... 'mapper', 'rename') {'columns': <function id>, 'index': <method 'upper' of 'str' objects>} This emits a warning >>> df._validate_axis_style_args((str.upper, id), {}, ... 'mapper', 'rename') {'columns': <function id>, 'index': <method 'upper' of 'str' objects>} """ # TODO(PY3): Change to keyword-only args and remove all this out = {} # Goal: fill 'out' with index/columns-style arguments # like out = {'index': foo, 'columns': bar} # Start by validating for consistency if 'axis' in kwargs and any(x in kwargs for x in data._AXIS_NUMBERS): msg = "Cannot specify both 'axis' and any of 'index' or 'columns'." raise TypeError(msg) # First fill with explicit values provided by the user... if arg_name in kwargs: if args: msg = ("{} got multiple values for argument " "'{}'".format(method_name, arg_name)) raise TypeError(msg) axis = data._get_axis_name(kwargs.get('axis', 0)) out[axis] = kwargs[arg_name] # More user-provided arguments, now from kwargs for k, v in kwargs.items(): try: ax = data._get_axis_name(k) except ValueError: pass else: out[ax] = v # All user-provided kwargs have been handled now. # Now we supplement with positional arguments, emitting warnings # when there's ambiguity and raising when there's conflicts if len(args) == 0: pass # It's up to the function to decide if this is valid elif len(args) == 1: axis = data._get_axis_name(kwargs.get('axis', 0)) out[axis] = args[0] elif len(args) == 2: if 'axis' in kwargs: # Unambiguously wrong msg = ("Cannot specify both 'axis' and any of 'index' " "or 'columns'") raise TypeError(msg) msg = ("Interpreting call\n\t'.{method_name}(a, b)' as " "\n\t'.{method_name}(index=a, columns=b)'.\nUse named " "arguments to remove any ambiguity. In the future, using " "positional arguments for 'index' or 'columns' will raise " " a 'TypeError'.") warnings.warn(msg.format(method_name=method_name,), FutureWarning, stacklevel=4) out[data._AXIS_NAMES[0]] = args[0] out[data._AXIS_NAMES[1]] = args[1] else: msg = "Cannot specify all of '{}', 'index', 'columns'." raise TypeError(msg.format(arg_name)) return out def validate_fillna_kwargs(value, method, validate_scalar_dict_value=True): """Validate the keyword arguments to 'fillna'. This checks that exactly one of 'value' and 'method' is specified. If 'method' is specified, this validates that it's a valid method. Parameters ---------- value, method : object The 'value' and 'method' keyword arguments for 'fillna'. validate_scalar_dict_value : bool, default True Whether to validate that 'value' is a scalar or dict. Specifically, validate that it is not a list or tuple. Returns ------- value, method : object """ from pandas.core.missing import clean_fill_method if value is None and method is None: raise ValueError("Must specify a fill 'value' or 'method'.") elif value is None and method is not None: method = clean_fill_method(method) elif value is not None and method is None: if validate_scalar_dict_value and isinstance(value, (list, tuple)): raise TypeError('"value" parameter must be a scalar or dict, but ' 'you passed a "{0}"'.format(type(value).__name__)) elif value is not None and method is not None: raise ValueError("Cannot specify both 'value' and 'method'.") return value, method
bsd-3-clause
kenshay/ImageScripter
ProgramData/SystemFiles/Python/Lib/site-packages/pandas/core/common.py
7
15175
""" Misc tools for implementing data structures """ import sys import warnings from datetime import datetime, timedelta from functools import partial import numpy as np import pandas.lib as lib import pandas.tslib as tslib from pandas import compat from pandas.compat import long, zip, iteritems from pandas.core.config import get_option from pandas.types.generic import ABCSeries from pandas.types.common import _NS_DTYPE from pandas.types.inference import _iterable_not_string from pandas.types.missing import isnull from pandas.api import types from pandas.types import common # back-compat of public API # deprecate these functions m = sys.modules['pandas.core.common'] for t in [t for t in dir(types) if not t.startswith('_')]: def outer(t=t): def wrapper(*args, **kwargs): warnings.warn("pandas.core.common.{t} is deprecated. " "import from the public API: " "pandas.api.types.{t} instead".format(t=t), DeprecationWarning, stacklevel=3) return getattr(types, t)(*args, **kwargs) return wrapper setattr(m, t, outer(t)) # back-compat for non-public functions # deprecate these functions for t in ['is_datetime_arraylike', 'is_datetime_or_timedelta_dtype', 'is_datetimelike', 'is_datetimelike_v_numeric', 'is_datetimelike_v_object', 'is_datetimetz', 'is_int_or_datetime_dtype', 'is_period_arraylike', 'is_string_like', 'is_string_like_dtype']: def outer(t=t): def wrapper(*args, **kwargs): warnings.warn("pandas.core.common.{t} is deprecated. " "These are not longer public API functions, " "but can be imported from " "pandas.types.common.{t} instead".format(t=t), DeprecationWarning, stacklevel=3) return getattr(common, t)(*args, **kwargs) return wrapper setattr(m, t, outer(t)) # deprecate array_equivalent def array_equivalent(*args, **kwargs): warnings.warn("'pandas.core.common.array_equivalent' is deprecated and " "is no longer public API", DeprecationWarning, stacklevel=2) from pandas.types import missing return missing.array_equivalent(*args, **kwargs) class PandasError(Exception): pass class PerformanceWarning(Warning): pass class SettingWithCopyError(ValueError): pass class SettingWithCopyWarning(Warning): pass class AmbiguousIndexError(PandasError, KeyError): pass class UnsupportedFunctionCall(ValueError): pass class AbstractMethodError(NotImplementedError): """Raise this error instead of NotImplementedError for abstract methods while keeping compatibility with Python 2 and Python 3. """ def __init__(self, class_instance): self.class_instance = class_instance def __str__(self): return ("This method must be defined in the concrete class of %s" % self.class_instance.__class__.__name__) def flatten(l): """Flatten an arbitrarily nested sequence. Parameters ---------- l : sequence The non string sequence to flatten Notes ----- This doesn't consider strings sequences. Returns ------- flattened : generator """ for el in l: if _iterable_not_string(el): for s in flatten(el): yield s else: yield el def _consensus_name_attr(objs): name = objs[0].name for obj in objs[1:]: if obj.name != name: return None return name def _maybe_match_name(a, b): a_has = hasattr(a, 'name') b_has = hasattr(b, 'name') if a_has and b_has: if a.name == b.name: return a.name else: return None elif a_has: return a.name elif b_has: return b.name return None def _get_info_slice(obj, indexer): """Slice the info axis of `obj` with `indexer`.""" if not hasattr(obj, '_info_axis_number'): raise TypeError('object of type %r has no info axis' % type(obj).__name__) slices = [slice(None)] * obj.ndim slices[obj._info_axis_number] = indexer return tuple(slices) def _maybe_box(indexer, values, obj, key): # if we have multiples coming back, box em if isinstance(values, np.ndarray): return obj[indexer.get_loc(key)] # return the value return values def _maybe_box_datetimelike(value): # turn a datetime like into a Timestamp/timedelta as needed if isinstance(value, (np.datetime64, datetime)): value = tslib.Timestamp(value) elif isinstance(value, (np.timedelta64, timedelta)): value = tslib.Timedelta(value) return value _values_from_object = lib.values_from_object def is_bool_indexer(key): if isinstance(key, (ABCSeries, np.ndarray)): if key.dtype == np.object_: key = np.asarray(_values_from_object(key)) if not lib.is_bool_array(key): if isnull(key).any(): raise ValueError('cannot index with vector containing ' 'NA / NaN values') return False return True elif key.dtype == np.bool_: return True elif isinstance(key, list): try: arr = np.asarray(key) return arr.dtype == np.bool_ and len(arr) == len(key) except TypeError: # pragma: no cover return False return False def _default_index(n): from pandas.core.index import RangeIndex return RangeIndex(0, n, name=None) def _mut_exclusive(**kwargs): item1, item2 = kwargs.items() label1, val1 = item1 label2, val2 = item2 if val1 is not None and val2 is not None: raise TypeError('mutually exclusive arguments: %r and %r' % (label1, label2)) elif val1 is not None: return val1 else: return val2 def _not_none(*args): return (arg for arg in args if arg is not None) def _any_none(*args): for arg in args: if arg is None: return True return False def _all_not_none(*args): for arg in args: if arg is None: return False return True def _count_not_none(*args): return sum(x is not None for x in args) def _try_sort(iterable): listed = list(iterable) try: return sorted(listed) except Exception: return listed def iterpairs(seq): """ Parameters ---------- seq : sequence Returns ------- iterator returning overlapping pairs of elements Examples -------- >>> list(iterpairs([1, 2, 3, 4])) [(1, 2), (2, 3), (3, 4)] """ # input may not be sliceable seq_it = iter(seq) seq_it_next = iter(seq) next(seq_it_next) return zip(seq_it, seq_it_next) def split_ranges(mask): """ Generates tuples of ranges which cover all True value in mask >>> list(split_ranges([1,0,0,1,0])) [(0, 1), (3, 4)] """ ranges = [(0, len(mask))] for pos, val in enumerate(mask): if not val: # this pos should be ommited, split off the prefix range r = ranges.pop() if pos > r[0]: # yield non-zero range yield (r[0], pos) if pos + 1 < len(mask): # save the rest for processing ranges.append((pos + 1, len(mask))) if ranges: yield ranges[-1] def _long_prod(vals): result = long(1) for x in vals: result *= x return result class groupby(dict): """ A simple groupby different from the one in itertools. Does not require the sequence elements to be sorted by keys, however it is slower. """ def __init__(self, seq, key=lambda x: x): for value in seq: k = key(value) self.setdefault(k, []).append(value) try: __iter__ = dict.iteritems except AttributeError: # pragma: no cover # Python 3 def __iter__(self): return iter(dict.items(self)) def map_indices_py(arr): """ Returns a dictionary with (element, index) pairs for each element in the given array/list """ return dict([(x, i) for i, x in enumerate(arr)]) def union(*seqs): result = set([]) for seq in seqs: if not isinstance(seq, set): seq = set(seq) result |= seq return type(seqs[0])(list(result)) def difference(a, b): return type(a)(list(set(a) - set(b))) def intersection(*seqs): result = set(seqs[0]) for seq in seqs: if not isinstance(seq, set): seq = set(seq) result &= seq return type(seqs[0])(list(result)) def _asarray_tuplesafe(values, dtype=None): from pandas.core.index import Index if not (isinstance(values, (list, tuple)) or hasattr(values, '__array__')): values = list(values) elif isinstance(values, Index): return values.values if isinstance(values, list) and dtype in [np.object_, object]: return lib.list_to_object_array(values) result = np.asarray(values, dtype=dtype) if issubclass(result.dtype.type, compat.string_types): result = np.asarray(values, dtype=object) if result.ndim == 2: if isinstance(values, list): return lib.list_to_object_array(values) else: # Making a 1D array that safely contains tuples is a bit tricky # in numpy, leading to the following try: result = np.empty(len(values), dtype=object) result[:] = values except ValueError: # we have a list-of-list result[:] = [tuple(x) for x in values] return result def _index_labels_to_array(labels): if isinstance(labels, (compat.string_types, tuple)): labels = [labels] if not isinstance(labels, (list, np.ndarray)): try: labels = list(labels) except TypeError: # non-iterable labels = [labels] labels = _asarray_tuplesafe(labels) return labels def _maybe_make_list(obj): if obj is not None and not isinstance(obj, (tuple, list)): return [obj] return obj def is_null_slice(obj): """ we have a null slice """ return (isinstance(obj, slice) and obj.start is None and obj.stop is None and obj.step is None) def is_full_slice(obj, l): """ we have a full length slice """ return (isinstance(obj, slice) and obj.start == 0 and obj.stop == l and obj.step is None) def _get_callable_name(obj): # typical case has name if hasattr(obj, '__name__'): return getattr(obj, '__name__') # some objects don't; could recurse if isinstance(obj, partial): return _get_callable_name(obj.func) # fall back to class name if hasattr(obj, '__call__'): return obj.__class__.__name__ # everything failed (probably because the argument # wasn't actually callable); we return None # instead of the empty string in this case to allow # distinguishing between no name and a name of '' return None def _apply_if_callable(maybe_callable, obj, **kwargs): """ Evaluate possibly callable input using obj and kwargs if it is callable, otherwise return as it is """ if callable(maybe_callable): return maybe_callable(obj, **kwargs) return maybe_callable def _all_none(*args): for arg in args: if arg is not None: return False return True def _where_compat(mask, arr1, arr2): if arr1.dtype == _NS_DTYPE and arr2.dtype == _NS_DTYPE: new_vals = np.where(mask, arr1.view('i8'), arr2.view('i8')) return new_vals.view(_NS_DTYPE) import pandas.tslib as tslib if arr1.dtype == _NS_DTYPE: arr1 = tslib.ints_to_pydatetime(arr1.view('i8')) if arr2.dtype == _NS_DTYPE: arr2 = tslib.ints_to_pydatetime(arr2.view('i8')) return np.where(mask, arr1, arr2) def _dict_compat(d): """ Helper function to convert datetimelike-keyed dicts to Timestamp-keyed dict Parameters ---------- d: dict like object Returns ------- dict """ return dict((_maybe_box_datetimelike(key), value) for key, value in iteritems(d)) def sentinel_factory(): class Sentinel(object): pass return Sentinel() # ---------------------------------------------------------------------- # Detect our environment def in_interactive_session(): """ check if we're running in an interactive shell returns True if running under python/ipython interactive shell """ def check_main(): import __main__ as main return (not hasattr(main, '__file__') or get_option('mode.sim_interactive')) try: return __IPYTHON__ or check_main() # noqa except: return check_main() def in_qtconsole(): """ check if we're inside an IPython qtconsole DEPRECATED: This is no longer needed, or working, in IPython 3 and above. """ try: ip = get_ipython() # noqa front_end = ( ip.config.get('KernelApp', {}).get('parent_appname', "") or ip.config.get('IPKernelApp', {}).get('parent_appname', "")) if 'qtconsole' in front_end.lower(): return True except: return False return False def in_ipnb(): """ check if we're inside an IPython Notebook DEPRECATED: This is no longer used in pandas, and won't work in IPython 3 and above. """ try: ip = get_ipython() # noqa front_end = ( ip.config.get('KernelApp', {}).get('parent_appname', "") or ip.config.get('IPKernelApp', {}).get('parent_appname', "")) if 'notebook' in front_end.lower(): return True except: return False return False def in_ipython_frontend(): """ check if we're inside an an IPython zmq frontend """ try: ip = get_ipython() # noqa return 'zmq' in str(type(ip)).lower() except: pass return False def _random_state(state=None): """ Helper function for processing random_state arguments. Parameters ---------- state : int, np.random.RandomState, None. If receives an int, passes to np.random.RandomState() as seed. If receives an np.random.RandomState object, just returns object. If receives `None`, returns np.random. If receives anything else, raises an informative ValueError. Default None. Returns ------- np.random.RandomState """ if types.is_integer(state): return np.random.RandomState(state) elif isinstance(state, np.random.RandomState): return state elif state is None: return np.random else: raise ValueError("random_state must be an integer, a numpy " "RandomState, or None")
gpl-3.0
Bodidze/21v-python
unit_04/22.py
2
2171
# -*- coding:utf-8 -*- def read_file(filename): infile = open(filename, 'r') infile.readline() # читаем заголовки столбцов dates = []; prices = [] for line in infile: columns = line.split(',') # разделяем по запятой date = columns[0] date = date[:-3] # пропускаем день месяца (три последних цифры) price = columns[-1] # нам нужен только последний столбец dates.append(date) prices.append(float(price)) # не забываем конвертировать infile.close() dates.reverse() # возвращаем порядок: от более старых к новым prices.reverse() # и соответственно цены return dates, prices dates = {}; prices = {} d, p = read_file('stockprice_sun.csv') dates['Sun'] = d; prices['Sun'] = p d, p = read_file('stockprice_microsoft.csv') dates['MS'] = d; prices['MS'] = p d, p = read_file('stockprice_google.csv') dates['Google'] = d; prices['Google'] = p data = {'prices': prices, 'dates': dates} # нормировка цен: norm_price = prices['Sun'][0] prices['Sun'] = [p/norm_price for p in prices['Sun']] norm_price = prices['MS'][0] prices['MS'] = [p/norm_price for p in prices['MS']] jan15_MS = prices['MS'][dates['MS'].index('2015-01')] jan15_Sun = prices['Sun'][dates['Sun'].index('2015-01')] norm_price = prices['Google'][0]/max(jan15_MS, jan15_Sun) prices['Google'] = [p/norm_price for p in prices['Google']] # обозначаем "x" точки для построения графиков x = {} x['Sun'] = range(len(prices['Sun'])) x['MS'] = range(len(prices['MS'])) # для Google мы должны начать с января 2015: jan15 = dates['Sun'].index('2015-01') x['Google'] = range(jan15, jan15 + len(prices['Google']), 1) import matplotlib.pyplot as plt plt.plot(x['MS'], prices['MS'], 'g-') plt.plot(x['Sun'], prices['Sun'], 'b-') plt.plot(x['Google'], prices['Google'], 'r-') plt.legend(['Microsoft', 'Sun', 'Google'], loc=0) plt.grid() plt.show()
mit
equialgo/scikit-learn
sklearn/decomposition/tests/test_pca.py
14
20935
import numpy as np import scipy as sp from itertools import product from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_no_warnings from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_less from sklearn import datasets from sklearn.decomposition import PCA from sklearn.decomposition import RandomizedPCA from sklearn.decomposition.pca import _assess_dimension_ from sklearn.decomposition.pca import _infer_dimension_ iris = datasets.load_iris() solver_list = ['full', 'arpack', 'randomized', 'auto'] def test_pca(): # PCA on dense arrays X = iris.data for n_comp in np.arange(X.shape[1]): pca = PCA(n_components=n_comp, svd_solver='full') X_r = pca.fit(X).transform(X) np.testing.assert_equal(X_r.shape[1], n_comp) X_r2 = pca.fit_transform(X) assert_array_almost_equal(X_r, X_r2) X_r = pca.transform(X) X_r2 = pca.fit_transform(X) assert_array_almost_equal(X_r, X_r2) # Test get_covariance and get_precision cov = pca.get_covariance() precision = pca.get_precision() assert_array_almost_equal(np.dot(cov, precision), np.eye(X.shape[1]), 12) # test explained_variance_ratio_ == 1 with all components pca = PCA(svd_solver='full') pca.fit(X) assert_almost_equal(pca.explained_variance_ratio_.sum(), 1.0, 3) def test_pca_arpack_solver(): # PCA on dense arrays X = iris.data d = X.shape[1] # Loop excluding the extremes, invalid inputs for arpack for n_comp in np.arange(1, d): pca = PCA(n_components=n_comp, svd_solver='arpack', random_state=0) X_r = pca.fit(X).transform(X) np.testing.assert_equal(X_r.shape[1], n_comp) X_r2 = pca.fit_transform(X) assert_array_almost_equal(X_r, X_r2) X_r = pca.transform(X) assert_array_almost_equal(X_r, X_r2) # Test get_covariance and get_precision cov = pca.get_covariance() precision = pca.get_precision() assert_array_almost_equal(np.dot(cov, precision), np.eye(d), 12) pca = PCA(n_components=0, svd_solver='arpack', random_state=0) assert_raises(ValueError, pca.fit, X) # Check internal state assert_equal(pca.n_components, PCA(n_components=0, svd_solver='arpack', random_state=0).n_components) assert_equal(pca.svd_solver, PCA(n_components=0, svd_solver='arpack', random_state=0).svd_solver) pca = PCA(n_components=d, svd_solver='arpack', random_state=0) assert_raises(ValueError, pca.fit, X) assert_equal(pca.n_components, PCA(n_components=d, svd_solver='arpack', random_state=0).n_components) assert_equal(pca.svd_solver, PCA(n_components=0, svd_solver='arpack', random_state=0).svd_solver) def test_pca_randomized_solver(): # PCA on dense arrays X = iris.data # Loop excluding the 0, invalid for randomized for n_comp in np.arange(1, X.shape[1]): pca = PCA(n_components=n_comp, svd_solver='randomized', random_state=0) X_r = pca.fit(X).transform(X) np.testing.assert_equal(X_r.shape[1], n_comp) X_r2 = pca.fit_transform(X) assert_array_almost_equal(X_r, X_r2) X_r = pca.transform(X) assert_array_almost_equal(X_r, X_r2) # Test get_covariance and get_precision cov = pca.get_covariance() precision = pca.get_precision() assert_array_almost_equal(np.dot(cov, precision), np.eye(X.shape[1]), 12) pca = PCA(n_components=0, svd_solver='randomized', random_state=0) assert_raises(ValueError, pca.fit, X) pca = PCA(n_components=0, svd_solver='randomized', random_state=0) assert_raises(ValueError, pca.fit, X) # Check internal state assert_equal(pca.n_components, PCA(n_components=0, svd_solver='randomized', random_state=0).n_components) assert_equal(pca.svd_solver, PCA(n_components=0, svd_solver='randomized', random_state=0).svd_solver) def test_no_empty_slice_warning(): # test if we avoid numpy warnings for computing over empty arrays n_components = 10 n_features = n_components + 2 # anything > n_comps triggered it in 0.16 X = np.random.uniform(-1, 1, size=(n_components, n_features)) pca = PCA(n_components=n_components) assert_no_warnings(pca.fit, X) def test_whitening(): # Check that PCA output has unit-variance rng = np.random.RandomState(0) n_samples = 100 n_features = 80 n_components = 30 rank = 50 # some low rank data with correlated features X = np.dot(rng.randn(n_samples, rank), np.dot(np.diag(np.linspace(10.0, 1.0, rank)), rng.randn(rank, n_features))) # the component-wise variance of the first 50 features is 3 times the # mean component-wise variance of the remaining 30 features X[:, :50] *= 3 assert_equal(X.shape, (n_samples, n_features)) # the component-wise variance is thus highly varying: assert_greater(X.std(axis=0).std(), 43.8) for solver, copy in product(solver_list, (True, False)): # whiten the data while projecting to the lower dim subspace X_ = X.copy() # make sure we keep an original across iterations. pca = PCA(n_components=n_components, whiten=True, copy=copy, svd_solver=solver, random_state=0, iterated_power=7) # test fit_transform X_whitened = pca.fit_transform(X_.copy()) assert_equal(X_whitened.shape, (n_samples, n_components)) X_whitened2 = pca.transform(X_) assert_array_almost_equal(X_whitened, X_whitened2) assert_almost_equal(X_whitened.std(axis=0), np.ones(n_components), decimal=6) assert_almost_equal(X_whitened.mean(axis=0), np.zeros(n_components)) X_ = X.copy() pca = PCA(n_components=n_components, whiten=False, copy=copy, svd_solver=solver).fit(X_) X_unwhitened = pca.transform(X_) assert_equal(X_unwhitened.shape, (n_samples, n_components)) # in that case the output components still have varying variances assert_almost_equal(X_unwhitened.std(axis=0).std(), 74.1, 1) # we always center, so no test for non-centering. # Ignore warnings from switching to more power iterations in randomized_svd @ignore_warnings def test_explained_variance(): # Check that PCA output has unit-variance rng = np.random.RandomState(0) n_samples = 100 n_features = 80 X = rng.randn(n_samples, n_features) pca = PCA(n_components=2, svd_solver='full').fit(X) apca = PCA(n_components=2, svd_solver='arpack', random_state=0).fit(X) assert_array_almost_equal(pca.explained_variance_, apca.explained_variance_, 1) assert_array_almost_equal(pca.explained_variance_ratio_, apca.explained_variance_ratio_, 3) rpca = PCA(n_components=2, svd_solver='randomized', random_state=42).fit(X) assert_array_almost_equal(pca.explained_variance_, rpca.explained_variance_, 1) assert_array_almost_equal(pca.explained_variance_ratio_, rpca.explained_variance_ratio_, 1) # compare to empirical variances X_pca = pca.transform(X) assert_array_almost_equal(pca.explained_variance_, np.var(X_pca, axis=0)) X_pca = apca.transform(X) assert_array_almost_equal(apca.explained_variance_, np.var(X_pca, axis=0)) X_rpca = rpca.transform(X) assert_array_almost_equal(rpca.explained_variance_, np.var(X_rpca, axis=0), decimal=1) # Same with correlated data X = datasets.make_classification(n_samples, n_features, n_informative=n_features-2, random_state=rng)[0] pca = PCA(n_components=2).fit(X) rpca = PCA(n_components=2, svd_solver='randomized', random_state=rng).fit(X) assert_array_almost_equal(pca.explained_variance_ratio_, rpca.explained_variance_ratio_, 5) def test_singular_values(): # Check that the PCA output has the correct singular values rng = np.random.RandomState(0) n_samples = 100 n_features = 80 X = rng.randn(n_samples, n_features) pca = PCA(n_components=2, svd_solver='full', random_state=rng).fit(X) apca = PCA(n_components=2, svd_solver='arpack', random_state=rng).fit(X) rpca = PCA(n_components=2, svd_solver='randomized', random_state=rng).fit(X) assert_array_almost_equal(pca.singular_values_, apca.singular_values_, 12) assert_array_almost_equal(pca.singular_values_, rpca.singular_values_, 1) assert_array_almost_equal(apca.singular_values_, rpca.singular_values_, 1) # Compare to the Frobenius norm X_pca = pca.transform(X) X_apca = apca.transform(X) X_rpca = rpca.transform(X) assert_array_almost_equal(np.sum(pca.singular_values_**2.0), np.linalg.norm(X_pca, "fro")**2.0, 12) assert_array_almost_equal(np.sum(apca.singular_values_**2.0), np.linalg.norm(X_apca, "fro")**2.0, 12) assert_array_almost_equal(np.sum(rpca.singular_values_**2.0), np.linalg.norm(X_rpca, "fro")**2.0, 0) # Compare to the 2-norms of the score vectors assert_array_almost_equal(pca.singular_values_, np.sqrt(np.sum(X_pca**2.0, axis=0)), 12) assert_array_almost_equal(apca.singular_values_, np.sqrt(np.sum(X_apca**2.0, axis=0)), 12) assert_array_almost_equal(rpca.singular_values_, np.sqrt(np.sum(X_rpca**2.0, axis=0)), 2) # Set the singular values and see what we get back rng = np.random.RandomState(0) n_samples = 100 n_features = 110 X = rng.randn(n_samples, n_features) pca = PCA(n_components=3, svd_solver='full', random_state=rng) apca = PCA(n_components=3, svd_solver='arpack', random_state=rng) rpca = PCA(n_components=3, svd_solver='randomized', random_state=rng) X_pca = pca.fit_transform(X) X_pca /= np.sqrt(np.sum(X_pca**2.0, axis=0)) X_pca[:, 0] *= 3.142 X_pca[:, 1] *= 2.718 X_hat = np.dot(X_pca, pca.components_) pca.fit(X_hat) apca.fit(X_hat) rpca.fit(X_hat) assert_array_almost_equal(pca.singular_values_, [3.142, 2.718, 1.0], 14) assert_array_almost_equal(apca.singular_values_, [3.142, 2.718, 1.0], 14) assert_array_almost_equal(rpca.singular_values_, [3.142, 2.718, 1.0], 14) def test_pca_check_projection(): # Test that the projection of data is correct rng = np.random.RandomState(0) n, p = 100, 3 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5]) Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5]) for solver in solver_list: Yt = PCA(n_components=2, svd_solver=solver).fit(X).transform(Xt) Yt /= np.sqrt((Yt ** 2).sum()) assert_almost_equal(np.abs(Yt[0][0]), 1., 1) def test_pca_inverse(): # Test that the projection of data can be inverted rng = np.random.RandomState(0) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) pca = PCA(n_components=2, svd_solver='full').fit(X) Y = pca.transform(X) Y_inverse = pca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=3) # same as above with whitening (approximate reconstruction) for solver in solver_list: pca = PCA(n_components=2, whiten=True, svd_solver=solver) pca.fit(X) Y = pca.transform(X) Y_inverse = pca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=3) def test_pca_validation(): X = [[0, 1], [1, 0]] for solver in solver_list: for n_components in [-1, 3]: assert_raises(ValueError, PCA(n_components, svd_solver=solver).fit, X) def test_randomized_pca_check_projection(): # Test that the projection by randomized PCA on dense data is correct rng = np.random.RandomState(0) n, p = 100, 3 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5]) Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5]) Yt = PCA(n_components=2, svd_solver='randomized', random_state=0).fit(X).transform(Xt) Yt /= np.sqrt((Yt ** 2).sum()) assert_almost_equal(np.abs(Yt[0][0]), 1., 1) def test_randomized_pca_check_list(): # Test that the projection by randomized PCA on list data is correct X = [[1.0, 0.0], [0.0, 1.0]] X_transformed = PCA(n_components=1, svd_solver='randomized', random_state=0).fit(X).transform(X) assert_equal(X_transformed.shape, (2, 1)) assert_almost_equal(X_transformed.mean(), 0.00, 2) assert_almost_equal(X_transformed.std(), 0.71, 2) def test_randomized_pca_inverse(): # Test that randomized PCA is inversible on dense data rng = np.random.RandomState(0) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed signal # (since the data is almost of rank n_components) pca = PCA(n_components=2, svd_solver='randomized', random_state=0).fit(X) Y = pca.transform(X) Y_inverse = pca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=2) # same as above with whitening (approximate reconstruction) pca = PCA(n_components=2, whiten=True, svd_solver='randomized', random_state=0).fit(X) Y = pca.transform(X) Y_inverse = pca.inverse_transform(Y) relative_max_delta = (np.abs(X - Y_inverse) / np.abs(X).mean()).max() assert_less(relative_max_delta, 1e-5) def test_pca_dim(): # Check automated dimensionality setting rng = np.random.RandomState(0) n, p = 100, 5 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5, 1, 2]) pca = PCA(n_components='mle', svd_solver='full').fit(X) assert_equal(pca.n_components, 'mle') assert_equal(pca.n_components_, 1) def test_infer_dim_1(): # TODO: explain what this is testing # Or at least use explicit variable names... n, p = 1000, 5 rng = np.random.RandomState(0) X = (rng.randn(n, p) * .1 + rng.randn(n, 1) * np.array([3, 4, 5, 1, 2]) + np.array([1, 0, 7, 4, 6])) pca = PCA(n_components=p, svd_solver='full') pca.fit(X) spect = pca.explained_variance_ ll = [] for k in range(p): ll.append(_assess_dimension_(spect, k, n, p)) ll = np.array(ll) assert_greater(ll[1], ll.max() - .01 * n) def test_infer_dim_2(): # TODO: explain what this is testing # Or at least use explicit variable names... n, p = 1000, 5 rng = np.random.RandomState(0) X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5, 1, 2]) X[10:20] += np.array([6, 0, 7, 2, -1]) pca = PCA(n_components=p, svd_solver='full') pca.fit(X) spect = pca.explained_variance_ assert_greater(_infer_dimension_(spect, n, p), 1) def test_infer_dim_3(): n, p = 100, 5 rng = np.random.RandomState(0) X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5, 1, 2]) X[10:20] += np.array([6, 0, 7, 2, -1]) X[30:40] += 2 * np.array([-1, 1, -1, 1, -1]) pca = PCA(n_components=p, svd_solver='full') pca.fit(X) spect = pca.explained_variance_ assert_greater(_infer_dimension_(spect, n, p), 2) def test_infer_dim_by_explained_variance(): X = iris.data pca = PCA(n_components=0.95, svd_solver='full') pca.fit(X) assert_equal(pca.n_components, 0.95) assert_equal(pca.n_components_, 2) pca = PCA(n_components=0.01, svd_solver='full') pca.fit(X) assert_equal(pca.n_components, 0.01) assert_equal(pca.n_components_, 1) rng = np.random.RandomState(0) # more features than samples X = rng.rand(5, 20) pca = PCA(n_components=.5, svd_solver='full').fit(X) assert_equal(pca.n_components, 0.5) assert_equal(pca.n_components_, 2) def test_pca_score(): # Test that probabilistic PCA scoring yields a reasonable score n, p = 1000, 3 rng = np.random.RandomState(0) X = rng.randn(n, p) * .1 + np.array([3, 4, 5]) for solver in solver_list: pca = PCA(n_components=2, svd_solver=solver) pca.fit(X) ll1 = pca.score(X) h = -0.5 * np.log(2 * np.pi * np.exp(1) * 0.1 ** 2) * p np.testing.assert_almost_equal(ll1 / h, 1, 0) def test_pca_score2(): # Test that probabilistic PCA correctly separated different datasets n, p = 100, 3 rng = np.random.RandomState(0) X = rng.randn(n, p) * .1 + np.array([3, 4, 5]) for solver in solver_list: pca = PCA(n_components=2, svd_solver=solver) pca.fit(X) ll1 = pca.score(X) ll2 = pca.score(rng.randn(n, p) * .2 + np.array([3, 4, 5])) assert_greater(ll1, ll2) # Test that it gives different scores if whiten=True pca = PCA(n_components=2, whiten=True, svd_solver=solver) pca.fit(X) ll2 = pca.score(X) assert_true(ll1 > ll2) def test_pca_score3(): # Check that probabilistic PCA selects the right model n, p = 200, 3 rng = np.random.RandomState(0) Xl = (rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5]) + np.array([1, 0, 7])) Xt = (rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5]) + np.array([1, 0, 7])) ll = np.zeros(p) for k in range(p): pca = PCA(n_components=k, svd_solver='full') pca.fit(Xl) ll[k] = pca.score(Xt) assert_true(ll.argmax() == 1) def test_svd_solver_auto(): rng = np.random.RandomState(0) X = rng.uniform(size=(1000, 50)) # case: n_components in (0,1) => 'full' pca = PCA(n_components=.5) pca.fit(X) pca_test = PCA(n_components=.5, svd_solver='full') pca_test.fit(X) assert_array_almost_equal(pca.components_, pca_test.components_) # case: max(X.shape) <= 500 => 'full' pca = PCA(n_components=5, random_state=0) Y = X[:10, :] pca.fit(Y) pca_test = PCA(n_components=5, svd_solver='full', random_state=0) pca_test.fit(Y) assert_array_almost_equal(pca.components_, pca_test.components_) # case: n_components >= .8 * min(X.shape) => 'full' pca = PCA(n_components=50) pca.fit(X) pca_test = PCA(n_components=50, svd_solver='full') pca_test.fit(X) assert_array_almost_equal(pca.components_, pca_test.components_) # n_components >= 1 and n_components < .8 * min(X.shape) => 'randomized' pca = PCA(n_components=10, random_state=0) pca.fit(X) pca_test = PCA(n_components=10, svd_solver='randomized', random_state=0) pca_test.fit(X) assert_array_almost_equal(pca.components_, pca_test.components_) def test_deprecation_randomized_pca(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) depr_message = ("Class RandomizedPCA is deprecated; RandomizedPCA was " "deprecated in 0.18 and will be " "removed in 0.20. Use PCA(svd_solver='randomized') " "instead. The new implementation DOES NOT store " "whiten ``components_``. Apply transform to get them.") def fit_deprecated(X): global Y rpca = RandomizedPCA(random_state=0) Y = rpca.fit_transform(X) assert_warns_message(DeprecationWarning, depr_message, fit_deprecated, X) Y_pca = PCA(svd_solver='randomized', random_state=0).fit_transform(X) assert_array_almost_equal(Y, Y_pca) def test_pca_spase_input(): X = np.random.RandomState(0).rand(5, 4) X = sp.sparse.csr_matrix(X) assert(sp.sparse.issparse(X)) for svd_solver in solver_list: pca = PCA(n_components=3, svd_solver=svd_solver) assert_raises(TypeError, pca.fit, X)
bsd-3-clause
b1quint/samfp
samfp/old/x3d_animate.py
1
2479
#!/usr/bin/env python # -*- coding: utf8 -*- from __future__ import division, print_function import matplotlib as mpl mpl.use('Agg') mpl.rcParams['image.origin'] = 'lower' mpl.rcParams['image.interpolation'] = 'nearest' mpl.rcParams['image.cmap'] = 'gray_r' from scipy import ndimage from matplotlib import animation import astropy.io.fits as pyfits import matplotlib.pyplot as plt import astropy.visualization as viz import numpy as np import os __author__ = 'Bruno Quint' def main(): # Input Data --- path = "/home/bquint/Dropbox/temp/30Dor_NII/" filename = "30DorNII_3D_WCL.fits" # Create/Read Cube --- cube = DataCube(os.path.join(path, filename)) print(cube) # Create figure to animate --- fig = plt.figure(figsize=(5,5), frameon=False) ax = fig.add_axes([0,0,1,1]) ax.axis('off') n1 = viz.ImageNormalize(cube.get_frame(0), interval=viz.ZScaleInterval()) n2 = viz.ImageNormalize(cube.get_frame(20), interval=viz.ZScaleInterval()) im = ax.imshow(cube.get_frame(0), animated=True, vmin=n1.vmin, vmax=n2.vmax) def update(i): im.set_array(cube.get_frame(i)) return im, ani = animation.FuncAnimation(fig, update, interval=100, repeat=True, frames=cube.depth) ani.save(cube.filename.replace('.fits', '.gif'), writer="imagemagick", fps=30) plt.show() class DataCube(object): def __init__(self, filename): cube = pyfits.getdata(filename) self.min = cube.min() self.max = cube.max() self.mean = cube.mean() self.std = cube.std() self.median = np.median(cube) self.filename = filename self.depth, self.heigh, self.width = cube.shape del cube return def __str__(self): s = ( "Cube Description: \n" " Min = {min:.2f}\n" " Max = {max:.2f}\n" " Mean = {mean:.2f}\n" " Median = {median:.2f}\n" " STD = {std:.2f}\n" ).format(**self.__dict__) return s def get_frame(self, i): temp = pyfits.getdata(self.filename)[i] temp = ndimage.median_filter(temp, 3) return temp def get_cube(self): return pyfits.getdata(self.filename) def get_max_frame(self): temp = pyfits.getdata(self.filename) temp = np.sum(temp, axis=2) temp = np.sum(temp, axis=1) temp = np.argmax(temp) return temp if __name__ == '__main__': main()
bsd-3-clause
pearsonlab/thunder
doc/source/conf.py
7
8102
# -*- coding: utf-8 -*- # # Thunder documentation build configuration file, created by # sphinx-quickstart on Wed Jul 16 17:00:45 2014. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os import matplotlib as mpl import sphinx_rtd_theme mpl.use("Agg") # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.mathjax', 'sphinx.ext.autosummary', 'numpydoc', 'sphinx.ext.viewcode', ] # Generate the API documentation when building autosummary_generate = True numpydoc_show_class_members = False autodoc_default_flags = ['members','imported-members'] autoclass_content = 'class' # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Thunder' copyright = u'2014, Jeremy Freeman' html_logo = "header-logo-small.svg" html_show_sphinx = False html_show_copyright = False # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # sys.path.insert(0, os.path.abspath(os.path.pardir)) import thunder version = thunder.__version__ # The full version, including alpha/beta/rc tags. release = thunder.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build', '_templates'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = "sphinx_rtd_theme" html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] html_favicon = "favicon.ico" # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'Thunderdoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'Thunder.tex', u'Thunder Documentation', u'Jeremy Freeman', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'thunder', u'Thunder Documentation', [u'Jeremy Freeman'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'Thunder', u'Thunder Documentation', u'Jeremy Freeman', 'Thunder', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote'
apache-2.0
hainm/statsmodels
statsmodels/sandbox/panel/mixed.py
31
21019
""" Mixed effects models Author: Jonathan Taylor Author: Josef Perktold License: BSD-3 Notes ------ It's pretty slow if the model is misspecified, in my first example convergence in loglike is not reached within 2000 iterations. Added stop criteria based on convergence of parameters instead. With correctly specified model, convergence is fast, in 6 iterations in example. """ from __future__ import print_function import numpy as np import numpy.linalg as L from statsmodels.base.model import LikelihoodModelResults from statsmodels.tools.decorators import cache_readonly class Unit(object): """ Individual experimental unit for EM implementation of (repeated measures) mixed effects model. \'Maximum Likelihood Computations with Repeated Measures: Application of the EM Algorithm\' Nan Laird; Nicholas Lange; Daniel Stram Journal of the American Statistical Association, Vol. 82, No. 397. (Mar., 1987), pp. 97-105. Parameters ---------- endog : ndarray, (nobs,) response, endogenous variable exog_fe : ndarray, (nobs, k_vars_fe) explanatory variables as regressors or fixed effects, should include exog_re to correct mean of random coefficients, see Notes exog_re : ndarray, (nobs, k_vars_re) explanatory variables or random effects or coefficients Notes ----- If the exog_re variables are not included in exog_fe, then the mean of the random constants or coefficients are not centered. The covariance matrix of the random parameter estimates are not centered in this case. (That's how it looks to me. JP) """ def __init__(self, endog, exog_fe, exog_re): self.Y = endog self.X = exog_fe self.Z = exog_re self.n = endog.shape[0] def _compute_S(self, D, sigma): """covariance of observations (nobs_i, nobs_i) (JP check) Display (3.3) from Laird, Lange, Stram (see help(Unit)) """ self.S = (np.identity(self.n) * sigma**2 + np.dot(self.Z, np.dot(D, self.Z.T))) def _compute_W(self): """inverse covariance of observations (nobs_i, nobs_i) (JP check) Display (3.2) from Laird, Lange, Stram (see help(Unit)) """ self.W = L.inv(self.S) def compute_P(self, Sinv): """projection matrix (nobs_i, nobs_i) (M in regression ?) (JP check, guessing) Display (3.10) from Laird, Lange, Stram (see help(Unit)) W - W X Sinv X' W' """ t = np.dot(self.W, self.X) self.P = self.W - np.dot(np.dot(t, Sinv), t.T) def _compute_r(self, alpha): """residual after removing fixed effects Display (3.5) from Laird, Lange, Stram (see help(Unit)) """ self.r = self.Y - np.dot(self.X, alpha) def _compute_b(self, D): """coefficients for random effects/coefficients Display (3.4) from Laird, Lange, Stram (see help(Unit)) D Z' W r """ self.b = np.dot(D, np.dot(np.dot(self.Z.T, self.W), self.r)) def fit(self, a, D, sigma): """ Compute unit specific parameters in Laird, Lange, Stram (see help(Unit)). Displays (3.2)-(3.5). """ self._compute_S(D, sigma) #random effect plus error covariance self._compute_W() #inv(S) self._compute_r(a) #residual after removing fixed effects/exogs self._compute_b(D) #? coefficients on random exog, Z ? def compute_xtwy(self): """ Utility function to compute X^tWY (transposed ?) for Unit instance. """ return np.dot(np.dot(self.W, self.Y), self.X) #is this transposed ? def compute_xtwx(self): """ Utility function to compute X^tWX for Unit instance. """ return np.dot(np.dot(self.X.T, self.W), self.X) def cov_random(self, D, Sinv=None): """ Approximate covariance of estimates of random effects. Just after Display (3.10) in Laird, Lange, Stram (see help(Unit)). D - D' Z' P Z D Notes ----- In example where the mean of the random coefficient is not zero, this is not a covariance but a non-centered moment. (proof by example) """ if Sinv is not None: self.compute_P(Sinv) t = np.dot(self.Z, D) return D - np.dot(np.dot(t.T, self.P), t) def logL(self, a, ML=False): """ Individual contributions to the log-likelihood, tries to return REML contribution by default though this requires estimated fixed effect a to be passed as an argument. no constant with pi included a is not used if ML=true (should be a=None in signature) If ML is false, then the residuals are calculated for the given fixed effects parameters a. """ if ML: return (np.log(L.det(self.W)) - (self.r * np.dot(self.W, self.r)).sum()) / 2. else: if a is None: raise ValueError('need fixed effect a for REML contribution to log-likelihood') r = self.Y - np.dot(self.X, a) return (np.log(L.det(self.W)) - (r * np.dot(self.W, r)).sum()) / 2. def deviance(self, ML=False): '''deviance defined as 2 times the negative loglikelihood ''' return - 2 * self.logL(ML=ML) class OneWayMixed(object): """ Model for EM implementation of (repeated measures) mixed effects model. \'Maximum Likelihood Computations with Repeated Measures: Application of the EM Algorithm\' Nan Laird; Nicholas Lange; Daniel Stram Journal of the American Statistical Association, Vol. 82, No. 397. (Mar., 1987), pp. 97-105. Parameters ---------- units : list of units the data for the individual units should be attached to the units response, fixed and random : formula expression, called as argument to Formula *available results and alias* (subject to renaming, and coversion to cached attributes) params() -> self.a : coefficient for fixed effects or exog cov_params() -> self.Sinv : covariance estimate of fixed effects/exog bse() : standard deviation of params cov_random -> self.D : estimate of random effects covariance params_random_units -> [self.units[...].b] : random coefficient for each unit *attributes* (others) self.m : number of units self.p : k_vars_fixed self.q : k_vars_random self.N : nobs (total) Notes ----- Fit returns a result instance, but not all results that use the inherited methods have been checked. Parameters need to change: drop formula and we require a naming convention for the units (currently Y,X,Z). - endog, exog_fe, endog_re ? logL does not include constant, e.g. sqrt(pi) llf is for MLE not for REML convergence criteria for iteration Currently convergence in the iterative solver is reached if either the loglikelihood *or* the fixed effects parameter don't change above tolerance. In some examples, the fixed effects parameters converged to 1e-5 within 150 iterations while the log likelihood did not converge within 2000 iterations. This might be the case if the fixed effects parameters are well estimated, but there are still changes in the random effects. If params_rtol and params_atol are set at a higher level, then the random effects might not be estimated to a very high precision. The above was with a misspecified model, without a constant. With a correctly specified model convergence is fast, within a few iterations (6 in example). """ def __init__(self, units): self.units = units self.m = len(self.units) self.n_units = self.m self.N = sum(unit.X.shape[0] for unit in self.units) self.nobs = self.N #alias for now # Determine size of fixed effects d = self.units[0].X self.p = d.shape[1] # d.shape = p self.k_exog_fe = self.p #alias for now self.a = np.zeros(self.p, np.float64) # Determine size of D, and sensible initial estimates # of sigma and D d = self.units[0].Z self.q = d.shape[1] # Z.shape = q self.k_exog_re = self.q #alias for now self.D = np.zeros((self.q,)*2, np.float64) self.sigma = 1. self.dev = np.inf #initialize for iterations, move it? def _compute_a(self): """fixed effects parameters Display (3.1) of Laird, Lange, Stram (see help(Mixed)). """ for unit in self.units: unit.fit(self.a, self.D, self.sigma) S = sum([unit.compute_xtwx() for unit in self.units]) Y = sum([unit.compute_xtwy() for unit in self.units]) self.Sinv = L.pinv(S) self.a = np.dot(self.Sinv, Y) def _compute_sigma(self, ML=False): """ Estimate sigma. If ML is True, return the ML estimate of sigma, else return the REML estimate. If ML, this is (3.6) in Laird, Lange, Stram (see help(Mixed)), otherwise it corresponds to (3.8). sigma is the standard deviation of the noise (residual) """ sigmasq = 0. for unit in self.units: if ML: W = unit.W else: unit.compute_P(self.Sinv) W = unit.P t = unit.r - np.dot(unit.Z, unit.b) sigmasq += np.power(t, 2).sum() sigmasq += self.sigma**2 * np.trace(np.identity(unit.n) - self.sigma**2 * W) self.sigma = np.sqrt(sigmasq / self.N) def _compute_D(self, ML=False): """ Estimate random effects covariance D. If ML is True, return the ML estimate of sigma, else return the REML estimate. If ML, this is (3.7) in Laird, Lange, Stram (see help(Mixed)), otherwise it corresponds to (3.9). """ D = 0. for unit in self.units: if ML: W = unit.W else: unit.compute_P(self.Sinv) W = unit.P D += np.multiply.outer(unit.b, unit.b) t = np.dot(unit.Z, self.D) D += self.D - np.dot(np.dot(t.T, W), t) self.D = D / self.m def cov_fixed(self): """ Approximate covariance of estimates of fixed effects. Just after Display (3.10) in Laird, Lange, Stram (see help(Mixed)). """ return self.Sinv #----------- alias (JP) move to results class ? def cov_random(self): """ Estimate random effects covariance D. If ML is True, return the ML estimate of sigma, else return the REML estimate. see _compute_D, alias for self.D """ return self.D @property def params(self): ''' estimated coefficients for exogeneous variables or fixed effects see _compute_a, alias for self.a ''' return self.a @property def params_random_units(self): '''random coefficients for each unit ''' return np.array([unit.b for unit in self.units]) def cov_params(self): ''' estimated covariance for coefficients for exogeneous variables or fixed effects see cov_fixed, and Sinv in _compute_a ''' return self.cov_fixed() @property def bse(self): ''' standard errors of estimated coefficients for exogeneous variables (fixed) ''' return np.sqrt(np.diag(self.cov_params())) #----------- end alias def deviance(self, ML=False): '''deviance defined as 2 times the negative loglikelihood ''' return -2 * self.logL(ML=ML) def logL(self, ML=False): """ Return log-likelihood, REML by default. """ #I don't know what the difference between REML and ML is here. logL = 0. for unit in self.units: logL += unit.logL(a=self.a, ML=ML) if not ML: logL += np.log(L.det(self.Sinv)) / 2 return logL def initialize(self): S = sum([np.dot(unit.X.T, unit.X) for unit in self.units]) Y = sum([np.dot(unit.X.T, unit.Y) for unit in self.units]) self.a = L.lstsq(S, Y)[0] D = 0 t = 0 sigmasq = 0 for unit in self.units: unit.r = unit.Y - np.dot(unit.X, self.a) if self.q > 1: unit.b = L.lstsq(unit.Z, unit.r)[0] else: Z = unit.Z.reshape((unit.Z.shape[0], 1)) unit.b = L.lstsq(Z, unit.r)[0] sigmasq += (np.power(unit.Y, 2).sum() - (self.a * np.dot(unit.X.T, unit.Y)).sum() - (unit.b * np.dot(unit.Z.T, unit.r)).sum()) D += np.multiply.outer(unit.b, unit.b) t += L.pinv(np.dot(unit.Z.T, unit.Z)) #TODO: JP added df_resid check self.df_resid = (self.N - (self.m - 1) * self.q - self.p) sigmasq /= (self.N - (self.m - 1) * self.q - self.p) self.sigma = np.sqrt(sigmasq) self.D = (D - sigmasq * t) / self.m def cont(self, ML=False, rtol=1.0e-05, params_rtol=1e-5, params_atol=1e-4): '''convergence check for iterative estimation ''' self.dev, old = self.deviance(ML=ML), self.dev #self.history.append(np.hstack((self.dev, self.a))) self.history['llf'].append(self.dev) self.history['params'].append(self.a.copy()) self.history['D'].append(self.D.copy()) if np.fabs((self.dev - old) / self.dev) < rtol: #why is there times `*`? #print np.fabs((self.dev - old)), self.dev, old self.termination = 'llf' return False #break if parameters converged #TODO: check termination conditions, OR or AND if np.all(np.abs(self.a - self._a_old) < (params_rtol * self.a + params_atol)): self.termination = 'params' return False self._a_old = self.a.copy() return True def fit(self, maxiter=100, ML=False, rtol=1.0e-05, params_rtol=1e-6, params_atol=1e-6): #initialize for convergence criteria self._a_old = np.inf * self.a self.history = {'llf':[], 'params':[], 'D':[]} for i in range(maxiter): self._compute_a() #a, Sinv : params, cov_params of fixed exog self._compute_sigma(ML=ML) #sigma MLE or REML of sigma ? self._compute_D(ML=ML) #D : covariance of random effects, MLE or REML if not self.cont(ML=ML, rtol=rtol, params_rtol=params_rtol, params_atol=params_atol): break else: #if end of loop is reached without break self.termination = 'maxiter' print('Warning: maximum number of iterations reached') self.iterations = i results = OneWayMixedResults(self) #compatibility functions for fixed effects/exog results.scale = 1 results.normalized_cov_params = self.cov_params() return results class OneWayMixedResults(LikelihoodModelResults): '''Results class for OneWayMixed models ''' def __init__(self, model): #TODO: check, change initialization to more standard pattern self.model = model self.params = model.params #need to overwrite this because we don't have a standard #model.loglike yet #TODO: what todo about REML loglike, logL is not normalized @cache_readonly def llf(self): return self.model.logL(ML=True) @property def params_random_units(self): return self.model.params_random_units def cov_random(self): return self.model.cov_random() def mean_random(self, idx='lastexog'): if idx == 'lastexog': meanr = self.params[-self.model.k_exog_re:] elif isinstance(idx, list): if not len(idx) == self.model.k_exog_re: raise ValueError('length of idx different from k_exog_re') else: meanr = self.params[idx] else: meanr = np.zeros(self.model.k_exog_re) return meanr def std_random(self): return np.sqrt(np.diag(self.cov_random())) def plot_random_univariate(self, bins=None, use_loc=True): '''create plot of marginal distribution of random effects Parameters ---------- bins : int or bin edges option for bins in matplotlibs hist method. Current default is not very sophisticated. All distributions use the same setting for bins. use_loc : bool If True, then the distribution with mean given by the fixed effect is used. Returns ------- fig : matplotlib figure instance figure with subplots Notes ----- What can make this fancier? Bin edges will not make sense if loc or scale differ across random effect distributions. ''' #outsource this import matplotlib.pyplot as plt from scipy.stats import norm as normal fig = plt.figure() k = self.model.k_exog_re if k > 3: rows, cols = int(np.ceil(k * 0.5)), 2 else: rows, cols = k, 1 if bins is None: #bins = self.model.n_units // 20 #TODO: just roughly, check # bins = np.sqrt(self.model.n_units) bins = 5 + 2 * self.model.n_units**(1./3.) if use_loc: loc = self.mean_random() else: loc = [0]*k scale = self.std_random() for ii in range(k): ax = fig.add_subplot(rows, cols, ii) freq, bins_, _ = ax.hist(loc[ii] + self.params_random_units[:,ii], bins=bins, normed=True) points = np.linspace(bins_[0], bins_[-1], 200) #ax.plot(points, normal.pdf(points, loc=loc, scale=scale)) #loc of sample is approx. zero, with Z appended to X #alternative, add fixed to mean ax.set_title('Random Effect %d Marginal Distribution' % ii) ax.plot(points, normal.pdf(points, loc=loc[ii], scale=scale[ii]), 'r') return fig def plot_scatter_pairs(self, idx1, idx2, title=None, ax=None): '''create scatter plot of two random effects Parameters ---------- idx1, idx2 : int indices of the two random effects to display, corresponding to columns of exog_re title : None or string If None, then a default title is added ax : None or matplotlib axis instance If None, then a figure with one axis is created and returned. If ax is not None, then the scatter plot is created on it, and this axis instance is returned. Returns ------- ax_or_fig : axis or figure instance see ax parameter Notes ----- Still needs ellipse from estimated parameters ''' import matplotlib.pyplot as plt if ax is None: fig = plt.figure() ax = fig.add_subplot(1,1,1) ax_or_fig = fig re1 = self.params_random_units[:,idx1] re2 = self.params_random_units[:,idx2] ax.plot(re1, re2, 'o', alpha=0.75) if title is None: title = 'Random Effects %d and %d' % (idx1, idx2) ax.set_title(title) ax_or_fig = ax return ax_or_fig def plot_scatter_all_pairs(self, title=None): from statsmodels.graphics.plot_grids import scatter_ellipse if self.model.k_exog_re < 2: raise ValueError('less than two variables available') return scatter_ellipse(self.params_random_units, ell_kwds={'color':'r'}) #ell_kwds not implemented yet # #note I have written this already as helper function, get it # import matplotlib.pyplot as plt # #from scipy.stats import norm as normal # fig = plt.figure() # k = self.model.k_exog_re # n_plots = k * (k - 1) // 2 # if n_plots > 3: # rows, cols = int(np.ceil(n_plots * 0.5)), 2 # else: # rows, cols = n_plots, 1 # # count = 1 # for ii in range(k): # for jj in range(ii): # ax = fig.add_subplot(rows, cols, count) # self.plot_scatter_pairs(ii, jj, title=None, ax=ax) # count += 1 # # return fig if __name__ == '__main__': #see examples/ex_mixed_lls_1.py pass
bsd-3-clause
rseubert/scikit-learn
examples/ensemble/plot_gradient_boosting_regularization.py
355
2843
""" ================================ Gradient Boosting regularization ================================ Illustration of the effect of different regularization strategies for Gradient Boosting. The example is taken from Hastie et al 2009. The loss function used is binomial deviance. Regularization via shrinkage (``learning_rate < 1.0``) improves performance considerably. In combination with shrinkage, stochastic gradient boosting (``subsample < 1.0``) can produce more accurate models by reducing the variance via bagging. Subsampling without shrinkage usually does poorly. Another strategy to reduce the variance is by subsampling the features analogous to the random splits in Random Forests (via the ``max_features`` parameter). .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009. """ print(__doc__) # Author: Peter Prettenhofer <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import ensemble from sklearn import datasets X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) X = X.astype(np.float32) # map labels from {-1, 1} to {0, 1} labels, y = np.unique(y, return_inverse=True) X_train, X_test = X[:2000], X[2000:] y_train, y_test = y[:2000], y[2000:] original_params = {'n_estimators': 1000, 'max_leaf_nodes': 4, 'max_depth': None, 'random_state': 2, 'min_samples_split': 5} plt.figure() for label, color, setting in [('No shrinkage', 'orange', {'learning_rate': 1.0, 'subsample': 1.0}), ('learning_rate=0.1', 'turquoise', {'learning_rate': 0.1, 'subsample': 1.0}), ('subsample=0.5', 'blue', {'learning_rate': 1.0, 'subsample': 0.5}), ('learning_rate=0.1, subsample=0.5', 'gray', {'learning_rate': 0.1, 'subsample': 0.5}), ('learning_rate=0.1, max_features=2', 'magenta', {'learning_rate': 0.1, 'max_features': 2})]: params = dict(original_params) params.update(setting) clf = ensemble.GradientBoostingClassifier(**params) clf.fit(X_train, y_train) # compute test set deviance test_deviance = np.zeros((params['n_estimators'],), dtype=np.float64) for i, y_pred in enumerate(clf.staged_decision_function(X_test)): # clf.loss_ assumes that y_test[i] in {0, 1} test_deviance[i] = clf.loss_(y_test, y_pred) plt.plot((np.arange(test_deviance.shape[0]) + 1)[::5], test_deviance[::5], '-', color=color, label=label) plt.legend(loc='upper left') plt.xlabel('Boosting Iterations') plt.ylabel('Test Set Deviance') plt.show()
bsd-3-clause
SSQ/Udacity-MLND-P1-Model-Evaluation-and-Validation
visuals.py
19
5012
########################################### # Suppress matplotlib user warnings # Necessary for newer version of matplotlib import warnings warnings.filterwarnings("ignore", category = UserWarning, module = "matplotlib") # # Display inline matplotlib plots with IPython from IPython import get_ipython get_ipython().run_line_magic('matplotlib', 'inline') ########################################### import matplotlib.pyplot as pl import numpy as np import sklearn.learning_curve as curves from sklearn.tree import DecisionTreeRegressor from sklearn.cross_validation import ShuffleSplit, train_test_split def ModelLearning(X, y): """ Calculates the performance of several models with varying sizes of training data. The learning and testing scores for each model are then plotted. """ # Create 10 cross-validation sets for training and testing cv = ShuffleSplit(X.shape[0], n_iter = 10, test_size = 0.2, random_state = 0) # Generate the training set sizes increasing by 50 train_sizes = np.rint(np.linspace(1, X.shape[0]*0.8 - 1, 9)).astype(int) # Create the figure window fig = pl.figure(figsize=(10,7)) # Create three different models based on max_depth for k, depth in enumerate([1,3,6,10]): # Create a Decision tree regressor at max_depth = depth regressor = DecisionTreeRegressor(max_depth = depth) # Calculate the training and testing scores sizes, train_scores, test_scores = curves.learning_curve(regressor, X, y, \ cv = cv, train_sizes = train_sizes, scoring = 'r2') # Find the mean and standard deviation for smoothing train_std = np.std(train_scores, axis = 1) train_mean = np.mean(train_scores, axis = 1) test_std = np.std(test_scores, axis = 1) test_mean = np.mean(test_scores, axis = 1) # Subplot the learning curve ax = fig.add_subplot(2, 2, k+1) ax.plot(sizes, train_mean, 'o-', color = 'r', label = 'Training Score') ax.plot(sizes, test_mean, 'o-', color = 'g', label = 'Testing Score') ax.fill_between(sizes, train_mean - train_std, \ train_mean + train_std, alpha = 0.15, color = 'r') ax.fill_between(sizes, test_mean - test_std, \ test_mean + test_std, alpha = 0.15, color = 'g') # Labels ax.set_title('max_depth = %s'%(depth)) ax.set_xlabel('Number of Training Points') ax.set_ylabel('Score') ax.set_xlim([0, X.shape[0]*0.8]) ax.set_ylim([-0.05, 1.05]) # Visual aesthetics ax.legend(bbox_to_anchor=(1.05, 2.05), loc='lower left', borderaxespad = 0.) fig.suptitle('Decision Tree Regressor Learning Performances', fontsize = 16, y = 1.03) fig.tight_layout() fig.show() def ModelComplexity(X, y): """ Calculates the performance of the model as model complexity increases. The learning and testing errors rates are then plotted. """ # Create 10 cross-validation sets for training and testing cv = ShuffleSplit(X.shape[0], n_iter = 10, test_size = 0.2, random_state = 0) # Vary the max_depth parameter from 1 to 10 max_depth = np.arange(1,11) # Calculate the training and testing scores train_scores, test_scores = curves.validation_curve(DecisionTreeRegressor(), X, y, \ param_name = "max_depth", param_range = max_depth, cv = cv, scoring = 'r2') # Find the mean and standard deviation for smoothing train_mean = np.mean(train_scores, axis=1) train_std = np.std(train_scores, axis=1) test_mean = np.mean(test_scores, axis=1) test_std = np.std(test_scores, axis=1) # Plot the validation curve pl.figure(figsize=(7, 5)) pl.title('Decision Tree Regressor Complexity Performance') pl.plot(max_depth, train_mean, 'o-', color = 'r', label = 'Training Score') pl.plot(max_depth, test_mean, 'o-', color = 'g', label = 'Validation Score') pl.fill_between(max_depth, train_mean - train_std, \ train_mean + train_std, alpha = 0.15, color = 'r') pl.fill_between(max_depth, test_mean - test_std, \ test_mean + test_std, alpha = 0.15, color = 'g') # Visual aesthetics pl.legend(loc = 'lower right') pl.xlabel('Maximum Depth') pl.ylabel('Score') pl.ylim([-0.05,1.05]) pl.show() def PredictTrials(X, y, fitter, data): """ Performs trials of fitting and predicting data. """ # Store the predicted prices prices = [] for k in range(10): # Split the data X_train, X_test, y_train, y_test = train_test_split(X, y, \ test_size = 0.2, random_state = k) # Fit the data reg = fitter(X_train, y_train) # Make a prediction pred = reg.predict([data[0]])[0] prices.append(pred) # Result print "Trial {}: ${:,.2f}".format(k+1, pred) # Display price range print "\nRange in prices: ${:,.2f}".format(max(prices) - min(prices))
mit
shenzebang/scikit-learn
sklearn/feature_selection/rfe.py
137
17066
# Authors: Alexandre Gramfort <[email protected]> # Vincent Michel <[email protected]> # Gilles Louppe <[email protected]> # # License: BSD 3 clause """Recursive feature elimination for feature ranking""" import warnings import numpy as np from ..utils import check_X_y, safe_sqr from ..utils.metaestimators import if_delegate_has_method from ..base import BaseEstimator from ..base import MetaEstimatorMixin from ..base import clone from ..base import is_classifier from ..cross_validation import check_cv from ..cross_validation import _safe_split, _score from ..metrics.scorer import check_scoring from .base import SelectorMixin class RFE(BaseEstimator, MetaEstimatorMixin, SelectorMixin): """Feature ranking with recursive feature elimination. Given an external estimator that assigns weights to features (e.g., the coefficients of a linear model), the goal of recursive feature elimination (RFE) is to select features by recursively considering smaller and smaller sets of features. First, the estimator is trained on the initial set of features and weights are assigned to each one of them. Then, features whose absolute weights are the smallest are pruned from the current set features. That procedure is recursively repeated on the pruned set until the desired number of features to select is eventually reached. Read more in the :ref:`User Guide <rfe>`. Parameters ---------- estimator : object A supervised learning estimator with a `fit` method that updates a `coef_` attribute that holds the fitted parameters. Important features must correspond to high absolute values in the `coef_` array. For instance, this is the case for most supervised learning algorithms such as Support Vector Classifiers and Generalized Linear Models from the `svm` and `linear_model` modules. n_features_to_select : int or None (default=None) The number of features to select. If `None`, half of the features are selected. step : int or float, optional (default=1) If greater than or equal to 1, then `step` corresponds to the (integer) number of features to remove at each iteration. If within (0.0, 1.0), then `step` corresponds to the percentage (rounded down) of features to remove at each iteration. estimator_params : dict Parameters for the external estimator. This attribute is deprecated as of version 0.16 and will be removed in 0.18. Use estimator initialisation or set_params method instead. verbose : int, default=0 Controls verbosity of output. Attributes ---------- n_features_ : int The number of selected features. support_ : array of shape [n_features] The mask of selected features. ranking_ : array of shape [n_features] The feature ranking, such that ``ranking_[i]`` corresponds to the ranking position of the i-th feature. Selected (i.e., estimated best) features are assigned rank 1. estimator_ : object The external estimator fit on the reduced dataset. Examples -------- The following example shows how to retrieve the 5 right informative features in the Friedman #1 dataset. >>> from sklearn.datasets import make_friedman1 >>> from sklearn.feature_selection import RFE >>> from sklearn.svm import SVR >>> X, y = make_friedman1(n_samples=50, n_features=10, random_state=0) >>> estimator = SVR(kernel="linear") >>> selector = RFE(estimator, 5, step=1) >>> selector = selector.fit(X, y) >>> selector.support_ # doctest: +NORMALIZE_WHITESPACE array([ True, True, True, True, True, False, False, False, False, False], dtype=bool) >>> selector.ranking_ array([1, 1, 1, 1, 1, 6, 4, 3, 2, 5]) References ---------- .. [1] Guyon, I., Weston, J., Barnhill, S., & Vapnik, V., "Gene selection for cancer classification using support vector machines", Mach. Learn., 46(1-3), 389--422, 2002. """ def __init__(self, estimator, n_features_to_select=None, step=1, estimator_params=None, verbose=0): self.estimator = estimator self.n_features_to_select = n_features_to_select self.step = step self.estimator_params = estimator_params self.verbose = verbose @property def _estimator_type(self): return self.estimator._estimator_type def fit(self, X, y): """Fit the RFE model and then the underlying estimator on the selected features. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] The training input samples. y : array-like, shape = [n_samples] The target values. """ return self._fit(X, y) def _fit(self, X, y, step_score=None): X, y = check_X_y(X, y, "csc") # Initialization n_features = X.shape[1] if self.n_features_to_select is None: n_features_to_select = n_features / 2 else: n_features_to_select = self.n_features_to_select if 0.0 < self.step < 1.0: step = int(max(1, self.step * n_features)) else: step = int(self.step) if step <= 0: raise ValueError("Step must be >0") if self.estimator_params is not None: warnings.warn("The parameter 'estimator_params' is deprecated as " "of version 0.16 and will be removed in 0.18. The " "parameter is no longer necessary because the value " "is set via the estimator initialisation or " "set_params method.", DeprecationWarning) support_ = np.ones(n_features, dtype=np.bool) ranking_ = np.ones(n_features, dtype=np.int) if step_score: self.scores_ = [] # Elimination while np.sum(support_) > n_features_to_select: # Remaining features features = np.arange(n_features)[support_] # Rank the remaining features estimator = clone(self.estimator) if self.estimator_params: estimator.set_params(**self.estimator_params) if self.verbose > 0: print("Fitting estimator with %d features." % np.sum(support_)) estimator.fit(X[:, features], y) # Get coefs if hasattr(estimator, 'coef_'): coefs = estimator.coef_ elif hasattr(estimator, 'feature_importances_'): coefs = estimator.feature_importances_ else: raise RuntimeError('The classifier does not expose ' '"coef_" or "feature_importances_" ' 'attributes') # Get ranks if coefs.ndim > 1: ranks = np.argsort(safe_sqr(coefs).sum(axis=0)) else: ranks = np.argsort(safe_sqr(coefs)) # for sparse case ranks is matrix ranks = np.ravel(ranks) # Eliminate the worse features threshold = min(step, np.sum(support_) - n_features_to_select) # Compute step score on the previous selection iteration # because 'estimator' must use features # that have not been eliminated yet if step_score: self.scores_.append(step_score(estimator, features)) support_[features[ranks][:threshold]] = False ranking_[np.logical_not(support_)] += 1 # Set final attributes features = np.arange(n_features)[support_] self.estimator_ = clone(self.estimator) if self.estimator_params: self.estimator_.set_params(**self.estimator_params) self.estimator_.fit(X[:, features], y) # Compute step score when only n_features_to_select features left if step_score: self.scores_.append(step_score(self.estimator_, features)) self.n_features_ = support_.sum() self.support_ = support_ self.ranking_ = ranking_ return self @if_delegate_has_method(delegate='estimator') def predict(self, X): """Reduce X to the selected features and then predict using the underlying estimator. Parameters ---------- X : array of shape [n_samples, n_features] The input samples. Returns ------- y : array of shape [n_samples] The predicted target values. """ return self.estimator_.predict(self.transform(X)) @if_delegate_has_method(delegate='estimator') def score(self, X, y): """Reduce X to the selected features and then return the score of the underlying estimator. Parameters ---------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] The target values. """ return self.estimator_.score(self.transform(X), y) def _get_support_mask(self): return self.support_ @if_delegate_has_method(delegate='estimator') def decision_function(self, X): return self.estimator_.decision_function(self.transform(X)) @if_delegate_has_method(delegate='estimator') def predict_proba(self, X): return self.estimator_.predict_proba(self.transform(X)) @if_delegate_has_method(delegate='estimator') def predict_log_proba(self, X): return self.estimator_.predict_log_proba(self.transform(X)) class RFECV(RFE, MetaEstimatorMixin): """Feature ranking with recursive feature elimination and cross-validated selection of the best number of features. Read more in the :ref:`User Guide <rfe>`. Parameters ---------- estimator : object A supervised learning estimator with a `fit` method that updates a `coef_` attribute that holds the fitted parameters. Important features must correspond to high absolute values in the `coef_` array. For instance, this is the case for most supervised learning algorithms such as Support Vector Classifiers and Generalized Linear Models from the `svm` and `linear_model` modules. step : int or float, optional (default=1) If greater than or equal to 1, then `step` corresponds to the (integer) number of features to remove at each iteration. If within (0.0, 1.0), then `step` corresponds to the percentage (rounded down) of features to remove at each iteration. cv : int or cross-validation generator, optional (default=None) If int, it is the number of folds. If None, 3-fold cross-validation is performed by default. Specific cross-validation objects can also be passed, see `sklearn.cross_validation module` for details. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. estimator_params : dict Parameters for the external estimator. This attribute is deprecated as of version 0.16 and will be removed in 0.18. Use estimator initialisation or set_params method instead. verbose : int, default=0 Controls verbosity of output. Attributes ---------- n_features_ : int The number of selected features with cross-validation. support_ : array of shape [n_features] The mask of selected features. ranking_ : array of shape [n_features] The feature ranking, such that `ranking_[i]` corresponds to the ranking position of the i-th feature. Selected (i.e., estimated best) features are assigned rank 1. grid_scores_ : array of shape [n_subsets_of_features] The cross-validation scores such that ``grid_scores_[i]`` corresponds to the CV score of the i-th subset of features. estimator_ : object The external estimator fit on the reduced dataset. Notes ----- The size of ``grid_scores_`` is equal to ceil((n_features - 1) / step) + 1, where step is the number of features removed at each iteration. Examples -------- The following example shows how to retrieve the a-priori not known 5 informative features in the Friedman #1 dataset. >>> from sklearn.datasets import make_friedman1 >>> from sklearn.feature_selection import RFECV >>> from sklearn.svm import SVR >>> X, y = make_friedman1(n_samples=50, n_features=10, random_state=0) >>> estimator = SVR(kernel="linear") >>> selector = RFECV(estimator, step=1, cv=5) >>> selector = selector.fit(X, y) >>> selector.support_ # doctest: +NORMALIZE_WHITESPACE array([ True, True, True, True, True, False, False, False, False, False], dtype=bool) >>> selector.ranking_ array([1, 1, 1, 1, 1, 6, 4, 3, 2, 5]) References ---------- .. [1] Guyon, I., Weston, J., Barnhill, S., & Vapnik, V., "Gene selection for cancer classification using support vector machines", Mach. Learn., 46(1-3), 389--422, 2002. """ def __init__(self, estimator, step=1, cv=None, scoring=None, estimator_params=None, verbose=0): self.estimator = estimator self.step = step self.cv = cv self.scoring = scoring self.estimator_params = estimator_params self.verbose = verbose def fit(self, X, y): """Fit the RFE model and automatically tune the number of selected features. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vector, where `n_samples` is the number of samples and `n_features` is the total number of features. y : array-like, shape = [n_samples] Target values (integers for classification, real numbers for regression). """ X, y = check_X_y(X, y, "csr") if self.estimator_params is not None: warnings.warn("The parameter 'estimator_params' is deprecated as " "of version 0.16 and will be removed in 0.18. " "The parameter is no longer necessary because the " "value is set via the estimator initialisation or " "set_params method.", DeprecationWarning) # Initialization cv = check_cv(self.cv, X, y, is_classifier(self.estimator)) scorer = check_scoring(self.estimator, scoring=self.scoring) n_features = X.shape[1] n_features_to_select = 1 # Determine the number of subsets of features scores = [] # Cross-validation for n, (train, test) in enumerate(cv): X_train, y_train = _safe_split(self.estimator, X, y, train) X_test, y_test = _safe_split(self.estimator, X, y, test, train) rfe = RFE(estimator=self.estimator, n_features_to_select=n_features_to_select, step=self.step, estimator_params=self.estimator_params, verbose=self.verbose - 1) rfe._fit(X_train, y_train, lambda estimator, features: _score(estimator, X_test[:, features], y_test, scorer)) scores.append(np.array(rfe.scores_[::-1]).reshape(1, -1)) scores = np.sum(np.concatenate(scores, 0), 0) # The index in 'scores' when 'n_features' features are selected n_feature_index = np.ceil((n_features - n_features_to_select) / float(self.step)) n_features_to_select = max(n_features_to_select, n_features - ((n_feature_index - np.argmax(scores)) * self.step)) # Re-execute an elimination with best_k over the whole set rfe = RFE(estimator=self.estimator, n_features_to_select=n_features_to_select, step=self.step, estimator_params=self.estimator_params) rfe.fit(X, y) # Set final attributes self.support_ = rfe.support_ self.n_features_ = rfe.n_features_ self.ranking_ = rfe.ranking_ self.estimator_ = clone(self.estimator) if self.estimator_params: self.estimator_.set_params(**self.estimator_params) self.estimator_.fit(self.transform(X), y) # Fixing a normalization error, n is equal to len(cv) - 1 # here, the scores are normalized by len(cv) self.grid_scores_ = scores / len(cv) return self
bsd-3-clause
haphaeu/yoshimi
plot_clipboard.py
1
1075
# -*- coding: utf-8 -*- """ Plot data from clipboard. Use: 1. Select the data as text or spreadsheet and copy them into the clipboard 3. Run the lines below "pd.read_clipboard()" for each variable you want. This will import the data into a Pandas DataFrame. If the header row is also copied into clipboard, it will be the name of the dataframe column with the data. 4. Plot them using pyplot by selecting the columns you want plotted. To import data from Orcaflex, just extract data as values and copy it. This script is not supposed to be run. Import from clipboard should be executed line by line. Created on Fri Nov 3 08:13:17 2017 @author: rarossi """ # %% import pandas as pd from matplotlib import pyplot as plt # %% input('Copy data to clipboard and press any key\n') correct = pd.read_clipboard() input('Copy data to clipboard and press any key\n') wrong = pd.read_clipboard() # %% plt.plot(correct.Time, correct.Tension, label='correct') plt.plot(wrong.Time, wrong.Tension, label='wrong') plt.grid() plt.legend(loc='best')
lgpl-3.0
AlexanderFabisch/scikit-learn
sklearn/tree/tests/test_tree.py
13
52365
""" Testing for the tree module (sklearn.tree). """ import pickle from functools import partial from itertools import product import platform import numpy as np from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import coo_matrix from sklearn.random_projection import sparse_random_matrix from sklearn.metrics import accuracy_score from sklearn.metrics import mean_squared_error from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_less_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_warns from sklearn.utils.testing import raises from sklearn.utils.testing import ignore_warnings from sklearn.utils.validation import check_random_state from sklearn.exceptions import NotFittedError from sklearn.tree import DecisionTreeClassifier from sklearn.tree import DecisionTreeRegressor from sklearn.tree import ExtraTreeClassifier from sklearn.tree import ExtraTreeRegressor from sklearn import tree from sklearn.tree.tree import SPARSE_SPLITTERS from sklearn.tree._tree import TREE_LEAF from sklearn import datasets from sklearn.utils import compute_sample_weight CLF_CRITERIONS = ("gini", "entropy") REG_CRITERIONS = ("mse", ) CLF_TREES = { "DecisionTreeClassifier": DecisionTreeClassifier, "Presort-DecisionTreeClassifier": partial(DecisionTreeClassifier, presort=True), "ExtraTreeClassifier": ExtraTreeClassifier, } REG_TREES = { "DecisionTreeRegressor": DecisionTreeRegressor, "Presort-DecisionTreeRegressor": partial(DecisionTreeRegressor, presort=True), "ExtraTreeRegressor": ExtraTreeRegressor, } ALL_TREES = dict() ALL_TREES.update(CLF_TREES) ALL_TREES.update(REG_TREES) SPARSE_TREES = ["DecisionTreeClassifier", "DecisionTreeRegressor", "ExtraTreeClassifier", "ExtraTreeRegressor"] X_small = np.array([ [0, 0, 4, 0, 0, 0, 1, -14, 0, -4, 0, 0, 0, 0, ], [0, 0, 5, 3, 0, -4, 0, 0, 1, -5, 0.2, 0, 4, 1, ], [-1, -1, 0, 0, -4.5, 0, 0, 2.1, 1, 0, 0, -4.5, 0, 1, ], [-1, -1, 0, -1.2, 0, 0, 0, 0, 0, 0, 0.2, 0, 0, 1, ], [-1, -1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, ], [-1, -2, 0, 4, -3, 10, 4, 0, -3.2, 0, 4, 3, -4, 1, ], [2.11, 0, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0.5, 0, -3, 1, ], [2.11, 0, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0, 0, -2, 1, ], [2.11, 8, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0, 0, -2, 1, ], [2.11, 8, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0.5, 0, -1, 0, ], [2, 8, 5, 1, 0.5, -4, 10, 0, 1, -5, 3, 0, 2, 0, ], [2, 0, 1, 1, 1, -1, 1, 0, 0, -2, 3, 0, 1, 0, ], [2, 0, 1, 2, 3, -1, 10, 2, 0, -1, 1, 2, 2, 0, ], [1, 1, 0, 2, 2, -1, 1, 2, 0, -5, 1, 2, 3, 0, ], [3, 1, 0, 3, 0, -4, 10, 0, 1, -5, 3, 0, 3, 1, ], [2.11, 8, -6, -0.5, 0, 1, 0, 0, -3.2, 6, 0.5, 0, -3, 1, ], [2.11, 8, -6, -0.5, 0, 1, 0, 0, -3.2, 6, 1.5, 1, -1, -1, ], [2.11, 8, -6, -0.5, 0, 10, 0, 0, -3.2, 6, 0.5, 0, -1, -1, ], [2, 0, 5, 1, 0.5, -2, 10, 0, 1, -5, 3, 1, 0, -1, ], [2, 0, 1, 1, 1, -2, 1, 0, 0, -2, 0, 0, 0, 1, ], [2, 1, 1, 1, 2, -1, 10, 2, 0, -1, 0, 2, 1, 1, ], [1, 1, 0, 0, 1, -3, 1, 2, 0, -5, 1, 2, 1, 1, ], [3, 1, 0, 1, 0, -4, 1, 0, 1, -2, 0, 0, 1, 0, ]]) y_small = [1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0] y_small_reg = [1.0, 2.1, 1.2, 0.05, 10, 2.4, 3.1, 1.01, 0.01, 2.98, 3.1, 1.1, 0.0, 1.2, 2, 11, 0, 0, 4.5, 0.201, 1.06, 0.9, 0] # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() rng = np.random.RandomState(1) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # also load the boston dataset # and randomly permute it boston = datasets.load_boston() perm = rng.permutation(boston.target.size) boston.data = boston.data[perm] boston.target = boston.target[perm] digits = datasets.load_digits() perm = rng.permutation(digits.target.size) digits.data = digits.data[perm] digits.target = digits.target[perm] random_state = check_random_state(0) X_multilabel, y_multilabel = datasets.make_multilabel_classification( random_state=0, n_samples=30, n_features=10) X_sparse_pos = random_state.uniform(size=(20, 5)) X_sparse_pos[X_sparse_pos <= 0.8] = 0. y_random = random_state.randint(0, 4, size=(20, )) X_sparse_mix = sparse_random_matrix(20, 10, density=0.25, random_state=0) DATASETS = { "iris": {"X": iris.data, "y": iris.target}, "boston": {"X": boston.data, "y": boston.target}, "digits": {"X": digits.data, "y": digits.target}, "toy": {"X": X, "y": y}, "clf_small": {"X": X_small, "y": y_small}, "reg_small": {"X": X_small, "y": y_small_reg}, "multilabel": {"X": X_multilabel, "y": y_multilabel}, "sparse-pos": {"X": X_sparse_pos, "y": y_random}, "sparse-neg": {"X": - X_sparse_pos, "y": y_random}, "sparse-mix": {"X": X_sparse_mix, "y": y_random}, "zeros": {"X": np.zeros((20, 3)), "y": y_random} } for name in DATASETS: DATASETS[name]["X_sparse"] = csc_matrix(DATASETS[name]["X"]) def assert_tree_equal(d, s, message): assert_equal(s.node_count, d.node_count, "{0}: inequal number of node ({1} != {2})" "".format(message, s.node_count, d.node_count)) assert_array_equal(d.children_right, s.children_right, message + ": inequal children_right") assert_array_equal(d.children_left, s.children_left, message + ": inequal children_left") external = d.children_right == TREE_LEAF internal = np.logical_not(external) assert_array_equal(d.feature[internal], s.feature[internal], message + ": inequal features") assert_array_equal(d.threshold[internal], s.threshold[internal], message + ": inequal threshold") assert_array_equal(d.n_node_samples.sum(), s.n_node_samples.sum(), message + ": inequal sum(n_node_samples)") assert_array_equal(d.n_node_samples, s.n_node_samples, message + ": inequal n_node_samples") assert_almost_equal(d.impurity, s.impurity, err_msg=message + ": inequal impurity") assert_array_almost_equal(d.value[external], s.value[external], err_msg=message + ": inequal value") def test_classification_toy(): # Check classification on a toy dataset. for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) clf = Tree(max_features=1, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) def test_weighted_classification_toy(): # Check classification on a weighted toy dataset. for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y, sample_weight=np.ones(len(X))) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) clf.fit(X, y, sample_weight=np.ones(len(X)) * 0.5) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) def test_regression_toy(): # Check regression on a toy dataset. for name, Tree in REG_TREES.items(): reg = Tree(random_state=1) reg.fit(X, y) assert_almost_equal(reg.predict(T), true_result, err_msg="Failed with {0}".format(name)) clf = Tree(max_features=1, random_state=1) clf.fit(X, y) assert_almost_equal(reg.predict(T), true_result, err_msg="Failed with {0}".format(name)) def test_xor(): # Check on a XOR problem y = np.zeros((10, 10)) y[:5, :5] = 1 y[5:, 5:] = 1 gridx, gridy = np.indices(y.shape) X = np.vstack([gridx.ravel(), gridy.ravel()]).T y = y.ravel() for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y) assert_equal(clf.score(X, y), 1.0, "Failed with {0}".format(name)) clf = Tree(random_state=0, max_features=1) clf.fit(X, y) assert_equal(clf.score(X, y), 1.0, "Failed with {0}".format(name)) def test_iris(): # Check consistency on dataset iris. for (name, Tree), criterion in product(CLF_TREES.items(), CLF_CRITERIONS): clf = Tree(criterion=criterion, random_state=0) clf.fit(iris.data, iris.target) score = accuracy_score(clf.predict(iris.data), iris.target) assert_greater(score, 0.9, "Failed with {0}, criterion = {1} and score = {2}" "".format(name, criterion, score)) clf = Tree(criterion=criterion, max_features=2, random_state=0) clf.fit(iris.data, iris.target) score = accuracy_score(clf.predict(iris.data), iris.target) assert_greater(score, 0.5, "Failed with {0}, criterion = {1} and score = {2}" "".format(name, criterion, score)) def test_boston(): # Check consistency on dataset boston house prices. for (name, Tree), criterion in product(REG_TREES.items(), REG_CRITERIONS): reg = Tree(criterion=criterion, random_state=0) reg.fit(boston.data, boston.target) score = mean_squared_error(boston.target, reg.predict(boston.data)) assert_less(score, 1, "Failed with {0}, criterion = {1} and score = {2}" "".format(name, criterion, score)) # using fewer features reduces the learning ability of this tree, # but reduces training time. reg = Tree(criterion=criterion, max_features=6, random_state=0) reg.fit(boston.data, boston.target) score = mean_squared_error(boston.target, reg.predict(boston.data)) assert_less(score, 2, "Failed with {0}, criterion = {1} and score = {2}" "".format(name, criterion, score)) def test_probability(): # Predict probabilities using DecisionTreeClassifier. for name, Tree in CLF_TREES.items(): clf = Tree(max_depth=1, max_features=1, random_state=42) clf.fit(iris.data, iris.target) prob_predict = clf.predict_proba(iris.data) assert_array_almost_equal(np.sum(prob_predict, 1), np.ones(iris.data.shape[0]), err_msg="Failed with {0}".format(name)) assert_array_equal(np.argmax(prob_predict, 1), clf.predict(iris.data), err_msg="Failed with {0}".format(name)) assert_almost_equal(clf.predict_proba(iris.data), np.exp(clf.predict_log_proba(iris.data)), 8, err_msg="Failed with {0}".format(name)) def test_arrayrepr(): # Check the array representation. # Check resize X = np.arange(10000)[:, np.newaxis] y = np.arange(10000) for name, Tree in REG_TREES.items(): reg = Tree(max_depth=None, random_state=0) reg.fit(X, y) def test_pure_set(): # Check when y is pure. X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [1, 1, 1, 1, 1, 1] for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(random_state=0) clf.fit(X, y) assert_array_equal(clf.predict(X), y, err_msg="Failed with {0}".format(name)) for name, TreeRegressor in REG_TREES.items(): reg = TreeRegressor(random_state=0) reg.fit(X, y) assert_almost_equal(clf.predict(X), y, err_msg="Failed with {0}".format(name)) def test_numerical_stability(): # Check numerical stability. X = np.array([ [152.08097839, 140.40744019, 129.75102234, 159.90493774], [142.50700378, 135.81935120, 117.82884979, 162.75781250], [127.28772736, 140.40744019, 129.75102234, 159.90493774], [132.37025452, 143.71923828, 138.35694885, 157.84558105], [103.10237122, 143.71928406, 138.35696411, 157.84559631], [127.71276855, 143.71923828, 138.35694885, 157.84558105], [120.91514587, 140.40744019, 129.75102234, 159.90493774]]) y = np.array( [1., 0.70209277, 0.53896582, 0., 0.90914464, 0.48026916, 0.49622521]) with np.errstate(all="raise"): for name, Tree in REG_TREES.items(): reg = Tree(random_state=0) reg.fit(X, y) reg.fit(X, -y) reg.fit(-X, y) reg.fit(-X, -y) def test_importances(): # Check variable importances. X, y = datasets.make_classification(n_samples=2000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y) importances = clf.feature_importances_ n_important = np.sum(importances > 0.1) assert_equal(importances.shape[0], 10, "Failed with {0}".format(name)) assert_equal(n_important, 3, "Failed with {0}".format(name)) X_new = assert_warns( DeprecationWarning, clf.transform, X, threshold="mean") assert_less(0, X_new.shape[1], "Failed with {0}".format(name)) assert_less(X_new.shape[1], X.shape[1], "Failed with {0}".format(name)) # Check on iris that importances are the same for all builders clf = DecisionTreeClassifier(random_state=0) clf.fit(iris.data, iris.target) clf2 = DecisionTreeClassifier(random_state=0, max_leaf_nodes=len(iris.data)) clf2.fit(iris.data, iris.target) assert_array_equal(clf.feature_importances_, clf2.feature_importances_) @raises(ValueError) def test_importances_raises(): # Check if variable importance before fit raises ValueError. clf = DecisionTreeClassifier() clf.feature_importances_ def test_importances_gini_equal_mse(): # Check that gini is equivalent to mse for binary output variable X, y = datasets.make_classification(n_samples=2000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) # The gini index and the mean square error (variance) might differ due # to numerical instability. Since those instabilities mainly occurs at # high tree depth, we restrict this maximal depth. clf = DecisionTreeClassifier(criterion="gini", max_depth=5, random_state=0).fit(X, y) reg = DecisionTreeRegressor(criterion="mse", max_depth=5, random_state=0).fit(X, y) assert_almost_equal(clf.feature_importances_, reg.feature_importances_) assert_array_equal(clf.tree_.feature, reg.tree_.feature) assert_array_equal(clf.tree_.children_left, reg.tree_.children_left) assert_array_equal(clf.tree_.children_right, reg.tree_.children_right) assert_array_equal(clf.tree_.n_node_samples, reg.tree_.n_node_samples) def test_max_features(): # Check max_features. for name, TreeRegressor in REG_TREES.items(): reg = TreeRegressor(max_features="auto") reg.fit(boston.data, boston.target) assert_equal(reg.max_features_, boston.data.shape[1]) for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(max_features="auto") clf.fit(iris.data, iris.target) assert_equal(clf.max_features_, 2) for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(max_features="sqrt") est.fit(iris.data, iris.target) assert_equal(est.max_features_, int(np.sqrt(iris.data.shape[1]))) est = TreeEstimator(max_features="log2") est.fit(iris.data, iris.target) assert_equal(est.max_features_, int(np.log2(iris.data.shape[1]))) est = TreeEstimator(max_features=1) est.fit(iris.data, iris.target) assert_equal(est.max_features_, 1) est = TreeEstimator(max_features=3) est.fit(iris.data, iris.target) assert_equal(est.max_features_, 3) est = TreeEstimator(max_features=0.01) est.fit(iris.data, iris.target) assert_equal(est.max_features_, 1) est = TreeEstimator(max_features=0.5) est.fit(iris.data, iris.target) assert_equal(est.max_features_, int(0.5 * iris.data.shape[1])) est = TreeEstimator(max_features=1.0) est.fit(iris.data, iris.target) assert_equal(est.max_features_, iris.data.shape[1]) est = TreeEstimator(max_features=None) est.fit(iris.data, iris.target) assert_equal(est.max_features_, iris.data.shape[1]) # use values of max_features that are invalid est = TreeEstimator(max_features=10) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_features=-1) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_features=0.0) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_features=1.5) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_features="foobar") assert_raises(ValueError, est.fit, X, y) def test_error(): # Test that it gives proper exception on deficient input. for name, TreeEstimator in CLF_TREES.items(): # predict before fit est = TreeEstimator() assert_raises(NotFittedError, est.predict_proba, X) est.fit(X, y) X2 = [[-2, -1, 1]] # wrong feature shape for sample assert_raises(ValueError, est.predict_proba, X2) for name, TreeEstimator in ALL_TREES.items(): # Invalid values for parameters assert_raises(ValueError, TreeEstimator(min_samples_leaf=-1).fit, X, y) assert_raises(ValueError, TreeEstimator(min_samples_leaf=.6).fit, X, y) assert_raises(ValueError, TreeEstimator(min_samples_leaf=0.).fit, X, y) assert_raises(ValueError, TreeEstimator(min_weight_fraction_leaf=-1).fit, X, y) assert_raises(ValueError, TreeEstimator(min_weight_fraction_leaf=0.51).fit, X, y) assert_raises(ValueError, TreeEstimator(min_samples_split=-1).fit, X, y) assert_raises(ValueError, TreeEstimator(min_samples_split=0.0).fit, X, y) assert_raises(ValueError, TreeEstimator(min_samples_split=1.1).fit, X, y) assert_raises(ValueError, TreeEstimator(max_depth=-1).fit, X, y) assert_raises(ValueError, TreeEstimator(max_features=42).fit, X, y) # Wrong dimensions est = TreeEstimator() y2 = y[:-1] assert_raises(ValueError, est.fit, X, y2) # Test with arrays that are non-contiguous. Xf = np.asfortranarray(X) est = TreeEstimator() est.fit(Xf, y) assert_almost_equal(est.predict(T), true_result) # predict before fitting est = TreeEstimator() assert_raises(NotFittedError, est.predict, T) # predict on vector with different dims est.fit(X, y) t = np.asarray(T) assert_raises(ValueError, est.predict, t[:, 1:]) # wrong sample shape Xt = np.array(X).T est = TreeEstimator() est.fit(np.dot(X, Xt), y) assert_raises(ValueError, est.predict, X) assert_raises(ValueError, est.apply, X) clf = TreeEstimator() clf.fit(X, y) assert_raises(ValueError, clf.predict, Xt) assert_raises(ValueError, clf.apply, Xt) # apply before fitting est = TreeEstimator() assert_raises(NotFittedError, est.apply, T) def test_min_samples_split(): """Test min_samples_split parameter""" X = np.asfortranarray(iris.data.astype(tree._tree.DTYPE)) y = iris.target # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for max_leaf_nodes, name in product((None, 1000), ALL_TREES.keys()): TreeEstimator = ALL_TREES[name] # test for integer parameter est = TreeEstimator(min_samples_split=10, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y) # count samples on nodes, -1 means it is a leaf node_samples = est.tree_.n_node_samples[est.tree_.children_left != -1] assert_greater(np.min(node_samples), 9, "Failed with {0}".format(name)) # test for float parameter est = TreeEstimator(min_samples_split=0.2, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y) # count samples on nodes, -1 means it is a leaf node_samples = est.tree_.n_node_samples[est.tree_.children_left != -1] assert_greater(np.min(node_samples), 9, "Failed with {0}".format(name)) def test_min_samples_leaf(): # Test if leaves contain more than leaf_count training examples X = np.asfortranarray(iris.data.astype(tree._tree.DTYPE)) y = iris.target # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for max_leaf_nodes, name in product((None, 1000), ALL_TREES.keys()): TreeEstimator = ALL_TREES[name] # test integer parameter est = TreeEstimator(min_samples_leaf=5, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y) out = est.tree_.apply(X) node_counts = np.bincount(out) # drop inner nodes leaf_count = node_counts[node_counts != 0] assert_greater(np.min(leaf_count), 4, "Failed with {0}".format(name)) # test float parameter est = TreeEstimator(min_samples_leaf=0.1, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y) out = est.tree_.apply(X) node_counts = np.bincount(out) # drop inner nodes leaf_count = node_counts[node_counts != 0] assert_greater(np.min(leaf_count), 4, "Failed with {0}".format(name)) def check_min_weight_fraction_leaf(name, datasets, sparse=False): """Test if leaves contain at least min_weight_fraction_leaf of the training set""" if sparse: X = DATASETS[datasets]["X_sparse"].astype(np.float32) else: X = DATASETS[datasets]["X"].astype(np.float32) y = DATASETS[datasets]["y"] weights = rng.rand(X.shape[0]) total_weight = np.sum(weights) TreeEstimator = ALL_TREES[name] # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for max_leaf_nodes, frac in product((None, 1000), np.linspace(0, 0.5, 6)): est = TreeEstimator(min_weight_fraction_leaf=frac, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y, sample_weight=weights) if sparse: out = est.tree_.apply(X.tocsr()) else: out = est.tree_.apply(X) node_weights = np.bincount(out, weights=weights) # drop inner nodes leaf_weights = node_weights[node_weights != 0] assert_greater_equal( np.min(leaf_weights), total_weight * est.min_weight_fraction_leaf, "Failed with {0} " "min_weight_fraction_leaf={1}".format( name, est.min_weight_fraction_leaf)) def test_min_weight_fraction_leaf(): # Check on dense input for name in ALL_TREES: yield check_min_weight_fraction_leaf, name, "iris" # Check on sparse input for name in SPARSE_TREES: yield check_min_weight_fraction_leaf, name, "multilabel", True def test_pickle(): for name, TreeEstimator in ALL_TREES.items(): if "Classifier" in name: X, y = iris.data, iris.target else: X, y = boston.data, boston.target est = TreeEstimator(random_state=0) est.fit(X, y) score = est.score(X, y) fitted_attribute = dict() for attribute in ["max_depth", "node_count", "capacity"]: fitted_attribute[attribute] = getattr(est.tree_, attribute) serialized_object = pickle.dumps(est) est2 = pickle.loads(serialized_object) assert_equal(type(est2), est.__class__) score2 = est2.score(X, y) assert_equal(score, score2, "Failed to generate same score after pickling " "with {0}".format(name)) for attribute in fitted_attribute: assert_equal(getattr(est2.tree_, attribute), fitted_attribute[attribute], "Failed to generate same attribute {0} after " "pickling with {1}".format(attribute, name)) def test_multioutput(): # Check estimators on multi-output problems. X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-2, 1], [-1, 1], [-1, 2], [2, -1], [1, -1], [1, -2]] y = [[-1, 0], [-1, 0], [-1, 0], [1, 1], [1, 1], [1, 1], [-1, 2], [-1, 2], [-1, 2], [1, 3], [1, 3], [1, 3]] T = [[-1, -1], [1, 1], [-1, 1], [1, -1]] y_true = [[-1, 0], [1, 1], [-1, 2], [1, 3]] # toy classification problem for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(random_state=0) y_hat = clf.fit(X, y).predict(T) assert_array_equal(y_hat, y_true) assert_equal(y_hat.shape, (4, 2)) proba = clf.predict_proba(T) assert_equal(len(proba), 2) assert_equal(proba[0].shape, (4, 2)) assert_equal(proba[1].shape, (4, 4)) log_proba = clf.predict_log_proba(T) assert_equal(len(log_proba), 2) assert_equal(log_proba[0].shape, (4, 2)) assert_equal(log_proba[1].shape, (4, 4)) # toy regression problem for name, TreeRegressor in REG_TREES.items(): reg = TreeRegressor(random_state=0) y_hat = reg.fit(X, y).predict(T) assert_almost_equal(y_hat, y_true) assert_equal(y_hat.shape, (4, 2)) def test_classes_shape(): # Test that n_classes_ and classes_ have proper shape. for name, TreeClassifier in CLF_TREES.items(): # Classification, single output clf = TreeClassifier(random_state=0) clf.fit(X, y) assert_equal(clf.n_classes_, 2) assert_array_equal(clf.classes_, [-1, 1]) # Classification, multi-output _y = np.vstack((y, np.array(y) * 2)).T clf = TreeClassifier(random_state=0) clf.fit(X, _y) assert_equal(len(clf.n_classes_), 2) assert_equal(len(clf.classes_), 2) assert_array_equal(clf.n_classes_, [2, 2]) assert_array_equal(clf.classes_, [[-1, 1], [-2, 2]]) def test_unbalanced_iris(): # Check class rebalancing. unbalanced_X = iris.data[:125] unbalanced_y = iris.target[:125] sample_weight = compute_sample_weight("balanced", unbalanced_y) for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(random_state=0) clf.fit(unbalanced_X, unbalanced_y, sample_weight=sample_weight) assert_almost_equal(clf.predict(unbalanced_X), unbalanced_y) def test_memory_layout(): # Check that it works no matter the memory layout for (name, TreeEstimator), dtype in product(ALL_TREES.items(), [np.float64, np.float32]): est = TreeEstimator(random_state=0) # Nothing X = np.asarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # C-order X = np.asarray(iris.data, order="C", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # F-order X = np.asarray(iris.data, order="F", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Contiguous X = np.ascontiguousarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) if not est.presort: # csr matrix X = csr_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # csc_matrix X = csc_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Strided X = np.asarray(iris.data[::3], dtype=dtype) y = iris.target[::3] assert_array_equal(est.fit(X, y).predict(X), y) def test_sample_weight(): # Check sample weighting. # Test that zero-weighted samples are not taken into account X = np.arange(100)[:, np.newaxis] y = np.ones(100) y[:50] = 0.0 sample_weight = np.ones(100) sample_weight[y == 0] = 0.0 clf = DecisionTreeClassifier(random_state=0) clf.fit(X, y, sample_weight=sample_weight) assert_array_equal(clf.predict(X), np.ones(100)) # Test that low weighted samples are not taken into account at low depth X = np.arange(200)[:, np.newaxis] y = np.zeros(200) y[50:100] = 1 y[100:200] = 2 X[100:200, 0] = 200 sample_weight = np.ones(200) sample_weight[y == 2] = .51 # Samples of class '2' are still weightier clf = DecisionTreeClassifier(max_depth=1, random_state=0) clf.fit(X, y, sample_weight=sample_weight) assert_equal(clf.tree_.threshold[0], 149.5) sample_weight[y == 2] = .5 # Samples of class '2' are no longer weightier clf = DecisionTreeClassifier(max_depth=1, random_state=0) clf.fit(X, y, sample_weight=sample_weight) assert_equal(clf.tree_.threshold[0], 49.5) # Threshold should have moved # Test that sample weighting is the same as having duplicates X = iris.data y = iris.target duplicates = rng.randint(0, X.shape[0], 100) clf = DecisionTreeClassifier(random_state=1) clf.fit(X[duplicates], y[duplicates]) sample_weight = np.bincount(duplicates, minlength=X.shape[0]) clf2 = DecisionTreeClassifier(random_state=1) clf2.fit(X, y, sample_weight=sample_weight) internal = clf.tree_.children_left != tree._tree.TREE_LEAF assert_array_almost_equal(clf.tree_.threshold[internal], clf2.tree_.threshold[internal]) def test_sample_weight_invalid(): # Check sample weighting raises errors. X = np.arange(100)[:, np.newaxis] y = np.ones(100) y[:50] = 0.0 clf = DecisionTreeClassifier(random_state=0) sample_weight = np.random.rand(100, 1) assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight) sample_weight = np.array(0) assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight) sample_weight = np.ones(101) assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight) sample_weight = np.ones(99) assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight) def check_class_weights(name): """Check class_weights resemble sample_weights behavior.""" TreeClassifier = CLF_TREES[name] # Iris is balanced, so no effect expected for using 'balanced' weights clf1 = TreeClassifier(random_state=0) clf1.fit(iris.data, iris.target) clf2 = TreeClassifier(class_weight='balanced', random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Make a multi-output problem with three copies of Iris iris_multi = np.vstack((iris.target, iris.target, iris.target)).T # Create user-defined weights that should balance over the outputs clf3 = TreeClassifier(class_weight=[{0: 2., 1: 2., 2: 1.}, {0: 2., 1: 1., 2: 2.}, {0: 1., 1: 2., 2: 2.}], random_state=0) clf3.fit(iris.data, iris_multi) assert_almost_equal(clf2.feature_importances_, clf3.feature_importances_) # Check against multi-output "auto" which should also have no effect clf4 = TreeClassifier(class_weight='balanced', random_state=0) clf4.fit(iris.data, iris_multi) assert_almost_equal(clf3.feature_importances_, clf4.feature_importances_) # Inflate importance of class 1, check against user-defined weights sample_weight = np.ones(iris.target.shape) sample_weight[iris.target == 1] *= 100 class_weight = {0: 1., 1: 100., 2: 1.} clf1 = TreeClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight) clf2 = TreeClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Check that sample_weight and class_weight are multiplicative clf1 = TreeClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight ** 2) clf2 = TreeClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target, sample_weight) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) def test_class_weights(): for name in CLF_TREES: yield check_class_weights, name def check_class_weight_errors(name): # Test if class_weight raises errors and warnings when expected. TreeClassifier = CLF_TREES[name] _y = np.vstack((y, np.array(y) * 2)).T # Invalid preset string clf = TreeClassifier(class_weight='the larch', random_state=0) assert_raises(ValueError, clf.fit, X, y) assert_raises(ValueError, clf.fit, X, _y) # Not a list or preset for multi-output clf = TreeClassifier(class_weight=1, random_state=0) assert_raises(ValueError, clf.fit, X, _y) # Incorrect length list for multi-output clf = TreeClassifier(class_weight=[{-1: 0.5, 1: 1.}], random_state=0) assert_raises(ValueError, clf.fit, X, _y) def test_class_weight_errors(): for name in CLF_TREES: yield check_class_weight_errors, name def test_max_leaf_nodes(): # Test greedy trees with max_depth + 1 leafs. from sklearn.tree._tree import TREE_LEAF X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) k = 4 for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(max_depth=None, max_leaf_nodes=k + 1).fit(X, y) tree = est.tree_ assert_equal((tree.children_left == TREE_LEAF).sum(), k + 1) # max_leaf_nodes in (0, 1) should raise ValueError est = TreeEstimator(max_depth=None, max_leaf_nodes=0) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_depth=None, max_leaf_nodes=1) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_depth=None, max_leaf_nodes=0.1) assert_raises(ValueError, est.fit, X, y) def test_max_leaf_nodes_max_depth(): # Test preceedence of max_leaf_nodes over max_depth. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) k = 4 for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(max_depth=1, max_leaf_nodes=k).fit(X, y) tree = est.tree_ assert_greater(tree.max_depth, 1) def test_arrays_persist(): # Ensure property arrays' memory stays alive when tree disappears # non-regression for #2726 for attr in ['n_classes', 'value', 'children_left', 'children_right', 'threshold', 'impurity', 'feature', 'n_node_samples']: value = getattr(DecisionTreeClassifier().fit([[0], [1]], [0, 1]).tree_, attr) # if pointing to freed memory, contents may be arbitrary assert_true(-3 <= value.flat[0] < 3, 'Array points to arbitrary memory') def test_only_constant_features(): random_state = check_random_state(0) X = np.zeros((10, 20)) y = random_state.randint(0, 2, (10, )) for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(random_state=0) est.fit(X, y) assert_equal(est.tree_.max_depth, 0) def test_with_only_one_non_constant_features(): X = np.hstack([np.array([[1.], [1.], [0.], [0.]]), np.zeros((4, 1000))]) y = np.array([0., 1., 0., 1.0]) for name, TreeEstimator in CLF_TREES.items(): est = TreeEstimator(random_state=0, max_features=1) est.fit(X, y) assert_equal(est.tree_.max_depth, 1) assert_array_equal(est.predict_proba(X), 0.5 * np.ones((4, 2))) for name, TreeEstimator in REG_TREES.items(): est = TreeEstimator(random_state=0, max_features=1) est.fit(X, y) assert_equal(est.tree_.max_depth, 1) assert_array_equal(est.predict(X), 0.5 * np.ones((4, ))) def test_big_input(): # Test if the warning for too large inputs is appropriate. X = np.repeat(10 ** 40., 4).astype(np.float64).reshape(-1, 1) clf = DecisionTreeClassifier() try: clf.fit(X, [0, 1, 0, 1]) except ValueError as e: assert_in("float32", str(e)) def test_realloc(): from sklearn.tree._utils import _realloc_test assert_raises(MemoryError, _realloc_test) def test_huge_allocations(): n_bits = int(platform.architecture()[0].rstrip('bit')) X = np.random.randn(10, 2) y = np.random.randint(0, 2, 10) # Sanity check: we cannot request more memory than the size of the address # space. Currently raises OverflowError. huge = 2 ** (n_bits + 1) clf = DecisionTreeClassifier(splitter='best', max_leaf_nodes=huge) assert_raises(Exception, clf.fit, X, y) # Non-regression test: MemoryError used to be dropped by Cython # because of missing "except *". huge = 2 ** (n_bits - 1) - 1 clf = DecisionTreeClassifier(splitter='best', max_leaf_nodes=huge) assert_raises(MemoryError, clf.fit, X, y) def check_sparse_input(tree, dataset, max_depth=None): TreeEstimator = ALL_TREES[tree] X = DATASETS[dataset]["X"] X_sparse = DATASETS[dataset]["X_sparse"] y = DATASETS[dataset]["y"] # Gain testing time if dataset in ["digits", "boston"]: n_samples = X.shape[0] // 5 X = X[:n_samples] X_sparse = X_sparse[:n_samples] y = y[:n_samples] for sparse_format in (csr_matrix, csc_matrix, coo_matrix): X_sparse = sparse_format(X_sparse) # Check the default (depth first search) d = TreeEstimator(random_state=0, max_depth=max_depth).fit(X, y) s = TreeEstimator(random_state=0, max_depth=max_depth).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) y_pred = d.predict(X) if tree in CLF_TREES: y_proba = d.predict_proba(X) y_log_proba = d.predict_log_proba(X) for sparse_matrix in (csr_matrix, csc_matrix, coo_matrix): X_sparse_test = sparse_matrix(X_sparse, dtype=np.float32) assert_array_almost_equal(s.predict(X_sparse_test), y_pred) if tree in CLF_TREES: assert_array_almost_equal(s.predict_proba(X_sparse_test), y_proba) assert_array_almost_equal(s.predict_log_proba(X_sparse_test), y_log_proba) def test_sparse_input(): for tree, dataset in product(SPARSE_TREES, ("clf_small", "toy", "digits", "multilabel", "sparse-pos", "sparse-neg", "sparse-mix", "zeros")): max_depth = 3 if dataset == "digits" else None yield (check_sparse_input, tree, dataset, max_depth) # Due to numerical instability of MSE and too strict test, we limit the # maximal depth for tree, dataset in product(REG_TREES, ["boston", "reg_small"]): if tree in SPARSE_TREES: yield (check_sparse_input, tree, dataset, 2) def check_sparse_parameters(tree, dataset): TreeEstimator = ALL_TREES[tree] X = DATASETS[dataset]["X"] X_sparse = DATASETS[dataset]["X_sparse"] y = DATASETS[dataset]["y"] # Check max_features d = TreeEstimator(random_state=0, max_features=1, max_depth=2).fit(X, y) s = TreeEstimator(random_state=0, max_features=1, max_depth=2).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) # Check min_samples_split d = TreeEstimator(random_state=0, max_features=1, min_samples_split=10).fit(X, y) s = TreeEstimator(random_state=0, max_features=1, min_samples_split=10).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) # Check min_samples_leaf d = TreeEstimator(random_state=0, min_samples_leaf=X_sparse.shape[0] // 2).fit(X, y) s = TreeEstimator(random_state=0, min_samples_leaf=X_sparse.shape[0] // 2).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) # Check best-first search d = TreeEstimator(random_state=0, max_leaf_nodes=3).fit(X, y) s = TreeEstimator(random_state=0, max_leaf_nodes=3).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) def test_sparse_parameters(): for tree, dataset in product(SPARSE_TREES, ["sparse-pos", "sparse-neg", "sparse-mix", "zeros"]): yield (check_sparse_parameters, tree, dataset) def check_sparse_criterion(tree, dataset): TreeEstimator = ALL_TREES[tree] X = DATASETS[dataset]["X"] X_sparse = DATASETS[dataset]["X_sparse"] y = DATASETS[dataset]["y"] # Check various criterion CRITERIONS = REG_CRITERIONS if tree in REG_TREES else CLF_CRITERIONS for criterion in CRITERIONS: d = TreeEstimator(random_state=0, max_depth=3, criterion=criterion).fit(X, y) s = TreeEstimator(random_state=0, max_depth=3, criterion=criterion).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) def test_sparse_criterion(): for tree, dataset in product(SPARSE_TREES, ["sparse-pos", "sparse-neg", "sparse-mix", "zeros"]): yield (check_sparse_criterion, tree, dataset) def check_explicit_sparse_zeros(tree, max_depth=3, n_features=10): TreeEstimator = ALL_TREES[tree] # n_samples set n_feature to ease construction of a simultaneous # construction of a csr and csc matrix n_samples = n_features samples = np.arange(n_samples) # Generate X, y random_state = check_random_state(0) indices = [] data = [] offset = 0 indptr = [offset] for i in range(n_features): n_nonzero_i = random_state.binomial(n_samples, 0.5) indices_i = random_state.permutation(samples)[:n_nonzero_i] indices.append(indices_i) data_i = random_state.binomial(3, 0.5, size=(n_nonzero_i, )) - 1 data.append(data_i) offset += n_nonzero_i indptr.append(offset) indices = np.concatenate(indices) data = np.array(np.concatenate(data), dtype=np.float32) X_sparse = csc_matrix((data, indices, indptr), shape=(n_samples, n_features)) X = X_sparse.toarray() X_sparse_test = csr_matrix((data, indices, indptr), shape=(n_samples, n_features)) X_test = X_sparse_test.toarray() y = random_state.randint(0, 3, size=(n_samples, )) # Ensure that X_sparse_test owns its data, indices and indptr array X_sparse_test = X_sparse_test.copy() # Ensure that we have explicit zeros assert_greater((X_sparse.data == 0.).sum(), 0) assert_greater((X_sparse_test.data == 0.).sum(), 0) # Perform the comparison d = TreeEstimator(random_state=0, max_depth=max_depth).fit(X, y) s = TreeEstimator(random_state=0, max_depth=max_depth).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) Xs = (X_test, X_sparse_test) for X1, X2 in product(Xs, Xs): assert_array_almost_equal(s.tree_.apply(X1), d.tree_.apply(X2)) assert_array_almost_equal(s.apply(X1), d.apply(X2)) assert_array_almost_equal(s.apply(X1), s.tree_.apply(X1)) assert_array_almost_equal(s.tree_.decision_path(X1).toarray(), d.tree_.decision_path(X2).toarray()) assert_array_almost_equal(s.decision_path(X1).toarray(), d.decision_path(X2).toarray()) assert_array_almost_equal(s.decision_path(X1).toarray(), s.tree_.decision_path(X1).toarray()) assert_array_almost_equal(s.predict(X1), d.predict(X2)) if tree in CLF_TREES: assert_array_almost_equal(s.predict_proba(X1), d.predict_proba(X2)) def test_explicit_sparse_zeros(): for tree in SPARSE_TREES: yield (check_explicit_sparse_zeros, tree) @ignore_warnings def check_raise_error_on_1d_input(name): TreeEstimator = ALL_TREES[name] X = iris.data[:, 0].ravel() X_2d = iris.data[:, 0].reshape((-1, 1)) y = iris.target assert_raises(ValueError, TreeEstimator(random_state=0).fit, X, y) est = TreeEstimator(random_state=0) est.fit(X_2d, y) assert_raises(ValueError, est.predict, [X]) @ignore_warnings def test_1d_input(): for name in ALL_TREES: yield check_raise_error_on_1d_input, name def _check_min_weight_leaf_split_level(TreeEstimator, X, y, sample_weight): # Private function to keep pretty printing in nose yielded tests est = TreeEstimator(random_state=0) est.fit(X, y, sample_weight=sample_weight) assert_equal(est.tree_.max_depth, 1) est = TreeEstimator(random_state=0, min_weight_fraction_leaf=0.4) est.fit(X, y, sample_weight=sample_weight) assert_equal(est.tree_.max_depth, 0) def check_min_weight_leaf_split_level(name): TreeEstimator = ALL_TREES[name] X = np.array([[0], [0], [0], [0], [1]]) y = [0, 0, 0, 0, 1] sample_weight = [0.2, 0.2, 0.2, 0.2, 0.2] _check_min_weight_leaf_split_level(TreeEstimator, X, y, sample_weight) if not TreeEstimator().presort: _check_min_weight_leaf_split_level(TreeEstimator, csc_matrix(X), y, sample_weight) def test_min_weight_leaf_split_level(): for name in ALL_TREES: yield check_min_weight_leaf_split_level, name def check_public_apply(name): X_small32 = X_small.astype(tree._tree.DTYPE) est = ALL_TREES[name]() est.fit(X_small, y_small) assert_array_equal(est.apply(X_small), est.tree_.apply(X_small32)) def check_public_apply_sparse(name): X_small32 = csr_matrix(X_small.astype(tree._tree.DTYPE)) est = ALL_TREES[name]() est.fit(X_small, y_small) assert_array_equal(est.apply(X_small), est.tree_.apply(X_small32)) def test_public_apply(): for name in ALL_TREES: yield (check_public_apply, name) for name in SPARSE_TREES: yield (check_public_apply_sparse, name) def check_presort_sparse(est, X, y): assert_raises(ValueError, est.fit, X, y) def test_presort_sparse(): ests = (DecisionTreeClassifier(presort=True), DecisionTreeRegressor(presort=True)) sparse_matrices = (csr_matrix, csc_matrix, coo_matrix) y, X = datasets.make_multilabel_classification(random_state=0, n_samples=50, n_features=1, n_classes=20) y = y[:, 0] for est, sparse_matrix in product(ests, sparse_matrices): yield check_presort_sparse, est, sparse_matrix(X), y def test_decision_path_hardcoded(): X = iris.data y = iris.target est = DecisionTreeClassifier(random_state=0, max_depth=1).fit(X, y) node_indicator = est.decision_path(X[:2]).toarray() assert_array_equal(node_indicator, [[1, 1, 0], [1, 0, 1]]) def check_decision_path(name): X = iris.data y = iris.target n_samples = X.shape[0] TreeEstimator = ALL_TREES[name] est = TreeEstimator(random_state=0, max_depth=2) est.fit(X, y) node_indicator_csr = est.decision_path(X) node_indicator = node_indicator_csr.toarray() assert_equal(node_indicator.shape, (n_samples, est.tree_.node_count)) # Assert that leaves index are correct leaves = est.apply(X) leave_indicator = [node_indicator[i, j] for i, j in enumerate(leaves)] assert_array_almost_equal(leave_indicator, np.ones(shape=n_samples)) # Ensure only one leave node per sample all_leaves = est.tree_.children_left == TREE_LEAF assert_array_almost_equal(np.dot(node_indicator, all_leaves), np.ones(shape=n_samples)) # Ensure max depth is consistent with sum of indicator max_depth = node_indicator.sum(axis=1).max() assert_less_equal(est.tree_.max_depth, max_depth) def test_decision_path(): for name in ALL_TREES: yield (check_decision_path, name) def check_no_sparse_y_support(name): X, y = X_multilabel, csr_matrix(y_multilabel) TreeEstimator = ALL_TREES[name] assert_raises(ValueError, TreeEstimator(random_state=0).fit, X, y) def test_no_sparse_y_support(): # Currently we don't support sparse y for name in ALL_TREES: yield (check_decision_path, name)
bsd-3-clause
abhishekkrthakur/scikit-learn
sklearn/hmm.py
12
48722
# Hidden Markov Models # # Author: Ron Weiss <[email protected]> # and Shiqiao Du <[email protected]> # API changes: Jaques Grobler <[email protected]> """ The :mod:`sklearn.hmm` module implements hidden Markov models. **Warning:** :mod:`sklearn.hmm` is orphaned, undocumented and has known numerical stability issues. This module will be removed in version 0.17. It has been moved to a separate repository: https://github.com/hmmlearn/hmmlearn """ import string import numpy as np from .utils import check_random_state, deprecated from .utils.extmath import logsumexp from .utils.validation import check_is_fitted from .base import BaseEstimator from .mixture import ( GMM, log_multivariate_normal_density, sample_gaussian, distribute_covar_matrix_to_match_covariance_type, _validate_covars) from . import cluster from . import _hmmc __all__ = ['GMMHMM', 'GaussianHMM', 'MultinomialHMM', 'decoder_algorithms', 'normalize'] ZEROLOGPROB = -1e200 EPS = np.finfo(float).eps NEGINF = -np.inf decoder_algorithms = ("viterbi", "map") @deprecated("WARNING: The HMM module and its functions will be removed in 0.17 " "as it no longer falls within the project's scope and API. " "It has been moved to a separate repository: " "https://github.com/hmmlearn/hmmlearn") def normalize(A, axis=None): """ Normalize the input array so that it sums to 1. WARNING: The HMM module and its functions will be removed in 0.17 as it no longer falls within the project's scope and API. Parameters ---------- A: array, shape (n_samples, n_features) Non-normalized input data axis: int dimension along which normalization is performed Returns ------- normalized_A: array, shape (n_samples, n_features) A with values normalized (summing to 1) along the prescribed axis WARNING: Modifies inplace the array """ A += EPS Asum = A.sum(axis) if axis and A.ndim > 1: # Make sure we don't divide by zero. Asum[Asum == 0] = 1 shape = list(A.shape) shape[axis] = 1 Asum.shape = shape return A / Asum @deprecated("WARNING: The HMM module and its function will be removed in 0.17" "as it no longer falls within the project's scope and API. " "It has been moved to a separate repository: " "https://github.com/hmmlearn/hmmlearn") class _BaseHMM(BaseEstimator): """Hidden Markov Model base class. Representation of a hidden Markov model probability distribution. This class allows for easy evaluation of, sampling from, and maximum-likelihood estimation of the parameters of a HMM. See the instance documentation for details specific to a particular object. .. warning:: The HMM module and its functions will be removed in 0.17 as it no longer falls within the project's scope and API. Attributes ---------- n_components : int Number of states in the model. transmat : array, shape (`n_components`, `n_components`) Matrix of transition probabilities between states. startprob : array, shape ('n_components`,) Initial state occupation distribution. transmat_prior : array, shape (`n_components`, `n_components`) Matrix of prior transition probabilities between states. startprob_prior : array, shape ('n_components`,) Initial state occupation prior distribution. algorithm : string, one of the decoder_algorithms decoder algorithm random_state: RandomState or an int seed (0 by default) A random number generator instance n_iter : int, optional Number of iterations to perform. thresh : float, optional Convergence threshold. params : string, optional Controls which parameters are updated in the training process. Can contain any combination of 's' for startprob, 't' for transmat, and other characters for subclass-specific emmission parameters. Defaults to all parameters. init_params : string, optional Controls which parameters are initialized prior to training. Can contain any combination of 's' for startprob, 't' for transmat, and other characters for subclass-specific emmission parameters. Defaults to all parameters. See Also -------- GMM : Gaussian mixture model """ # This class implements the public interface to all HMMs that # derive from it, including all of the machinery for the # forward-backward and Viterbi algorithms. Subclasses need only # implement _generate_sample_from_state(), _compute_log_likelihood(), # _init(), _initialize_sufficient_statistics(), # _accumulate_sufficient_statistics(), and _do_mstep(), all of # which depend on the specific emission distribution. # # Subclasses will probably also want to implement properties for # the emission distribution parameters to expose them publicly. def __init__(self, n_components=1, startprob=None, transmat=None, startprob_prior=None, transmat_prior=None, algorithm="viterbi", random_state=None, n_iter=10, thresh=1e-2, params=string.ascii_letters, init_params=string.ascii_letters): self.n_components = n_components self.n_iter = n_iter self.thresh = thresh self.params = params self.init_params = init_params self.startprob_ = startprob self.startprob_prior = startprob_prior self.transmat_ = transmat self.transmat_prior = transmat_prior self._algorithm = algorithm self.random_state = random_state def eval(self, X): return self.score_samples(X) def score_samples(self, obs): """Compute the log probability under the model and compute posteriors. Parameters ---------- obs : array_like, shape (n, n_features) Sequence of n_features-dimensional data points. Each row corresponds to a single point in the sequence. Returns ------- logprob : float Log likelihood of the sequence ``obs``. posteriors : array_like, shape (n, n_components) Posterior probabilities of each state for each observation See Also -------- score : Compute the log probability under the model decode : Find most likely state sequence corresponding to a `obs` """ obs = np.asarray(obs) framelogprob = self._compute_log_likelihood(obs) logprob, fwdlattice = self._do_forward_pass(framelogprob) bwdlattice = self._do_backward_pass(framelogprob) gamma = fwdlattice + bwdlattice # gamma is guaranteed to be correctly normalized by logprob at # all frames, unless we do approximate inference using pruning. # So, we will normalize each frame explicitly in case we # pruned too aggressively. posteriors = np.exp(gamma.T - logsumexp(gamma, axis=1)).T posteriors += np.finfo(np.float32).eps posteriors /= np.sum(posteriors, axis=1).reshape((-1, 1)) return logprob, posteriors def score(self, obs): """Compute the log probability under the model. Parameters ---------- obs : array_like, shape (n, n_features) Sequence of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- logprob : float Log likelihood of the ``obs``. See Also -------- score_samples : Compute the log probability under the model and posteriors decode : Find most likely state sequence corresponding to a `obs` """ obs = np.asarray(obs) framelogprob = self._compute_log_likelihood(obs) logprob, _ = self._do_forward_pass(framelogprob) return logprob def _decode_viterbi(self, obs): """Find most likely state sequence corresponding to ``obs``. Uses the Viterbi algorithm. Parameters ---------- obs : array_like, shape (n, n_features) Sequence of n_features-dimensional data points. Each row corresponds to a single point in the sequence. Returns ------- viterbi_logprob : float Log probability of the maximum likelihood path through the HMM. state_sequence : array_like, shape (n,) Index of the most likely states for each observation. See Also -------- score_samples : Compute the log probability under the model and posteriors. score : Compute the log probability under the model """ obs = np.asarray(obs) framelogprob = self._compute_log_likelihood(obs) viterbi_logprob, state_sequence = self._do_viterbi_pass(framelogprob) return viterbi_logprob, state_sequence def _decode_map(self, obs): """Find most likely state sequence corresponding to `obs`. Uses the maximum a posteriori estimation. Parameters ---------- obs : array_like, shape (n, n_features) Sequence of n_features-dimensional data points. Each row corresponds to a single point in the sequence. Returns ------- map_logprob : float Log probability of the maximum likelihood path through the HMM state_sequence : array_like, shape (n,) Index of the most likely states for each observation See Also -------- score_samples : Compute the log probability under the model and posteriors. score : Compute the log probability under the model. """ _, posteriors = self.score_samples(obs) state_sequence = np.argmax(posteriors, axis=1) map_logprob = np.max(posteriors, axis=1).sum() return map_logprob, state_sequence def decode(self, obs, algorithm="viterbi"): """Find most likely state sequence corresponding to ``obs``. Uses the selected algorithm for decoding. Parameters ---------- obs : array_like, shape (n, n_features) Sequence of n_features-dimensional data points. Each row corresponds to a single point in the sequence. algorithm : string, one of the `decoder_algorithms` decoder algorithm to be used Returns ------- logprob : float Log probability of the maximum likelihood path through the HMM state_sequence : array_like, shape (n,) Index of the most likely states for each observation See Also -------- score_samples : Compute the log probability under the model and posteriors. score : Compute the log probability under the model. """ if self._algorithm in decoder_algorithms: algorithm = self._algorithm elif algorithm in decoder_algorithms: algorithm = algorithm decoder = {"viterbi": self._decode_viterbi, "map": self._decode_map} logprob, state_sequence = decoder[algorithm](obs) return logprob, state_sequence def predict(self, obs, algorithm="viterbi"): """Find most likely state sequence corresponding to `obs`. Parameters ---------- obs : array_like, shape (n, n_features) Sequence of n_features-dimensional data points. Each row corresponds to a single point in the sequence. Returns ------- state_sequence : array_like, shape (n,) Index of the most likely states for each observation """ _, state_sequence = self.decode(obs, algorithm) return state_sequence def predict_proba(self, obs): """Compute the posterior probability for each state in the model Parameters ---------- obs : array_like, shape (n, n_features) Sequence of n_features-dimensional data points. Each row corresponds to a single point in the sequence. Returns ------- T : array-like, shape (n, n_components) Returns the probability of the sample for each state in the model. """ _, posteriors = self.score_samples(obs) return posteriors def sample(self, n=1, random_state=None): """Generate random samples from the model. Parameters ---------- n : int Number of samples to generate. random_state: RandomState or an int seed (0 by default) A random number generator instance. If None is given, the object's random_state is used Returns ------- (obs, hidden_states) obs : array_like, length `n` List of samples hidden_states : array_like, length `n` List of hidden states """ if random_state is None: random_state = self.random_state random_state = check_random_state(random_state) startprob_pdf = self.startprob_ startprob_cdf = np.cumsum(startprob_pdf) transmat_pdf = self.transmat_ transmat_cdf = np.cumsum(transmat_pdf, 1) # Initial state. rand = random_state.rand() currstate = (startprob_cdf > rand).argmax() hidden_states = [currstate] obs = [self._generate_sample_from_state( currstate, random_state=random_state)] for _ in range(n - 1): rand = random_state.rand() currstate = (transmat_cdf[currstate] > rand).argmax() hidden_states.append(currstate) obs.append(self._generate_sample_from_state( currstate, random_state=random_state)) return np.array(obs), np.array(hidden_states, dtype=int) def fit(self, obs): """Estimate model parameters. An initialization step is performed before entering the EM algorithm. If you want to avoid this step, pass proper ``init_params`` keyword argument to estimator's constructor. Parameters ---------- obs : list List of array-like observation sequences, each of which has shape (n_i, n_features), where n_i is the length of the i_th observation. Notes ----- In general, `logprob` should be non-decreasing unless aggressive pruning is used. Decreasing `logprob` is generally a sign of overfitting (e.g. a covariance parameter getting too small). You can fix this by getting more training data, or strengthening the appropriate subclass-specific regularization parameter. """ if self.algorithm not in decoder_algorithms: self._algorithm = "viterbi" self._init(obs, self.init_params) logprob = [] for i in range(self.n_iter): # Expectation step stats = self._initialize_sufficient_statistics() curr_logprob = 0 for seq in obs: framelogprob = self._compute_log_likelihood(seq) lpr, fwdlattice = self._do_forward_pass(framelogprob) bwdlattice = self._do_backward_pass(framelogprob) gamma = fwdlattice + bwdlattice posteriors = np.exp(gamma.T - logsumexp(gamma, axis=1)).T curr_logprob += lpr self._accumulate_sufficient_statistics( stats, seq, framelogprob, posteriors, fwdlattice, bwdlattice, self.params) logprob.append(curr_logprob) # Check for convergence. if i > 0 and abs(logprob[-1] - logprob[-2]) < self.thresh: break # Maximization step self._do_mstep(stats, self.params) return self def _get_algorithm(self): "decoder algorithm" return self._algorithm def _set_algorithm(self, algorithm): if algorithm not in decoder_algorithms: raise ValueError("algorithm must be one of the decoder_algorithms") self._algorithm = algorithm algorithm = property(_get_algorithm, _set_algorithm) def _get_startprob(self): """Mixing startprob for each state.""" return np.exp(self._log_startprob) def _set_startprob(self, startprob): if startprob is None: startprob = np.tile(1.0 / self.n_components, self.n_components) else: startprob = np.asarray(startprob, dtype=np.float) # check if there exists a component whose value is exactly zero # if so, add a small number and re-normalize if not np.alltrue(startprob): normalize(startprob) if len(startprob) != self.n_components: raise ValueError('startprob must have length n_components') if not np.allclose(np.sum(startprob), 1.0): raise ValueError('startprob must sum to 1.0') self._log_startprob = np.log(np.asarray(startprob).copy()) startprob_ = property(_get_startprob, _set_startprob) def _get_transmat(self): """Matrix of transition probabilities.""" return np.exp(self._log_transmat) def _set_transmat(self, transmat): if transmat is None: transmat = np.tile(1.0 / self.n_components, (self.n_components, self.n_components)) # check if there exists a component whose value is exactly zero # if so, add a small number and re-normalize if not np.alltrue(transmat): normalize(transmat, axis=1) if (np.asarray(transmat).shape != (self.n_components, self.n_components)): raise ValueError('transmat must have shape ' '(n_components, n_components)') if not np.all(np.allclose(np.sum(transmat, axis=1), 1.0)): raise ValueError('Rows of transmat must sum to 1.0') self._log_transmat = np.log(np.asarray(transmat).copy()) underflow_idx = np.isnan(self._log_transmat) self._log_transmat[underflow_idx] = NEGINF transmat_ = property(_get_transmat, _set_transmat) def _do_viterbi_pass(self, framelogprob): n_observations, n_components = framelogprob.shape state_sequence, logprob = _hmmc._viterbi( n_observations, n_components, self._log_startprob, self._log_transmat, framelogprob) return logprob, state_sequence def _do_forward_pass(self, framelogprob): n_observations, n_components = framelogprob.shape fwdlattice = np.zeros((n_observations, n_components)) _hmmc._forward(n_observations, n_components, self._log_startprob, self._log_transmat, framelogprob, fwdlattice) fwdlattice[fwdlattice <= ZEROLOGPROB] = NEGINF return logsumexp(fwdlattice[-1]), fwdlattice def _do_backward_pass(self, framelogprob): n_observations, n_components = framelogprob.shape bwdlattice = np.zeros((n_observations, n_components)) _hmmc._backward(n_observations, n_components, self._log_startprob, self._log_transmat, framelogprob, bwdlattice) bwdlattice[bwdlattice <= ZEROLOGPROB] = NEGINF return bwdlattice def _compute_log_likelihood(self, obs): pass def _generate_sample_from_state(self, state, random_state=None): pass def _init(self, obs, params): if 's' in params: self.startprob_.fill(1.0 / self.n_components) if 't' in params: self.transmat_.fill(1.0 / self.n_components) # Methods used by self.fit() def _initialize_sufficient_statistics(self): stats = {'nobs': 0, 'start': np.zeros(self.n_components), 'trans': np.zeros((self.n_components, self.n_components))} return stats def _accumulate_sufficient_statistics(self, stats, seq, framelogprob, posteriors, fwdlattice, bwdlattice, params): stats['nobs'] += 1 if 's' in params: stats['start'] += posteriors[0] if 't' in params: n_observations, n_components = framelogprob.shape # when the sample is of length 1, it contains no transitions # so there is no reason to update our trans. matrix estimate if n_observations > 1: lneta = np.zeros((n_observations - 1, n_components, n_components)) lnP = logsumexp(fwdlattice[-1]) _hmmc._compute_lneta(n_observations, n_components, fwdlattice, self._log_transmat, bwdlattice, framelogprob, lnP, lneta) stats['trans'] += np.exp(np.minimum(logsumexp(lneta, 0), 700)) def _do_mstep(self, stats, params): # Based on Huang, Acero, Hon, "Spoken Language Processing", # p. 443 - 445 if self.startprob_prior is None: self.startprob_prior = 1.0 if self.transmat_prior is None: self.transmat_prior = 1.0 if 's' in params: self.startprob_ = normalize( np.maximum(self.startprob_prior - 1.0 + stats['start'], 1e-20)) if 't' in params: transmat_ = normalize( np.maximum(self.transmat_prior - 1.0 + stats['trans'], 1e-20), axis=1) self.transmat_ = transmat_ class GaussianHMM(_BaseHMM): """Hidden Markov Model with Gaussian emissions Representation of a hidden Markov model probability distribution. This class allows for easy evaluation of, sampling from, and maximum-likelihood estimation of the parameters of a HMM. .. warning:: The HMM module and its functions will be removed in 0.17 as it no longer falls within the project's scope and API. Parameters ---------- n_components : int Number of states. ``_covariance_type`` : string String describing the type of covariance parameters to use. Must be one of 'spherical', 'tied', 'diag', 'full'. Defaults to 'diag'. Attributes ---------- ``_covariance_type`` : string String describing the type of covariance parameters used by the model. Must be one of 'spherical', 'tied', 'diag', 'full'. n_features : int Dimensionality of the Gaussian emissions. n_components : int Number of states in the model. transmat : array, shape (`n_components`, `n_components`) Matrix of transition probabilities between states. startprob : array, shape ('n_components`,) Initial state occupation distribution. means : array, shape (`n_components`, `n_features`) Mean parameters for each state. covars : array Covariance parameters for each state. The shape depends on ``_covariance_type``:: (`n_components`,) if 'spherical', (`n_features`, `n_features`) if 'tied', (`n_components`, `n_features`) if 'diag', (`n_components`, `n_features`, `n_features`) if 'full' random_state: RandomState or an int seed (0 by default) A random number generator instance n_iter : int, optional Number of iterations to perform. thresh : float, optional Convergence threshold. params : string, optional Controls which parameters are updated in the training process. Can contain any combination of 's' for startprob, 't' for transmat, 'm' for means, and 'c' for covars. Defaults to all parameters. init_params : string, optional Controls which parameters are initialized prior to training. Can contain any combination of 's' for startprob, 't' for transmat, 'm' for means, and 'c' for covars. Defaults to all parameters. Examples -------- >>> from sklearn.hmm import GaussianHMM >>> GaussianHMM(n_components=2) ... #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE GaussianHMM(algorithm='viterbi',... See Also -------- GMM : Gaussian mixture model """ def __init__(self, n_components=1, covariance_type='diag', startprob=None, transmat=None, startprob_prior=None, transmat_prior=None, algorithm="viterbi", means_prior=None, means_weight=0, covars_prior=1e-2, covars_weight=1, random_state=None, n_iter=10, thresh=1e-2, params=string.ascii_letters, init_params=string.ascii_letters): _BaseHMM.__init__(self, n_components, startprob, transmat, startprob_prior=startprob_prior, transmat_prior=transmat_prior, algorithm=algorithm, random_state=random_state, n_iter=n_iter, thresh=thresh, params=params, init_params=init_params) self._covariance_type = covariance_type if not covariance_type in ['spherical', 'tied', 'diag', 'full']: raise ValueError('bad covariance_type') self.means_prior = means_prior self.means_weight = means_weight self.covars_prior = covars_prior self.covars_weight = covars_weight @property def covariance_type(self): """Covariance type of the model. Must be one of 'spherical', 'tied', 'diag', 'full'. """ return self._covariance_type def _get_means(self): """Mean parameters for each state.""" return self._means_ def _set_means(self, means): means = np.asarray(means) if (hasattr(self, 'n_features') and means.shape != (self.n_components, self.n_features)): raise ValueError('means must have shape ' '(n_components, n_features)') self._means_ = means.copy() self.n_features = self._means_.shape[1] means_ = property(_get_means, _set_means) def _get_covars(self): """Return covars as a full matrix.""" if self._covariance_type == 'full': return self._covars_ elif self._covariance_type == 'diag': return [np.diag(cov) for cov in self._covars_] elif self._covariance_type == 'tied': return [self._covars_] * self.n_components elif self._covariance_type == 'spherical': return [np.eye(self.n_features) * f for f in self._covars_] def _set_covars(self, covars): covars = np.asarray(covars) _validate_covars(covars, self._covariance_type, self.n_components) self._covars_ = covars.copy() covars_ = property(_get_covars, _set_covars) def _compute_log_likelihood(self, obs): check_is_fitted(self, '_means_') return log_multivariate_normal_density( obs, self._means_, self._covars_, self._covariance_type) def _generate_sample_from_state(self, state, random_state=None): if self._covariance_type == 'tied': cv = self._covars_ else: cv = self._covars_[state] return sample_gaussian(self._means_[state], cv, self._covariance_type, random_state=random_state) def _init(self, obs, params='stmc'): super(GaussianHMM, self)._init(obs, params=params) if (hasattr(self, 'n_features') and self.n_features != obs[0].shape[1]): raise ValueError('Unexpected number of dimensions, got %s but ' 'expected %s' % (obs[0].shape[1], self.n_features)) self.n_features = obs[0].shape[1] if 'm' in params: self._means_ = cluster.KMeans( n_clusters=self.n_components).fit(obs[0]).cluster_centers_ if 'c' in params: cv = np.cov(obs[0].T) if not cv.shape: cv.shape = (1, 1) self._covars_ = distribute_covar_matrix_to_match_covariance_type( cv, self._covariance_type, self.n_components) self._covars_[self._covars_ == 0] = 1e-5 def _initialize_sufficient_statistics(self): stats = super(GaussianHMM, self)._initialize_sufficient_statistics() stats['post'] = np.zeros(self.n_components) stats['obs'] = np.zeros((self.n_components, self.n_features)) stats['obs**2'] = np.zeros((self.n_components, self.n_features)) stats['obs*obs.T'] = np.zeros((self.n_components, self.n_features, self.n_features)) return stats def _accumulate_sufficient_statistics(self, stats, obs, framelogprob, posteriors, fwdlattice, bwdlattice, params): super(GaussianHMM, self)._accumulate_sufficient_statistics( stats, obs, framelogprob, posteriors, fwdlattice, bwdlattice, params) if 'm' in params or 'c' in params: stats['post'] += posteriors.sum(axis=0) stats['obs'] += np.dot(posteriors.T, obs) if 'c' in params: if self._covariance_type in ('spherical', 'diag'): stats['obs**2'] += np.dot(posteriors.T, obs ** 2) elif self._covariance_type in ('tied', 'full'): for t, o in enumerate(obs): obsobsT = np.outer(o, o) for c in range(self.n_components): stats['obs*obs.T'][c] += posteriors[t, c] * obsobsT def _do_mstep(self, stats, params): super(GaussianHMM, self)._do_mstep(stats, params) # Based on Huang, Acero, Hon, "Spoken Language Processing", # p. 443 - 445 denom = stats['post'][:, np.newaxis] if 'm' in params: prior = self.means_prior weight = self.means_weight if prior is None: weight = 0 prior = 0 self._means_ = (weight * prior + stats['obs']) / (weight + denom) if 'c' in params: covars_prior = self.covars_prior covars_weight = self.covars_weight if covars_prior is None: covars_weight = 0 covars_prior = 0 means_prior = self.means_prior means_weight = self.means_weight if means_prior is None: means_weight = 0 means_prior = 0 meandiff = self._means_ - means_prior if self._covariance_type in ('spherical', 'diag'): cv_num = (means_weight * (meandiff) ** 2 + stats['obs**2'] - 2 * self._means_ * stats['obs'] + self._means_ ** 2 * denom) cv_den = max(covars_weight - 1, 0) + denom self._covars_ = (covars_prior + cv_num) / np.maximum(cv_den, 1e-5) if self._covariance_type == 'spherical': self._covars_ = np.tile( self._covars_.mean(1)[:, np.newaxis], (1, self._covars_.shape[1])) elif self._covariance_type in ('tied', 'full'): cvnum = np.empty((self.n_components, self.n_features, self.n_features)) for c in range(self.n_components): obsmean = np.outer(stats['obs'][c], self._means_[c]) cvnum[c] = (means_weight * np.outer(meandiff[c], meandiff[c]) + stats['obs*obs.T'][c] - obsmean - obsmean.T + np.outer(self._means_[c], self._means_[c]) * stats['post'][c]) cvweight = max(covars_weight - self.n_features, 0) if self._covariance_type == 'tied': self._covars_ = ((covars_prior + cvnum.sum(axis=0)) / (cvweight + stats['post'].sum())) elif self._covariance_type == 'full': self._covars_ = ((covars_prior + cvnum) / (cvweight + stats['post'][:, None, None])) def fit(self, obs): """Estimate model parameters. An initialization step is performed before entering the EM algorithm. If you want to avoid this step, pass proper ``init_params`` keyword argument to estimator's constructor. Parameters ---------- obs : list List of array-like observation sequences, each of which has shape (n_i, n_features), where n_i is the length of the i_th observation. Notes ----- In general, `logprob` should be non-decreasing unless aggressive pruning is used. Decreasing `logprob` is generally a sign of overfitting (e.g. the covariance parameter on one or more components becomminging too small). You can fix this by getting more training data, or increasing covars_prior. """ return super(GaussianHMM, self).fit(obs) class MultinomialHMM(_BaseHMM): """Hidden Markov Model with multinomial (discrete) emissions .. warning:: The HMM module and its functions will be removed in 0.17 as it no longer falls within the project's scope and API. Attributes ---------- n_components : int Number of states in the model. n_symbols : int Number of possible symbols emitted by the model (in the observations). transmat : array, shape (`n_components`, `n_components`) Matrix of transition probabilities between states. startprob : array, shape ('n_components`,) Initial state occupation distribution. emissionprob : array, shape ('n_components`, 'n_symbols`) Probability of emitting a given symbol when in each state. random_state: RandomState or an int seed (0 by default) A random number generator instance n_iter : int, optional Number of iterations to perform. thresh : float, optional Convergence threshold. params : string, optional Controls which parameters are updated in the training process. Can contain any combination of 's' for startprob, 't' for transmat, 'e' for emmissionprob. Defaults to all parameters. init_params : string, optional Controls which parameters are initialized prior to training. Can contain any combination of 's' for startprob, 't' for transmat, 'e' for emmissionprob. Defaults to all parameters. Examples -------- >>> from sklearn.hmm import MultinomialHMM >>> MultinomialHMM(n_components=2) ... #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE MultinomialHMM(algorithm='viterbi',... See Also -------- GaussianHMM : HMM with Gaussian emissions """ def __init__(self, n_components=1, startprob=None, transmat=None, startprob_prior=None, transmat_prior=None, algorithm="viterbi", random_state=None, n_iter=10, thresh=1e-2, params=string.ascii_letters, init_params=string.ascii_letters): """Create a hidden Markov model with multinomial emissions. Parameters ---------- n_components : int Number of states. """ _BaseHMM.__init__(self, n_components, startprob, transmat, startprob_prior=startprob_prior, transmat_prior=transmat_prior, algorithm=algorithm, random_state=random_state, n_iter=n_iter, thresh=thresh, params=params, init_params=init_params) def _get_emissionprob(self): """Emission probability distribution for each state.""" return np.exp(self._log_emissionprob) def _set_emissionprob(self, emissionprob): emissionprob = np.asarray(emissionprob) if hasattr(self, 'n_symbols') and \ emissionprob.shape != (self.n_components, self.n_symbols): raise ValueError('emissionprob must have shape ' '(n_components, n_symbols)') # check if there exists a component whose value is exactly zero # if so, add a small number and re-normalize if not np.alltrue(emissionprob): normalize(emissionprob) self._log_emissionprob = np.log(emissionprob) underflow_idx = np.isnan(self._log_emissionprob) self._log_emissionprob[underflow_idx] = NEGINF self.n_symbols = self._log_emissionprob.shape[1] emissionprob_ = property(_get_emissionprob, _set_emissionprob) def _compute_log_likelihood(self, obs): check_is_fitted(self, 'emissionprob_') return self._log_emissionprob[:, obs].T def _generate_sample_from_state(self, state, random_state=None): cdf = np.cumsum(self.emissionprob_[state, :]) random_state = check_random_state(random_state) rand = random_state.rand() symbol = (cdf > rand).argmax() return symbol def _init(self, obs, params='ste'): super(MultinomialHMM, self)._init(obs, params=params) self.random_state = check_random_state(self.random_state) if 'e' in params: if not hasattr(self, 'n_symbols'): symbols = set() for o in obs: symbols = symbols.union(set(o)) self.n_symbols = len(symbols) emissionprob = normalize(self.random_state.rand(self.n_components, self.n_symbols), 1) self.emissionprob_ = emissionprob def _initialize_sufficient_statistics(self): stats = super(MultinomialHMM, self)._initialize_sufficient_statistics() stats['obs'] = np.zeros((self.n_components, self.n_symbols)) return stats def _accumulate_sufficient_statistics(self, stats, obs, framelogprob, posteriors, fwdlattice, bwdlattice, params): super(MultinomialHMM, self)._accumulate_sufficient_statistics( stats, obs, framelogprob, posteriors, fwdlattice, bwdlattice, params) if 'e' in params: for t, symbol in enumerate(obs): stats['obs'][:, symbol] += posteriors[t] def _do_mstep(self, stats, params): super(MultinomialHMM, self)._do_mstep(stats, params) if 'e' in params: self.emissionprob_ = (stats['obs'] / stats['obs'].sum(1)[:, np.newaxis]) def _check_input_symbols(self, obs): """check if input can be used for Multinomial.fit input must be both positive integer array and every element must be continuous. e.g. x = [0, 0, 2, 1, 3, 1, 1] is OK and y = [0, 0, 3, 5, 10] not """ symbols = np.asarray(obs).flatten() if symbols.dtype.kind != 'i': # input symbols must be integer return False if len(symbols) == 1: # input too short return False if np.any(symbols < 0): # input contains negative intiger return False symbols.sort() if np.any(np.diff(symbols) > 1): # input is discontinous return False return True def fit(self, obs, **kwargs): """Estimate model parameters. An initialization step is performed before entering the EM algorithm. If you want to avoid this step, pass proper ``init_params`` keyword argument to estimator's constructor. Parameters ---------- obs : list List of array-like observation sequences, each of which has shape (n_i, n_features), where n_i is the length of the i_th observation. """ err_msg = ("Input must be both positive integer array and " "every element must be continuous, but %s was given.") if not self._check_input_symbols(obs): raise ValueError(err_msg % obs) return _BaseHMM.fit(self, obs, **kwargs) class GMMHMM(_BaseHMM): """Hidden Markov Model with Gaussin mixture emissions .. warning:: The HMM module and its functions will be removed in 0.17 as it no longer falls within the project's scope and API. Attributes ---------- n_components : int Number of states in the model. transmat : array, shape (`n_components`, `n_components`) Matrix of transition probabilities between states. startprob : array, shape ('n_components`,) Initial state occupation distribution. gmms : array of GMM objects, length `n_components` GMM emission distributions for each state. random_state : RandomState or an int seed (0 by default) A random number generator instance n_iter : int, optional Number of iterations to perform. thresh : float, optional Convergence threshold. init_params : string, optional Controls which parameters are initialized prior to training. Can contain any combination of 's' for startprob, 't' for transmat, 'm' for means, 'c' for covars, and 'w' for GMM mixing weights. Defaults to all parameters. params : string, optional Controls which parameters are updated in the training process. Can contain any combination of 's' for startprob, 't' for transmat, 'm' for means, and 'c' for covars, and 'w' for GMM mixing weights. Defaults to all parameters. Examples -------- >>> from sklearn.hmm import GMMHMM >>> GMMHMM(n_components=2, n_mix=10, covariance_type='diag') ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE GMMHMM(algorithm='viterbi', covariance_type='diag',... See Also -------- GaussianHMM : HMM with Gaussian emissions """ def __init__(self, n_components=1, n_mix=1, startprob=None, transmat=None, startprob_prior=None, transmat_prior=None, algorithm="viterbi", gmms=None, covariance_type='diag', covars_prior=1e-2, random_state=None, n_iter=10, thresh=1e-2, params=string.ascii_letters, init_params=string.ascii_letters): """Create a hidden Markov model with GMM emissions. Parameters ---------- n_components : int Number of states. """ _BaseHMM.__init__(self, n_components, startprob, transmat, startprob_prior=startprob_prior, transmat_prior=transmat_prior, algorithm=algorithm, random_state=random_state, n_iter=n_iter, thresh=thresh, params=params, init_params=init_params) # XXX: Hotfit for n_mix that is incompatible with the scikit's # BaseEstimator API self.n_mix = n_mix self._covariance_type = covariance_type self.covars_prior = covars_prior self.gmms = gmms if gmms is None: gmms = [] for x in range(self.n_components): if covariance_type is None: g = GMM(n_mix) else: g = GMM(n_mix, covariance_type=covariance_type) gmms.append(g) self.gmms_ = gmms # Read-only properties. @property def covariance_type(self): """Covariance type of the model. Must be one of 'spherical', 'tied', 'diag', 'full'. """ return self._covariance_type def _compute_log_likelihood(self, obs): return np.array([g.score(obs) for g in self.gmms_]).T def _generate_sample_from_state(self, state, random_state=None): return self.gmms_[state].sample(1, random_state=random_state).flatten() def _init(self, obs, params='stwmc'): super(GMMHMM, self)._init(obs, params=params) allobs = np.concatenate(obs, 0) for g in self.gmms_: g.set_params(init_params=params, n_iter=0) g.fit(allobs) def _initialize_sufficient_statistics(self): stats = super(GMMHMM, self)._initialize_sufficient_statistics() stats['norm'] = [np.zeros(g.weights_.shape) for g in self.gmms_] stats['means'] = [np.zeros(np.shape(g.means_)) for g in self.gmms_] stats['covars'] = [np.zeros(np.shape(g.covars_)) for g in self.gmms_] return stats def _accumulate_sufficient_statistics(self, stats, obs, framelogprob, posteriors, fwdlattice, bwdlattice, params): super(GMMHMM, self)._accumulate_sufficient_statistics( stats, obs, framelogprob, posteriors, fwdlattice, bwdlattice, params) for state, g in enumerate(self.gmms_): _, lgmm_posteriors = g.score_samples(obs) lgmm_posteriors += np.log(posteriors[:, state][:, np.newaxis] + np.finfo(np.float).eps) gmm_posteriors = np.exp(lgmm_posteriors) tmp_gmm = GMM(g.n_components, covariance_type=g.covariance_type) n_features = g.means_.shape[1] tmp_gmm._set_covars( distribute_covar_matrix_to_match_covariance_type( np.eye(n_features), g.covariance_type, g.n_components)) norm = tmp_gmm._do_mstep(obs, gmm_posteriors, params) if np.any(np.isnan(tmp_gmm.covars_)): raise ValueError stats['norm'][state] += norm if 'm' in params: stats['means'][state] += tmp_gmm.means_ * norm[:, np.newaxis] if 'c' in params: if tmp_gmm.covariance_type == 'tied': stats['covars'][state] += tmp_gmm.covars_ * norm.sum() else: cvnorm = np.copy(norm) shape = np.ones(tmp_gmm.covars_.ndim) shape[0] = np.shape(tmp_gmm.covars_)[0] cvnorm.shape = shape stats['covars'][state] += tmp_gmm.covars_ * cvnorm def _do_mstep(self, stats, params): super(GMMHMM, self)._do_mstep(stats, params) # All that is left to do is to apply covars_prior to the # parameters updated in _accumulate_sufficient_statistics. for state, g in enumerate(self.gmms_): n_features = g.means_.shape[1] norm = stats['norm'][state] if 'w' in params: g.weights_ = normalize(norm) if 'm' in params: g.means_ = stats['means'][state] / norm[:, np.newaxis] if 'c' in params: if g.covariance_type == 'tied': g.covars_ = ((stats['covars'][state] + self.covars_prior * np.eye(n_features)) / norm.sum()) else: cvnorm = np.copy(norm) shape = np.ones(g.covars_.ndim) shape[0] = np.shape(g.covars_)[0] cvnorm.shape = shape if (g.covariance_type in ['spherical', 'diag']): g.covars_ = (stats['covars'][state] + self.covars_prior) / cvnorm elif g.covariance_type == 'full': eye = np.eye(n_features) g.covars_ = ((stats['covars'][state] + self.covars_prior * eye[np.newaxis]) / cvnorm)
bsd-3-clause
iandriver/RNA-sequence-tools
RNA_Seq_analysis/make_monocle_data_js.py
2
3820
import os import cPickle as pickle import pandas as pd import matplotlib matplotlib.use('QT4Agg') import matplotlib.pyplot as plt import matplotlib.pylab as pl from matplotlib.ticker import LinearLocator import seaborn as sns import numpy as np from operator import itemgetter #the file path where gene list will be and where new list will output path_to_file = '/Volumes/Seq_data/cuffnorm_js_SC_1_2_3_5' #name of file containing gene gene_file_source = 'go_search_genes_lung_all.txt' base_name = 'js_SC_1_2_3_5' #load file gene by_cell = pd.DataFrame.from_csv(os.path.join(path_to_file, base_name+'_outlier_filtered.txt'), sep='\t') by_gene = by_cell.transpose() #create list of genes gene_list = by_cell.index.tolist() #create cell list cell_list = [x for x in list(by_cell.columns.values)] df_by_gene1 = pd.DataFrame(by_gene, columns=gene_list, index=cell_list) df_by_cell1 = pd.DataFrame(by_cell, columns=cell_list, index=gene_list) def make_new_matrix(org_matrix_by_cell, gene_list_file): split_on='_' gene_df = pd.read_csv(os.path.join(path_to_file, gene_list_file), delimiter= '\t') gene_list = gene_df['GeneID'].tolist() group_list = gene_df['GroupID'].tolist() gmatrix_df = org_matrix_by_cell[gene_list] cmatrix_df = gmatrix_df.transpose() score_df = pd.DataFrame(zip(gene_list, group_list), columns=['GeneID', 'GroupID']) sample_data = pd.read_csv(os.path.join(path_to_file, 'samples.table'), delimiter= '\t', index_col=0) by_sample = sample_data.transpose() map_data = pd.read_csv(os.path.join(path_to_file, 'results_'+base_name+'_align.txt'), delimiter= '\t', index_col=0) by_cell_map = map_data.transpose() loading_data = pd.read_csv(os.path.join(path_to_file, 'SC.1.2.3.5_Sample_Groupings.txt'), delimiter= '\t', index_col=0) l_data = loading_data.transpose() print l_data cell_list = gmatrix_df.index.tolist() cell_data = [] cell_label_dict ={'BU3':('BU3'), 'ips17':('ips17')} new_cell_list = [] old_cell_list = [] for cell in cell_list: match = False try: timepoint = l_data[cell]['Timepoint'] cell_type = l_data[cell]['Type'] tracking_id = '_'.join([timepoint, cell, cell_type]) match = True except KeyError: print cell pass if match: old_cell_list.append(cell) new_cell_list.append('_'.join([timepoint, cell, cell_type])) pdgfra_level = cmatrix_df[cell]['Pdgfra'] if int(pdgfra_level) >= 60: Pdgfra='high' elif int(pdgfra_level) < 60 and int(pdgfra_level) >= 5 : Pdgfra='med' elif int(pdgfra_level) < 5: Pdgfra='low' if match: single_cell = 'yes' else: single_cell = 'no' print by_cell_map[cell] total_mass = by_sample[cell+'_0'][1] input_mass = by_cell_map[cell][0] per_mapped = by_cell_map[cell][4] c_data_tup = (tracking_id,total_mass,input_mass,per_mapped,cell_type,timepoint,Pdgfra,single_cell) print c_data_tup cell_data.append(c_data_tup) score_df.to_csv(os.path.join(path_to_file, 'gene_feature_data.txt'), sep = '\t', index=False) new_cmatrix_df = cmatrix_df[old_cell_list] new_cmatrix_df.columns = new_cell_list new_cmatrix_df.to_csv(os.path.join(path_to_file, 'goterms_monocle_count_matrix.txt'), sep = '\t', index_col=0) cell_data_df = pd.DataFrame(cell_data, columns=['tracking_id','total_mass','input_mass','per_mapped','cell_type','timepoint','Pdgfra','single_cell']) cell_data_df.to_csv(os.path.join(path_to_file, 'cell_feature_data.txt'), sep = '\t', index=False) make_new_matrix(df_by_gene1, gene_file_source)
mit
nburn42/tensorflow
tensorflow/contrib/learn/python/learn/estimators/estimator.py
14
62939
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Base Estimator class (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import collections import copy import os import tempfile import numpy as np import six from google.protobuf import message from tensorflow.contrib import layers from tensorflow.contrib.framework import deprecated from tensorflow.contrib.framework import deprecated_args from tensorflow.contrib.framework import list_variables from tensorflow.contrib.framework import load_variable from tensorflow.contrib.learn.python.learn import evaluable from tensorflow.contrib.learn.python.learn import metric_spec from tensorflow.contrib.learn.python.learn import monitors as monitor_lib from tensorflow.contrib.learn.python.learn import trainable from tensorflow.contrib.learn.python.learn.estimators import _sklearn as sklearn from tensorflow.contrib.learn.python.learn.estimators import constants from tensorflow.contrib.learn.python.learn.estimators import metric_key from tensorflow.contrib.learn.python.learn.estimators import model_fn as model_fn_lib from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.estimators import tensor_signature from tensorflow.contrib.learn.python.learn.estimators._sklearn import NotFittedError from tensorflow.contrib.learn.python.learn.learn_io import data_feeder from tensorflow.contrib.learn.python.learn.utils import export from tensorflow.contrib.learn.python.learn.utils import saved_model_export_utils from tensorflow.contrib.meta_graph_transform import meta_graph_transform from tensorflow.contrib.training.python.training import evaluation from tensorflow.core.framework import summary_pb2 from tensorflow.core.protobuf import config_pb2 from tensorflow.python.client import session as tf_session from tensorflow.python.framework import ops from tensorflow.python.framework import random_seed from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_util from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import lookup_ops from tensorflow.python.ops import metrics as metrics_lib from tensorflow.python.ops import resources from tensorflow.python.ops import variables from tensorflow.python.platform import gfile from tensorflow.python.platform import tf_logging as logging from tensorflow.python.saved_model import builder as saved_model_builder from tensorflow.python.saved_model import tag_constants from tensorflow.python.summary import summary as core_summary from tensorflow.python.training import basic_session_run_hooks from tensorflow.python.training import device_setter from tensorflow.python.training import monitored_session from tensorflow.python.training import saver from tensorflow.python.training import training_util from tensorflow.python.util import compat from tensorflow.python.util import tf_decorator from tensorflow.python.util import tf_inspect AS_ITERABLE_DATE = '2016-09-15' AS_ITERABLE_INSTRUCTIONS = ( 'The default behavior of predict() is changing. The default value for\n' 'as_iterable will change to True, and then the flag will be removed\n' 'altogether. The behavior of this flag is described below.') SCIKIT_DECOUPLE_DATE = '2016-12-01' SCIKIT_DECOUPLE_INSTRUCTIONS = ( 'Estimator is decoupled from Scikit Learn interface by moving into\n' 'separate class SKCompat. Arguments x, y and batch_size are only\n' 'available in the SKCompat class, Estimator will only accept input_fn.\n' 'Example conversion:\n' ' est = Estimator(...) -> est = SKCompat(Estimator(...))') def _verify_input_args(x, y, input_fn, feed_fn, batch_size): """Verifies validity of co-existence of input arguments.""" if input_fn is None: if x is None: raise ValueError('Either x or input_fn must be provided.') if tensor_util.is_tensor(x) or y is not None and tensor_util.is_tensor(y): raise ValueError('Inputs cannot be tensors. Please provide input_fn.') if feed_fn is not None: raise ValueError('Can not provide both feed_fn and x or y.') else: if (x is not None) or (y is not None): raise ValueError('Can not provide both input_fn and x or y.') if batch_size is not None: raise ValueError('Can not provide both input_fn and batch_size.') def _get_input_fn(x, y, input_fn, feed_fn, batch_size, shuffle=False, epochs=1): """Make inputs into input and feed functions. Args: x: Numpy, Pandas or Dask matrix or iterable. y: Numpy, Pandas or Dask matrix or iterable. input_fn: Pre-defined input function for training data. feed_fn: Pre-defined data feeder function. batch_size: Size to split data into parts. Must be >= 1. shuffle: Whether to shuffle the inputs. epochs: Number of epochs to run. Returns: Data input and feeder function based on training data. Raises: ValueError: Only one of `(x & y)` or `input_fn` must be provided. """ _verify_input_args(x, y, input_fn, feed_fn, batch_size) if input_fn is not None: return input_fn, feed_fn df = data_feeder.setup_train_data_feeder( x, y, n_classes=None, batch_size=batch_size, shuffle=shuffle, epochs=epochs) return df.input_builder, df.get_feed_dict_fn() @deprecated(None, 'Please specify feature columns explicitly.') def infer_real_valued_columns_from_input_fn(input_fn): """Creates `FeatureColumn` objects for inputs defined by `input_fn`. This interprets all inputs as dense, fixed-length float values. This creates a local graph in which it calls `input_fn` to build the tensors, then discards it. Args: input_fn: Input function returning a tuple of: features - Dictionary of string feature name to `Tensor` or `Tensor`. labels - `Tensor` of label values. Returns: List of `FeatureColumn` objects. """ with ops.Graph().as_default(): features, _ = input_fn() return layers.infer_real_valued_columns(features) @deprecated(None, 'Please specify feature columns explicitly.') def infer_real_valued_columns_from_input(x): """Creates `FeatureColumn` objects for inputs defined by input `x`. This interprets all inputs as dense, fixed-length float values. Args: x: Real-valued matrix of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. Returns: List of `FeatureColumn` objects. """ input_fn, _ = _get_input_fn( x=x, y=None, input_fn=None, feed_fn=None, batch_size=None) return infer_real_valued_columns_from_input_fn(input_fn) def _model_fn_args(fn): """Get argument names for function-like object. Args: fn: Function, or function-like object (e.g., result of `functools.partial`). Returns: `tuple` of string argument names. Raises: ValueError: if partial function has positionally bound arguments """ _, fn = tf_decorator.unwrap(fn) if hasattr(fn, 'func') and hasattr(fn, 'keywords') and hasattr(fn, 'args'): # Handle functools.partial and similar objects. return tuple([ arg for arg in tf_inspect.getargspec(fn.func).args[len(fn.args):] if arg not in set(fn.keywords.keys()) ]) # Handle function. return tuple(tf_inspect.getargspec(fn).args) def _get_replica_device_setter(config): """Creates a replica device setter if required. Args: config: A RunConfig instance. Returns: A replica device setter, or None. """ ps_ops = [ 'Variable', 'VariableV2', 'AutoReloadVariable', 'MutableHashTable', 'MutableHashTableV2', 'MutableHashTableOfTensors', 'MutableHashTableOfTensorsV2', 'MutableDenseHashTable', 'MutableDenseHashTableV2', 'VarHandleOp' ] if config.task_type: worker_device = '/job:%s/task:%d' % (config.task_type, config.task_id) else: worker_device = '/job:worker' if config.num_ps_replicas > 0: return device_setter.replica_device_setter( ps_tasks=config.num_ps_replicas, worker_device=worker_device, merge_devices=True, ps_ops=ps_ops, cluster=config.cluster_spec) else: return None def _make_metrics_ops(metrics, features, labels, predictions): """Add metrics based on `features`, `labels`, and `predictions`. `metrics` contains a specification for how to run metrics. It is a dict mapping friendly names to either `MetricSpec` objects, or directly to a metric function (assuming that `predictions` and `labels` are single tensors), or to `(pred_name, metric)` `tuple`, which passes `predictions[pred_name]` and `labels` to `metric` (assuming `labels` is a single tensor). Users are encouraged to use `MetricSpec` objects, which are more flexible and cleaner. They also lead to clearer errors. Args: metrics: A dict mapping names to metrics specification, for example `MetricSpec` objects. features: A dict of tensors returned from an input_fn as features/inputs. labels: A single tensor or a dict of tensors returned from an input_fn as labels. predictions: A single tensor or a dict of tensors output from a model as predictions. Returns: A dict mapping the friendly given in `metrics` to the result of calling the given metric function. Raises: ValueError: If metrics specifications do not work with the type of `features`, `labels`, or `predictions` provided. Mostly, a dict is given but no pred_name specified. """ metrics = metrics or {} # If labels is a dict with a single key, unpack into a single tensor. labels_tensor_or_dict = labels if isinstance(labels, dict) and len(labels) == 1: labels_tensor_or_dict = labels[list(labels.keys())[0]] result = {} # Iterate in lexicographic order, so the graph is identical among runs. for name, metric in sorted(six.iteritems(metrics)): if isinstance(metric, metric_spec.MetricSpec): result[name] = metric.create_metric_ops(features, labels, predictions) continue # TODO(b/31229024): Remove the rest of this loop logging.warning('Please specify metrics using MetricSpec. Using bare ' 'functions or (key, fn) tuples is deprecated and support ' 'for it will be removed on Oct 1, 2016.') if isinstance(name, tuple): # Multi-head metrics. if len(name) != 2: raise ValueError('Invalid metric for {}. It returned a tuple with ' 'len {}, expected 2.'.format(name, len(name))) if not isinstance(predictions, dict): raise ValueError('Metrics passed provide (name, prediction), ' 'but predictions are not dict. ' 'Metrics: %s, Predictions: %s.' % (metrics, predictions)) # Here are two options: labels are single Tensor or a dict. if isinstance(labels, dict) and name[1] in labels: # If labels are dict and the prediction name is in it, apply metric. result[name[0]] = metric(predictions[name[1]], labels[name[1]]) else: # Otherwise pass the labels to the metric. result[name[0]] = metric(predictions[name[1]], labels_tensor_or_dict) else: # Single head metrics. if isinstance(predictions, dict): raise ValueError('Metrics passed provide only name, no prediction, ' 'but predictions are dict. ' 'Metrics: %s, Labels: %s.' % (metrics, labels_tensor_or_dict)) result[name] = metric(predictions, labels_tensor_or_dict) return result def _dict_to_str(dictionary): """Get a `str` representation of a `dict`. Args: dictionary: The `dict` to be represented as `str`. Returns: A `str` representing the `dictionary`. """ results = [] for k, v in sorted(dictionary.items()): if isinstance(v, float) or isinstance(v, np.float32) or isinstance( v, int) or isinstance(v, np.int64) or isinstance(v, np.int32): results.append('%s = %s' % (k, v)) else: results.append('Type of %s = %s' % (k, type(v))) return ', '.join(results) def _write_dict_to_summary(output_dir, dictionary, current_global_step): """Writes a `dict` into summary file in given output directory. Args: output_dir: `str`, directory to write the summary file in. dictionary: the `dict` to be written to summary file. current_global_step: `int`, the current global step. """ logging.info('Saving dict for global step %d: %s', current_global_step, _dict_to_str(dictionary)) summary_writer = core_summary.FileWriterCache.get(output_dir) summary_proto = summary_pb2.Summary() for key in dictionary: if dictionary[key] is None: continue if key == 'global_step': continue if (isinstance(dictionary[key], np.float32) or isinstance(dictionary[key], float)): summary_proto.value.add(tag=key, simple_value=float(dictionary[key])) elif (isinstance(dictionary[key], np.int64) or isinstance(dictionary[key], np.int32) or isinstance(dictionary[key], int)): summary_proto.value.add(tag=key, simple_value=int(dictionary[key])) elif isinstance(dictionary[key], six.string_types): try: summ = summary_pb2.Summary.FromString(dictionary[key]) for i, _ in enumerate(summ.value): summ.value[i].tag = key summary_proto.value.extend(summ.value) except message.DecodeError: logging.warn('Skipping summary for %s, cannot parse string to Summary.', key) continue elif isinstance(dictionary[key], np.ndarray): value = summary_proto.value.add() value.tag = key value.node_name = key tensor_proto = tensor_util.make_tensor_proto(dictionary[key]) value.tensor.CopyFrom(tensor_proto) logging.info( 'Summary for np.ndarray is not visible in Tensorboard by default. ' 'Consider using a Tensorboard plugin for visualization (see ' 'https://github.com/tensorflow/tensorboard-plugin-example/blob/master/README.md' ' for more information).') else: logging.warn( 'Skipping summary for %s, must be a float, np.float32, np.int64, ' 'np.int32 or int or np.ndarray or a serialized string of Summary.', key) summary_writer.add_summary(summary_proto, current_global_step) summary_writer.flush() GraphRewriteSpec = collections.namedtuple('GraphRewriteSpec', ['tags', 'transforms']) class BaseEstimator(sklearn.BaseEstimator, evaluable.Evaluable, trainable.Trainable): """Abstract BaseEstimator class to train and evaluate TensorFlow models. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. Users should not instantiate or subclass this class. Instead, use an `Estimator`. """ __metaclass__ = abc.ABCMeta # Note that for Google users, this is overridden with # learn_runner.EstimatorConfig. # TODO(wicke): Remove this once launcher takes over config functionality _Config = run_config.RunConfig # pylint: disable=invalid-name @deprecated(None, 'Please replace uses of any Estimator from tf.contrib.learn' ' with an Estimator from tf.estimator.*') def __init__(self, model_dir=None, config=None): """Initializes a BaseEstimator instance. Args: model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. If `None`, the model_dir in `config` will be used if set. If both are set, they must be same. config: A RunConfig instance. """ # Create a run configuration. if config is None: self._config = BaseEstimator._Config() logging.info('Using default config.') else: self._config = config if self._config.session_config is None: self._session_config = config_pb2.ConfigProto(allow_soft_placement=True) else: self._session_config = self._config.session_config # Model directory. if (model_dir is not None) and (self._config.model_dir is not None): if model_dir != self._config.model_dir: # TODO(b/9965722): remove this suppression after it is no longer # necessary. # pylint: disable=g-doc-exception raise ValueError( 'model_dir are set both in constructor and RunConfig, but with ' "different values. In constructor: '{}', in RunConfig: " "'{}' ".format(model_dir, self._config.model_dir)) # pylint: enable=g-doc-exception self._model_dir = model_dir or self._config.model_dir if self._model_dir is None: self._model_dir = tempfile.mkdtemp() logging.warning('Using temporary folder as model directory: %s', self._model_dir) if self._config.model_dir is None: self._config = self._config.replace(model_dir=self._model_dir) logging.info('Using config: %s', str(vars(self._config))) # Set device function depending if there are replicas or not. self._device_fn = _get_replica_device_setter(self._config) # Features and labels TensorSignature objects. # TODO(wicke): Rename these to something more descriptive self._features_info = None self._labels_info = None self._graph = None @property def config(self): # TODO(wicke): make RunConfig immutable, and then return it without a copy. return copy.deepcopy(self._config) @property def model_fn(self): """Returns the model_fn which is bound to self.params. Returns: The model_fn with the following signature: `def model_fn(features, labels, mode, metrics)` """ def public_model_fn(features, labels, mode, config): return self._call_model_fn(features, labels, mode, config=config) return public_model_fn @deprecated_args(SCIKIT_DECOUPLE_DATE, SCIKIT_DECOUPLE_INSTRUCTIONS, ('x', None), ('y', None), ('batch_size', None)) def fit(self, x=None, y=None, input_fn=None, steps=None, batch_size=None, monitors=None, max_steps=None): # pylint: disable=g-doc-args,g-doc-return-or-yield """See `Trainable`. Raises: ValueError: If `x` or `y` are not `None` while `input_fn` is not `None`. ValueError: If both `steps` and `max_steps` are not `None`. """ if (steps is not None) and (max_steps is not None): raise ValueError('Can not provide both steps and max_steps.') _verify_input_args(x, y, input_fn, None, batch_size) if x is not None: SKCompat(self).fit(x, y, batch_size, steps, max_steps, monitors) return self if max_steps is not None: try: start_step = load_variable(self._model_dir, ops.GraphKeys.GLOBAL_STEP) if max_steps <= start_step: logging.info('Skipping training since max_steps has already saved.') return self except: # pylint: disable=bare-except pass hooks = monitor_lib.replace_monitors_with_hooks(monitors, self) if steps is not None or max_steps is not None: hooks.append(basic_session_run_hooks.StopAtStepHook(steps, max_steps)) loss = self._train_model(input_fn=input_fn, hooks=hooks) logging.info('Loss for final step: %s.', loss) return self @deprecated_args(SCIKIT_DECOUPLE_DATE, SCIKIT_DECOUPLE_INSTRUCTIONS, ('x', None), ('y', None), ('batch_size', None)) def partial_fit(self, x=None, y=None, input_fn=None, steps=1, batch_size=None, monitors=None): """Incremental fit on a batch of samples. This method is expected to be called several times consecutively on different or the same chunks of the dataset. This either can implement iterative training or out-of-core/online training. This is especially useful when the whole dataset is too big to fit in memory at the same time. Or when model is taking long time to converge, and you want to split up training into subparts. Args: x: Matrix of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. The training input samples for fitting the model. If set, `input_fn` must be `None`. y: Vector or matrix [n_samples] or [n_samples, n_outputs]. Can be iterator that returns array of labels. The training label values (class labels in classification, real numbers in regression). If set, `input_fn` must be `None`. input_fn: Input function. If set, `x`, `y`, and `batch_size` must be `None`. steps: Number of steps for which to train model. If `None`, train forever. batch_size: minibatch size to use on the input, defaults to first dimension of `x`. Must be `None` if `input_fn` is provided. monitors: List of `BaseMonitor` subclass instances. Used for callbacks inside the training loop. Returns: `self`, for chaining. Raises: ValueError: If at least one of `x` and `y` is provided, and `input_fn` is provided. """ logging.warning('The current implementation of partial_fit is not optimized' ' for use in a loop. Consider using fit() instead.') return self.fit( x=x, y=y, input_fn=input_fn, steps=steps, batch_size=batch_size, monitors=monitors) @deprecated_args(SCIKIT_DECOUPLE_DATE, SCIKIT_DECOUPLE_INSTRUCTIONS, ('x', None), ('y', None), ('batch_size', None)) def evaluate(self, x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None, checkpoint_path=None, hooks=None, log_progress=True): # pylint: disable=g-doc-args,g-doc-return-or-yield """See `Evaluable`. Raises: ValueError: If at least one of `x` or `y` is provided, and at least one of `input_fn` or `feed_fn` is provided. Or if `metrics` is not `None` or `dict`. """ _verify_input_args(x, y, input_fn, feed_fn, batch_size) if x is not None: return SKCompat(self).score(x, y, batch_size, steps, metrics, name) if metrics is not None and not isinstance(metrics, dict): raise ValueError('Metrics argument should be None or dict. ' 'Got %s.' % metrics) eval_results, global_step = self._evaluate_model( input_fn=input_fn, feed_fn=feed_fn, steps=steps, metrics=metrics, name=name, checkpoint_path=checkpoint_path, hooks=hooks, log_progress=log_progress) if eval_results is not None: eval_results.update({'global_step': global_step}) return eval_results @deprecated_args(SCIKIT_DECOUPLE_DATE, SCIKIT_DECOUPLE_INSTRUCTIONS, ('x', None), ('batch_size', None), ('as_iterable', True)) def predict(self, x=None, input_fn=None, batch_size=None, outputs=None, as_iterable=True, iterate_batches=False): """Returns predictions for given features. Args: x: Matrix of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. The training input samples for fitting the model. If set, `input_fn` must be `None`. input_fn: Input function. If set, `x` and 'batch_size' must be `None`. batch_size: Override default batch size. If set, 'input_fn' must be 'None'. outputs: list of `str`, name of the output to predict. If `None`, returns all. as_iterable: If True, return an iterable which keeps yielding predictions for each example until inputs are exhausted. Note: The inputs must terminate if you want the iterable to terminate (e.g. be sure to pass num_epochs=1 if you are using something like read_batch_features). iterate_batches: If True, yield the whole batch at once instead of decomposing the batch into individual samples. Only relevant when as_iterable is True. Returns: A numpy array of predicted classes or regression values if the constructor's `model_fn` returns a `Tensor` for `predictions` or a `dict` of numpy arrays if `model_fn` returns a `dict`. Returns an iterable of predictions if as_iterable is True. Raises: ValueError: If x and input_fn are both provided or both `None`. """ _verify_input_args(x, None, input_fn, None, batch_size) if x is not None and not as_iterable: return SKCompat(self).predict(x, batch_size) input_fn, feed_fn = _get_input_fn(x, None, input_fn, None, batch_size) return self._infer_model( input_fn=input_fn, feed_fn=feed_fn, outputs=outputs, as_iterable=as_iterable, iterate_batches=iterate_batches) def get_variable_value(self, name): """Returns value of the variable given by name. Args: name: string, name of the tensor. Returns: Numpy array - value of the tensor. """ return load_variable(self.model_dir, name) def get_variable_names(self): """Returns list of all variable names in this model. Returns: List of names. """ return [name for name, _ in list_variables(self.model_dir)] @property def model_dir(self): return self._model_dir @deprecated('2017-03-25', 'Please use Estimator.export_savedmodel() instead.') def export( self, export_dir, input_fn=export._default_input_fn, # pylint: disable=protected-access input_feature_key=None, use_deprecated_input_fn=True, signature_fn=None, prediction_key=None, default_batch_size=1, exports_to_keep=None, checkpoint_path=None): """Exports inference graph into given dir. Args: export_dir: A string containing a directory to write the exported graph and checkpoints. input_fn: If `use_deprecated_input_fn` is true, then a function that given `Tensor` of `Example` strings, parses it into features that are then passed to the model. Otherwise, a function that takes no argument and returns a tuple of (features, labels), where features is a dict of string key to `Tensor` and labels is a `Tensor` that's currently not used (and so can be `None`). input_feature_key: Only used if `use_deprecated_input_fn` is false. String key into the features dict returned by `input_fn` that corresponds to a the raw `Example` strings `Tensor` that the exported model will take as input. Can only be `None` if you're using a custom `signature_fn` that does not use the first arg (examples). use_deprecated_input_fn: Determines the signature format of `input_fn`. signature_fn: Function that returns a default signature and a named signature map, given `Tensor` of `Example` strings, `dict` of `Tensor`s for features and `Tensor` or `dict` of `Tensor`s for predictions. prediction_key: The key for a tensor in the `predictions` dict (output from the `model_fn`) to use as the `predictions` input to the `signature_fn`. Optional. If `None`, predictions will pass to `signature_fn` without filtering. default_batch_size: Default batch size of the `Example` placeholder. exports_to_keep: Number of exports to keep. checkpoint_path: the checkpoint path of the model to be exported. If it is `None` (which is default), will use the latest checkpoint in export_dir. Returns: The string path to the exported directory. NB: this functionality was added ca. 2016/09/25; clients that depend on the return value may need to handle the case where this function returns None because subclasses are not returning a value. """ # pylint: disable=protected-access return export._export_estimator( estimator=self, export_dir=export_dir, signature_fn=signature_fn, prediction_key=prediction_key, input_fn=input_fn, input_feature_key=input_feature_key, use_deprecated_input_fn=use_deprecated_input_fn, default_batch_size=default_batch_size, exports_to_keep=exports_to_keep, checkpoint_path=checkpoint_path) @abc.abstractproperty def _get_train_ops(self, features, labels): """Method that builds model graph and returns trainer ops. Expected to be overridden by sub-classes that require custom support. Args: features: `Tensor` or `dict` of `Tensor` objects. labels: `Tensor` or `dict` of `Tensor` objects. Returns: A `ModelFnOps` object. """ pass @abc.abstractproperty def _get_predict_ops(self, features): """Method that builds model graph and returns prediction ops. Args: features: `Tensor` or `dict` of `Tensor` objects. Returns: A `ModelFnOps` object. """ pass def _get_eval_ops(self, features, labels, metrics): """Method that builds model graph and returns evaluation ops. Expected to be overridden by sub-classes that require custom support. Args: features: `Tensor` or `dict` of `Tensor` objects. labels: `Tensor` or `dict` of `Tensor` objects. metrics: Dict of metrics to run. If None, the default metric functions are used; if {}, no metrics are used. Otherwise, `metrics` should map friendly names for the metric to a `MetricSpec` object defining which model outputs to evaluate against which labels with which metric function. Metric ops should support streaming, e.g., returning update_op and value tensors. See more details in `../../../../metrics/python/metrics/ops/streaming_metrics.py` and `../metric_spec.py`. Returns: A `ModelFnOps` object. """ raise NotImplementedError('_get_eval_ops not implemented in BaseEstimator') @deprecated( '2016-09-23', 'The signature of the input_fn accepted by export is changing to be ' 'consistent with what\'s used by tf.Learn Estimator\'s train/evaluate, ' 'which makes this function useless. This will be removed after the ' 'deprecation date.') def _get_feature_ops_from_example(self, examples_batch): """Returns feature parser for given example batch using features info. This function requires `fit()` has been called. Args: examples_batch: batch of tf.Example Returns: features: `Tensor` or `dict` of `Tensor` objects. Raises: ValueError: If `_features_info` attribute is not available (usually because `fit()` has not been called). """ if self._features_info is None: raise ValueError('Features information missing, was fit() ever called?') return tensor_signature.create_example_parser_from_signatures( self._features_info, examples_batch) def _check_inputs(self, features, labels): if self._features_info is not None: logging.debug('Given features: %s, required signatures: %s.', str(features), str(self._features_info)) if not tensor_signature.tensors_compatible(features, self._features_info): raise ValueError('Features are incompatible with given information. ' 'Given features: %s, required signatures: %s.' % (str(features), str(self._features_info))) else: self._features_info = tensor_signature.create_signatures(features) logging.debug('Setting feature info to %s.', str(self._features_info)) if labels is not None: if self._labels_info is not None: logging.debug('Given labels: %s, required signatures: %s.', str(labels), str(self._labels_info)) if not tensor_signature.tensors_compatible(labels, self._labels_info): raise ValueError('Labels are incompatible with given information. ' 'Given labels: %s, required signatures: %s.' % (str(labels), str(self._labels_info))) else: self._labels_info = tensor_signature.create_signatures(labels) logging.debug('Setting labels info to %s', str(self._labels_info)) def _extract_metric_update_ops(self, eval_dict): """Separate update operations from metric value operations.""" update_ops = [] value_ops = {} for name, metric_ops in six.iteritems(eval_dict): if isinstance(metric_ops, (list, tuple)): if len(metric_ops) == 2: value_ops[name] = metric_ops[0] update_ops.append(metric_ops[1]) else: logging.warning( 'Ignoring metric {}. It returned a list|tuple with len {}, ' 'expected 2'.format(name, len(metric_ops))) value_ops[name] = metric_ops else: value_ops[name] = metric_ops if update_ops: update_ops = control_flow_ops.group(*update_ops) else: update_ops = None return update_ops, value_ops def _evaluate_model(self, input_fn, steps, feed_fn=None, metrics=None, name='', checkpoint_path=None, hooks=None, log_progress=True): # TODO(wicke): Remove this once Model and associated code are gone. if (hasattr(self._config, 'execution_mode') and self._config.execution_mode not in ('all', 'evaluate', 'eval_evalset')): return None, None # Check that model has been trained (if nothing has been set explicitly). if not checkpoint_path: latest_path = saver.latest_checkpoint(self._model_dir) if not latest_path: raise NotFittedError( "Couldn't find trained model at %s." % self._model_dir) checkpoint_path = latest_path # Setup output directory. eval_dir = os.path.join(self._model_dir, 'eval' if not name else 'eval_' + name) with ops.Graph().as_default() as g: random_seed.set_random_seed(self._config.tf_random_seed) global_step = training_util.create_global_step(g) features, labels = input_fn() self._check_inputs(features, labels) model_fn_results = self._get_eval_ops(features, labels, metrics) eval_dict = model_fn_results.eval_metric_ops update_op, eval_dict = self._extract_metric_update_ops(eval_dict) # We need to copy the hook array as we modify it, thus [:]. hooks = hooks[:] if hooks else [] if feed_fn: hooks.append(basic_session_run_hooks.FeedFnHook(feed_fn)) if steps == 0: logging.warning('evaluation steps are 0. If `input_fn` does not raise ' '`OutOfRangeError`, the evaluation will never stop. ' 'Use steps=None if intended.') if steps: hooks.append( evaluation.StopAfterNEvalsHook(steps, log_progress=log_progress)) global_step_key = 'global_step' while global_step_key in eval_dict: global_step_key = '_' + global_step_key eval_dict[global_step_key] = global_step eval_results = evaluation.evaluate_once( checkpoint_path=checkpoint_path, master=self._config.evaluation_master, scaffold=model_fn_results.scaffold, eval_ops=update_op, final_ops=eval_dict, hooks=hooks, config=self._session_config) current_global_step = eval_results[global_step_key] _write_dict_to_summary(eval_dir, eval_results, current_global_step) return eval_results, current_global_step def _get_features_from_input_fn(self, input_fn): result = input_fn() if isinstance(result, (list, tuple)): return result[0] return result def _infer_model(self, input_fn, feed_fn=None, outputs=None, as_iterable=True, iterate_batches=False): # Check that model has been trained. checkpoint_path = saver.latest_checkpoint(self._model_dir) if not checkpoint_path: raise NotFittedError( "Couldn't find trained model at %s." % self._model_dir) with ops.Graph().as_default() as g: random_seed.set_random_seed(self._config.tf_random_seed) training_util.create_global_step(g) features = self._get_features_from_input_fn(input_fn) infer_ops = self._get_predict_ops(features) predictions = self._filter_predictions(infer_ops.predictions, outputs) mon_sess = monitored_session.MonitoredSession( session_creator=monitored_session.ChiefSessionCreator( checkpoint_filename_with_path=checkpoint_path, scaffold=infer_ops.scaffold, config=self._session_config)) if not as_iterable: with mon_sess: if not mon_sess.should_stop(): return mon_sess.run(predictions, feed_fn() if feed_fn else None) else: return self._predict_generator(mon_sess, predictions, feed_fn, iterate_batches) def _predict_generator(self, mon_sess, predictions, feed_fn, iterate_batches): with mon_sess: while not mon_sess.should_stop(): preds = mon_sess.run(predictions, feed_fn() if feed_fn else None) if iterate_batches: yield preds elif not isinstance(predictions, dict): for pred in preds: yield pred else: first_tensor = list(preds.values())[0] if isinstance(first_tensor, sparse_tensor.SparseTensorValue): batch_length = first_tensor.dense_shape[0] else: batch_length = first_tensor.shape[0] for i in range(batch_length): yield {key: value[i] for key, value in six.iteritems(preds)} if self._is_input_constant(feed_fn, mon_sess.graph): return def _is_input_constant(self, feed_fn, graph): # If there are no queue_runners, the input `predictions` is a # constant, and we should stop after the first epoch. If, # instead, there are queue_runners, eventually they should throw # an `OutOfRangeError`. if graph.get_collection(ops.GraphKeys.QUEUE_RUNNERS): return False # data_feeder uses feed_fn to generate `OutOfRangeError`. if feed_fn is not None: return False return True def _filter_predictions(self, predictions, outputs): if not outputs: return predictions if not isinstance(predictions, dict): raise ValueError( 'outputs argument is not valid in case of non-dict predictions.') existing_keys = predictions.keys() predictions = { key: value for key, value in six.iteritems(predictions) if key in outputs } if not predictions: raise ValueError('Expected to run at least one output from %s, ' 'provided %s.' % (existing_keys, outputs)) return predictions def _train_model(self, input_fn, hooks): all_hooks = [] self._graph = ops.Graph() with self._graph.as_default() as g, g.device(self._device_fn): random_seed.set_random_seed(self._config.tf_random_seed) global_step = training_util.create_global_step(g) features, labels = input_fn() self._check_inputs(features, labels) training_util._get_or_create_global_step_read() # pylint: disable=protected-access model_fn_ops = self._get_train_ops(features, labels) ops.add_to_collection(ops.GraphKeys.LOSSES, model_fn_ops.loss) all_hooks.extend(hooks) all_hooks.extend([ basic_session_run_hooks.NanTensorHook(model_fn_ops.loss), basic_session_run_hooks.LoggingTensorHook( { 'loss': model_fn_ops.loss, 'step': global_step }, every_n_iter=100) ]) scaffold = model_fn_ops.scaffold or monitored_session.Scaffold() if not (scaffold.saver or ops.get_collection(ops.GraphKeys.SAVERS)): ops.add_to_collection( ops.GraphKeys.SAVERS, saver.Saver( sharded=True, max_to_keep=self._config.keep_checkpoint_max, keep_checkpoint_every_n_hours=( self._config.keep_checkpoint_every_n_hours), defer_build=True, save_relative_paths=True)) chief_hooks = [] if (self._config.save_checkpoints_secs or self._config.save_checkpoints_steps): saver_hook_exists = any([ isinstance(h, basic_session_run_hooks.CheckpointSaverHook) for h in (all_hooks + model_fn_ops.training_hooks + chief_hooks + model_fn_ops.training_chief_hooks) ]) if not saver_hook_exists: chief_hooks = [ basic_session_run_hooks.CheckpointSaverHook( self._model_dir, save_secs=self._config.save_checkpoints_secs, save_steps=self._config.save_checkpoints_steps, scaffold=scaffold) ] with monitored_session.MonitoredTrainingSession( master=self._config.master, is_chief=self._config.is_chief, checkpoint_dir=self._model_dir, scaffold=scaffold, hooks=all_hooks + model_fn_ops.training_hooks, chief_only_hooks=chief_hooks + model_fn_ops.training_chief_hooks, save_checkpoint_secs=0, # Saving is handled by a hook. save_summaries_steps=self._config.save_summary_steps, config=self._session_config) as mon_sess: loss = None while not mon_sess.should_stop(): _, loss = mon_sess.run([model_fn_ops.train_op, model_fn_ops.loss]) return loss def _identity_feature_engineering_fn(features, labels): return features, labels class Estimator(BaseEstimator): """Estimator class is the basic TensorFlow model trainer/evaluator. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. """ def __init__(self, model_fn=None, model_dir=None, config=None, params=None, feature_engineering_fn=None): """Constructs an `Estimator` instance. Args: model_fn: Model function. Follows the signature: * Args: * `features`: single `Tensor` or `dict` of `Tensor`s (depending on data passed to `fit`), * `labels`: `Tensor` or `dict` of `Tensor`s (for multi-head models). If mode is `ModeKeys.INFER`, `labels=None` will be passed. If the `model_fn`'s signature does not accept `mode`, the `model_fn` must still be able to handle `labels=None`. * `mode`: Optional. Specifies if this training, evaluation or prediction. See `ModeKeys`. * `params`: Optional `dict` of hyperparameters. Will receive what is passed to Estimator in `params` parameter. This allows to configure Estimators from hyper parameter tuning. * `config`: Optional configuration object. Will receive what is passed to Estimator in `config` parameter, or the default `config`. Allows updating things in your model_fn based on configuration such as `num_ps_replicas`. * `model_dir`: Optional directory where model parameters, graph etc are saved. Will receive what is passed to Estimator in `model_dir` parameter, or the default `model_dir`. Allows updating things in your model_fn that expect model_dir, such as training hooks. * Returns: `ModelFnOps` Also supports a legacy signature which returns tuple of: * predictions: `Tensor`, `SparseTensor` or dictionary of same. Can also be any type that is convertible to a `Tensor` or `SparseTensor`, or dictionary of same. * loss: Scalar loss `Tensor`. * train_op: Training update `Tensor` or `Operation`. Supports next three signatures for the function: * `(features, labels) -> (predictions, loss, train_op)` * `(features, labels, mode) -> (predictions, loss, train_op)` * `(features, labels, mode, params) -> (predictions, loss, train_op)` * `(features, labels, mode, params, config) -> (predictions, loss, train_op)` * `(features, labels, mode, params, config, model_dir) -> (predictions, loss, train_op)` model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. config: Configuration object. params: `dict` of hyper parameters that will be passed into `model_fn`. Keys are names of parameters, values are basic python types. feature_engineering_fn: Feature engineering function. Takes features and labels which are the output of `input_fn` and returns features and labels which will be fed into `model_fn`. Please check `model_fn` for a definition of features and labels. Raises: ValueError: parameters of `model_fn` don't match `params`. """ super(Estimator, self).__init__(model_dir=model_dir, config=config) if model_fn is not None: # Check number of arguments of the given function matches requirements. model_fn_args = _model_fn_args(model_fn) if params is not None and 'params' not in model_fn_args: raise ValueError('Estimator\'s model_fn (%s) does not have a params ' 'argument, but params (%s) were passed to the ' 'Estimator\'s constructor.' % (model_fn, params)) if params is None and 'params' in model_fn_args: logging.warning('Estimator\'s model_fn (%s) includes params ' 'argument, but params are not passed to Estimator.', model_fn) self._model_fn = model_fn self.params = params self._feature_engineering_fn = ( feature_engineering_fn or _identity_feature_engineering_fn) def _call_model_fn(self, features, labels, mode, metrics=None, config=None): """Calls model function with support of 2, 3 or 4 arguments. Args: features: features dict. labels: labels dict. mode: ModeKeys metrics: Dict of metrics. config: RunConfig. Returns: A `ModelFnOps` object. If model_fn returns a tuple, wraps them up in a `ModelFnOps` object. Raises: ValueError: if model_fn returns invalid objects. """ features, labels = self._feature_engineering_fn(features, labels) model_fn_args = _model_fn_args(self._model_fn) kwargs = {} if 'mode' in model_fn_args: kwargs['mode'] = mode if 'params' in model_fn_args: kwargs['params'] = self.params if 'config' in model_fn_args: if config: kwargs['config'] = config else: kwargs['config'] = self.config if 'model_dir' in model_fn_args: kwargs['model_dir'] = self.model_dir model_fn_results = self._model_fn(features, labels, **kwargs) if isinstance(model_fn_results, model_fn_lib.ModelFnOps): model_fn_ops = model_fn_results else: # Here model_fn_results should be a tuple with 3 elements. if len(model_fn_results) != 3: raise ValueError('Unrecognized value returned by model_fn, ' 'please return ModelFnOps.') model_fn_ops = model_fn_lib.ModelFnOps( mode=mode, predictions=model_fn_results[0], loss=model_fn_results[1], train_op=model_fn_results[2]) # Custom metrics should overwrite defaults. if metrics: model_fn_ops.eval_metric_ops.update( _make_metrics_ops(metrics, features, labels, model_fn_ops.predictions)) return model_fn_ops def _get_train_ops(self, features, labels): """Method that builds model graph and returns trainer ops. Expected to be overridden by sub-classes that require custom support. This implementation uses `model_fn` passed as parameter to constructor to build model. Args: features: `Tensor` or `dict` of `Tensor` objects. labels: `Tensor` or `dict` of `Tensor` objects. Returns: `ModelFnOps` object. """ return self._call_model_fn(features, labels, model_fn_lib.ModeKeys.TRAIN) def _get_eval_ops(self, features, labels, metrics): """Method that builds model graph and returns evaluation ops. Expected to be overridden by sub-classes that require custom support. This implementation uses `model_fn` passed as parameter to constructor to build model. Args: features: `Tensor` or `dict` of `Tensor` objects. labels: `Tensor` or `dict` of `Tensor` objects. metrics: Dict of metrics to run. If None, the default metric functions are used; if {}, no metrics are used. Otherwise, `metrics` should map friendly names for the metric to a `MetricSpec` object defining which model outputs to evaluate against which labels with which metric function. Metric ops should support streaming, e.g., returning update_op and value tensors. See more details in `../../../../metrics/python/metrics/ops/streaming_metrics.py` and `../metric_spec.py`. Returns: `ModelFnOps` object. Raises: ValueError: if `metrics` don't match `labels`. """ model_fn_ops = self._call_model_fn(features, labels, model_fn_lib.ModeKeys.EVAL, metrics) if metric_key.MetricKey.LOSS not in model_fn_ops.eval_metric_ops: model_fn_ops.eval_metric_ops[metric_key.MetricKey.LOSS] = ( metrics_lib.mean(model_fn_ops.loss)) return model_fn_ops def _get_predict_ops(self, features): """Method that builds model graph and returns prediction ops. Expected to be overridden by sub-classes that require custom support. This implementation uses `model_fn` passed as parameter to constructor to build model. Args: features: `Tensor` or `dict` of `Tensor` objects. Returns: `ModelFnOps` object. """ labels = tensor_signature.create_placeholders_from_signatures( self._labels_info) return self._call_model_fn(features, labels, model_fn_lib.ModeKeys.INFER) def export_savedmodel(self, export_dir_base, serving_input_fn, default_output_alternative_key=None, assets_extra=None, as_text=False, checkpoint_path=None, graph_rewrite_specs=(GraphRewriteSpec( (tag_constants.SERVING,), ()),), strip_default_attrs=False): # pylint: disable=line-too-long """Exports inference graph as a SavedModel into given dir. Args: export_dir_base: A string containing a directory to write the exported graph and checkpoints. serving_input_fn: A function that takes no argument and returns an `InputFnOps`. default_output_alternative_key: the name of the head to serve when none is specified. Not needed for single-headed models. assets_extra: A dict specifying how to populate the assets.extra directory within the exported SavedModel. Each key should give the destination path (including the filename) relative to the assets.extra directory. The corresponding value gives the full path of the source file to be copied. For example, the simple case of copying a single file without renaming it is specified as `{'my_asset_file.txt': '/path/to/my_asset_file.txt'}`. as_text: whether to write the SavedModel proto in text format. checkpoint_path: The checkpoint path to export. If None (the default), the most recent checkpoint found within the model directory is chosen. graph_rewrite_specs: an iterable of `GraphRewriteSpec`. Each element will produce a separate MetaGraphDef within the exported SavedModel, tagged and rewritten as specified. Defaults to a single entry using the default serving tag ("serve") and no rewriting. strip_default_attrs: Boolean. If `True`, default-valued attributes will be removed from the NodeDefs. For a detailed guide, see [Stripping Default-Valued Attributes](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/saved_model/README.md#stripping-default-valued-attributes). Returns: The string path to the exported directory. Raises: ValueError: if an unrecognized export_type is requested. """ # pylint: enable=line-too-long if serving_input_fn is None: raise ValueError('serving_input_fn must be defined.') if not checkpoint_path: # Locate the latest checkpoint checkpoint_path = saver.latest_checkpoint(self._model_dir) if not checkpoint_path: raise NotFittedError( "Couldn't find trained model at %s." % self._model_dir) export_dir = saved_model_export_utils.get_timestamped_export_dir( export_dir_base) # We'll write the SavedModel to a temporary directory and then atomically # rename it at the end. This helps to avoid corrupt / incomplete outputs, # which could otherwise occur if the job is preempted or otherwise fails # in the middle of SavedModel creation. temp_export_dir = saved_model_export_utils.get_temp_export_dir(export_dir) builder = saved_model_builder.SavedModelBuilder(temp_export_dir) # Build the base graph with ops.Graph().as_default() as g: training_util.create_global_step(g) # Call the serving_input_fn and collect the input alternatives. input_ops = serving_input_fn() input_alternatives, features = ( saved_model_export_utils.get_input_alternatives(input_ops)) # TODO(b/34388557) This is a stopgap, pending recording model provenance. # Record which features are expected at serving time. It is assumed that # these are the features that were used in training. for feature_key in input_ops.features.keys(): ops.add_to_collection( constants.COLLECTION_DEF_KEY_FOR_INPUT_FEATURE_KEYS, feature_key) # Call the model_fn and collect the output alternatives. model_fn_ops = self._call_model_fn(features, None, model_fn_lib.ModeKeys.INFER) output_alternatives, actual_default_output_alternative_key = ( saved_model_export_utils.get_output_alternatives( model_fn_ops, default_output_alternative_key)) init_op = control_flow_ops.group(variables.local_variables_initializer(), resources.initialize_resources( resources.shared_resources()), lookup_ops.tables_initializer()) # Build the SignatureDefs from all pairs of input and output alternatives signature_def_map = saved_model_export_utils.build_all_signature_defs( input_alternatives, output_alternatives, actual_default_output_alternative_key) # Export the first MetaGraphDef with variables, assets etc. with tf_session.Session('') as session: # pylint: disable=protected-access saveables = variables._all_saveable_objects() # pylint: enable=protected-access if (model_fn_ops.scaffold is not None and model_fn_ops.scaffold.saver is not None): saver_for_restore = model_fn_ops.scaffold.saver elif saveables: saver_for_restore = saver.Saver(saveables, sharded=True) saver_for_restore.restore(session, checkpoint_path) # Perform the export if not graph_rewrite_specs or graph_rewrite_specs[0].transforms: raise ValueError('The first element of graph_rewrite_specs ' 'must specify no transforms.') untransformed_tags = graph_rewrite_specs[0].tags # TODO(soergel): switch to main_op or otherwise update when dust settles builder.add_meta_graph_and_variables( session, untransformed_tags, signature_def_map=signature_def_map, assets_collection=ops.get_collection(ops.GraphKeys.ASSET_FILEPATHS), legacy_init_op=init_op, strip_default_attrs=strip_default_attrs) # pylint: disable=protected-access base_meta_graph_def = builder._saved_model.meta_graphs[0] # pylint: enable=protected-access if graph_rewrite_specs[1:]: # Prepare the input_names and output_names needed for the # meta_graph_transform call below. input_names = [ tensor.name for input_dict in input_alternatives.values() for tensor in input_dict.values() ] output_names = [ tensor.name for output_alternative in output_alternatives.values() for tensor in output_alternative[1].values() ] # Write the additional MetaGraphDefs for graph_rewrite_spec in graph_rewrite_specs[1:]: # TODO(soergel) consider moving most of this to saved_model.builder_impl # as e.g. builder.add_rewritten_meta_graph(rewritten_graph_def, tags) transformed_meta_graph_def = meta_graph_transform.meta_graph_transform( base_meta_graph_def, input_names, output_names, graph_rewrite_spec.transforms, graph_rewrite_spec.tags) # pylint: disable=protected-access meta_graph_def = builder._saved_model.meta_graphs.add() # pylint: enable=protected-access meta_graph_def.CopyFrom(transformed_meta_graph_def) # Add the extra assets if assets_extra: assets_extra_path = os.path.join( compat.as_bytes(temp_export_dir), compat.as_bytes('assets.extra')) for dest_relative, source in assets_extra.items(): dest_absolute = os.path.join( compat.as_bytes(assets_extra_path), compat.as_bytes(dest_relative)) dest_path = os.path.dirname(dest_absolute) gfile.MakeDirs(dest_path) gfile.Copy(source, dest_absolute) builder.save(as_text) gfile.Rename(temp_export_dir, export_dir) return export_dir # For time of deprecation x,y from Estimator allow direct access. # pylint: disable=protected-access class SKCompat(sklearn.BaseEstimator): """Scikit learn wrapper for TensorFlow Learn Estimator. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. """ @deprecated(None, 'Please switch to the Estimator interface.') def __init__(self, estimator): self._estimator = estimator def fit(self, x, y, batch_size=128, steps=None, max_steps=None, monitors=None): input_fn, feed_fn = _get_input_fn( x, y, input_fn=None, feed_fn=None, batch_size=batch_size, shuffle=True, epochs=None) all_monitors = [] if feed_fn: all_monitors = [basic_session_run_hooks.FeedFnHook(feed_fn)] if monitors: all_monitors.extend(monitors) self._estimator.fit( input_fn=input_fn, steps=steps, max_steps=max_steps, monitors=all_monitors) return self def score(self, x, y, batch_size=128, steps=None, metrics=None, name=None): input_fn, feed_fn = _get_input_fn( x, y, input_fn=None, feed_fn=None, batch_size=batch_size, shuffle=False, epochs=1) if metrics is not None and not isinstance(metrics, dict): raise ValueError('Metrics argument should be None or dict. ' 'Got %s.' % metrics) eval_results, global_step = self._estimator._evaluate_model( input_fn=input_fn, feed_fn=feed_fn, steps=steps, metrics=metrics, name=name) if eval_results is not None: eval_results.update({'global_step': global_step}) return eval_results def predict(self, x, batch_size=128, outputs=None): input_fn, feed_fn = _get_input_fn( x, None, input_fn=None, feed_fn=None, batch_size=batch_size, shuffle=False, epochs=1) results = list( self._estimator._infer_model( input_fn=input_fn, feed_fn=feed_fn, outputs=outputs, as_iterable=True, iterate_batches=True)) if not isinstance(results[0], dict): return np.concatenate([output for output in results], axis=0) return { key: np.concatenate([output[key] for output in results], axis=0) for key in results[0] }
apache-2.0
MatthewRueben/multiple-explorers
classes/environment.py
1
13566
#!/usr/bin/env python from geography import Bounds2D, Location, POI from rovers import Rover from roverSettingsStruct import RoverSettings import random import itertools from matplotlib import pyplot import copy class World(): def __init__(self, world_bounds, N_poi, poi_bounds, rover_settings, rover_start, rovHeadings): """ Inputs "world_bounds" and "poi_bounds" are of class "2DBounds". """ # Rover settings attributes: # .rewardType # .moveRandomly # .numAgents # .sensorRange # .sensorFov # .sensorNoiseInt N_rovers = rover_settings.numAgents self.world_bounds = world_bounds self.poi_bounds = poi_bounds self.rover_start = rover_start # Init POIs self.POIs = [] total_val = N_poi * 10 halfVal = total_val / 2.0 leftover_val = halfVal # hack to make one large valued, and the others no more than half its value # poiValueList = [float(random.randint(0, halfVal)) for x in range(N_poi-1)] # for poiValue in poiValueList: # self.POIs.append(POI(poiValue, d_min=5.0)) # self.POIs.append(POI(total_val, d_min=5.0)) # print poiValueList bigPOI = POI(halfVal, d_min=5.0) self.POIs.append(bigPOI) for poi_index in range(N_poi-1): # V_choice = random.uniform(V_bounds[0], V_bounds[1]) #poi_value = random.randint(0, leftover_val) poi_value = 450.0 # <---- HACK! leftover_val -= poi_value poi = POI(poi_value, d_min=5.0) # assign POI value & minimum observation distance # poi = POI(45.0, d_min=5.0) self.POIs.append(poi) # Init rovers self.rovers = [] for rover_index, heading in itertools.izip(range(N_rovers), rovHeadings): rover = Rover(name='Fred', x=self.rover_start.x, y=self.rover_start.y, heading=heading, num_sensors=rover_settings.sensorFov, observation_range=10, sensor_range=rover_settings.sensorRange, sensor_noise=rover_settings.sensorNoiseInt, num_POI=100) self.rovers.append(rover) def resetWithClusters(self, headings): ''' Resets with the clusters either against the left wall, right wall, top wall, or bottom wall. ''' clusterLocations = self.buildClusterLocations(self.poi_bounds, len(self.POIs)) for poi, clusterLoc in itertools.izip(self.POIs, clusterLocations): # poi.place_randomly(self.poi_bounds) # assign POI location poi.place_location(clusterLoc) for rover, heading in itertools.izip(self.rovers, headings): # reset agents to be center of world rover.reset(self.rover_start.x, self.rover_start.y, heading) def buildClusterLocations(self, bounds, numPois): quad = random.random() clusterList = [float(random.randint(0, 60)) for x in range(numPois)] clusterLocations = [] # if quad < .25: # # up wall # y = 100.0 # for cluster in clusterList: # clusterLocations.append(copy.deepcopy(Location(cluster, y))) # elif quad < .5: # # bottom wall # y = 0 # for cluster in clusterList: # clusterLocations.append(copy.deepcopy(Location(cluster, y))) # elif quad < .75: # # left wall # x = 0 # for cluster in clusterList: # clusterLocations.append(copy.deepcopy(Location(x, cluster))) # else: # right wall x = 50 for cluster in clusterList: clusterLocations.append(copy.deepcopy(Location(x, cluster))) return clusterLocations def reset(self, headings): # for poi in self.POIs: # poi.place_randomly(self.poi_bounds) for rover, heading in itertools.izip(self.rovers, headings): # reset agents to be center of world rover.reset(self.rover_start.x, self.rover_start.y, heading) def initPOILocs(self): for poi in self.POIs: poi.place_randomly(self.poi_bounds) def get_rewards(self): rewards = {'POI': [], 'GLOBAL': 0, 'LOCAL': [0]*len(self.rovers), 'DIFFERENCE': [0]*len(self.rovers), 'DIFFERENCE_PO': [0]*len(self.rovers)} rover_closest_list = [] # Calculate GLOBAL reward for poi_index in range(len(self.POIs)): # for each POI, figure out which rover is closest and get the appropriate reward delta_min, rover_closest = self.find_closest(poi_index) # print 'Closest rover: ', rover_closest rover_closest_list.append(rover_closest) poi_reward = self.POIs[poi_index].V / delta_min # the entire reward for this POI # print ' Poi reward: ', poi_reward # print rewards['POI'].append(poi_reward) # keep track of the reward for each POI rewards['GLOBAL'] += poi_reward # Calculate LOCAL reward for rover_index, rover in enumerate(self.rovers): rewards['LOCAL'][rover_index] = 0 for poi_index, poi in enumerate(self.POIs): # for each POI... delta_min = 100.0 # start arbitrarily high for step_index, location in enumerate(rover.location_history): # check each of the rover's steps delta = (location - poi) # observation distance if delta < delta_min: # the closest distance counts, even if it's closer than the minimum observation distance delta_min = delta delta_min = max(delta_min ** 2, poi.d_min ** 2) # delta is actually the SQUARED Euclidean distance poi_reward = poi.V / delta_min # the entire reward for this POI (for this rover only) rewards['LOCAL'][rover_index] += poi_reward # Calculate DIFFERENCE reward (with counterfactual c = 0) for my_rover_index, rover in enumerate(self.rovers): G_without = rewards['GLOBAL'] # Set G(Z_-i) = G(Z) closest_to = [poi_index for poi_index, (rover_index, step_index) in enumerate(rover_closest_list) if rover_index == my_rover_index] # find which POIs this rover was closest to for poi_index in closest_to: # for each of those POIs... G_without -= rewards['POI'][poi_index] # Subtract its old reward delta_min_new, rover_closest_new = self.find_closest(poi_index, [my_rover_index]) # Find the next-closest rover to it #print (rover_closest_list[poi_index], rover_closest_new) poi_reward_new = self.POIs[poi_index].V / delta_min_new # Calculate its new reward G_without += poi_reward_new # Add it back in (G_without should be getting smaller) rewards['DIFFERENCE'][my_rover_index] = rewards['GLOBAL'] - G_without # Calculate D = G(Z) - G(Z_-i) # print rewards['DIFFERENCE'] # print 'Any DIFFERENCE rewards less than zero?', any([el < 0 for el in rewards['DIFFERENCE']]) # Calculate DIFFERENCE reward with PARTIAL OBSERVABILITY (and c = 0) """ # for each rover # find which rovers this rover can see # it can see itself! very important # start with the full-observability POI rewards # for each POI # Partial Observability G_PO -= rewards['POI'][poi_index] # Subtract its old reward delta_min_new, rover_closest_new = self.find_closest(poi_index, [my_rover_index]) # Find the next-closest rover to it poi_reward_new = self.POIs[poi_index].V / delta_min_new # Calculate its new reward G_PO += poi_reward_new # Add it back in (G_without should be getting smaller) # Without this agent G_PO_without delta_min_new, rover_closest_new = self.find_closest(poi_index, [my_rover_index]) # Find the next-closest rover to it poi_reward_new = self.POIs[poi_index].V / delta_min_new # Calculate its new reward G_PO_without rewards['DIFFERENCE_PO'][my_rover_index] = G_PO - G_PO_without # Calculate D_PO """ return rewards, rover_closest_list def find_closest(self, poi_index, not_these_rovers=[]): """ Finds closest rover to the specified POI. Returns that rover's index as well as the distance metric. """ poi = self.POIs[poi_index] delta_min = 100.0 # start arbitrarily high rover_closest = None step_closest = None for rover_index, rover in enumerate(self.rovers): # Check observation distances for the rover locations we aren't skipping if rover_index not in not_these_rovers: for step_index, location in enumerate(self.rovers[rover_index].location_history): delta = (location - poi) # observation distance if delta < delta_min: # the closest rover counts, even if it's closer than the minimum observation distance delta_min = delta rover_closest = (rover_index, step_index) delta_min = max(delta_min ** 2, poi.d_min ** 2) # delta is actually the SQUARED Euclidean distance return delta_min, rover_closest def test_plot(self, rover_closest_list=[]): import time pyplot.ion() # Plot each rover's trajectory, one by one for this_rover_index, rover in enumerate(self.rovers): pyplot.cla() # clear axis pyplot.title('Rover #' + str(this_rover_index + 1)) # Plot the world, with POIs for poi in self.POIs: pyplot.plot(poi.location.x, poi.location.y, 'k*') pyplot.axis([self.world_bounds.x_lower, self.world_bounds.x_upper, self.world_bounds.y_lower, self.world_bounds.y_upper]) trajectory_x = [step.x for step in rover.location_history] trajectory_y = [step.y for step in rover.location_history] pyplot.plot(trajectory_x, trajectory_y, 'ro-') # Draw lines to indicate whenever the rover became the closest observer of a POI if rover_closest_list: closest_to = [(poi_index, step_index) for poi_index, (rover_index, step_index) in enumerate(rover_closest_list) if rover_index == this_rover_index] # find which POIs this rover was closest to for (poi_index, step_index) in closest_to: # for each of those POIs... pyplot.plot([trajectory_x[step_index], self.POIs[poi_index].location.x], [trajectory_y[step_index], self.POIs[poi_index].location.y]) pyplot.draw() time.sleep(1.0) def plot_all(self, rover_closest_list=[]): pyplot.ion() # Which step are we at? step = str(len(self.rovers[0].location_history)) if int(step) < 10: step = '0' + step # Get the rewards thus far. rewards, rover_closest_list = self.get_rewards() # Plot each rover's trajectory, one by one pyplot.cla() # clear axis pyplot.title('Step #' + str(step) + ', System Reward = ' + str(rewards['GLOBAL'])) for this_rover_index, rover in enumerate(self.rovers): # Plot the world fig = pyplot.gcf() pyplot.axis([self.world_bounds.x_lower, self.world_bounds.x_upper, self.world_bounds.y_lower, self.world_bounds.y_upper]) # Plot rovers trajectory_x = [point.x for point in rover.location_history] trajectory_y = [point.y for point in rover.location_history] pyplot.plot(trajectory_x, trajectory_y, 'r.-') pyplot.plot(trajectory_x[-1], trajectory_y[-1], 'ro') for poi_index, poi in enumerate(self.POIs): #pyplot.plot(poi.location.x, poi.location.y, 'k*') # Check if a rover has been within the minimum observation distance of this POI delta_min, rover_closest = self.find_closest(poi_index) if delta_min < 1.05 * (poi.d_min ** 2): # if within 5% of min. obs. distance (since an == relation might fail due to float math) color_choice = 'g' else: color_choice = '0.5' # lightish gray # Draw inside circle of POI -- bigger is better radius = poi.V / 450.0 * 4 circle1 = pyplot.Circle((poi.location.x, poi.location.y), radius, color=color_choice, fill=True) fig.gca().add_artist(circle1) # Draw outside circle of POI at minimum observation distance circle2 = pyplot.Circle((poi.location.x, poi.location.y), 5, color=color_choice, fill=False) fig.gca().add_artist(circle2) pyplot.draw() fig.savefig('Learned01Step' + str(step) + '.png')
mit
slundberg/shap
shap/explainers/_tree.py
1
92486
import numpy as np import scipy.special import multiprocessing import sys import json import os import struct import itertools from distutils.version import LooseVersion from ._explainer import Explainer from ..utils import assert_import, record_import_error, safe_isinstance from ..utils._legacy import DenseData from .._explanation import Explanation from .. import maskers import warnings import pandas as pd warnings.formatwarning = lambda msg, *args, **kwargs: str(msg) + '\n' # ignore everything except the message # pylint: disable=unsubscriptable-object try: from .. import _cext except ImportError as e: record_import_error("cext", "C extension was not built during install!", e) try: import pyspark except ImportError as e: record_import_error("pyspark", "PySpark could not be imported!", e) output_transform_codes = { "identity": 0, "logistic": 1, "logistic_nlogloss": 2, "squared_loss": 3 } feature_perturbation_codes = { "interventional": 0, "tree_path_dependent": 1, "global_path_dependent": 2 } class Tree(Explainer): """ Uses Tree SHAP algorithms to explain the output of ensemble tree models. Tree SHAP is a fast and exact method to estimate SHAP values for tree models and ensembles of trees, under several different possible assumptions about feature dependence. It depends on fast C++ implementations either inside an externel model package or in the local compiled C extention. """ def __init__(self, model, data = None, model_output="raw", feature_perturbation="interventional", feature_names=None, **deprecated_options): """ Build a new Tree explainer for the passed model. Parameters ---------- model : model object The tree based machine learning model that we want to explain. XGBoost, LightGBM, CatBoost, Pyspark and most tree-based scikit-learn models are supported. data : numpy.array or pandas.DataFrame The background dataset to use for integrating out features. This argument is optional when feature_perturbation="tree_path_dependent", since in that case we can use the number of training samples that went down each tree path as our background dataset (this is recorded in the model object). feature_perturbation : "interventional" (default) or "tree_path_dependent" (default when data=None) Since SHAP values rely on conditional expectations we need to decide how to handle correlated (or otherwise dependent) input features. The "interventional" approach breaks the dependencies between features according to the rules dictated by causal inference (Janzing et al. 2019). Note that the "interventional" option requires a background dataset and its runtime scales linearly with the size of the background dataset you use. Anywhere from 100 to 1000 random background samples are good sizes to use. The "tree_path_dependent" approach is to just follow the trees and use the number of training examples that went down each leaf to represent the background distribution. This approach does not require a background dataset and so is used by default when no background dataset is provided. model_output : "raw", "probability", "log_loss", or model method name What output of the model should be explained. If "raw" then we explain the raw output of the trees, which varies by model. For regression models "raw" is the standard output, for binary classification in XGBoost this is the log odds ratio. If model_output is the name of a supported prediction method on the model object then we explain the output of that model method name. For example model_output="predict_proba" explains the result of calling model.predict_proba. If "probability" then we explain the output of the model transformed into probability space (note that this means the SHAP values now sum to the probability output of the model). If "logloss" then we explain the log base e of the model loss function, so that the SHAP values sum up to the log loss of the model for each sample. This is helpful for breaking down model performance by feature. Currently the probability and logloss options are only supported when feature_dependence="independent". Examples -------- See `Tree explainer examples <https://shap.readthedocs.io/en/latest/api_examples/explainers/Tree.html>`_ """ if feature_names is not None: self.data_feature_names=feature_names elif safe_isinstance(data, "pandas.core.frame.DataFrame"): self.data_feature_names = list(data.columns) masker = data super(Tree, self).__init__(model, masker, feature_names=feature_names) if type(self.masker) is maskers.Independent: data = self.masker.data elif masker is not None: raise Exception("Unsupported masker type: %s!" % str(type(self.masker))) if getattr(self.masker, "clustering", None) is not None: raise Exception("TreeExplainer does not support clustered data inputs! Please use shap.Explainer or pass an unclustered masker!") # check for deprecated options if model_output == "margin": warnings.warn("model_output = \"margin\" has been renamed to model_output = \"raw\"") model_output = "raw" if model_output == "logloss": warnings.warn("model_output = \"logloss\" has been renamed to model_output = \"log_loss\"") model_output = "log_loss" if "feature_dependence" in deprecated_options: dep_val = deprecated_options["feature_dependence"] if dep_val == "independent" and feature_perturbation == "interventional": warnings.warn("feature_dependence = \"independent\" has been renamed to feature_perturbation" \ " = \"interventional\"! See GitHub issue #882.") elif feature_perturbation != "interventional": warnings.warn("feature_dependence = \"independent\" has been renamed to feature_perturbation" \ " = \"interventional\", you can't supply both options! See GitHub issue #882.") if dep_val == "tree_path_dependent" and feature_perturbation == "interventional": raise Exception("The feature_dependence option has been renamed to feature_perturbation! " \ "Please update the option name before calling TreeExplainer. See GitHub issue #882.") if feature_perturbation == "independent": raise Exception("feature_perturbation = \"independent\" is not a valid option value, please use " \ "feature_perturbation = \"interventional\" instead. See GitHub issue #882.") if safe_isinstance(data, "pandas.core.frame.DataFrame"): self.data = data.values elif isinstance(data, DenseData): self.data = data.data else: self.data = data if self.data is None: feature_perturbation = "tree_path_dependent" #warnings.warn("Setting feature_perturbation = \"tree_path_dependent\" because no background data was given.") elif feature_perturbation == "interventional" and self.data.shape[0] > 1000: warnings.warn("Passing "+str(self.data.shape[0]) + " background samples may lead to slow runtimes. Consider " "using shap.sample(data, 100) to create a smaller background data set.") self.data_missing = None if self.data is None else pd.isna(self.data) self.feature_perturbation = feature_perturbation self.expected_value = None self.model = TreeEnsemble(model, self.data, self.data_missing, model_output) self.model_output = model_output #self.model_output = self.model.model_output # this allows the TreeEnsemble to translate model outputs types by how it loads the model if feature_perturbation not in feature_perturbation_codes: raise ValueError("Invalid feature_perturbation option!") # check for unsupported combinations of feature_perturbation and model_outputs if feature_perturbation == "tree_path_dependent": if self.model.model_output != "raw": raise ValueError("Only model_output=\"raw\" is supported for feature_perturbation=\"tree_path_dependent\"") elif data is None: raise ValueError("A background dataset must be provided unless you are using feature_perturbation=\"tree_path_dependent\"!") if self.model.model_output != "raw": if self.model.objective is None and self.model.tree_output is None: raise Exception("Model does not have a known objective or output type! When model_output is " \ "not \"raw\" then we need to know the model's objective or link function.") # A bug in XGBoost fixed in v0.81 makes XGBClassifier fail to give margin outputs if safe_isinstance(model, "xgboost.sklearn.XGBClassifier") and self.model.model_output != "raw": import xgboost if LooseVersion(xgboost.__version__) < LooseVersion('0.81'): raise RuntimeError("A bug in XGBoost fixed in v0.81 makes XGBClassifier fail to give margin outputs! Please upgrade to XGBoost >= v0.81!") # compute the expected value if we have a parsed tree for the cext if self.model.model_output == "log_loss": self.expected_value = self.__dynamic_expected_value elif data is not None: try: self.expected_value = self.model.predict(self.data).mean(0) except ValueError: raise Exception("Currently TreeExplainer can only handle models with categorical splits when " \ "feature_perturbation=\"tree_path_dependent\" and no background data is passed. Please try again using " \ "shap.TreeExplainer(model, feature_perturbation=\"tree_path_dependent\").") if hasattr(self.expected_value, '__len__') and len(self.expected_value) == 1: self.expected_value = self.expected_value[0] elif hasattr(self.model, "node_sample_weight"): self.expected_value = self.model.values[:,0].sum(0) if self.expected_value.size == 1: self.expected_value = self.expected_value[0] self.expected_value += self.model.base_offset if self.model.model_output != "raw": self.expected_value = None # we don't handle transforms in this case right now... # if our output format requires binary classification to be represented as two outputs then we do that here if self.model.model_output == "probability_doubled" and self.expected_value is not None: self.expected_value = [1-self.expected_value, self.expected_value] def __dynamic_expected_value(self, y): """ This computes the expected value conditioned on the given label value. """ return self.model.predict(self.data, np.ones(self.data.shape[0]) * y).mean(0) def __call__(self, X, y=None, interactions=False, check_additivity=True): if safe_isinstance(X, "pandas.core.frame.DataFrame"): feature_names = list(X.columns) X = X.values else: feature_names = getattr(self, "data_feature_names", None) if not interactions: v = self.shap_values(X, y=y, from_call=True, check_additivity=check_additivity) output_shape = tuple() if type(v) is list: output_shape = (len(v),) v = np.stack(v, axis=-1) # put outputs at the end # the explanation object expects an expected value for each row if hasattr(self.expected_value, "__len__"): ev_tiled = np.tile(self.expected_value, (v.shape[0],1)) else: ev_tiled = np.tile(self.expected_value, v.shape[0]) e = Explanation(v, base_values=ev_tiled, data=X, feature_names=feature_names) else: v = self.shap_interaction_values(X) e = Explanation(v, base_values=self.expected_value, data=X, feature_names=feature_names, interaction_order=2) return e def _validate_inputs(self, X, y, tree_limit, check_additivity): # see if we have a default tree_limit in place. if tree_limit is None: tree_limit = -1 if self.model.tree_limit is None else self.model.tree_limit if tree_limit < 0 or tree_limit > self.model.values.shape[0]: tree_limit = self.model.values.shape[0] # convert dataframes if safe_isinstance(X, "pandas.core.series.Series"): X = X.values elif safe_isinstance(X, "pandas.core.frame.DataFrame"): X = X.values flat_output = False if len(X.shape) == 1: flat_output = True X = X.reshape(1, X.shape[0]) if X.dtype != self.model.input_dtype: X = X.astype(self.model.input_dtype) X_missing = np.isnan(X, dtype=np.bool) assert isinstance(X, np.ndarray), "Unknown instance type: " + str(type(X)) assert len(X.shape) == 2, "Passed input data matrix X must have 1 or 2 dimensions!" if self.model.model_output == "log_loss": assert y is not None, "Both samples and labels must be provided when model_output = " \ "\"log_loss\" (i.e. `explainer.shap_values(X, y)`)!" assert X.shape[0] == len( y), "The number of labels (%d) does not match the number of samples to explain (" \ "%d)!" % ( len(y), X.shape[0]) if self.feature_perturbation == "tree_path_dependent": assert self.model.fully_defined_weighting, "The background dataset you provided does " \ "not cover all the leaves in the model, " \ "so TreeExplainer cannot run with the " \ "feature_perturbation=\"tree_path_dependent\" option! " \ "Try providing a larger background " \ "dataset, or using " \ "feature_perturbation=\"interventional\"." if check_additivity and self.model.model_type == "pyspark": warnings.warn( "check_additivity requires us to run predictions which is not supported with " "spark, " "ignoring." " Set check_additivity=False to remove this warning") check_additivity = False return X, y, X_missing, flat_output, tree_limit, check_additivity def shap_values(self, X, y=None, tree_limit=None, approximate=False, check_additivity=True, from_call=False): """ Estimate the SHAP values for a set of samples. Parameters ---------- X : numpy.array, pandas.DataFrame or catboost.Pool (for catboost) A matrix of samples (# samples x # features) on which to explain the model's output. y : numpy.array An array of label values for each sample. Used when explaining loss functions. tree_limit : None (default) or int Limit the number of trees used by the model. By default None means no use the limit of the original model, and -1 means no limit. approximate : bool Run fast, but only roughly approximate the Tree SHAP values. This runs a method previously proposed by Saabas which only considers a single feature ordering. Take care since this does not have the consistency guarantees of Shapley values and places too much weight on lower splits in the tree. check_additivity : bool Run a validation check that the sum of the SHAP values equals the output of the model. This check takes only a small amount of time, and will catch potential unforeseen errors. Note that this check only runs right now when explaining the margin of the model. Returns ------- array or list For models with a single output this returns a matrix of SHAP values (# samples x # features). Each row sums to the difference between the model output for that sample and the expected value of the model output (which is stored in the expected_value attribute of the explainer when it is constant). For models with vector outputs this returns a list of such matrices, one for each output. """ # see if we have a default tree_limit in place. if tree_limit is None: tree_limit = -1 if self.model.tree_limit is None else self.model.tree_limit # shortcut using the C++ version of Tree SHAP in XGBoost, LightGBM, and CatBoost if self.feature_perturbation == "tree_path_dependent" and self.model.model_type != "internal" and self.data is None: model_output_vals = None phi = None if self.model.model_type == "xgboost": import xgboost if not isinstance(X, xgboost.core.DMatrix): X = xgboost.DMatrix(X) if tree_limit == -1: tree_limit = 0 try: phi = self.model.original_model.predict( X, ntree_limit=tree_limit, pred_contribs=True, approx_contribs=approximate, validate_features=False ) except ValueError as e: raise ValueError("This reshape error is often caused by passing a bad data matrix to SHAP. " \ "See https://github.com/slundberg/shap/issues/580") from e if check_additivity and self.model.model_output == "raw": model_output_vals = self.model.original_model.predict( X, ntree_limit=tree_limit, output_margin=True, validate_features=False ) elif self.model.model_type == "lightgbm": assert not approximate, "approximate=True is not supported for LightGBM models!" phi = self.model.original_model.predict(X, num_iteration=tree_limit, pred_contrib=True) # Note: the data must be joined on the last axis if self.model.original_model.params['objective'] == 'binary': if not from_call: warnings.warn('LightGBM binary classifier with TreeExplainer shap values output has changed to a list of ndarray') phi = np.concatenate((0-phi, phi), axis=-1) if phi.shape[1] != X.shape[1] + 1: try: phi = phi.reshape(X.shape[0], phi.shape[1]//(X.shape[1]+1), X.shape[1]+1) except ValueError as e: raise Exception("This reshape error is often caused by passing a bad data matrix to SHAP. " \ "See https://github.com/slundberg/shap/issues/580") from e elif self.model.model_type == "catboost": # thanks to the CatBoost team for implementing this... assert not approximate, "approximate=True is not supported for CatBoost models!" assert tree_limit == -1, "tree_limit is not yet supported for CatBoost models!" import catboost if type(X) != catboost.Pool: X = catboost.Pool(X, cat_features=self.model.cat_feature_indices) phi = self.model.original_model.get_feature_importance(data=X, fstr_type='ShapValues') # note we pull off the last column and keep it as our expected_value if phi is not None: if len(phi.shape) == 3: self.expected_value = [phi[0, i, -1] for i in range(phi.shape[1])] out = [phi[:, i, :-1] for i in range(phi.shape[1])] else: self.expected_value = phi[0, -1] out = phi[:, :-1] if check_additivity and model_output_vals is not None: self.assert_additivity(out, model_output_vals) return out X, y, X_missing, flat_output, tree_limit, check_additivity = self._validate_inputs(X, y, tree_limit, check_additivity) transform = self.model.get_transform() # run the core algorithm using the C extension assert_import("cext") phi = np.zeros((X.shape[0], X.shape[1]+1, self.model.num_outputs)) if not approximate: _cext.dense_tree_shap( self.model.children_left, self.model.children_right, self.model.children_default, self.model.features, self.model.thresholds, self.model.values, self.model.node_sample_weight, self.model.max_depth, X, X_missing, y, self.data, self.data_missing, tree_limit, self.model.base_offset, phi, feature_perturbation_codes[self.feature_perturbation], output_transform_codes[transform], False ) else: _cext.dense_tree_saabas( self.model.children_left, self.model.children_right, self.model.children_default, self.model.features, self.model.thresholds, self.model.values, self.model.max_depth, tree_limit, self.model.base_offset, output_transform_codes[transform], X, X_missing, y, phi ) out = self._get_shap_output(phi, flat_output) if check_additivity and self.model.model_output == "raw": self.assert_additivity(out, self.model.predict(X)) return out # we pull off the last column and keep it as our expected_value def _get_shap_output(self, phi, flat_output): if self.model.num_outputs == 1: if self.expected_value is None and self.model.model_output != "log_loss": self.expected_value = phi[0, -1, 0] if flat_output: out = phi[0, :-1, 0] else: out = phi[:, :-1, 0] else: if self.expected_value is None and self.model.model_output != "log_loss": self.expected_value = [phi[0, -1, i] for i in range(phi.shape[2])] if flat_output: out = [phi[0, :-1, i] for i in range(self.model.num_outputs)] else: out = [phi[:, :-1, i] for i in range(self.model.num_outputs)] # if our output format requires binary classificaiton to be represented as two outputs then we do that here if self.model.model_output == "probability_doubled": out = [-out, out] return out def shap_interaction_values(self, X, y=None, tree_limit=None): """ Estimate the SHAP interaction values for a set of samples. Parameters ---------- X : numpy.array, pandas.DataFrame or catboost.Pool (for catboost) A matrix of samples (# samples x # features) on which to explain the model's output. y : numpy.array An array of label values for each sample. Used when explaining loss functions (not yet supported). tree_limit : None (default) or int Limit the number of trees used by the model. By default None means no use the limit of the original model, and -1 means no limit. Returns ------- array or list For models with a single output this returns a tensor of SHAP values (# samples x # features x # features). The matrix (# features x # features) for each sample sums to the difference between the model output for that sample and the expected value of the model output (which is stored in the expected_value attribute of the explainer). Each row of this matrix sums to the SHAP value for that feature for that sample. The diagonal entries of the matrix represent the "main effect" of that feature on the prediction and the symmetric off-diagonal entries represent the interaction effects between all pairs of features for that sample. For models with vector outputs this returns a list of tensors, one for each output. """ assert self.model.model_output == "raw", "Only model_output = \"raw\" is supported for SHAP interaction values right now!" #assert self.feature_perturbation == "tree_path_dependent", "Only feature_perturbation = \"tree_path_dependent\" is supported for SHAP interaction values right now!" transform = "identity" # see if we have a default tree_limit in place. if tree_limit is None: tree_limit = -1 if self.model.tree_limit is None else self.model.tree_limit # shortcut using the C++ version of Tree SHAP in XGBoost if self.model.model_type == "xgboost" and self.feature_perturbation == "tree_path_dependent": import xgboost if not isinstance(X, xgboost.core.DMatrix): X = xgboost.DMatrix(X) if tree_limit == -1: tree_limit = 0 phi = self.model.original_model.predict(X, ntree_limit=tree_limit, pred_interactions=True, validate_features=False) # note we pull off the last column and keep it as our expected_value if len(phi.shape) == 4: self.expected_value = [phi[0, i, -1, -1] for i in range(phi.shape[1])] return [phi[:, i, :-1, :-1] for i in range(phi.shape[1])] else: self.expected_value = phi[0, -1, -1] return phi[:, :-1, :-1] X, y, X_missing, flat_output, tree_limit, _ = self._validate_inputs(X, y, tree_limit, False) # run the core algorithm using the C extension assert_import("cext") phi = np.zeros((X.shape[0], X.shape[1]+1, X.shape[1]+1, self.model.num_outputs)) _cext.dense_tree_shap( self.model.children_left, self.model.children_right, self.model.children_default, self.model.features, self.model.thresholds, self.model.values, self.model.node_sample_weight, self.model.max_depth, X, X_missing, y, self.data, self.data_missing, tree_limit, self.model.base_offset, phi, feature_perturbation_codes[self.feature_perturbation], output_transform_codes[transform], True ) return self._get_shap_interactions_output(phi,flat_output) # we pull off the last column and keep it as our expected_value def _get_shap_interactions_output(self, phi, flat_output): if self.model.num_outputs == 1: self.expected_value = phi[0, -1, -1, 0] if flat_output: out = phi[0, :-1, :-1, 0] else: out = phi[:, :-1, :-1, 0] else: self.expected_value = [phi[0, -1, -1, i] for i in range(phi.shape[3])] if flat_output: out = [phi[0, :-1, :-1, i] for i in range(self.model.num_outputs)] else: out = [phi[:, :-1, :-1, i] for i in range(self.model.num_outputs)] return out def assert_additivity(self, phi, model_output): def check_sum(sum_val, model_output): diff = np.abs(sum_val - model_output) if np.max(diff / (np.abs(sum_val) + 1e-2)) > 1e-2: ind = np.argmax(diff) err_msg = "Additivity check failed in TreeExplainer! Please ensure the data matrix you passed to the " \ "explainer is the same shape that the model was trained on. If your data shape is correct " \ "then please report this on GitHub." if self.feature_perturbation != "interventional": err_msg += " Consider retrying with the feature_perturbation='interventional' option." err_msg += " This check failed because for one of the samples the sum of the SHAP values" \ " was %f, while the model output was %f. If this difference is acceptable" \ " you can set check_additivity=False to disable this check." % (sum_val[ind], model_output[ind]) raise Exception(err_msg) if type(phi) is list: for i in range(len(phi)): check_sum(self.expected_value[i] + phi[i].sum(-1), model_output[:,i]) else: check_sum(self.expected_value + phi.sum(-1), model_output) @staticmethod def supports_model_with_masker(model, masker): """ Determines if this explainer can handle the given model. This is an abstract static method meant to be implemented by each subclass. """ if not isinstance(masker, (maskers.Independent)) and masker is not None: return False try: TreeEnsemble(model) except: return False return True class TreeEnsemble: """ An ensemble of decision trees. This object provides a common interface to many different types of models. """ def __init__(self, model, data=None, data_missing=None, model_output=None): self.model_type = "internal" self.trees = None self.base_offset = 0 self.model_output = model_output self.objective = None # what we explain when explaining the loss of the model self.tree_output = None # what are the units of the values in the leaves of the trees self.internal_dtype = np.float64 self.input_dtype = np.float64 # for sklearn we need to use np.float32 to always get exact matches to their predictions self.data = data self.data_missing = data_missing self.fully_defined_weighting = True # does the background dataset land in every leaf (making it valid for the tree_path_dependent method) self.tree_limit = None # used for limiting the number of trees we use by default (like from early stopping) self.num_stacked_models = 1 # If this is greater than 1 it means we have multiple stacked models with the same number of trees in each model (XGBoost multi-output style) self.cat_feature_indices = None # If this is set it tells us which features are treated categorically # we use names like keras objective_name_map = { "mse": "squared_error", "variance": "squared_error", "friedman_mse": "squared_error", "reg:linear": "squared_error", "reg:squarederror": "squared_error", "regression": "squared_error", "regression_l2": "squared_error", "mae": "absolute_error", "gini": "binary_crossentropy", "entropy": "binary_crossentropy", "reg:logistic": "binary_crossentropy", "binary:logistic": "binary_crossentropy", "binary_logloss": "binary_crossentropy", "binary": "binary_crossentropy" } tree_output_name_map = { "regression": "raw_value", "regression_l2": "squared_error", "reg:linear": "raw_value", "reg:squarederror": "raw_value", "reg:logistic": "log_odds", "binary:logistic": "log_odds", "binary_logloss": "log_odds", "binary": "log_odds" } if type(model) is dict and "trees" in model: # This allows a dictionary to be passed that represents the model. # this dictionary has several numerica paramters and also a list of trees # where each tree is a dictionary describing that tree if "internal_dtype" in model: self.internal_dtype = model["internal_dtype"] if "input_dtype" in model: self.input_dtype = model["input_dtype"] if "objective" in model: self.objective = model["objective"] if "tree_output" in model: self.tree_output = model["tree_output"] if "base_offset" in model: self.base_offset = model["base_offset"] self.trees = [SingleTree(t, data=data, data_missing=data_missing) for t in model["trees"]] elif type(model) is list and type(model[0]) == SingleTree: # old-style direct-load format self.trees = model elif safe_isinstance(model, ["sklearn.ensemble.RandomForestRegressor", "sklearn.ensemble.forest.RandomForestRegressor", "econml.grf._base_grf.BaseGRF"]): assert hasattr(model, "estimators_"), "Model has no `estimators_`! Have you called `model.fit`?" self.internal_dtype = model.estimators_[0].tree_.value.dtype.type self.input_dtype = np.float32 scaling = 1.0 / len(model.estimators_) # output is average of trees self.trees = [SingleTree(e.tree_, scaling=scaling, data=data, data_missing=data_missing) for e in model.estimators_] self.objective = objective_name_map.get(model.criterion, None) self.tree_output = "raw_value" elif safe_isinstance(model, ["sklearn.ensemble.IsolationForest", "sklearn.ensemble._iforest.IsolationForest"]): self.dtype = np.float32 scaling = 1.0 / len(model.estimators_) # output is average of trees self.trees = [IsoTree(e.tree_, f, scaling=scaling, data=data, data_missing=data_missing) for e, f in zip(model.estimators_, model.estimators_features_)] self.tree_output = "raw_value" elif safe_isinstance(model, ["pyod.models.iforest.IForest"]): self.dtype = np.float32 scaling = 1.0 / len(model.estimators_) # output is average of trees self.trees = [IsoTree(e.tree_, f, scaling=scaling, data=data, data_missing=data_missing) for e, f in zip(model.detector_.estimators_, model.detector_.estimators_features_)] self.tree_output = "raw_value" elif safe_isinstance(model, "skopt.learning.forest.RandomForestRegressor"): assert hasattr(model, "estimators_"), "Model has no `estimators_`! Have you called `model.fit`?" self.internal_dtype = model.estimators_[0].tree_.value.dtype.type self.input_dtype = np.float32 scaling = 1.0 / len(model.estimators_) # output is average of trees self.trees = [SingleTree(e.tree_, scaling=scaling, data=data, data_missing=data_missing) for e in model.estimators_] self.objective = objective_name_map.get(model.criterion, None) self.tree_output = "raw_value" elif safe_isinstance(model, ["sklearn.ensemble.ExtraTreesRegressor", "sklearn.ensemble.forest.ExtraTreesRegressor"]): assert hasattr(model, "estimators_"), "Model has no `estimators_`! Have you called `model.fit`?" self.internal_dtype = model.estimators_[0].tree_.value.dtype.type self.input_dtype = np.float32 scaling = 1.0 / len(model.estimators_) # output is average of trees self.trees = [SingleTree(e.tree_, scaling=scaling, data=data, data_missing=data_missing) for e in model.estimators_] self.objective = objective_name_map.get(model.criterion, None) self.tree_output = "raw_value" elif safe_isinstance(model, "skopt.learning.forest.ExtraTreesRegressor"): assert hasattr(model, "estimators_"), "Model has no `estimators_`! Have you called `model.fit`?" self.internal_dtype = model.estimators_[0].tree_.value.dtype.type self.input_dtype = np.float32 scaling = 1.0 / len(model.estimators_) # output is average of trees self.trees = [SingleTree(e.tree_, scaling=scaling, data=data, data_missing=data_missing) for e in model.estimators_] self.objective = objective_name_map.get(model.criterion, None) self.tree_output = "raw_value" elif safe_isinstance(model, ["sklearn.tree.DecisionTreeRegressor", "sklearn.tree.tree.DecisionTreeRegressor", "econml.grf._base_grftree.GRFTree"]): self.internal_dtype = model.tree_.value.dtype.type self.input_dtype = np.float32 self.trees = [SingleTree(model.tree_, data=data, data_missing=data_missing)] self.objective = objective_name_map.get(model.criterion, None) self.tree_output = "raw_value" elif safe_isinstance(model, ["sklearn.tree.DecisionTreeClassifier", "sklearn.tree.tree.DecisionTreeClassifier"]): self.internal_dtype = model.tree_.value.dtype.type self.input_dtype = np.float32 self.trees = [SingleTree(model.tree_, normalize=True, data=data, data_missing=data_missing)] self.objective = objective_name_map.get(model.criterion, None) self.tree_output = "probability" elif safe_isinstance(model, ["sklearn.ensemble.RandomForestClassifier", "sklearn.ensemble.forest.RandomForestClassifier"]): assert hasattr(model, "estimators_"), "Model has no `estimators_`! Have you called `model.fit`?" self.internal_dtype = model.estimators_[0].tree_.value.dtype.type self.input_dtype = np.float32 scaling = 1.0 / len(model.estimators_) # output is average of trees self.trees = [SingleTree(e.tree_, normalize=True, scaling=scaling, data=data, data_missing=data_missing) for e in model.estimators_] self.objective = objective_name_map.get(model.criterion, None) self.tree_output = "probability" elif safe_isinstance(model, ["sklearn.ensemble.ExtraTreesClassifier", "sklearn.ensemble.forest.ExtraTreesClassifier"]): # TODO: add unit test for this case assert hasattr(model, "estimators_"), "Model has no `estimators_`! Have you called `model.fit`?" self.internal_dtype = model.estimators_[0].tree_.value.dtype.type self.input_dtype = np.float32 scaling = 1.0 / len(model.estimators_) # output is average of trees self.trees = [SingleTree(e.tree_, normalize=True, scaling=scaling, data=data, data_missing=data_missing) for e in model.estimators_] self.objective = objective_name_map.get(model.criterion, None) self.tree_output = "probability" elif safe_isinstance(model, ["sklearn.ensemble.GradientBoostingRegressor", "sklearn.ensemble.gradient_boosting.GradientBoostingRegressor"]): self.input_dtype = np.float32 # currently we only support the mean and quantile estimators if safe_isinstance(model.init_, ["sklearn.ensemble.MeanEstimator", "sklearn.ensemble.gradient_boosting.MeanEstimator"]): self.base_offset = model.init_.mean elif safe_isinstance(model.init_, ["sklearn.ensemble.QuantileEstimator", "sklearn.ensemble.gradient_boosting.QuantileEstimator"]): self.base_offset = model.init_.quantile elif safe_isinstance(model.init_, "sklearn.dummy.DummyRegressor"): self.base_offset = model.init_.constant_[0] else: assert False, "Unsupported init model type: " + str(type(model.init_)) self.trees = [SingleTree(e.tree_, scaling=model.learning_rate, data=data, data_missing=data_missing) for e in model.estimators_[:,0]] self.objective = objective_name_map.get(model.criterion, None) self.tree_output = "raw_value" elif safe_isinstance(model, ["sklearn.ensemble.HistGradientBoostingRegressor"]): import sklearn if self.model_output == "predict": self.model_output = "raw" self.input_dtype = sklearn.ensemble._hist_gradient_boosting.common.X_DTYPE self.base_offset = model._baseline_prediction self.trees = [] for p in model._predictors: nodes = p[0].nodes # each node has values: ('value', 'count', 'feature_idx', 'threshold', 'missing_go_to_left', 'left', 'right', 'gain', 'depth', 'is_leaf', 'bin_threshold') tree = { "children_left": np.array([-1 if n[9] else n[5] for n in nodes]), "children_right": np.array([-1 if n[9] else n[6] for n in nodes]), "children_default": np.array([-1 if n[9] else (n[5] if n[4] else n[6]) for n in nodes]), "features": np.array([-2 if n[9] else n[2] for n in nodes]), "thresholds": np.array([n[3] for n in nodes], dtype=np.float64), "values": np.array([[n[0]] for n in nodes], dtype=np.float64), "node_sample_weight": np.array([n[1] for n in nodes], dtype=np.float64), } self.trees.append(SingleTree(tree, data=data, data_missing=data_missing)) self.objective = objective_name_map.get(model.loss, None) self.tree_output = "raw_value" elif safe_isinstance(model, ["sklearn.ensemble.HistGradientBoostingClassifier"]): import sklearn self.base_offset = model._baseline_prediction if hasattr(self.base_offset, "__len__") and self.model_output != "raw": raise Exception("Multi-output HistGradientBoostingClassifier models are not yet supported unless model_output=\"raw\". See GitHub issue #1028") self.input_dtype = sklearn.ensemble._hist_gradient_boosting.common.X_DTYPE self.num_stacked_models = len(model._predictors[0]) if self.model_output == "predict_proba": if self.num_stacked_models == 1: self.model_output = "probability_doubled" # with predict_proba we need to double the outputs to match else: self.model_output = "probability" self.trees = [] for p in model._predictors: for i in range(self.num_stacked_models): nodes = p[i].nodes # each node has values: ('value', 'count', 'feature_idx', 'threshold', 'missing_go_to_left', 'left', 'right', 'gain', 'depth', 'is_leaf', 'bin_threshold') tree = { "children_left": np.array([-1 if n[9] else n[5] for n in nodes]), "children_right": np.array([-1 if n[9] else n[6] for n in nodes]), "children_default": np.array([-1 if n[9] else (n[5] if n[4] else n[6]) for n in nodes]), "features": np.array([-2 if n[9] else n[2] for n in nodes]), "thresholds": np.array([n[3] for n in nodes], dtype=np.float64), "values": np.array([[n[0]] for n in nodes], dtype=np.float64), "node_sample_weight": np.array([n[1] for n in nodes], dtype=np.float64), } self.trees.append(SingleTree(tree, data=data, data_missing=data_missing)) self.objective = objective_name_map.get(model.loss, None) self.tree_output = "log_odds" elif safe_isinstance(model, ["sklearn.ensemble.GradientBoostingClassifier","sklearn.ensemble._gb.GradientBoostingClassifier", "sklearn.ensemble.gradient_boosting.GradientBoostingClassifier"]): self.input_dtype = np.float32 # TODO: deal with estimators for each class if model.estimators_.shape[1] > 1: assert False, "GradientBoostingClassifier is only supported for binary classification right now!" # currently we only support the logs odds estimator if safe_isinstance(model.init_, ["sklearn.ensemble.LogOddsEstimator", "sklearn.ensemble.gradient_boosting.LogOddsEstimator"]): self.base_offset = model.init_.prior self.tree_output = "log_odds" elif safe_isinstance(model.init_, "sklearn.dummy.DummyClassifier"): self.base_offset = scipy.special.logit(model.init_.class_prior_[1]) # with two classes the trees only model the second class. # pylint: disable=no-member self.tree_output = "log_odds" else: assert False, "Unsupported init model type: " + str(type(model.init_)) self.trees = [SingleTree(e.tree_, scaling=model.learning_rate, data=data, data_missing=data_missing) for e in model.estimators_[:,0]] self.objective = objective_name_map.get(model.criterion, None) elif "pyspark.ml" in str(type(model)): assert_import("pyspark") self.model_type = "pyspark" # model._java_obj.getImpurity() can be gini, entropy or variance. self.objective = objective_name_map.get(model._java_obj.getImpurity(), None) if "Classification" in str(type(model)): normalize = True self.tree_output = "probability" else: normalize = False self.tree_output = "raw_value" # Spark Random forest, create 1 weighted (avg) tree per sub-model if safe_isinstance(model, "pyspark.ml.classification.RandomForestClassificationModel") \ or safe_isinstance(model, "pyspark.ml.regression.RandomForestRegressionModel"): sum_weight = sum(model.treeWeights) # output is average of trees self.trees = [SingleTree(tree, normalize=normalize, scaling=model.treeWeights[i]/sum_weight) for i, tree in enumerate(model.trees)] # Spark GBT, create 1 weighted (learning rate) tree per sub-model elif safe_isinstance(model, "pyspark.ml.classification.GBTClassificationModel") \ or safe_isinstance(model, "pyspark.ml.regression.GBTRegressionModel"): self.objective = "squared_error" # GBT subtree use the variance self.tree_output = "raw_value" self.trees = [SingleTree(tree, normalize=False, scaling=model.treeWeights[i]) for i, tree in enumerate(model.trees)] # Spark Basic model (single tree) elif safe_isinstance(model, "pyspark.ml.classification.DecisionTreeClassificationModel") \ or safe_isinstance(model, "pyspark.ml.regression.DecisionTreeRegressionModel"): self.trees = [SingleTree(model, normalize=normalize, scaling=1)] else: assert False, "Unsupported Spark model type: " + str(type(model)) elif safe_isinstance(model, "xgboost.core.Booster"): import xgboost self.original_model = model self.model_type = "xgboost" xgb_loader = XGBTreeModelLoader(self.original_model) self.trees = xgb_loader.get_trees(data=data, data_missing=data_missing) self.base_offset = xgb_loader.base_score self.objective = objective_name_map.get(xgb_loader.name_obj, None) self.tree_output = tree_output_name_map.get(xgb_loader.name_obj, None) if xgb_loader.num_class > 0: self.num_stacked_models = xgb_loader.num_class elif safe_isinstance(model, "xgboost.sklearn.XGBClassifier"): import xgboost self.input_dtype = np.float32 self.model_type = "xgboost" self.original_model = model.get_booster() xgb_loader = XGBTreeModelLoader(self.original_model) self.trees = xgb_loader.get_trees(data=data, data_missing=data_missing) self.base_offset = xgb_loader.base_score self.objective = objective_name_map.get(xgb_loader.name_obj, None) self.tree_output = tree_output_name_map.get(xgb_loader.name_obj, None) self.tree_limit = getattr(model, "best_ntree_limit", None) if xgb_loader.num_class > 0: self.num_stacked_models = xgb_loader.num_class if self.model_output == "predict_proba": if self.num_stacked_models == 1: self.model_output = "probability_doubled" # with predict_proba we need to double the outputs to match else: self.model_output = "probability" elif safe_isinstance(model, "xgboost.sklearn.XGBRegressor"): import xgboost self.original_model = model.get_booster() self.model_type = "xgboost" xgb_loader = XGBTreeModelLoader(self.original_model) self.trees = xgb_loader.get_trees(data=data, data_missing=data_missing) self.base_offset = xgb_loader.base_score self.objective = objective_name_map.get(xgb_loader.name_obj, None) self.tree_output = tree_output_name_map.get(xgb_loader.name_obj, None) self.tree_limit = getattr(model, "best_ntree_limit", None) if xgb_loader.num_class > 0: self.num_stacked_models = xgb_loader.num_class elif safe_isinstance(model, "xgboost.sklearn.XGBRanker"): import xgboost self.original_model = model.get_booster() self.model_type = "xgboost" xgb_loader = XGBTreeModelLoader(self.original_model) self.trees = xgb_loader.get_trees(data=data, data_missing=data_missing) self.base_offset = xgb_loader.base_score # Note: for ranker, leaving tree_output and objective as None as they # are not implemented in native code yet self.tree_limit = getattr(model, "best_ntree_limit", None) if xgb_loader.num_class > 0: self.num_stacked_models = xgb_loader.num_class elif safe_isinstance(model, "lightgbm.basic.Booster"): assert_import("lightgbm") self.model_type = "lightgbm" self.original_model = model tree_info = self.original_model.dump_model()["tree_info"] try: self.trees = [SingleTree(e, data=data, data_missing=data_missing) for e in tree_info] except: self.trees = None # we get here because the cext can't handle categorical splits yet self.objective = objective_name_map.get(model.params.get("objective", "regression"), None) self.tree_output = tree_output_name_map.get(model.params.get("objective", "regression"), None) elif safe_isinstance(model, "gpboost.basic.Booster"): assert_import("gpboost") self.model_type = "gpboost" self.original_model = model tree_info = self.original_model.dump_model()["tree_info"] try: self.trees = [SingleTree(e, data=data, data_missing=data_missing) for e in tree_info] except: self.trees = None # we get here because the cext can't handle categorical splits yet self.objective = objective_name_map.get(model.params.get("objective", "regression"), None) self.tree_output = tree_output_name_map.get(model.params.get("objective", "regression"), None) elif safe_isinstance(model, "lightgbm.sklearn.LGBMRegressor"): assert_import("lightgbm") self.model_type = "lightgbm" self.original_model = model.booster_ tree_info = self.original_model.dump_model()["tree_info"] try: self.trees = [SingleTree(e, data=data, data_missing=data_missing) for e in tree_info] except: self.trees = None # we get here because the cext can't handle categorical splits yet self.objective = objective_name_map.get(model.objective, None) self.tree_output = tree_output_name_map.get(model.objective, None) if model.objective is None: self.objective = "squared_error" self.tree_output = "raw_value" elif safe_isinstance(model, "lightgbm.sklearn.LGBMRanker"): assert_import("lightgbm") self.model_type = "lightgbm" self.original_model = model.booster_ tree_info = self.original_model.dump_model()["tree_info"] try: self.trees = [SingleTree(e, data=data, data_missing=data_missing) for e in tree_info] except: self.trees = None # we get here because the cext can't handle categorical splits yet # Note: for ranker, leaving tree_output and objective as None as they # are not implemented in native code yet elif safe_isinstance(model, "lightgbm.sklearn.LGBMClassifier"): assert_import("lightgbm") self.model_type = "lightgbm" if model.n_classes_ > 2: self.num_stacked_models = model.n_classes_ self.original_model = model.booster_ tree_info = self.original_model.dump_model()["tree_info"] try: self.trees = [SingleTree(e, data=data, data_missing=data_missing) for e in tree_info] except: self.trees = None # we get here because the cext can't handle categorical splits yet self.objective = objective_name_map.get(model.objective, None) self.tree_output = tree_output_name_map.get(model.objective, None) if model.objective is None: self.objective = "binary_crossentropy" self.tree_output = "log_odds" elif safe_isinstance(model, "catboost.core.CatBoostRegressor"): assert_import("catboost") self.model_type = "catboost" self.original_model = model self.cat_feature_indices = model.get_cat_feature_indices() elif safe_isinstance(model, "catboost.core.CatBoostClassifier"): assert_import("catboost") self.model_type = "catboost" self.original_model = model self.input_dtype = np.float32 try: cb_loader = CatBoostTreeModelLoader(model) self.trees = cb_loader.get_trees(data=data, data_missing=data_missing) except: self.trees = None # we get here because the cext can't handle categorical splits yet self.tree_output = "log_odds" self.objective = "binary_crossentropy" self.cat_feature_indices = model.get_cat_feature_indices() elif safe_isinstance(model, "catboost.core.CatBoost"): assert_import("catboost") self.model_type = "catboost" self.original_model = model self.cat_feature_indices = model.get_cat_feature_indices() elif safe_isinstance(model, "imblearn.ensemble._forest.BalancedRandomForestClassifier"): self.input_dtype = np.float32 scaling = 1.0 / len(model.estimators_) # output is average of trees self.trees = [SingleTree(e.tree_, normalize=True, scaling=scaling, data=data, data_missing=data_missing) for e in model.estimators_] self.objective = objective_name_map.get(model.criterion, None) self.tree_output = "probability" elif safe_isinstance(model, "ngboost.ngboost.NGBoost") or safe_isinstance(model, "ngboost.api.NGBRegressor") or safe_isinstance(model, "ngboost.api.NGBClassifier"): assert model.base_models, "The NGBoost model has empty `base_models`! Have you called `model.fit`?" if self.model_output == "raw": param_idx = 0 # default to the first parameter of the output distribution warnings.warn("Translating model_ouput=\"raw\" to model_output=0 for the 0-th parameter in the distribution. Use model_output=0 directly to avoid this warning.") elif type(self.model_output) is int: param_idx = self.model_output self.model_output = "raw" # note that after loading we have a new model_output type assert safe_isinstance(model.base_models[0][param_idx], ["sklearn.tree.DecisionTreeRegressor", "sklearn.tree.tree.DecisionTreeRegressor"]), "You must use default_tree_learner!" shap_trees = [trees[param_idx] for trees in model.base_models] self.internal_dtype = shap_trees[0].tree_.value.dtype.type self.input_dtype = np.float32 scaling = - model.learning_rate * np.array(model.scalings) # output is weighted average of trees self.trees = [SingleTree(e.tree_, scaling=s, data=data, data_missing=data_missing) for e,s in zip(shap_trees,scaling)] self.objective = objective_name_map.get(shap_trees[0].criterion, None) self.tree_output = "raw_value" self.base_offset = model.init_params[param_idx] else: raise Exception("Model type not yet supported by TreeExplainer: " + str(type(model))) # build a dense numpy version of all the tree objects if self.trees is not None and self.trees: max_nodes = np.max([len(t.values) for t in self.trees]) assert len(np.unique([t.values.shape[1] for t in self.trees])) == 1, "All trees in the ensemble must have the same output dimension!" num_trees = len(self.trees) if self.num_stacked_models > 1: assert len(self.trees) % self.num_stacked_models == 0, "Only stacked models with equal numbers of trees are supported!" assert self.trees[0].values.shape[1] == 1, "Only stacked models with single outputs per model are supported!" self.num_outputs = self.num_stacked_models else: self.num_outputs = self.trees[0].values.shape[1] # important to be -1 in unused sections!! This way we can tell which entries are valid. self.children_left = -np.ones((num_trees, max_nodes), dtype=np.int32) self.children_right = -np.ones((num_trees, max_nodes), dtype=np.int32) self.children_default = -np.ones((num_trees, max_nodes), dtype=np.int32) self.features = -np.ones((num_trees, max_nodes), dtype=np.int32) self.thresholds = np.zeros((num_trees, max_nodes), dtype=self.internal_dtype) self.values = np.zeros((num_trees, max_nodes, self.num_outputs), dtype=self.internal_dtype) self.node_sample_weight = np.zeros((num_trees, max_nodes), dtype=self.internal_dtype) for i in range(num_trees): self.children_left[i,:len(self.trees[i].children_left)] = self.trees[i].children_left self.children_right[i,:len(self.trees[i].children_right)] = self.trees[i].children_right self.children_default[i,:len(self.trees[i].children_default)] = self.trees[i].children_default self.features[i,:len(self.trees[i].features)] = self.trees[i].features self.thresholds[i,:len(self.trees[i].thresholds)] = self.trees[i].thresholds if self.num_stacked_models > 1: # stack_pos = int(i // (num_trees / self.num_stacked_models)) stack_pos = i % self.num_stacked_models self.values[i,:len(self.trees[i].values[:,0]),stack_pos] = self.trees[i].values[:,0] else: self.values[i,:len(self.trees[i].values)] = self.trees[i].values self.node_sample_weight[i,:len(self.trees[i].node_sample_weight)] = self.trees[i].node_sample_weight # ensure that the passed background dataset lands in every leaf if np.min(self.trees[i].node_sample_weight) <= 0: self.fully_defined_weighting = False self.num_nodes = np.array([len(t.values) for t in self.trees], dtype=np.int32) self.max_depth = np.max([t.max_depth for t in self.trees]) # make sure the base offset is a 1D array if not hasattr(self.base_offset, "__len__") or len(self.base_offset) == 0: self.base_offset = (np.ones(self.num_outputs) * self.base_offset).astype(self.internal_dtype) self.base_offset = self.base_offset.flatten() assert len(self.base_offset) == self.num_outputs def get_transform(self): """ A consistent interface to make predictions from this model. """ if self.model_output == "raw": transform = "identity" elif self.model_output == "probability" or self.model_output == "probability_doubled": if self.tree_output == "log_odds": transform = "logistic" elif self.tree_output == "probability": transform = "identity" else: raise Exception("model_output = \"probability\" is not yet supported when model.tree_output = \"" + self.tree_output + "\"!") elif self.model_output == "log_loss": if self.objective == "squared_error": transform = "squared_loss" elif self.objective == "binary_crossentropy": transform = "logistic_nlogloss" else: raise Exception("model_output = \"log_loss\" is not yet supported when model.objective = \"" + self.objective + "\"!") else: raise Exception("Unrecognized model_output parameter value: %s! If model.%s is a valid function open a github issue to ask that this method be supported. If you want 'predict_proba' just use 'probability' for now." % (str(self.model_output), str(self.model_output))) return transform def predict(self, X, y=None, output=None, tree_limit=None): """ A consistent interface to make predictions from this model. Parameters ---------- tree_limit : None (default) or int Limit the number of trees used by the model. By default None means no use the limit of the original model, and -1 means no limit. """ if output is None: output = self.model_output if self.model_type == "pyspark": #import pyspark # TODO: support predict for pyspark raise NotImplementedError("Predict with pyspark isn't implemented. Don't run 'interventional' as feature_perturbation.") # see if we have a default tree_limit in place. if tree_limit is None: tree_limit = -1 if self.tree_limit is None else self.tree_limit # convert dataframes if safe_isinstance(X, "pandas.core.series.Series"): X = X.values elif safe_isinstance(X, "pandas.core.frame.DataFrame"): X = X.values flat_output = False if len(X.shape) == 1: flat_output = True X = X.reshape(1, X.shape[0]) if X.dtype.type != self.input_dtype: X = X.astype(self.input_dtype) X_missing = np.isnan(X, dtype=np.bool) assert isinstance(X, np.ndarray), "Unknown instance type: " + str(type(X)) assert len(X.shape) == 2, "Passed input data matrix X must have 1 or 2 dimensions!" if tree_limit < 0 or tree_limit > self.values.shape[0]: tree_limit = self.values.shape[0] if output == "logloss": assert y is not None, "Both samples and labels must be provided when explaining the loss (i.e. `explainer.shap_values(X, y)`)!" assert X.shape[0] == len(y), "The number of labels (%d) does not match the number of samples to explain (%d)!" % (len(y), X.shape[0]) transform = self.get_transform() assert_import("cext") output = np.zeros((X.shape[0], self.num_outputs)) _cext.dense_tree_predict( self.children_left, self.children_right, self.children_default, self.features, self.thresholds, self.values, self.max_depth, tree_limit, self.base_offset, output_transform_codes[transform], X, X_missing, y, output ) # drop dimensions we don't need if flat_output: if self.num_outputs == 1: return output.flatten()[0] else: return output.reshape(-1, self.num_outputs) else: if self.num_outputs == 1: return output.flatten() else: return output class SingleTree: """ A single decision tree. The primary point of this object is to parse many different tree types into a common format. """ def __init__(self, tree, normalize=False, scaling=1.0, data=None, data_missing=None): assert_import("cext") if safe_isinstance(tree, ["sklearn.tree._tree.Tree", "econml.tree._tree.Tree"]): self.children_left = tree.children_left.astype(np.int32) self.children_right = tree.children_right.astype(np.int32) self.children_default = self.children_left # missing values not supported in sklearn self.features = tree.feature.astype(np.int32) self.thresholds = tree.threshold.astype(np.float64) self.values = tree.value.reshape(tree.value.shape[0], tree.value.shape[1] * tree.value.shape[2]) if normalize: self.values = (self.values.T / self.values.sum(1)).T self.values = self.values * scaling self.node_sample_weight = tree.weighted_n_node_samples.astype(np.float64) elif type(tree) is dict and 'features' in tree: self.children_left = tree["children_left"].astype(np.int32) self.children_right = tree["children_right"].astype(np.int32) self.children_default = tree["children_default"].astype(np.int32) self.features = tree["features"].astype(np.int32) self.thresholds = tree["thresholds"] self.values = tree["values"] * scaling self.node_sample_weight = tree["node_sample_weight"] # deprecated dictionary support (with sklearn singlular style "feature" and "value" names) elif type(tree) is dict and 'children_left' in tree: self.children_left = tree["children_left"].astype(np.int32) self.children_right = tree["children_right"].astype(np.int32) self.children_default = tree["children_default"].astype(np.int32) self.features = tree["feature"].astype(np.int32) self.thresholds = tree["threshold"] self.values = tree["value"] * scaling self.node_sample_weight = tree["node_sample_weight"] elif safe_isinstance(tree, "pyspark.ml.classification.DecisionTreeClassificationModel") \ or safe_isinstance(tree, "pyspark.ml.regression.DecisionTreeRegressionModel"): #model._java_obj.numNodes() doesn't give leaves, need to recompute the size def getNumNodes(node, size): size = size + 1 if node.subtreeDepth() == 0: return size else: size = getNumNodes(node.leftChild(), size) return getNumNodes(node.rightChild(), size) num_nodes = getNumNodes(tree._java_obj.rootNode(), 0) self.children_left = np.full(num_nodes, -2, dtype=np.int32) self.children_right = np.full(num_nodes, -2, dtype=np.int32) self.children_default = np.full(num_nodes, -2, dtype=np.int32) self.features = np.full(num_nodes, -2, dtype=np.int32) self.thresholds = np.full(num_nodes, -2, dtype=np.float64) self.values = [-2]*num_nodes self.node_sample_weight = np.full(num_nodes, -2, dtype=np.float64) def buildTree(index, node): index = index + 1 if tree._java_obj.getImpurity() == 'variance': self.values[index] = [node.prediction()] #prediction for the node else: self.values[index] = [e for e in node.impurityStats().stats()] #for gini: NDarray(numLabel): 1 per label: number of item for each label which went through this node self.node_sample_weight[index] = node.impurityStats().count() #weighted count of element trough this node if node.subtreeDepth() == 0: return index else: self.features[index] = node.split().featureIndex() #index of the feature we split on, not available for leaf, int if str(node.split().getClass()).endswith('tree.CategoricalSplit'): #Categorical split isn't implemented, TODO: could fake it by creating a fake node to split on the exact value? raise NotImplementedError('CategoricalSplit are not yet implemented') self.thresholds[index] = node.split().threshold() #threshold for the feature, not available for leaf, float self.children_left[index] = index + 1 idx = buildTree(index, node.leftChild()) self.children_right[index] = idx + 1 idx = buildTree(idx, node.rightChild()) return idx buildTree(-1, tree._java_obj.rootNode()) #default Not supported with mlib? (TODO) self.children_default = self.children_left self.values = np.asarray(self.values) if normalize: self.values = (self.values.T / self.values.sum(1)).T self.values = self.values * scaling elif type(tree) == dict and 'tree_structure' in tree: # LightGBM model dump start = tree['tree_structure'] num_parents = tree['num_leaves']-1 self.children_left = np.empty((2*num_parents+1), dtype=np.int32) self.children_right = np.empty((2*num_parents+1), dtype=np.int32) self.children_default = np.empty((2*num_parents+1), dtype=np.int32) self.features = np.empty((2*num_parents+1), dtype=np.int32) self.thresholds = np.empty((2*num_parents+1), dtype=np.float64) self.values = [-2]*(2*num_parents+1) self.node_sample_weight = np.empty((2*num_parents+1), dtype=np.float64) visited, queue = [], [start] while queue: vertex = queue.pop(0) if 'split_index' in vertex.keys(): if vertex['split_index'] not in visited: if 'split_index' in vertex['left_child'].keys(): self.children_left[vertex['split_index']] = vertex['left_child']['split_index'] else: self.children_left[vertex['split_index']] = vertex['left_child']['leaf_index']+num_parents if 'split_index' in vertex['right_child'].keys(): self.children_right[vertex['split_index']] = vertex['right_child']['split_index'] else: self.children_right[vertex['split_index']] = vertex['right_child']['leaf_index']+num_parents if vertex['default_left']: self.children_default[vertex['split_index']] = self.children_left[vertex['split_index']] else: self.children_default[vertex['split_index']] = self.children_right[vertex['split_index']] self.features[vertex['split_index']] = vertex['split_feature'] self.thresholds[vertex['split_index']] = vertex['threshold'] self.values[vertex['split_index']] = [vertex['internal_value']] self.node_sample_weight[vertex['split_index']] = vertex['internal_count'] visited.append(vertex['split_index']) queue.append(vertex['left_child']) queue.append(vertex['right_child']) else: self.children_left[vertex['leaf_index']+num_parents] = -1 self.children_right[vertex['leaf_index']+num_parents] = -1 self.children_default[vertex['leaf_index']+num_parents] = -1 self.features[vertex['leaf_index']+num_parents] = -1 self.children_left[vertex['leaf_index']+num_parents] = -1 self.children_right[vertex['leaf_index']+num_parents] = -1 self.children_default[vertex['leaf_index']+num_parents] = -1 self.features[vertex['leaf_index']+num_parents] = -1 self.thresholds[vertex['leaf_index']+num_parents] = -1 self.values[vertex['leaf_index']+num_parents] = [vertex['leaf_value']] self.node_sample_weight[vertex['leaf_index']+num_parents] = vertex['leaf_count'] self.values = np.asarray(self.values) self.values = np.multiply(self.values, scaling) elif type(tree) == dict and 'nodeid' in tree: """ Directly create tree given the JSON dump (with stats) of a XGBoost model. """ def max_id(node): if "children" in node: return max(node["nodeid"], *[max_id(n) for n in node["children"]]) else: return node["nodeid"] m = max_id(tree) + 1 self.children_left = -np.ones(m, dtype=np.int32) self.children_right = -np.ones(m, dtype=np.int32) self.children_default = -np.ones(m, dtype=np.int32) self.features = -np.ones(m, dtype=np.int32) self.thresholds = np.zeros(m, dtype=np.float64) self.values = np.zeros((m, 1), dtype=np.float64) self.node_sample_weight = np.empty(m, dtype=np.float64) def extract_data(node, tree): i = node["nodeid"] tree.node_sample_weight[i] = node["cover"] if "children" in node: tree.children_left[i] = node["yes"] tree.children_right[i] = node["no"] tree.children_default[i] = node["missing"] tree.features[i] = node["split"] tree.thresholds[i] = node["split_condition"] for n in node["children"]: extract_data(n, tree) elif "leaf" in node: tree.values[i] = node["leaf"] * scaling extract_data(tree, self) elif type(tree) == str: """ Build a tree from a text dump (with stats) of xgboost. """ nodes = [t.lstrip() for t in tree[:-1].split("\n")] nodes_dict = {} for n in nodes: nodes_dict[int(n.split(":")[0])] = n.split(":")[1] m = max(nodes_dict.keys())+1 children_left = -1*np.ones(m,dtype="int32") children_right = -1*np.ones(m,dtype="int32") children_default = -1*np.ones(m,dtype="int32") features = -2*np.ones(m,dtype="int32") thresholds = -1*np.ones(m,dtype="float64") values = 1*np.ones(m,dtype="float64") node_sample_weight = np.zeros(m,dtype="float64") values_lst = list(nodes_dict.values()) keys_lst = list(nodes_dict.keys()) for i in range(0,len(keys_lst)): value = values_lst[i] key = keys_lst[i] if ("leaf" in value): # Extract values val = float(value.split("leaf=")[1].split(",")[0]) node_sample_weight_val = float(value.split("cover=")[1]) # Append to lists values[key] = val node_sample_weight[key] = node_sample_weight_val else: c_left = int(value.split("yes=")[1].split(",")[0]) c_right = int(value.split("no=")[1].split(",")[0]) c_default = int(value.split("missing=")[1].split(",")[0]) feat_thres = value.split(" ")[0] if ("<" in feat_thres): feature = int(feat_thres.split("<")[0][2:]) threshold = float(feat_thres.split("<")[1][:-1]) if ("=" in feat_thres): feature = int(feat_thres.split("=")[0][2:]) threshold = float(feat_thres.split("=")[1][:-1]) node_sample_weight_val = float(value.split("cover=")[1].split(",")[0]) children_left[key] = c_left children_right[key] = c_right children_default[key] = c_default features[key] = feature thresholds[key] = threshold node_sample_weight[key] = node_sample_weight_val self.children_left = children_left self.children_right = children_right self.children_default = children_default self.features = features self.thresholds = thresholds self.values = values[:,np.newaxis] * scaling self.node_sample_weight = node_sample_weight else: raise Exception("Unknown input to SingleTree constructor: " + str(tree)) # Re-compute the number of samples that pass through each node if we are given data if data is not None and data_missing is not None: self.node_sample_weight[:] = 0.0 _cext.dense_tree_update_weights( self.children_left, self.children_right, self.children_default, self.features, self.thresholds, self.values, 1, self.node_sample_weight, data, data_missing ) # we compute the expectations to make sure they follow the SHAP logic self.max_depth = _cext.compute_expectations( self.children_left, self.children_right, self.node_sample_weight, self.values ) class IsoTree(SingleTree): """ In sklearn the tree of the Isolation Forest does not calculated in a good way. """ def __init__(self, tree, tree_features, normalize=False, scaling=1.0, data=None, data_missing=None): super(IsoTree, self).__init__(tree, normalize, scaling, data, data_missing) if safe_isinstance(tree, "sklearn.tree._tree.Tree"): from sklearn.ensemble._iforest import _average_path_length # pylint: disable=no-name-in-module def _recalculate_value(tree, i , level): if tree.children_left[i] == -1 and tree.children_right[i] == -1: value = level + _average_path_length(np.array([tree.n_node_samples[i]]))[0] self.values[i, 0] = value return value * tree.n_node_samples[i] else: value_left = _recalculate_value(tree, tree.children_left[i] , level + 1) value_right = _recalculate_value(tree, tree.children_right[i] , level + 1) self.values[i, 0] = (value_left + value_right) / tree.n_node_samples[i] return value_left + value_right _recalculate_value(tree, 0, 0) if normalize: self.values = (self.values.T / self.values.sum(1)).T self.values = self.values * scaling # re-number the features if each tree gets a different set of features self.features = np.where(self.features >= 0, tree_features[self.features], self.features) def get_xgboost_json(model): """ This gets a JSON dump of an XGBoost model while ensuring the features names are their indexes. """ fnames = model.feature_names model.feature_names = None json_trees = model.get_dump(with_stats=True, dump_format="json") model.feature_names = fnames # this fixes a bug where XGBoost can return invalid JSON json_trees = [t.replace(": inf,", ": 1000000000000.0,") for t in json_trees] json_trees = [t.replace(": -inf,", ": -1000000000000.0,") for t in json_trees] return json_trees class XGBTreeModelLoader(object): """ This loads an XGBoost model directly from a raw memory dump. We can't use the JSON dump because due to numerical precision issues those tree can actually be wrong when feature values land almost on a threshold. """ def __init__(self, xgb_model): # new in XGBoost 1.1, 'binf' is appended to the buffer self.buf = xgb_model.save_raw().lstrip(b'binf') self.pos = 0 # load the model parameters self.base_score = self.read('f') self.num_feature = self.read('I') self.num_class = self.read('i') self.contain_extra_attrs = self.read('i') self.contain_eval_metrics = self.read('i') self.read_arr('i', 29) # reserved self.name_obj_len = self.read('Q') self.name_obj = self.read_str(self.name_obj_len) self.name_gbm_len = self.read('Q') self.name_gbm = self.read_str(self.name_gbm_len) # new in XGBoost 1.0 is that the base_score is saved untransformed (https://github.com/dmlc/xgboost/pull/5101) # so we have to transform it depending on the objective import xgboost if LooseVersion(xgboost.__version__).version[0] >= 1: if self.name_obj in ["binary:logistic", "reg:logistic"]: self.base_score = scipy.special.logit(self.base_score) # pylint: disable=no-member assert self.name_gbm == "gbtree", "Only the 'gbtree' model type is supported, not '%s'!" % self.name_gbm # load the gbtree specific parameters self.num_trees = self.read('i') self.num_roots = self.read('i') self.num_feature = self.read('i') self.pad_32bit = self.read('i') self.num_pbuffer_deprecated = self.read('Q') self.num_output_group = self.read('i') self.size_leaf_vector = self.read('i') self.read_arr('i', 32) # reserved # load each tree self.num_roots = np.zeros(self.num_trees, dtype=np.int32) self.num_nodes = np.zeros(self.num_trees, dtype=np.int32) self.num_deleted = np.zeros(self.num_trees, dtype=np.int32) self.max_depth = np.zeros(self.num_trees, dtype=np.int32) self.num_feature = np.zeros(self.num_trees, dtype=np.int32) self.size_leaf_vector = np.zeros(self.num_trees, dtype=np.int32) self.node_parents = [] self.node_cleft = [] self.node_cright = [] self.node_sindex = [] self.node_info = [] self.loss_chg = [] self.sum_hess = [] self.base_weight = [] self.leaf_child_cnt = [] for i in range(self.num_trees): # load the per-tree params self.num_roots[i] = self.read('i') self.num_nodes[i] = self.read('i') self.num_deleted[i] = self.read('i') self.max_depth[i] = self.read('i') self.num_feature[i] = self.read('i') self.size_leaf_vector[i] = self.read('i') # load the nodes self.read_arr('i', 31) # reserved self.node_parents.append(np.zeros(self.num_nodes[i], dtype=np.int32)) self.node_cleft.append(np.zeros(self.num_nodes[i], dtype=np.int32)) self.node_cright.append(np.zeros(self.num_nodes[i], dtype=np.int32)) self.node_sindex.append(np.zeros(self.num_nodes[i], dtype=np.uint32)) self.node_info.append(np.zeros(self.num_nodes[i], dtype=np.float32)) for j in range(self.num_nodes[i]): self.node_parents[-1][j] = self.read('i') self.node_cleft[-1][j] = self.read('i') self.node_cright[-1][j] = self.read('i') self.node_sindex[-1][j] = self.read('I') self.node_info[-1][j] = self.read('f') # load the stat nodes self.loss_chg.append(np.zeros(self.num_nodes[i], dtype=np.float32)) self.sum_hess.append(np.zeros(self.num_nodes[i], dtype=np.float32)) self.base_weight.append(np.zeros(self.num_nodes[i], dtype=np.float32)) self.leaf_child_cnt.append(np.zeros(self.num_nodes[i], dtype=np.int)) for j in range(self.num_nodes[i]): self.loss_chg[-1][j] = self.read('f') self.sum_hess[-1][j] = self.read('f') self.base_weight[-1][j] = self.read('f') self.leaf_child_cnt[-1][j] = self.read('i') def get_trees(self, data=None, data_missing=None): shape = (self.num_trees, self.num_nodes.max()) self.children_default = np.zeros(shape, dtype=np.int) self.features = np.zeros(shape, dtype=np.int) self.thresholds = np.zeros(shape, dtype=np.float32) self.values = np.zeros((shape[0], shape[1], 1), dtype=np.float32) trees = [] for i in range(self.num_trees): for j in range(self.num_nodes[i]): if np.right_shift(self.node_sindex[i][j], np.uint32(31)) != 0: self.children_default[i,j] = self.node_cleft[i][j] else: self.children_default[i,j] = self.node_cright[i][j] self.features[i,j] = self.node_sindex[i][j] & ((np.uint32(1) << np.uint32(31)) - np.uint32(1)) if self.node_cleft[i][j] >= 0: # Xgboost uses < for thresholds where shap uses <= # Move the threshold down by the smallest possible increment self.thresholds[i, j] = np.nextafter(self.node_info[i][j], - np.float32(np.inf)) else: self.values[i,j] = self.node_info[i][j] l = len(self.node_cleft[i]) trees.append(SingleTree({ "children_left": self.node_cleft[i], "children_right": self.node_cright[i], "children_default": self.children_default[i,:l], "feature": self.features[i,:l], "threshold": self.thresholds[i,:l], "value": self.values[i,:l], "node_sample_weight": self.sum_hess[i] }, data=data, data_missing=data_missing)) return trees def read(self, dtype): size = struct.calcsize(dtype) val = struct.unpack(dtype, self.buf[self.pos:self.pos+size])[0] self.pos += size return val def read_arr(self, dtype, n_items): format = "%d%s" % (n_items, dtype) size = struct.calcsize(format) val = struct.unpack(format, self.buf[self.pos:self.pos+size])[0] self.pos += size return val def read_str(self, size): val = self.buf[self.pos:self.pos+size].decode('utf-8') self.pos += size return val def print_info(self): print("--- global parmeters ---") print("base_score =", self.base_score) print("num_feature =", self.num_feature) print("num_class =", self.num_class) print("contain_extra_attrs =", self.contain_extra_attrs) print("contain_eval_metrics =", self.contain_eval_metrics) print("name_obj_len =", self.name_obj_len) print("name_obj =", self.name_obj) print("name_gbm_len =", self.name_gbm_len) print("name_gbm =", self.name_gbm) print() print("--- gbtree specific parameters ---") print("num_trees =", self.num_trees) print("num_roots =", self.num_roots) print("num_feature =", self.num_feature) print("pad_32bit =", self.pad_32bit) print("num_pbuffer_deprecated =", self.num_pbuffer_deprecated) print("num_output_group =", self.num_output_group) print("size_leaf_vector =", self.size_leaf_vector) class CatBoostTreeModelLoader: def __init__(self, cb_model): # cb_model.save_model("cb_model.json", format="json") # self.loaded_cb_model = json.load(open("cb_model.json", "r")) import tempfile tmp_file = tempfile.NamedTemporaryFile() cb_model.save_model(tmp_file.name, format="json") self.loaded_cb_model = json.load(open(tmp_file.name, "r")) tmp_file.close() # load the CatBoost oblivious trees specific parameters self.num_trees = len(self.loaded_cb_model['oblivious_trees']) self.max_depth = self.loaded_cb_model['model_info']['params']['tree_learner_options']['depth'] def get_trees(self, data=None, data_missing=None): # load each tree trees = [] for tree_index in range(self.num_trees): # load the per-tree params #depth = len(self.loaded_cb_model['oblivious_trees'][tree_index]['splits']) # load the nodes # Re-compute the number of samples that pass through each node if we are given data leaf_weights = self.loaded_cb_model['oblivious_trees'][tree_index]['leaf_weights'] leaf_weights_unraveled = [0] * (len(leaf_weights) - 1) + leaf_weights leaf_weights_unraveled[0] = sum(leaf_weights) for index in range(len(leaf_weights) - 2, 0, -1): leaf_weights_unraveled[index] = leaf_weights_unraveled[2 * index + 1] + leaf_weights_unraveled[2 * index + 2] leaf_values = self.loaded_cb_model['oblivious_trees'][tree_index]['leaf_values'] leaf_values_unraveled = [0] * (len(leaf_values) - 1) + leaf_values children_left = [i * 2 + 1 for i in range(len(leaf_values) - 1)] children_left += [-1] * len(leaf_values) children_right = [i * 2 for i in range(1, len(leaf_values))] children_right += [-1] * len(leaf_values) children_default = [i * 2 + 1 for i in range(len(leaf_values) - 1)] children_default += [-1] * len(leaf_values) # load the split features and borders # split features and borders go from leafs to the root split_features_index = [] borders = [] # split features and borders go from leafs to the root for elem in self.loaded_cb_model['oblivious_trees'][tree_index]['splits']: split_type = elem.get('split_type') if split_type == 'FloatFeature': split_feature_index = elem.get('float_feature_index') borders.append(elem['border']) elif split_type == 'OneHotFeature': split_feature_index = elem.get('cat_feature_index') borders.append(elem['value']) else: split_feature_index = elem.get('ctr_target_border_idx') borders.append(elem['border']) split_features_index.append(split_feature_index) split_features_index_unraveled = [] for counter, feature_index in enumerate(split_features_index[::-1]): split_features_index_unraveled += [feature_index] * (2 ** counter) split_features_index_unraveled += [0] * len(leaf_values) borders_unraveled = [] for counter, border in enumerate(borders[::-1]): borders_unraveled += [border] * (2 ** counter) borders_unraveled += [0] * len(leaf_values) trees.append(SingleTree({"children_left": np.array(children_left), "children_right": np.array(children_right), "children_default": np.array(children_default), "feature": np.array(split_features_index_unraveled), "threshold": np.array(borders_unraveled), "value": np.array(leaf_values_unraveled).reshape((-1,1)), "node_sample_weight": np.array(leaf_weights_unraveled), }, data=data, data_missing=data_missing)) return trees
mit
0asa/scikit-learn
benchmarks/bench_sgd_regression.py
283
5569
""" Benchmark for SGD regression Compares SGD regression against coordinate descent and Ridge on synthetic data. """ print(__doc__) # Author: Peter Prettenhofer <[email protected]> # License: BSD 3 clause import numpy as np import pylab as pl import gc from time import time from sklearn.linear_model import Ridge, SGDRegressor, ElasticNet from sklearn.metrics import mean_squared_error from sklearn.datasets.samples_generator import make_regression if __name__ == "__main__": list_n_samples = np.linspace(100, 10000, 5).astype(np.int) list_n_features = [10, 100, 1000] n_test = 1000 noise = 0.1 alpha = 0.01 sgd_results = np.zeros((len(list_n_samples), len(list_n_features), 2)) elnet_results = np.zeros((len(list_n_samples), len(list_n_features), 2)) ridge_results = np.zeros((len(list_n_samples), len(list_n_features), 2)) asgd_results = np.zeros((len(list_n_samples), len(list_n_features), 2)) for i, n_train in enumerate(list_n_samples): for j, n_features in enumerate(list_n_features): X, y, coef = make_regression( n_samples=n_train + n_test, n_features=n_features, noise=noise, coef=True) X_train = X[:n_train] y_train = y[:n_train] X_test = X[n_train:] y_test = y[n_train:] print("=======================") print("Round %d %d" % (i, j)) print("n_features:", n_features) print("n_samples:", n_train) # Shuffle data idx = np.arange(n_train) np.random.seed(13) np.random.shuffle(idx) X_train = X_train[idx] y_train = y_train[idx] std = X_train.std(axis=0) mean = X_train.mean(axis=0) X_train = (X_train - mean) / std X_test = (X_test - mean) / std std = y_train.std(axis=0) mean = y_train.mean(axis=0) y_train = (y_train - mean) / std y_test = (y_test - mean) / std gc.collect() print("- benchmarking ElasticNet") clf = ElasticNet(alpha=alpha, l1_ratio=0.5, fit_intercept=False) tstart = time() clf.fit(X_train, y_train) elnet_results[i, j, 0] = mean_squared_error(clf.predict(X_test), y_test) elnet_results[i, j, 1] = time() - tstart gc.collect() print("- benchmarking SGD") n_iter = np.ceil(10 ** 4.0 / n_train) clf = SGDRegressor(alpha=alpha / n_train, fit_intercept=False, n_iter=n_iter, learning_rate="invscaling", eta0=.01, power_t=0.25) tstart = time() clf.fit(X_train, y_train) sgd_results[i, j, 0] = mean_squared_error(clf.predict(X_test), y_test) sgd_results[i, j, 1] = time() - tstart gc.collect() print("n_iter", n_iter) print("- benchmarking A-SGD") n_iter = np.ceil(10 ** 4.0 / n_train) clf = SGDRegressor(alpha=alpha / n_train, fit_intercept=False, n_iter=n_iter, learning_rate="invscaling", eta0=.002, power_t=0.05, average=(n_iter * n_train // 2)) tstart = time() clf.fit(X_train, y_train) asgd_results[i, j, 0] = mean_squared_error(clf.predict(X_test), y_test) asgd_results[i, j, 1] = time() - tstart gc.collect() print("- benchmarking RidgeRegression") clf = Ridge(alpha=alpha, fit_intercept=False) tstart = time() clf.fit(X_train, y_train) ridge_results[i, j, 0] = mean_squared_error(clf.predict(X_test), y_test) ridge_results[i, j, 1] = time() - tstart # Plot results i = 0 m = len(list_n_features) pl.figure('scikit-learn SGD regression benchmark results', figsize=(5 * 2, 4 * m)) for j in range(m): pl.subplot(m, 2, i + 1) pl.plot(list_n_samples, np.sqrt(elnet_results[:, j, 0]), label="ElasticNet") pl.plot(list_n_samples, np.sqrt(sgd_results[:, j, 0]), label="SGDRegressor") pl.plot(list_n_samples, np.sqrt(asgd_results[:, j, 0]), label="A-SGDRegressor") pl.plot(list_n_samples, np.sqrt(ridge_results[:, j, 0]), label="Ridge") pl.legend(prop={"size": 10}) pl.xlabel("n_train") pl.ylabel("RMSE") pl.title("Test error - %d features" % list_n_features[j]) i += 1 pl.subplot(m, 2, i + 1) pl.plot(list_n_samples, np.sqrt(elnet_results[:, j, 1]), label="ElasticNet") pl.plot(list_n_samples, np.sqrt(sgd_results[:, j, 1]), label="SGDRegressor") pl.plot(list_n_samples, np.sqrt(asgd_results[:, j, 1]), label="A-SGDRegressor") pl.plot(list_n_samples, np.sqrt(ridge_results[:, j, 1]), label="Ridge") pl.legend(prop={"size": 10}) pl.xlabel("n_train") pl.ylabel("Time [sec]") pl.title("Training time - %d features" % list_n_features[j]) i += 1 pl.subplots_adjust(hspace=.30) pl.show()
bsd-3-clause
jamesafoster/CompSkillsF16
summarize_Pandas_readtable.py
2
2096
#!/usr/bin/env python # demonstration of data exploration code for Comp Bio course, Fall 2016 # James A. Foster # WARNING: not completely error checked ''' Usage: summarize_Pandas.py inputFile where inputfile is a tab delimited summary of a Hiseq dataset, as in Homework 5 Questions to answer: - how many times does THIS gene appear in THAT country? - what is average GC content for THIS gene in THAT country? ''' import sys import pandas as pd from pandas import Series, DataFrame # read data from input file try: allDataFrame = pd.read_table( sys.argv[1], comment='#', usecols=[ 'Gene','Country','gcContent' ] ) except OSError as err: print( "**ERROR** Cannot open %s, error: %s" % ( sys.argv[1], err ) ) except: print( "**ERROR** unknown error with %s: %s" % ( sys.argv[1], sys.exc_info()[0] ) ) allDataFrame['GeneFamily'] = [x[:x.find('_')] for x in allDataFrame['Gene'] ] allDataFrame['highGC'] = allDataFrame.gcContent > 0.4 allDataFrame['lowGC'] = allDataFrame.gcContent < 0.4 print( allDataFrame.describe(include='all') ) # summarize GC content by country gcByCountry = DataFrame( index={x for x in allDataFrame.Country}, columns=['mean','std'] ) for nextCountry in sorted( gcByCountry.index ): # sorted( set( allDataFrame.Country ) ): #same as: nextMean, nextSTD = allDataFrame[ allDataFrame.Country == nextCountry ].describe().ix[['mean','std'],'gcContent'] thisRow = allDataFrame[ allDataFrame.Country == nextCountry ] theseStats = thisRow.describe() nextMean, nextSTD = theseStats.ix[['mean','std'],'gcContent'] gcByCountry.ix[ nextCountry ] = [nextMean, nextSTD ] # summarize GC content by gene family gcByGeneFamily = DataFrame( index={x for x in allDataFrame.GeneFamily}, columns=['mean','std'] ) for nextGF in sorted( gcByGeneFamily.index ): theseStats = allDataFrame[ allDataFrame.GeneFamily == nextGF ].describe() nextMean, nextSTD = theseStats.ix[['mean','std'],'gcContent'] gcByGeneFamily.ix[ nextGF ] = [ nextMean, nextSTD ] print( gcByCountry ) print( gcByGeneFamily )
gpl-3.0
evanbiederstedt/RRBSfun
trees/chrom_scripts/cll_chr18.py
1
8247
import glob import pandas as pd import numpy as np pd.set_option('display.max_columns', 50) # print all rows import os os.chdir("/gpfs/commons/home/biederstedte-934/evan_projects/correct_phylo_files") cw154 = glob.glob("binary_position_RRBS_cw154*") trito = glob.glob("binary_position_RRBS_trito_pool*") print(len(cw154)) print(len(trito)) totalfiles = cw154 + trito print(len(totalfiles)) df_list = [] for file in totalfiles: df = pd.read_csv(file) df = df.drop("Unnamed: 0", axis=1) df["chromosome"] = df["position"].map(lambda x: str(x)[:5]) df = df[df["chromosome"] == "chr18"] df = df.drop("chromosome", axis=1) df_list.append(df) print(len(df_list)) total_matrix = pd.concat([df.set_index("position") for df in df_list], axis=1).reset_index().astype(object) total_matrix = total_matrix.drop("index", axis=1) len(total_matrix.columns) total_matrix.columns = ['RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.ACAACC', 'RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.ACCGCG', 'RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.ACGTGG', 'RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.ACTCAC', 'RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.AGGATG', 'RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.ATAGCG', 'RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.ATCGAC', 'RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.CAAGAG', 'RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.CATGAC', 'RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.CCTTCG', 'RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.CGGTAG', 'RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.CTCAGC', 'RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.GACACG', 'RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.GCATTC', 'RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.GCTGCC', 'RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.GGCATC', 'RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.GTGAGG', 'RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.TAGCGG', 'RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.TATCTC', 'RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.TCTCTG', 'RRBS_cw154_Tris_protease_CTCTCTAC.ACAACC', 'RRBS_cw154_Tris_protease_CTCTCTAC.ACCGCG', 'RRBS_cw154_Tris_protease_CTCTCTAC.ACGTGG', 'RRBS_cw154_Tris_protease_CTCTCTAC.ACTCAC', 'RRBS_cw154_Tris_protease_CTCTCTAC.AGGATG', 'RRBS_cw154_Tris_protease_CTCTCTAC.ATAGCG', 'RRBS_cw154_Tris_protease_CTCTCTAC.ATCGAC', 'RRBS_cw154_Tris_protease_CTCTCTAC.CATGAC', 'RRBS_cw154_Tris_protease_CTCTCTAC.CCTTCG', 'RRBS_cw154_Tris_protease_CTCTCTAC.CGGTAG', 'RRBS_cw154_Tris_protease_CTCTCTAC.CTATTG', 'RRBS_cw154_Tris_protease_CTCTCTAC.CTCAGC', 'RRBS_cw154_Tris_protease_CTCTCTAC.GACACG', 'RRBS_cw154_Tris_protease_CTCTCTAC.GCATTC', 'RRBS_cw154_Tris_protease_CTCTCTAC.GCTGCC', 'RRBS_cw154_Tris_protease_CTCTCTAC.GGCATC', 'RRBS_cw154_Tris_protease_CTCTCTAC.GTGAGG', 'RRBS_cw154_Tris_protease_CTCTCTAC.GTTGAG', 'RRBS_cw154_Tris_protease_CTCTCTAC.TAGCGG', 'RRBS_cw154_Tris_protease_CTCTCTAC.TATCTC', 'RRBS_cw154_Tris_protease_CTCTCTAC.TCTCTG', 'RRBS_cw154_Tris_protease_GR_CAGAGAGG.ACAACC', 'RRBS_cw154_Tris_protease_GR_CAGAGAGG.ACCGCG', 'RRBS_cw154_Tris_protease_GR_CAGAGAGG.ACGTGG', 'RRBS_cw154_Tris_protease_GR_CAGAGAGG.ACTCAC', 'RRBS_cw154_Tris_protease_GR_CAGAGAGG.AGGATG', 'RRBS_cw154_Tris_protease_GR_CAGAGAGG.ATAGCG', 'RRBS_cw154_Tris_protease_GR_CAGAGAGG.ATCGAC', 'RRBS_cw154_Tris_protease_GR_CAGAGAGG.CATGAC', 'RRBS_cw154_Tris_protease_GR_CAGAGAGG.CCTTCG', 'RRBS_cw154_Tris_protease_GR_CAGAGAGG.CGGTAG', 'RRBS_cw154_Tris_protease_GR_CAGAGAGG.CTATTG', 'RRBS_cw154_Tris_protease_GR_CAGAGAGG.CTCAGC', 'RRBS_cw154_Tris_protease_GR_CAGAGAGG.GACACG', 'RRBS_cw154_Tris_protease_GR_CAGAGAGG.GCATTC', 'RRBS_cw154_Tris_protease_GR_CAGAGAGG.GCTGCC', 'RRBS_cw154_Tris_protease_GR_CAGAGAGG.GGCATC', 'RRBS_cw154_Tris_protease_GR_CAGAGAGG.GTGAGG', 'RRBS_cw154_Tris_protease_GR_CAGAGAGG.GTTGAG', 'RRBS_cw154_Tris_protease_GR_CAGAGAGG.TAGCGG', 'RRBS_cw154_Tris_protease_GR_CAGAGAGG.TATCTC', 'RRBS_cw154_Tris_protease_GR_CAGAGAGG.TCTCTG', 'RRBS_trito_pool_1_TAAGGCGA.ACAACC', 'RRBS_trito_pool_1_TAAGGCGA.ACGTGG', 'RRBS_trito_pool_1_TAAGGCGA.ACTCAC', 'RRBS_trito_pool_1_TAAGGCGA.ATAGCG', 'RRBS_trito_pool_1_TAAGGCGA.ATCGAC', 'RRBS_trito_pool_1_TAAGGCGA.CAAGAG', 'RRBS_trito_pool_1_TAAGGCGA.CATGAC', 'RRBS_trito_pool_1_TAAGGCGA.CCTTCG', 'RRBS_trito_pool_1_TAAGGCGA.CGGTAG', 'RRBS_trito_pool_1_TAAGGCGA.CTATTG', 'RRBS_trito_pool_1_TAAGGCGA.GACACG', 'RRBS_trito_pool_1_TAAGGCGA.GCATTC', 'RRBS_trito_pool_1_TAAGGCGA.GCTGCC', 'RRBS_trito_pool_1_TAAGGCGA.GGCATC', 'RRBS_trito_pool_1_TAAGGCGA.GTGAGG', 'RRBS_trito_pool_1_TAAGGCGA.GTTGAG', 'RRBS_trito_pool_1_TAAGGCGA.TAGCGG', 'RRBS_trito_pool_1_TAAGGCGA.TATCTC', 'RRBS_trito_pool_1_TAAGGCGA.TCTCTG', 'RRBS_trito_pool_1_TAAGGCGA.TGACAG', 'RRBS_trito_pool_1_TAAGGCGA.TGCTGC', 'RRBS_trito_pool_2_CGTACTAG.ACAACC', 'RRBS_trito_pool_2_CGTACTAG.ACGTGG', 'RRBS_trito_pool_2_CGTACTAG.ACTCAC', 'RRBS_trito_pool_2_CGTACTAG.AGGATG', 'RRBS_trito_pool_2_CGTACTAG.ATAGCG', 'RRBS_trito_pool_2_CGTACTAG.ATCGAC', 'RRBS_trito_pool_2_CGTACTAG.CAAGAG', 'RRBS_trito_pool_2_CGTACTAG.CATGAC', 'RRBS_trito_pool_2_CGTACTAG.CCTTCG', 'RRBS_trito_pool_2_CGTACTAG.CGGTAG', 'RRBS_trito_pool_2_CGTACTAG.CTATTG', 'RRBS_trito_pool_2_CGTACTAG.GACACG', 'RRBS_trito_pool_2_CGTACTAG.GCATTC', 'RRBS_trito_pool_2_CGTACTAG.GCTGCC', 'RRBS_trito_pool_2_CGTACTAG.GGCATC', 'RRBS_trito_pool_2_CGTACTAG.GTGAGG', 'RRBS_trito_pool_2_CGTACTAG.GTTGAG', 'RRBS_trito_pool_2_CGTACTAG.TAGCGG', 'RRBS_trito_pool_2_CGTACTAG.TATCTC', 'RRBS_trito_pool_2_CGTACTAG.TCTCTG', 'RRBS_trito_pool_2_CGTACTAG.TGACAG'] print(total_matrix.shape) total_matrix = total_matrix.applymap(lambda x: int(x) if pd.notnull(x) else str("?")) total_matrix = total_matrix.astype(str).apply(''.join) tott = pd.Series(total_matrix.index.astype(str).str.cat(total_matrix.astype(str),' ')) tott.to_csv("cll_chr18.phy", header=None, index=None) print(tott.shape)
mit
peterfpeterson/mantid
qt/applications/workbench/workbench/widgets/plotselector/presenter.py
3
15280
# Mantid Repository : https://github.com/mantidproject/mantid # # Copyright &copy; 2018 ISIS Rutherford Appleton Laboratory UKRI, # NScD Oak Ridge National Laboratory, European Spallation Source, # Institut Laue - Langevin & CSNS, Institute of High Energy Physics, CAS # SPDX - License - Identifier: GPL - 3.0 + # This file is part of the mantid workbench. # # import os import re from .model import PlotSelectorModel from .view import PlotSelectorView, Column class PlotSelectorPresenter(object): """ Presenter for the plot selector widget. This class can be responsible for the creation of the model and view, passing in the GlobalFigureManager as an argument, or the presenter and view can be passed as arguments (only intended for testing). """ def __init__(self, global_figure_manager, view=None, model=None): """ Initialise the presenter, creating the view and model, and setting the initial plot list :param global_figure_manager: The GlobalFigureManager class :param view: Optional - a view to use instead of letting the class create one (intended for testing) :param model: Optional - a model to use instead of letting the class create one (intended for testing) """ # Create model and view, or accept mocked versions if view is None: self.view = PlotSelectorView(self) else: self.view = view if model is None: self.model = PlotSelectorModel(self, global_figure_manager) else: self.model = model # Make sure the plot list is up to date self.update_plot_list() def get_plot_name_from_number(self, plot_number): return self.model.get_plot_name_from_number(plot_number) # ------------------------ Plot Updates ------------------------ def update_plot_list(self): """ Updates the plot list in the model and the view. Filter text is applied to the updated selection if required. """ plot_list = self.model.get_plot_list() self.view.set_plot_list(plot_list) def append_to_plot_list(self, plot_number): """ Appends the plot name to the end of the plot list :param plot_number: The unique number in GlobalFigureManager """ self.view.append_to_plot_list(plot_number) self.view.set_visibility_icon(plot_number, self.model.is_visible(plot_number)) def remove_from_plot_list(self, plot_number): """ Removes the plot name from the plot list :param plot_number: The unique number in GlobalFigureManager """ self.view.remove_from_plot_list(plot_number) def rename_in_plot_list(self, plot_number, new_name): """ Replaces a name in the plot list :param plot_number: The unique number in GlobalFigureManager :param new_name: The new name for the plot """ self.view.rename_in_plot_list(plot_number, new_name) # ----------------------- Plot Filtering ------------------------ def filter_text_changed(self): """ Called by the view when the filter text is changed (e.g. by typing or clearing the text) """ if self.view.get_filter_text(): self.view.filter_plot_list() else: self.view.unhide_all_plots() def is_shown_by_filter(self, plot_number): """ :param plot_number: The unique number in GlobalFigureManager :return: True if shown, or False if filtered out """ filter_text = self.view.get_filter_text() plot_name = self.get_plot_name_from_number(plot_number) return filter_text.lower() in plot_name.lower() # ------------------------ Plot Showing ------------------------ def show_single_selected(self): """ When a list item is double clicked the view calls this method to bring the selected plot to the front """ plot_number = self.view.get_currently_selected_plot_number() self._make_plot_active(plot_number) def show_multiple_selected(self): """ Shows multiple selected plots, e.g. from pressing the 'Show' button with multiple selected plots """ selected_plots = self.view.get_all_selected_plot_numbers() for plot_number in selected_plots: self._make_plot_active(plot_number) def _make_plot_active(self, plot_number): """ Make the plot with the given name active - bring it to the front and make it the choice for overplotting :param plot_number: The unique number in GlobalFigureManager """ try: self.model.show_plot(plot_number) except ValueError as e: print(e) def set_active_font(self, plot_number): """ Set the icon for the active plot to be colored :param plot_number: The unique number in GlobalFigureManager """ active_plot_number = self.view.active_plot_number if active_plot_number > 0: try: self.view.set_active_font(active_plot_number, False) except ValueError: # The last active plot could have been closed # already, so there is nothing to do pass self.view.set_active_font(plot_number, True) self.view.active_plot_number = plot_number # ------------------------ Plot Hiding ------------------------- def hide_selected_plots(self): """ Hide all plots that are selected in the view """ selected_plots = self.view.get_all_selected_plot_numbers() for plot_number in selected_plots: self._hide_plot(plot_number) def _hide_plot(self, plot_number): """ Hides a single plot """ try: self.model.hide_plot(plot_number) except ValueError as e: print(e) def toggle_plot_visibility(self, plot_number): """ Toggles a plot between hidden and shown :param plot_number: The unique number in GlobalFigureManager """ if self.model.is_visible(plot_number): self._hide_plot(plot_number) else: self._make_plot_active(plot_number) self.update_visibility_icon(plot_number) def update_visibility_icon(self, plot_number): """ Updates the icon to indicate a plot as hidden or visible :param plot_number: The unique number in GlobalFigureManager """ try: is_visible = self.model.is_visible(plot_number) self.view.set_visibility_icon(plot_number, is_visible) except ValueError: # There is a chance the plot was closed, which calls an # update to this method. If we can not get the visibility # status it is safe to assume the plot has been closed. pass # ------------------------ Plot Renaming ------------------------ def rename_figure(self, plot_number, new_name): """ Replaces a name in the plot list :param plot_number: The unique number in GlobalFigureManager :param new_name: The new plot name """ try: self.model.rename_figure(plot_number, new_name) except ValueError as e: # We need to undo the rename in the view self.view.rename_in_plot_list(plot_number, new_name) print(e) # ------------------------ Plot Closing ------------------------- def close_action_called(self): """ This is called by the view when closing plots is requested (e.g. pressing close or delete). """ selected_plots = self.view.get_all_selected_plot_numbers() self._close_plots(selected_plots) def close_single_plot(self, plot_number): """ This is used to close plots when a close action is called that does not refer to the selected plot(s) :param plot_number: The unique number in GlobalFigureManager """ self._close_plots([plot_number]) def _close_plots(self, list_of_plot_numbers): """ Accepts a list of plot names to close :param list_of_plots: A list of strings containing plot names """ for plot_number in list_of_plot_numbers: try: self.model.close_plot(plot_number) except ValueError as e: print(e) # ----------------------- Plot Sorting -------------------------- def set_sort_order(self, is_ascending): """ Sets the sort order in the view :param is_ascending: If true ascending order, else descending """ self.view.set_sort_order(is_ascending) def set_sort_type(self, sort_type): """ Sets the sort order in the view :param sort_type: A Column enum with the column to sort on """ self.view.set_sort_type(sort_type) self.update_last_active_order() def update_last_active_order(self): """ Update the sort keys in the view. This is only required when changes to the last shown order occur in the model, when renaming the key is set already """ if self.view.sort_type() == Column.LastActive: self._set_last_active_order() def _set_last_active_order(self): """ Set the last shown order in the view. This checks the sorting currently set and then sets the sort keys to the appropriate values """ last_active_values = self.model.last_active_values() self.view.set_last_active_values(last_active_values) def get_initial_last_active_value(self, plot_number): """ Gets the initial last active value for a plot just added, in this case it is assumed to not have been shown :param plot_number: The unique number in GlobalFigureManager :return: A string with the last active value """ return '_' + self.model.get_plot_name_from_number(plot_number) def get_renamed_last_active_value(self, plot_number, old_last_active_value): """ Gets the initial last active value for a plot that was renamed. If the plot had a numeric value, i.e. has been shown this is retained, else it is set :param plot_number: The unique number in GlobalFigureManager :param old_last_active_value: The previous last active value """ if old_last_active_value.isdigit(): return old_last_active_value else: return self.get_initial_last_active_value(plot_number) # ---------------------- Plot Exporting ------------------------- def export_plots_called(self, extension): """ Export plots called from the view, then a single or multiple plots exported depending on the number currently selected :param extension: The file extension as a string including a '.', for example '.png' (must be a type supported by matplotlib) """ plot_numbers = self.view.get_all_selected_plot_numbers() if len(plot_numbers) == 1: self._export_single_plot(plot_numbers[0], extension) elif len(plot_numbers) > 1: self._export_multiple_plots(plot_numbers, extension) def _export_single_plot(self, plot_number, extension): """ Called when a single plot is selected to export - prompts for a filename then tries to save the plot :param plot_number: The unique number in GlobalFigureManager :param extension: The file extension as a string including a '.', for example '.png' (must be a type supported by matplotlib) """ absolute_path = self.view.get_file_name_for_saving(extension) if not absolute_path[-4:] == extension: absolute_path += extension try: self.model.export_plot(plot_number, absolute_path) except ValueError as e: print(e) def _export_multiple_plots(self, plot_numbers, extension): """ Export all selected plots in the plot_numbers list, first prompting for a save directory then sanitising plot names to unique, usable file names :param plot_numbers: A list of plot numbers to export :param extension: The file extension as a string including a '.', for example '.png' (must be a type supported by matplotlib) """ dir_name = self.view.get_directory_name_for_saving() # A temporary dictionary holding plot numbers as keys, plot # names as values plots = {} for plot_number in plot_numbers: plot_name = self.model.get_plot_name_from_number(plot_number) plot_name = self._replace_special_characters(plot_name) if plot_name in plots.values(): plot_name = self._make_unique_name(plot_name, plots) plots[plot_number] = plot_name self._export_plot(plot_number, plot_name, dir_name, extension) def _replace_special_characters(self, string): """ Removes any characters that are not valid in file names across all operating systems ('/' for Linux/Mac), more for Windows :param string: The string to replace characters in :return: The string with special characters replace by '-' """ return re.sub(r'[<>:"/|\\?*]', r'-', string) def _make_unique_name(self, name, dictionary): """ Given a name and a dictionary, make a unique name that does not already exist in the dictionary values by appending ' (1)', ' (2)', ' (3)' etc. to the end of the name :param name: A string with the non-unique name :param dictionary: A dictionary with string values :return : The unique plot name """ i = 1 while True: plot_name_attempt = name + ' ({})'.format(str(i)) if plot_name_attempt not in dictionary.values(): break i += 1 return plot_name_attempt def _export_plot(self, plot_number, plot_name, dir_name, extension): """ Given a plot number, plot name, directory and extension construct the absolute path name and call the model to save the figure :param plot_number: The unique number in GlobalFigureManager :param plot_name: The name to use for saving :param dir_name: The directory to save to :param extension: The file extension as a string including a '.', for example '.png' (must be a type supported by matplotlib) """ if dir_name: filename = os.path.join(dir_name, plot_name + extension) try: self.model.export_plot(plot_number, filename) except ValueError as e: print(e)
gpl-3.0
semio/ddf_utils
ddf_utils/chef/procedure/extract_concepts.py
1
4444
# -*- coding: utf-8 -*- """extract_concepts procedure for recipes""" import logging import numpy as np import pandas as pd from typing import List from .. helpers import debuggable from .. model.ingredient import Ingredient, ConceptIngredient from .. model.chef import Chef logger = logging.getLogger('extract_concepts') @debuggable def extract_concepts(chef: Chef, ingredients: List[Ingredient], result, join=None, overwrite=None, include_keys=False) -> ConceptIngredient: """extract concepts from other ingredients. .. highlight:: yaml Procedure format: :: procedure: extract_concepts ingredients: # list of ingredient id - ingredient_id_1 - ingredient_id_2 result: str # new ingredient id options: join: # optional base: str # base concept ingredient id type: {'full_outer', 'ingredients_outer'} # default is full_outer overwrite: # overwrite some concept types country: entity_set year: time include_keys: true # if we should include the primaryKeys concepts Parameters ---------- ingredients any numbers of ingredient that needs to extract concepts from Keyword Args ------------ join : dict, optional the base ingredient to join overwrite : dict, optional overwrite concept types for some concepts include_keys : bool, optional if we shuld include the primaryKeys of the ingredients, default to false See Also -------- :py:func:`ddf_utils.transformer.extract_concepts` : related function in transformer module Note ---- - all concepts in ingredients in the ``ingredients`` parameter will be extracted to a new concept ingredient - ``join`` option is optional; if present then the ``base`` will merge with concepts from ``ingredients`` - ``full_outer`` join means get the union of concepts; ``ingredients_outer`` means only keep concepts from ``ingredients`` """ # ingredients = [chef.dag.get_node(x).evaluate() for x in ingredients] logger.info("extract concepts: {}".format([x.id for x in ingredients])) if join: base = chef.dag.get_node(join['base']).evaluate() try: join_type = join['type'] except KeyError: join_type = 'full_outer' concepts = base.get_data()['concept'].set_index('concept') else: concepts = pd.DataFrame([], columns=['concept', 'concept_type']).set_index('concept') join_type = 'full_outer' new_concepts = set() for i in ingredients: data = i.get_data() if i.dtype in ['concepts', 'entities']: pks = [i.key] else: pks = i.key for k, df in data.items(): if include_keys: cols = df.columns else: cols = [x for x in df.columns if x not in pks] cat_cols = df.select_dtypes(include=['category']).columns for col in cols: if col.startswith('is--'): continue new_concepts.add(col) if col in concepts.index: continue # if df.dtypes[col] == 'category': # doesn't work if col in cat_cols: concepts.loc[col, 'concept_type'] = 'string' else: concepts.loc[col, 'concept_type'] = 'measure' if join_type == 'ingredients_outer': # ingredients_outer join: only keep concepts appears in ingredients concepts = concepts.loc[new_concepts] # add name column if there isn't one if 'name' not in concepts.columns: concepts['name'] = np.nan if 'name' not in concepts.index.values: concepts.loc['name', 'concept_type'] = 'string' concepts.loc['name', 'name'] = 'Name' concepts['name'] = concepts['name'].fillna( concepts.index.to_series().map(lambda x: str(x).replace('_', ' ').title())) # overwrite some of the types if overwrite: for k, v in overwrite.items(): concepts.loc[k, 'concept_type'] = v if not result: result = 'concepts_extracted' return ConceptIngredient.from_procedure_result(result, 'concept', data_computed={'concept': concepts.reset_index()})
mit
eistre91/ThinkStats2
code/chap13soln.py
68
2961
"""This file contains code for use with "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2014 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function import pandas import numpy as np import thinkplot import thinkstats2 import survival def CleanData(resp): """Cleans respondent data. resp: DataFrame """ resp.cmdivorcx.replace([9998, 9999], np.nan, inplace=True) resp['notdivorced'] = resp.cmdivorcx.isnull().astype(int) resp['duration'] = (resp.cmdivorcx - resp.cmmarrhx) / 12.0 resp['durationsofar'] = (resp.cmintvw - resp.cmmarrhx) / 12.0 month0 = pandas.to_datetime('1899-12-15') dates = [month0 + pandas.DateOffset(months=cm) for cm in resp.cmbirth] resp['decade'] = (pandas.DatetimeIndex(dates).year - 1900) // 10 def ResampleDivorceCurve(resps): """Plots divorce curves based on resampled data. resps: list of respondent DataFrames """ for _ in range(41): samples = [thinkstats2.ResampleRowsWeighted(resp) for resp in resps] sample = pandas.concat(samples, ignore_index=True) PlotDivorceCurveByDecade(sample, color='#225EA8', alpha=0.1) thinkplot.Show(xlabel='years', axis=[0, 28, 0, 1]) def ResampleDivorceCurveByDecade(resps): """Plots divorce curves for each birth cohort. resps: list of respondent DataFrames """ for i in range(41): samples = [thinkstats2.ResampleRowsWeighted(resp) for resp in resps] sample = pandas.concat(samples, ignore_index=True) groups = sample.groupby('decade') if i == 0: survival.AddLabelsByDecade(groups, alpha=0.7) EstimateSurvivalByDecade(groups, alpha=0.1) thinkplot.Save(root='survival7', xlabel='years', axis=[0, 28, 0, 1]) def EstimateSurvivalByDecade(groups, **options): """Groups respondents by decade and plots survival curves. groups: GroupBy object """ thinkplot.PrePlot(len(groups)) for name, group in groups: print(name, len(group)) _, sf = EstimateSurvival(group) thinkplot.Plot(sf, **options) def EstimateSurvival(resp): """Estimates the survival curve. resp: DataFrame of respondents returns: pair of HazardFunction, SurvivalFunction """ complete = resp[resp.notdivorced == 0].duration ongoing = resp[resp.notdivorced == 1].durationsofar hf = survival.EstimateHazardFunction(complete, ongoing) sf = hf.MakeSurvival() return hf, sf def main(): resp6 = survival.ReadFemResp2002() CleanData(resp6) married6 = resp6[resp6.evrmarry==1] resp7 = survival.ReadFemResp2010() CleanData(resp7) married7 = resp7[resp7.evrmarry==1] ResampleDivorceCurveByDecade([married6, married7]) if __name__ == '__main__': main()
gpl-3.0
jimmylai/slideshare
python_demo/fabfile.py
1
1463
#!/usr/bin/env python # -*- encoding: utf8 -*- '''Program ''' from fabric.api import local, prefix, sudo, hosts, run __author__ = 'noahsark' def search(word=None): if word is None: print 'Please specify `word` to search as argument.' else: local('find | xargs -i grep -H --color %s {}' % word) def doc(): with prefix('cd doc'): local('make html') def test(): local('nosetests --with-doctest --with-xunit --traverse-namespace --with-coverage ' '--cover-package=python_demo') def clean(): '''remove pyc files.''' local('find | grep \.pyc$ | xargs -i rm -f {}') def ci(): test() doc() local('clonedigger --ignore-dir=classifier .') @hosts('localhost') def setup(): # packages with system package support packages = ['numpy', 'scipy', 'matplotlib', 'pandas', 'coverage', 'nose', 'sphinx', 'nltk', 'nose', 'xlwt', 'xlrd', 'jinja2', 'psutil'] sudo('apt-get install -y python-virtualenv') sudo('apt-get install -y python-pip') run('virtualenv --no-site-packages env') for package in packages: sudo('apt-get build-dep -y python-%s' % package) with prefix('. env/bin/activate'): run('pip install %s' % package) # packages has no system packages packages = ['ipython', 'scikit-learn', 'pep8'] for package in packages: with prefix('. env/bin/activate'): run('pip install %s' % package)
apache-2.0
paulmueller/PyCorrFit
tests/test_simple.py
2
1310
import numpy as np from pycorrfit.correlation import Correlation from pycorrfit.fit import Fit def create_corr(): corr = Correlation() tau = np.exp(np.linspace(np.log(1e-3), np.log(1e6), 10)) data = corr.fit_model(corr.fit_parameters, tau) noise = (np.random.random(data.shape[0])-.5)*.0005 data += noise corr.correlation = np.dstack((tau, data))[0] return corr def test_simple_corr(): corr = create_corr() oldparms = corr.fit_parameters.copy() temp = corr.fit_parameters temp[0] *= 2 temp[-1] *= .1 Fit(corr) res = oldparms - corr.fit_parameters assert np.allclose(res, np.zeros_like(res), atol=0.010) if __name__ == "__main__": import matplotlib.pylab as plt corr = create_corr() fig, (ax1, ax2) = plt.subplots(2, 1) ax1.set_xscale("log") ax2.set_xscale("log") print(corr.fit_parameters) temp = corr.fit_parameters temp[0] *= 2 temp[-1] *= .1 ax1.plot(corr.correlation_fit[:, 0], corr.correlation_fit[:, 1]) ax1.plot(corr.modeled_fit[:, 0], corr.modeled_fit[:, 1]) print(corr.fit_parameters) Fit(corr) print(corr.fit_parameters) ax2.plot(corr.correlation_fit[:, 0], corr.correlation_fit[:, 1]) ax2.plot(corr.modeled_fit[:, 0], corr.modeled_fit[:, 1]) plt.show()
gpl-2.0
MJuddBooth/pandas
pandas/tests/arrays/categorical/test_missing.py
3
3075
# -*- coding: utf-8 -*- import collections import numpy as np import pytest from pandas.compat import lrange from pandas.core.dtypes.dtypes import CategoricalDtype from pandas import Categorical, Index, isna import pandas.util.testing as tm class TestCategoricalMissing(object): def test_na_flags_int_categories(self): # #1457 categories = lrange(10) labels = np.random.randint(0, 10, 20) labels[::5] = -1 cat = Categorical(labels, categories, fastpath=True) repr(cat) tm.assert_numpy_array_equal(isna(cat), labels == -1) def test_nan_handling(self): # Nans are represented as -1 in codes c = Categorical(["a", "b", np.nan, "a"]) tm.assert_index_equal(c.categories, Index(["a", "b"])) tm.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0], dtype=np.int8)) c[1] = np.nan tm.assert_index_equal(c.categories, Index(["a", "b"])) tm.assert_numpy_array_equal(c._codes, np.array([0, -1, -1, 0], dtype=np.int8)) # Adding nan to categories should make assigned nan point to the # category! c = Categorical(["a", "b", np.nan, "a"]) tm.assert_index_equal(c.categories, Index(["a", "b"])) tm.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0], dtype=np.int8)) def test_set_dtype_nans(self): c = Categorical(['a', 'b', np.nan]) result = c._set_dtype(CategoricalDtype(['a', 'c'])) tm.assert_numpy_array_equal(result.codes, np.array([0, -1, -1], dtype='int8')) def test_set_item_nan(self): cat = Categorical([1, 2, 3]) cat[1] = np.nan exp = Categorical([1, np.nan, 3], categories=[1, 2, 3]) tm.assert_categorical_equal(cat, exp) @pytest.mark.parametrize('fillna_kwargs, msg', [ (dict(value=1, method='ffill'), "Cannot specify both 'value' and 'method'."), (dict(), "Must specify a fill 'value' or 'method'."), (dict(method='bad'), "Invalid fill method. Expecting .* bad"), ]) def test_fillna_raises(self, fillna_kwargs, msg): # https://github.com/pandas-dev/pandas/issues/19682 cat = Categorical([1, 2, 3]) with pytest.raises(ValueError, match=msg): cat.fillna(**fillna_kwargs) @pytest.mark.parametrize("named", [True, False]) def test_fillna_iterable_category(self, named): # https://github.com/pandas-dev/pandas/issues/21097 if named: Point = collections.namedtuple("Point", "x y") else: Point = lambda *args: args # tuple cat = Categorical([Point(0, 0), Point(0, 1), None]) result = cat.fillna(Point(0, 0)) expected = Categorical([Point(0, 0), Point(0, 1), Point(0, 0)]) tm.assert_categorical_equal(result, expected)
bsd-3-clause
NunoEdgarGub1/scikit-learn
sklearn/neighbors/approximate.py
128
22351
"""Approximate nearest neighbor search""" # Author: Maheshakya Wijewardena <[email protected]> # Joel Nothman <[email protected]> import numpy as np import warnings from scipy import sparse from .base import KNeighborsMixin, RadiusNeighborsMixin from ..base import BaseEstimator from ..utils.validation import check_array from ..utils import check_random_state from ..metrics.pairwise import pairwise_distances from ..random_projection import GaussianRandomProjection __all__ = ["LSHForest"] HASH_DTYPE = '>u4' MAX_HASH_SIZE = np.dtype(HASH_DTYPE).itemsize * 8 def _find_matching_indices(tree, bin_X, left_mask, right_mask): """Finds indices in sorted array of integers. Most significant h bits in the binary representations of the integers are matched with the items' most significant h bits. """ left_index = np.searchsorted(tree, bin_X & left_mask) right_index = np.searchsorted(tree, bin_X | right_mask, side='right') return left_index, right_index def _find_longest_prefix_match(tree, bin_X, hash_size, left_masks, right_masks): """Find the longest prefix match in tree for each query in bin_X Most significant bits are considered as the prefix. """ hi = np.empty_like(bin_X, dtype=np.intp) hi.fill(hash_size) lo = np.zeros_like(bin_X, dtype=np.intp) res = np.empty_like(bin_X, dtype=np.intp) left_idx, right_idx = _find_matching_indices(tree, bin_X, left_masks[hi], right_masks[hi]) found = right_idx > left_idx res[found] = lo[found] = hash_size r = np.arange(bin_X.shape[0]) kept = r[lo < hi] # indices remaining in bin_X mask while kept.shape[0]: mid = (lo.take(kept) + hi.take(kept)) // 2 left_idx, right_idx = _find_matching_indices(tree, bin_X.take(kept), left_masks[mid], right_masks[mid]) found = right_idx > left_idx mid_found = mid[found] lo[kept[found]] = mid_found + 1 res[kept[found]] = mid_found hi[kept[~found]] = mid[~found] kept = r[lo < hi] return res class ProjectionToHashMixin(object): """Turn a transformed real-valued array into a hash""" @staticmethod def _to_hash(projected): if projected.shape[1] % 8 != 0: raise ValueError('Require reduced dimensionality to be a multiple ' 'of 8 for hashing') # XXX: perhaps non-copying operation better out = np.packbits((projected > 0).astype(int)).view(dtype=HASH_DTYPE) return out.reshape(projected.shape[0], -1) def fit_transform(self, X, y=None): self.fit(X) return self.transform(X) def transform(self, X, y=None): return self._to_hash(super(ProjectionToHashMixin, self).transform(X)) class GaussianRandomProjectionHash(ProjectionToHashMixin, GaussianRandomProjection): """Use GaussianRandomProjection to produce a cosine LSH fingerprint""" def __init__(self, n_components=8, random_state=None): super(GaussianRandomProjectionHash, self).__init__( n_components=n_components, random_state=random_state) def _array_of_arrays(list_of_arrays): """Creates an array of array from list of arrays.""" out = np.empty(len(list_of_arrays), dtype=object) out[:] = list_of_arrays return out class LSHForest(BaseEstimator, KNeighborsMixin, RadiusNeighborsMixin): """Performs approximate nearest neighbor search using LSH forest. LSH Forest: Locality Sensitive Hashing forest [1] is an alternative method for vanilla approximate nearest neighbor search methods. LSH forest data structure has been implemented using sorted arrays and binary search and 32 bit fixed-length hashes. Random projection is used as the hash family which approximates cosine distance. The cosine distance is defined as ``1 - cosine_similarity``: the lowest value is 0 (identical point) but it is bounded above by 2 for the farthest points. Its value does not depend on the norm of the vector points but only on their relative angles. Read more in the :ref:`User Guide <approximate_nearest_neighbors>`. Parameters ---------- n_estimators : int (default = 10) Number of trees in the LSH Forest. min_hash_match : int (default = 4) lowest hash length to be searched when candidate selection is performed for nearest neighbors. n_candidates : int (default = 10) Minimum number of candidates evaluated per estimator, assuming enough items meet the `min_hash_match` constraint. n_neighbors : int (default = 5) Number of neighbors to be returned from query function when it is not provided to the :meth:`kneighbors` method. radius : float, optinal (default = 1.0) Radius from the data point to its neighbors. This is the parameter space to use by default for the :meth`radius_neighbors` queries. radius_cutoff_ratio : float, optional (default = 0.9) A value ranges from 0 to 1. Radius neighbors will be searched until the ratio between total neighbors within the radius and the total candidates becomes less than this value unless it is terminated by hash length reaching `min_hash_match`. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- hash_functions_ : list of GaussianRandomProjectionHash objects Hash function g(p,x) for a tree is an array of 32 randomly generated float arrays with the same dimenstion as the data set. This array is stored in GaussianRandomProjectionHash object and can be obtained from ``components_`` attribute. trees_ : array, shape (n_estimators, n_samples) Each tree (corresponding to a hash function) contains an array of sorted hashed values. The array representation may change in future versions. original_indices_ : array, shape (n_estimators, n_samples) Original indices of sorted hashed values in the fitted index. References ---------- .. [1] M. Bawa, T. Condie and P. Ganesan, "LSH Forest: Self-Tuning Indexes for Similarity Search", WWW '05 Proceedings of the 14th international conference on World Wide Web, 651-660, 2005. Examples -------- >>> from sklearn.neighbors import LSHForest >>> X_train = [[5, 5, 2], [21, 5, 5], [1, 1, 1], [8, 9, 1], [6, 10, 2]] >>> X_test = [[9, 1, 6], [3, 1, 10], [7, 10, 3]] >>> lshf = LSHForest() >>> lshf.fit(X_train) # doctest: +NORMALIZE_WHITESPACE LSHForest(min_hash_match=4, n_candidates=50, n_estimators=10, n_neighbors=5, radius=1.0, radius_cutoff_ratio=0.9, random_state=None) >>> distances, indices = lshf.kneighbors(X_test, n_neighbors=2) >>> distances # doctest: +ELLIPSIS array([[ 0.069..., 0.149...], [ 0.229..., 0.481...], [ 0.004..., 0.014...]]) >>> indices array([[1, 2], [2, 0], [4, 0]]) """ def __init__(self, n_estimators=10, radius=1.0, n_candidates=50, n_neighbors=5, min_hash_match=4, radius_cutoff_ratio=.9, random_state=None): self.n_estimators = n_estimators self.radius = radius self.random_state = random_state self.n_candidates = n_candidates self.n_neighbors = n_neighbors self.min_hash_match = min_hash_match self.radius_cutoff_ratio = radius_cutoff_ratio def _compute_distances(self, query, candidates): """Computes the cosine distance. Distance is from the query to points in the candidates array. Returns argsort of distances in the candidates array and sorted distances. """ if candidates.shape == (0,): # needed since _fit_X[np.array([])] doesn't work if _fit_X sparse return np.empty(0, dtype=np.int), np.empty(0, dtype=float) if sparse.issparse(self._fit_X): candidate_X = self._fit_X[candidates] else: candidate_X = self._fit_X.take(candidates, axis=0, mode='clip') distances = pairwise_distances(query, candidate_X, metric='cosine')[0] distance_positions = np.argsort(distances) distances = distances.take(distance_positions, mode='clip', axis=0) return distance_positions, distances def _generate_masks(self): """Creates left and right masks for all hash lengths.""" tri_size = MAX_HASH_SIZE + 1 # Called once on fitting, output is independent of hashes left_mask = np.tril(np.ones((tri_size, tri_size), dtype=int))[:, 1:] right_mask = left_mask[::-1, ::-1] self._left_mask = np.packbits(left_mask).view(dtype=HASH_DTYPE) self._right_mask = np.packbits(right_mask).view(dtype=HASH_DTYPE) def _get_candidates(self, query, max_depth, bin_queries, n_neighbors): """Performs the Synchronous ascending phase. Returns an array of candidates, their distance ranks and distances. """ index_size = self._fit_X.shape[0] # Number of candidates considered including duplicates # XXX: not sure whether this is being calculated correctly wrt # duplicates from different iterations through a single tree n_candidates = 0 candidate_set = set() min_candidates = self.n_candidates * self.n_estimators while (max_depth > self.min_hash_match and (n_candidates < min_candidates or len(candidate_set) < n_neighbors)): left_mask = self._left_mask[max_depth] right_mask = self._right_mask[max_depth] for i in range(self.n_estimators): start, stop = _find_matching_indices(self.trees_[i], bin_queries[i], left_mask, right_mask) n_candidates += stop - start candidate_set.update( self.original_indices_[i][start:stop].tolist()) max_depth -= 1 candidates = np.fromiter(candidate_set, count=len(candidate_set), dtype=np.intp) # For insufficient candidates, candidates are filled. # Candidates are filled from unselected indices uniformly. if candidates.shape[0] < n_neighbors: warnings.warn( "Number of candidates is not sufficient to retrieve" " %i neighbors with" " min_hash_match = %i. Candidates are filled up" " uniformly from unselected" " indices." % (n_neighbors, self.min_hash_match)) remaining = np.setdiff1d(np.arange(0, index_size), candidates) to_fill = n_neighbors - candidates.shape[0] candidates = np.concatenate((candidates, remaining[:to_fill])) ranks, distances = self._compute_distances(query, candidates.astype(int)) return (candidates[ranks[:n_neighbors]], distances[:n_neighbors]) def _get_radius_neighbors(self, query, max_depth, bin_queries, radius): """Finds radius neighbors from the candidates obtained. Their distances from query are smaller than radius. Returns radius neighbors and distances. """ ratio_within_radius = 1 threshold = 1 - self.radius_cutoff_ratio total_candidates = np.array([], dtype=int) total_neighbors = np.array([], dtype=int) total_distances = np.array([], dtype=float) while (max_depth > self.min_hash_match and ratio_within_radius > threshold): left_mask = self._left_mask[max_depth] right_mask = self._right_mask[max_depth] candidates = [] for i in range(self.n_estimators): start, stop = _find_matching_indices(self.trees_[i], bin_queries[i], left_mask, right_mask) candidates.extend( self.original_indices_[i][start:stop].tolist()) candidates = np.setdiff1d(candidates, total_candidates) total_candidates = np.append(total_candidates, candidates) ranks, distances = self._compute_distances(query, candidates) m = np.searchsorted(distances, radius, side='right') positions = np.searchsorted(total_distances, distances[:m]) total_neighbors = np.insert(total_neighbors, positions, candidates[ranks[:m]]) total_distances = np.insert(total_distances, positions, distances[:m]) ratio_within_radius = (total_neighbors.shape[0] / float(total_candidates.shape[0])) max_depth = max_depth - 1 return total_neighbors, total_distances def fit(self, X, y=None): """Fit the LSH forest on the data. This creates binary hashes of input data points by getting the dot product of input points and hash_function then transforming the projection into a binary string array based on the sign (positive/negative) of the projection. A sorted array of binary hashes is created. Parameters ---------- X : array_like or sparse (CSR) matrix, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- self : object Returns self. """ self._fit_X = check_array(X, accept_sparse='csr') # Creates a g(p,x) for each tree self.hash_functions_ = [] self.trees_ = [] self.original_indices_ = [] rng = check_random_state(self.random_state) int_max = np.iinfo(np.int32).max for i in range(self.n_estimators): # This is g(p,x) for a particular tree. # Builds a single tree. Hashing is done on an array of data points. # `GaussianRandomProjection` is used for hashing. # `n_components=hash size and n_features=n_dim. hasher = GaussianRandomProjectionHash(MAX_HASH_SIZE, rng.randint(0, int_max)) hashes = hasher.fit_transform(self._fit_X)[:, 0] original_index = np.argsort(hashes) bin_hashes = hashes[original_index] self.original_indices_.append(original_index) self.trees_.append(bin_hashes) self.hash_functions_.append(hasher) self._generate_masks() return self def _query(self, X): """Performs descending phase to find maximum depth.""" # Calculate hashes of shape (n_samples, n_estimators, [hash_size]) bin_queries = np.asarray([hasher.transform(X)[:, 0] for hasher in self.hash_functions_]) bin_queries = np.rollaxis(bin_queries, 1) # descend phase depths = [_find_longest_prefix_match(tree, tree_queries, MAX_HASH_SIZE, self._left_mask, self._right_mask) for tree, tree_queries in zip(self.trees_, np.rollaxis(bin_queries, 1))] return bin_queries, np.max(depths, axis=0) def kneighbors(self, X, n_neighbors=None, return_distance=True): """Returns n_neighbors of approximate nearest neighbors. Parameters ---------- X : array_like or sparse (CSR) matrix, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single query. n_neighbors : int, opitonal (default = None) Number of neighbors required. If not provided, this will return the number specified at the initialization. return_distance : boolean, optional (default = False) Returns the distances of neighbors if set to True. Returns ------- dist : array, shape (n_samples, n_neighbors) Array representing the cosine distances to each point, only present if return_distance=True. ind : array, shape (n_samples, n_neighbors) Indices of the approximate nearest points in the population matrix. """ if not hasattr(self, 'hash_functions_'): raise ValueError("estimator should be fitted.") if n_neighbors is None: n_neighbors = self.n_neighbors X = check_array(X, accept_sparse='csr') neighbors, distances = [], [] bin_queries, max_depth = self._query(X) for i in range(X.shape[0]): neighs, dists = self._get_candidates(X[i], max_depth[i], bin_queries[i], n_neighbors) neighbors.append(neighs) distances.append(dists) if return_distance: return np.array(distances), np.array(neighbors) else: return np.array(neighbors) def radius_neighbors(self, X, radius=None, return_distance=True): """Finds the neighbors within a given radius of a point or points. Return the indices and distances of some points from the dataset lying in a ball with size ``radius`` around the points of the query array. Points lying on the boundary are included in the results. The result points are *not* necessarily sorted by distance to their query point. LSH Forest being an approximate method, some true neighbors from the indexed dataset might be missing from the results. Parameters ---------- X : array_like or sparse (CSR) matrix, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single query. radius : float Limiting distance of neighbors to return. (default is the value passed to the constructor). return_distance : boolean, optional (default = False) Returns the distances of neighbors if set to True. Returns ------- dist : array, shape (n_samples,) of arrays Each element is an array representing the cosine distances to some points found within ``radius`` of the respective query. Only present if ``return_distance=True``. ind : array, shape (n_samples,) of arrays Each element is an array of indices for neighbors within ``radius`` of the respective query. """ if not hasattr(self, 'hash_functions_'): raise ValueError("estimator should be fitted.") if radius is None: radius = self.radius X = check_array(X, accept_sparse='csr') neighbors, distances = [], [] bin_queries, max_depth = self._query(X) for i in range(X.shape[0]): neighs, dists = self._get_radius_neighbors(X[i], max_depth[i], bin_queries[i], radius) neighbors.append(neighs) distances.append(dists) if return_distance: return _array_of_arrays(distances), _array_of_arrays(neighbors) else: return _array_of_arrays(neighbors) def partial_fit(self, X, y=None): """ Inserts new data into the already fitted LSH Forest. Cost is proportional to new total size, so additions should be batched. Parameters ---------- X : array_like or sparse (CSR) matrix, shape (n_samples, n_features) New data point to be inserted into the LSH Forest. """ X = check_array(X, accept_sparse='csr') if not hasattr(self, 'hash_functions_'): return self.fit(X) if X.shape[1] != self._fit_X.shape[1]: raise ValueError("Number of features in X and" " fitted array does not match.") n_samples = X.shape[0] n_indexed = self._fit_X.shape[0] for i in range(self.n_estimators): bin_X = self.hash_functions_[i].transform(X)[:, 0] # gets the position to be added in the tree. positions = self.trees_[i].searchsorted(bin_X) # adds the hashed value into the tree. self.trees_[i] = np.insert(self.trees_[i], positions, bin_X) # add the entry into the original_indices_. self.original_indices_[i] = np.insert(self.original_indices_[i], positions, np.arange(n_indexed, n_indexed + n_samples)) # adds the entry into the input_array. if sparse.issparse(X) or sparse.issparse(self._fit_X): self._fit_X = sparse.vstack((self._fit_X, X)) else: self._fit_X = np.row_stack((self._fit_X, X)) return self
bsd-3-clause
jaantollander/Pointwise-Convergence
src_legacy/fourier_series/fourier_dataframe.py
4
2447
# coding=utf-8 from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np import pandas as pd from math import ceil from src_legacy.fourier_series.series.base import SeriesExpansionBase class FourierDataFrame: """ Generates Fourier series data into pandas DataFrame. http://pandas.pydata.org/pandas-docs/stable/internals.html#subclassing-pandas-data-structures """ start_index = 1 def __init__(self, series_expansion, size): self.size = size self.shape = [] if isinstance(series_expansion, SeriesExpansionBase): self.series_expansion = series_expansion # if self.size > self.series_expansion.degree: # self.size = self.series_expansion.degree self.gen = self.series_expansion.generator() self.inputs = self.series_expansion.inputs self.shape.append(self.size) self.shape.append(np.product(self.inputs.shape)) self.functions = self.series_expansion.functions else: raise ValueError() self.count = 0 self.max_count = ceil(self.series_expansion.degree / self.size) self.columns = pd.MultiIndex.from_product(iterables=self.inputs, names=self.inputs.symbols) self.index = np.arange(self.start_index, self.size + self.start_index, dtype=np.int64) self.index = pd.Index(data=self.index, name='degree') def empty_dataframe(self): data = {} index = self.index + self.count * self.size for name in self.functions: array = np.zeros(shape=self.shape, dtype=np.float64) data[name] = pd.DataFrame(data=array, index=index, columns=self.columns) return data def generate(self): data = self.empty_dataframe() for i, (degree, values) in enumerate(self.gen): print('deg:', degree) for name, value in zip(self.functions, values): arr = value.flatten() data[name].iloc[i, :] = arr if i == self.size-1: break self.count += 1 return data def generator(self): while self.count != self.max_count: yield self.generate()
mit
TimoRoth/oggm
oggm/tests/test_benchmarks.py
2
20750
# Python imports import unittest import numpy as np import os import shutil import xarray as xr import pytest import oggm from scipy import optimize as optimization salem = pytest.importorskip('salem') gpd = pytest.importorskip('geopandas') # Locals import oggm.cfg as cfg from oggm import tasks, utils, workflow from oggm.workflow import execute_entity_task from oggm.tests.funcs import get_test_dir, apply_test_ref_tstars from oggm.utils import get_demo_file from oggm.core import gis, centerlines from oggm.core.massbalance import ConstantMassBalance pytestmark = pytest.mark.test_env("benchmark") do_plot = False class TestSouthGlacier(unittest.TestCase): # Test case obtained from ITMIX # Data available at: # oggm-sample-data/tree/master/benchmarks/south_glacier # # Citation: # # Flowers, G.E., N. Roux, S. Pimentel, and C.G. Schoof (2011). Present # dynamics and future prognosis of a slowly surging glacier. # The Cryosphere, 5, 299-313. DOI: 10.5194/tc-5-299-2011, 2011. def setUp(self): # test directory self.testdir = os.path.join(get_test_dir(), 'tmp') if not os.path.exists(self.testdir): os.makedirs(self.testdir) self.clean_dir() # Init cfg.initialize() cfg.PARAMS['use_intersects'] = False cfg.PATHS['working_dir'] = self.testdir cfg.PATHS['dem_file'] = get_demo_file('dem_SouthGlacier.tif') cfg.PARAMS['border'] = 10 apply_test_ref_tstars() self.tf = get_demo_file('cru_ts4.01.1901.2016.SouthGlacier.tmp.dat.nc') self.pf = get_demo_file('cru_ts4.01.1901.2016.SouthGlacier.pre.dat.nc') def tearDown(self): self.rm_dir() def rm_dir(self): shutil.rmtree(self.testdir) def clean_dir(self): shutil.rmtree(self.testdir) os.makedirs(self.testdir) def get_ref_data(self, gdir): # Reference data df = salem.read_shapefile(get_demo_file('IceThick_SouthGlacier.shp')) coords = np.array([p.xy for p in df.geometry]).squeeze() df['lon'] = coords[:, 0] df['lat'] = coords[:, 1] df = df[['lon', 'lat', 'thick']] ii, jj = gdir.grid.transform(df['lon'], df['lat'], crs=salem.wgs84, nearest=True) df['i'] = ii df['j'] = jj df['ij'] = ['{:04d}_{:04d}'.format(i, j) for i, j in zip(ii, jj)] return df.groupby('ij').mean() def test_mb(self): # This is a function to produce the MB function needed by Anna # Download the RGI file for the run # Make a new dataframe of those rgidf = gpd.read_file(get_demo_file('SouthGlacier.shp')) # Go - initialize working directories gdirs = workflow.init_glacier_directories(rgidf) # Preprocessing tasks task_list = [ tasks.define_glacier_region, tasks.glacier_masks, tasks.compute_centerlines, tasks.initialize_flowlines, tasks.catchment_area, tasks.catchment_intersections, tasks.catchment_width_geom, tasks.catchment_width_correction, ] for task in task_list: execute_entity_task(task, gdirs) execute_entity_task(tasks.process_cru_data, gdirs, tmp_file=self.tf, pre_file=self.pf) execute_entity_task(tasks.local_t_star, gdirs) execute_entity_task(tasks.mu_star_calibration, gdirs) mbref = salem.GeoTiff(get_demo_file('mb_SouthGlacier.tif')) demref = salem.GeoTiff(get_demo_file('dem_SouthGlacier.tif')) mbref = mbref.get_vardata() mbref[mbref == -9999] = np.NaN demref = demref.get_vardata()[np.isfinite(mbref)] mbref = mbref[np.isfinite(mbref)] * 1000 # compute the bias to make it 0 SMB on the 2D DEM rho = cfg.PARAMS['ice_density'] mbmod = ConstantMassBalance(gdirs[0], bias=0) mymb = mbmod.get_annual_mb(demref) * cfg.SEC_IN_YEAR * rho mbmod = ConstantMassBalance(gdirs[0], bias=np.average(mymb)) mymb = mbmod.get_annual_mb(demref) * cfg.SEC_IN_YEAR * rho np.testing.assert_allclose(np.average(mymb), 0., atol=1e-3) # Same for ref mbref = mbref - np.average(mbref) np.testing.assert_allclose(np.average(mbref), 0., atol=1e-3) # Fit poly p = np.polyfit(demref, mbref, deg=2) poly = np.poly1d(p) myfit = poly(demref) np.testing.assert_allclose(np.average(myfit), 0., atol=1e-3) if do_plot: import matplotlib.pyplot as plt plt.scatter(mbref, demref, s=5, label='Obs (2007-2012), shifted to Avg(SMB) = 0') plt.scatter(mymb, demref, s=5, label='OGGM MB at t*') plt.scatter(myfit, demref, s=5, label='Polyfit', c='C3') plt.xlabel('MB (mm w.e yr-1)') plt.ylabel('Altidude (m)') plt.legend() plt.show() def test_inversion_attributes(self): # Download the RGI file for the run # Make a new dataframe of those rgidf = gpd.read_file(get_demo_file('SouthGlacier.shp')) # Go - initialize working directories gdirs = workflow.init_glacier_directories(rgidf) # Preprocessing tasks task_list = [ tasks.define_glacier_region, tasks.glacier_masks, tasks.compute_centerlines, tasks.initialize_flowlines, tasks.catchment_area, tasks.catchment_intersections, tasks.catchment_width_geom, tasks.catchment_width_correction, ] for task in task_list: execute_entity_task(task, gdirs) execute_entity_task(tasks.process_cru_data, gdirs, tmp_file=self.tf, pre_file=self.pf) execute_entity_task(tasks.local_t_star, gdirs) execute_entity_task(tasks.mu_star_calibration, gdirs) # Tested tasks task_list = [ tasks.gridded_attributes, tasks.gridded_mb_attributes, ] for task in task_list: execute_entity_task(task, gdirs) # Check certain things gdir = gdirs[0] with xr.open_dataset(gdir.get_filepath('gridded_data')) as ds: # The max catchment area should be area of glacier assert (ds['catchment_area'].max() == ds['glacier_mask'].sum() * gdir.grid.dx**2) assert (ds['catchment_area_on_catch'].max() == ds['glacier_mask'].sum() * gdir.grid.dx**2) # In the lowest parts of the glaciers the data should be equivalent ds_low = ds.isel(y=ds.y < 6741500) np.testing.assert_allclose(ds_low['lin_mb_above_z'], ds_low['lin_mb_above_z_on_catch']) np.testing.assert_allclose(ds_low['oggm_mb_above_z'], ds_low['oggm_mb_above_z_on_catch']) # Build some loose tests based on correlation df = self.get_ref_data(gdir) vns = ['topo', 'slope', 'aspect', 'slope_factor', 'dis_from_border', 'catchment_area', 'catchment_area_on_catch', 'lin_mb_above_z', 'lin_mb_above_z_on_catch', 'oggm_mb_above_z', 'oggm_mb_above_z_on_catch', ] with xr.open_dataset(gdir.get_filepath('gridded_data')) as ds: for vn in vns: df[vn] = ds[vn].isel(x=('z', df['i']), y=('z', df['j'])) # Loose tests based on correlations cf = df.corr() assert cf.loc['slope', 'slope_factor'] < -0.85 assert cf.loc['slope', 'thick'] < -0.4 assert cf.loc['dis_from_border', 'thick'] > 0.2 assert cf.loc['oggm_mb_above_z', 'thick'] > 0.5 assert cf.loc['lin_mb_above_z', 'thick'] > 0.5 assert cf.loc['lin_mb_above_z', 'oggm_mb_above_z'] > 0.95 def test_inversion(self): # Download the RGI file for the run # Make a new dataframe of those rgidf = gpd.read_file(get_demo_file('SouthGlacier.shp')) # Go - initialize working directories gdirs = workflow.init_glacier_directories(rgidf) # Preprocessing tasks task_list = [ tasks.define_glacier_region, tasks.glacier_masks, tasks.compute_centerlines, tasks.initialize_flowlines, tasks.catchment_area, tasks.catchment_intersections, tasks.catchment_width_geom, tasks.catchment_width_correction, ] for task in task_list: execute_entity_task(task, gdirs) execute_entity_task(tasks.process_cru_data, gdirs, tmp_file=self.tf, pre_file=self.pf) execute_entity_task(tasks.local_t_star, gdirs) execute_entity_task(tasks.mu_star_calibration, gdirs) # Inversion tasks execute_entity_task(tasks.prepare_for_inversion, gdirs) # We use the default parameters for this run execute_entity_task(tasks.mass_conservation_inversion, gdirs) execute_entity_task(tasks.distribute_thickness_per_altitude, gdirs, varname_suffix='_alt') execute_entity_task(tasks.distribute_thickness_interp, gdirs, varname_suffix='_int') # Reference data gdir = gdirs[0] df = self.get_ref_data(gdir) with xr.open_dataset(gdir.get_filepath('gridded_data')) as ds: v = ds.distributed_thickness_alt df['oggm_alt'] = v.isel(x=('z', df['i']), y=('z', df['j'])) v = ds.distributed_thickness_int df['oggm_int'] = v.isel(x=('z', df['i']), y=('z', df['j'])) ds['ref'] = xr.zeros_like(ds.distributed_thickness_int) * np.NaN ds['ref'].data[df['j'], df['i']] = df['thick'] rmsd_int = ((df.oggm_int - df.thick) ** 2).mean() ** .5 rmsd_alt = ((df.oggm_int - df.thick) ** 2).mean() ** .5 assert rmsd_int < 85 assert rmsd_alt < 85 dfm = df.mean() np.testing.assert_allclose(dfm.thick, dfm.oggm_int, 50) np.testing.assert_allclose(dfm.thick, dfm.oggm_alt, 50) if do_plot: import matplotlib.pyplot as plt df.plot(kind='scatter', x='oggm_int', y='thick') plt.axis('equal') df.plot(kind='scatter', x='oggm_alt', y='thick') plt.axis('equal') f, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(12, 3)) ds.ref.plot(ax=ax1) ds.distributed_thickness_int.plot(ax=ax2) ds.distributed_thickness_alt.plot(ax=ax3) plt.tight_layout() plt.show() @pytest.mark.slow def test_optimize_inversion(self): # Download the RGI file for the run # Make a new dataframe of those rgidf = gpd.read_file(get_demo_file('SouthGlacier.shp')) # Go - initialize working directories gdirs = workflow.init_glacier_directories(rgidf) # Preprocessing tasks task_list = [ tasks.define_glacier_region, tasks.glacier_masks, tasks.compute_centerlines, tasks.initialize_flowlines, tasks.catchment_area, tasks.catchment_intersections, tasks.catchment_width_geom, tasks.catchment_width_correction, ] for task in task_list: execute_entity_task(task, gdirs) execute_entity_task(tasks.process_cru_data, gdirs, tmp_file=self.tf, pre_file=self.pf) execute_entity_task(tasks.local_t_star, gdirs) execute_entity_task(tasks.mu_star_calibration, gdirs) # Reference data gdir = gdirs[0] df = self.get_ref_data(gdir) # Inversion tasks execute_entity_task(tasks.prepare_for_inversion, gdirs) glen_a = cfg.PARAMS['inversion_glen_a'] fs = cfg.PARAMS['inversion_fs'] def to_optimize(x): tasks.mass_conservation_inversion(gdir, glen_a=glen_a * x[0], fs=fs * x[1]) tasks.distribute_thickness_per_altitude(gdir) with xr.open_dataset(gdir.get_filepath('gridded_data')) as ds: thick = ds.distributed_thickness.isel(x=('z', df['i']), y=('z', df['j'])) out = (np.abs(thick - df.thick)).mean() return out opti = optimization.minimize(to_optimize, [1., 1.], bounds=((0.01, 10), (0.01, 10)), tol=0.1) # Check results and save. execute_entity_task(tasks.mass_conservation_inversion, gdirs, glen_a=glen_a*opti['x'][0], fs=0) execute_entity_task(tasks.distribute_thickness_per_altitude, gdirs) with xr.open_dataset(gdir.get_filepath('gridded_data')) as ds: df['oggm'] = ds.distributed_thickness.isel(x=('z', df['i']), y=('z', df['j'])) ds['ref'] = xr.zeros_like(ds.distributed_thickness) * np.NaN ds['ref'].data[df['j'], df['i']] = df['thick'] rmsd = ((df.oggm - df.thick) ** 2).mean() ** .5 assert rmsd < 30 dfm = df.mean() np.testing.assert_allclose(dfm.thick, dfm.oggm, 10) if do_plot: import matplotlib.pyplot as plt df.plot(kind='scatter', x='oggm', y='thick') plt.axis('equal') f, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 3)) ds.ref.plot(ax=ax1) ds.distributed_thickness.plot(ax=ax2) plt.tight_layout() plt.show() def test_workflow(self): # This is a check that the inversion workflow works fine # Download the RGI file for the run # Make a new dataframe of those rgidf = gpd.read_file(get_demo_file('SouthGlacier.shp')) # Go - initialize working directories gdirs = workflow.init_glacier_directories(rgidf) # Preprocessing tasks task_list = [ tasks.define_glacier_region, tasks.glacier_masks, tasks.compute_centerlines, tasks.initialize_flowlines, tasks.catchment_area, tasks.catchment_intersections, tasks.catchment_width_geom, tasks.catchment_width_correction, tasks.compute_downstream_line, tasks.compute_downstream_bedshape, ] for task in task_list: execute_entity_task(task, gdirs) execute_entity_task(tasks.process_cru_data, gdirs, tmp_file=self.tf, pre_file=self.pf) execute_entity_task(tasks.local_t_star, gdirs) execute_entity_task(tasks.mu_star_calibration, gdirs) # Inversion tasks execute_entity_task(tasks.prepare_for_inversion, gdirs) # We use the default parameters for this run execute_entity_task(tasks.mass_conservation_inversion, gdirs) execute_entity_task(tasks.filter_inversion_output, gdirs) df = utils.compile_glacier_statistics(gdirs) df['inv_thickness_m'] = df['inv_volume_km3'] / df['rgi_area_km2'] * 1e3 assert df.inv_thickness_m[0] < 100 df = utils.compile_fixed_geometry_mass_balance(gdirs) assert len(df) > 100 if do_plot: import matplotlib.pyplot as plt from oggm.graphics import plot_inversion plot_inversion(gdirs) plt.show() @pytest.mark.slow class TestCoxeGlacier(unittest.TestCase): # Test case for a tidewater glacier def setUp(self): # test directory self.testdir = os.path.join(get_test_dir(), 'tmp') if not os.path.exists(self.testdir): os.makedirs(self.testdir) self.clean_dir() self.rgi_file = get_demo_file('rgi_RGI50-01.10299.shp') # Init cfg.initialize() cfg.PARAMS['use_intersects'] = False cfg.PATHS['dem_file'] = get_demo_file('dem_RGI50-01.10299.tif') cfg.PARAMS['border'] = 40 cfg.PATHS['working_dir'] = self.testdir cfg.PARAMS['use_kcalving_for_inversion'] = True cfg.PARAMS['use_kcalving_for_run'] = True apply_test_ref_tstars() def tearDown(self): self.rm_dir() def rm_dir(self): shutil.rmtree(self.testdir) def clean_dir(self): shutil.rmtree(self.testdir) os.makedirs(self.testdir) def test_set_width(self): entity = gpd.read_file(self.rgi_file).iloc[0] gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir) gis.define_glacier_region(gdir) gis.glacier_masks(gdir) centerlines.compute_centerlines(gdir) centerlines.initialize_flowlines(gdir) centerlines.compute_downstream_line(gdir) centerlines.compute_downstream_bedshape(gdir) centerlines.catchment_area(gdir) centerlines.catchment_intersections(gdir) centerlines.catchment_width_geom(gdir) centerlines.catchment_width_correction(gdir) # Test that area and area-altitude elev is fine with utils.ncDataset(gdir.get_filepath('gridded_data')) as nc: mask = nc.variables['glacier_mask'][:] topo = nc.variables['topo_smoothed'][:] rhgt = topo[np.where(mask)][:] fls = gdir.read_pickle('inversion_flowlines') hgt, widths = gdir.get_inversion_flowline_hw() bs = 100 bins = np.arange(utils.nicenumber(np.min(hgt), bs, lower=True), utils.nicenumber(np.max(hgt), bs) + 1, bs) h1, b = np.histogram(hgt, weights=widths, density=True, bins=bins) h2, b = np.histogram(rhgt, density=True, bins=bins) h1 = h1 / np.sum(h1) h2 = h2 / np.sum(h2) assert utils.rmsd(h1, h2) < 0.02 # less than 2% error new_area = np.sum(widths * fls[-1].dx * gdir.grid.dx) np.testing.assert_allclose(new_area, gdir.rgi_area_m2) centerlines.terminus_width_correction(gdir, new_width=714) fls = gdir.read_pickle('inversion_flowlines') hgt, widths = gdir.get_inversion_flowline_hw() # Check that the width is ok np.testing.assert_allclose(fls[-1].widths[-1] * gdir.grid.dx, 714) # Check for area distrib bins = np.arange(utils.nicenumber(np.min(hgt), bs, lower=True), utils.nicenumber(np.max(hgt), bs) + 1, bs) h1, b = np.histogram(hgt, weights=widths, density=True, bins=bins) h2, b = np.histogram(rhgt, density=True, bins=bins) h1 = h1 / np.sum(h1) h2 = h2 / np.sum(h2) assert utils.rmsd(h1, h2) < 0.02 # less than 2% error new_area = np.sum(widths * fls[-1].dx * gdir.grid.dx) np.testing.assert_allclose(new_area, gdir.rgi_area_m2) def test_run(self): entity = gpd.read_file(self.rgi_file).iloc[0] gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir) gis.define_glacier_region(gdir) gis.glacier_masks(gdir) centerlines.compute_centerlines(gdir) centerlines.initialize_flowlines(gdir) centerlines.compute_downstream_line(gdir) centerlines.compute_downstream_bedshape(gdir) centerlines.catchment_area(gdir) centerlines.catchment_intersections(gdir) centerlines.catchment_width_geom(gdir) centerlines.catchment_width_correction(gdir) # Climate tasks -- only data IO and tstar interpolation! tasks.process_dummy_cru_file(gdir, seed=0) tasks.local_t_star(gdir) tasks.mu_star_calibration(gdir) # Inversion tasks tasks.find_inversion_calving(gdir) # Final preparation for the run tasks.init_present_time_glacier(gdir) # check that calving happens in the real context as well tasks.run_constant_climate(gdir, bias=0, nyears=200, temperature_bias=-0.5) with xr.open_dataset(gdir.get_filepath('model_diagnostics')) as ds: assert ds.calving_m3[-1] > 10
bsd-3-clause
fullfanta/mxnet
example/ssd/dataset/pycocotools/coco.py
21
18778
__author__ = 'tylin' __version__ = '2.0' # Interface for accessing the Microsoft COCO dataset. # Microsoft COCO is a large image dataset designed for object detection, # segmentation, and caption generation. pycocotools is a Python API that # assists in loading, parsing and visualizing the annotations in COCO. # Please visit http://mscoco.org/ for more information on COCO, including # for the data, paper, and tutorials. The exact format of the annotations # is also described on the COCO website. For example usage of the pycocotools # please see pycocotools_demo.ipynb. In addition to this API, please download both # the COCO images and annotations in order to run the demo. # An alternative to using the API is to load the annotations directly # into Python dictionary # Using the API provides additional utility functions. Note that this API # supports both *instance* and *caption* annotations. In the case of # captions not all functions are defined (e.g. categories are undefined). # The following API functions are defined: # COCO - COCO api class that loads COCO annotation file and prepare data structures. # decodeMask - Decode binary mask M encoded via run-length encoding. # encodeMask - Encode binary mask M using run-length encoding. # getAnnIds - Get ann ids that satisfy given filter conditions. # getCatIds - Get cat ids that satisfy given filter conditions. # getImgIds - Get img ids that satisfy given filter conditions. # loadAnns - Load anns with the specified ids. # loadCats - Load cats with the specified ids. # loadImgs - Load imgs with the specified ids. # annToMask - Convert segmentation in an annotation to binary mask. # showAnns - Display the specified annotations. # loadRes - Load algorithm results and create API for accessing them. # download - Download COCO images from mscoco.org server. # Throughout the API "ann"=annotation, "cat"=category, and "img"=image. # Help on each functions can be accessed by: "help COCO>function". # See also COCO>decodeMask, # COCO>encodeMask, COCO>getAnnIds, COCO>getCatIds, # COCO>getImgIds, COCO>loadAnns, COCO>loadCats, # COCO>loadImgs, COCO>annToMask, COCO>showAnns # Microsoft COCO Toolbox. version 2.0 # Data, paper, and tutorials available at: http://mscoco.org/ # Code written by Piotr Dollar and Tsung-Yi Lin, 2014. # Licensed under the Simplified BSD License [see bsd.txt] import json import time import matplotlib.pyplot as plt from matplotlib.collections import PatchCollection from matplotlib.patches import Polygon import numpy as np import copy import itertools # from . import mask as maskUtils import os from collections import defaultdict import sys PYTHON_VERSION = sys.version_info[0] if PYTHON_VERSION == 2: from urllib import urlretrieve elif PYTHON_VERSION == 3: from urllib.request import urlretrieve class COCO: def __init__(self, annotation_file=None): """ Constructor of Microsoft COCO helper class for reading and visualizing annotations. :param annotation_file (str): location of annotation file :param image_folder (str): location to the folder that hosts images. :return: """ # load dataset self.dataset,self.anns,self.cats,self.imgs = dict(),dict(),dict(),dict() self.imgToAnns, self.catToImgs = defaultdict(list), defaultdict(list) if not annotation_file == None: print('loading annotations into memory...') tic = time.time() dataset = json.load(open(annotation_file, 'r')) assert type(dataset)==dict, 'annotation file format {} not supported'.format(type(dataset)) print('Done (t={:0.2f}s)'.format(time.time()- tic)) self.dataset = dataset self.createIndex() def createIndex(self): # create index print('creating index...') anns, cats, imgs = {}, {}, {} imgToAnns,catToImgs = defaultdict(list),defaultdict(list) if 'annotations' in self.dataset: for ann in self.dataset['annotations']: imgToAnns[ann['image_id']].append(ann) anns[ann['id']] = ann if 'images' in self.dataset: for img in self.dataset['images']: imgs[img['id']] = img if 'categories' in self.dataset: for cat in self.dataset['categories']: cats[cat['id']] = cat if 'annotations' in self.dataset and 'categories' in self.dataset: for ann in self.dataset['annotations']: catToImgs[ann['category_id']].append(ann['image_id']) print('index created!') # create class members self.anns = anns self.imgToAnns = imgToAnns self.catToImgs = catToImgs self.imgs = imgs self.cats = cats def info(self): """ Print information about the annotation file. :return: """ for key, value in self.dataset['info'].items(): print('{}: {}'.format(key, value)) def getAnnIds(self, imgIds=[], catIds=[], areaRng=[], iscrowd=None): """ Get ann ids that satisfy given filter conditions. default skips that filter :param imgIds (int array) : get anns for given imgs catIds (int array) : get anns for given cats areaRng (float array) : get anns for given area range (e.g. [0 inf]) iscrowd (boolean) : get anns for given crowd label (False or True) :return: ids (int array) : integer array of ann ids """ imgIds = imgIds if type(imgIds) == list else [imgIds] catIds = catIds if type(catIds) == list else [catIds] if len(imgIds) == len(catIds) == len(areaRng) == 0: anns = self.dataset['annotations'] else: if not len(imgIds) == 0: lists = [self.imgToAnns[imgId] for imgId in imgIds if imgId in self.imgToAnns] anns = list(itertools.chain.from_iterable(lists)) else: anns = self.dataset['annotations'] anns = anns if len(catIds) == 0 else [ann for ann in anns if ann['category_id'] in catIds] anns = anns if len(areaRng) == 0 else [ann for ann in anns if ann['area'] > areaRng[0] and ann['area'] < areaRng[1]] if not iscrowd == None: ids = [ann['id'] for ann in anns if ann['iscrowd'] == iscrowd] else: ids = [ann['id'] for ann in anns] return ids def getCatIds(self, catNms=[], supNms=[], catIds=[]): """ filtering parameters. default skips that filter. :param catNms (str array) : get cats for given cat names :param supNms (str array) : get cats for given supercategory names :param catIds (int array) : get cats for given cat ids :return: ids (int array) : integer array of cat ids """ catNms = catNms if type(catNms) == list else [catNms] supNms = supNms if type(supNms) == list else [supNms] catIds = catIds if type(catIds) == list else [catIds] if len(catNms) == len(supNms) == len(catIds) == 0: cats = self.dataset['categories'] else: cats = self.dataset['categories'] cats = cats if len(catNms) == 0 else [cat for cat in cats if cat['name'] in catNms] cats = cats if len(supNms) == 0 else [cat for cat in cats if cat['supercategory'] in supNms] cats = cats if len(catIds) == 0 else [cat for cat in cats if cat['id'] in catIds] ids = [cat['id'] for cat in cats] return ids def getImgIds(self, imgIds=[], catIds=[]): ''' Get img ids that satisfy given filter conditions. :param imgIds (int array) : get imgs for given ids :param catIds (int array) : get imgs with all given cats :return: ids (int array) : integer array of img ids ''' imgIds = imgIds if type(imgIds) == list else [imgIds] catIds = catIds if type(catIds) == list else [catIds] if len(imgIds) == len(catIds) == 0: ids = self.imgs.keys() else: ids = set(imgIds) for i, catId in enumerate(catIds): if i == 0 and len(ids) == 0: ids = set(self.catToImgs[catId]) else: ids &= set(self.catToImgs[catId]) return list(ids) def loadAnns(self, ids=[]): """ Load anns with the specified ids. :param ids (int array) : integer ids specifying anns :return: anns (object array) : loaded ann objects """ if type(ids) == list: return [self.anns[id] for id in ids] elif type(ids) == int: return [self.anns[ids]] def loadCats(self, ids=[]): """ Load cats with the specified ids. :param ids (int array) : integer ids specifying cats :return: cats (object array) : loaded cat objects """ if type(ids) == list: return [self.cats[id] for id in ids] elif type(ids) == int: return [self.cats[ids]] def loadImgs(self, ids=[]): """ Load anns with the specified ids. :param ids (int array) : integer ids specifying img :return: imgs (object array) : loaded img objects """ if type(ids) == list: return [self.imgs[id] for id in ids] elif type(ids) == int: return [self.imgs[ids]] def showAnns(self, anns): """ Display the specified annotations. :param anns (array of object): annotations to display :return: None """ if len(anns) == 0: return 0 if 'segmentation' in anns[0] or 'keypoints' in anns[0]: datasetType = 'instances' elif 'caption' in anns[0]: datasetType = 'captions' else: raise Exception('datasetType not supported') if datasetType == 'instances': ax = plt.gca() ax.set_autoscale_on(False) polygons = [] color = [] for ann in anns: c = (np.random.random((1, 3))*0.6+0.4).tolist()[0] if 'segmentation' in ann: if type(ann['segmentation']) == list: # polygon for seg in ann['segmentation']: poly = np.array(seg).reshape((int(len(seg)/2), 2)) polygons.append(Polygon(poly)) color.append(c) else: # mask t = self.imgs[ann['image_id']] if type(ann['segmentation']['counts']) == list: # rle = maskUtils.frPyObjects([ann['segmentation']], t['height'], t['width']) raise NotImplementedError("maskUtils disabled!") else: rle = [ann['segmentation']] # m = maskUtils.decode(rle) raise NotImplementedError("maskUtils disabled!") img = np.ones( (m.shape[0], m.shape[1], 3) ) if ann['iscrowd'] == 1: color_mask = np.array([2.0,166.0,101.0])/255 if ann['iscrowd'] == 0: color_mask = np.random.random((1, 3)).tolist()[0] for i in range(3): img[:,:,i] = color_mask[i] ax.imshow(np.dstack( (img, m*0.5) )) if 'keypoints' in ann and type(ann['keypoints']) == list: # turn skeleton into zero-based index sks = np.array(self.loadCats(ann['category_id'])[0]['skeleton'])-1 kp = np.array(ann['keypoints']) x = kp[0::3] y = kp[1::3] v = kp[2::3] for sk in sks: if np.all(v[sk]>0): plt.plot(x[sk],y[sk], linewidth=3, color=c) plt.plot(x[v>0], y[v>0],'o',markersize=8, markerfacecolor=c, markeredgecolor='k',markeredgewidth=2) plt.plot(x[v>1], y[v>1],'o',markersize=8, markerfacecolor=c, markeredgecolor=c, markeredgewidth=2) p = PatchCollection(polygons, facecolor=color, linewidths=0, alpha=0.4) ax.add_collection(p) p = PatchCollection(polygons, facecolor='none', edgecolors=color, linewidths=2) ax.add_collection(p) elif datasetType == 'captions': for ann in anns: print(ann['caption']) def loadRes(self, resFile): """ Load result file and return a result api object. :param resFile (str) : file name of result file :return: res (obj) : result api object """ res = COCO() res.dataset['images'] = [img for img in self.dataset['images']] print('Loading and preparing results...') tic = time.time() if type(resFile) == str or type(resFile) == unicode: anns = json.load(open(resFile)) elif type(resFile) == np.ndarray: anns = self.loadNumpyAnnotations(resFile) else: anns = resFile assert type(anns) == list, 'results in not an array of objects' annsImgIds = [ann['image_id'] for ann in anns] assert set(annsImgIds) == (set(annsImgIds) & set(self.getImgIds())), \ 'Results do not correspond to current coco set' if 'caption' in anns[0]: imgIds = set([img['id'] for img in res.dataset['images']]) & set([ann['image_id'] for ann in anns]) res.dataset['images'] = [img for img in res.dataset['images'] if img['id'] in imgIds] for id, ann in enumerate(anns): ann['id'] = id+1 elif 'bbox' in anns[0] and not anns[0]['bbox'] == []: res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) for id, ann in enumerate(anns): bb = ann['bbox'] x1, x2, y1, y2 = [bb[0], bb[0]+bb[2], bb[1], bb[1]+bb[3]] if not 'segmentation' in ann: ann['segmentation'] = [[x1, y1, x1, y2, x2, y2, x2, y1]] ann['area'] = bb[2]*bb[3] ann['id'] = id+1 ann['iscrowd'] = 0 elif 'segmentation' in anns[0]: res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) for id, ann in enumerate(anns): # now only support compressed RLE format as segmentation results # ann['area'] = maskUtils.area(ann['segmentation']) raise NotImplementedError("maskUtils disabled!") if not 'bbox' in ann: # ann['bbox'] = maskUtils.toBbox(ann['segmentation']) raise NotImplementedError("maskUtils disabled!") ann['id'] = id+1 ann['iscrowd'] = 0 elif 'keypoints' in anns[0]: res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) for id, ann in enumerate(anns): s = ann['keypoints'] x = s[0::3] y = s[1::3] x0,x1,y0,y1 = np.min(x), np.max(x), np.min(y), np.max(y) ann['area'] = (x1-x0)*(y1-y0) ann['id'] = id + 1 ann['bbox'] = [x0,y0,x1-x0,y1-y0] print('DONE (t={:0.2f}s)'.format(time.time()- tic)) res.dataset['annotations'] = anns res.createIndex() return res def download(self, tarDir = None, imgIds = [] ): ''' Download COCO images from mscoco.org server. :param tarDir (str): COCO results directory name imgIds (list): images to be downloaded :return: ''' if tarDir is None: print('Please specify target directory') return -1 if len(imgIds) == 0: imgs = self.imgs.values() else: imgs = self.loadImgs(imgIds) N = len(imgs) if not os.path.exists(tarDir): os.makedirs(tarDir) for i, img in enumerate(imgs): tic = time.time() fname = os.path.join(tarDir, img['file_name']) if not os.path.exists(fname): urlretrieve(img['coco_url'], fname) print('downloaded {}/{} images (t={:0.1f}s)'.format(i, N, time.time()- tic)) def loadNumpyAnnotations(self, data): """ Convert result data from a numpy array [Nx7] where each row contains {imageID,x1,y1,w,h,score,class} :param data (numpy.ndarray) :return: annotations (python nested list) """ print('Converting ndarray to lists...') assert(type(data) == np.ndarray) print(data.shape) assert(data.shape[1] == 7) N = data.shape[0] ann = [] for i in range(N): if i % 1000000 == 0: print('{}/{}'.format(i,N)) ann += [{ 'image_id' : int(data[i, 0]), 'bbox' : [ data[i, 1], data[i, 2], data[i, 3], data[i, 4] ], 'score' : data[i, 5], 'category_id': int(data[i, 6]), }] return ann def annToRLE(self, ann): """ Convert annotation which can be polygons, uncompressed RLE to RLE. :return: binary mask (numpy 2D array) """ t = self.imgs[ann['image_id']] h, w = t['height'], t['width'] segm = ann['segmentation'] if type(segm) == list: # polygon -- a single object might consist of multiple parts # we merge all parts into one mask rle code # rles = maskUtils.frPyObjects(segm, h, w) # rle = maskUtils.merge(rles) raise NotImplementedError("maskUtils disabled!") elif type(segm['counts']) == list: # uncompressed RLE # rle = maskUtils.frPyObjects(segm, h, w) raise NotImplementedError("maskUtils disabled!") else: # rle rle = ann['segmentation'] return rle def annToMask(self, ann): """ Convert annotation which can be polygons, uncompressed RLE, or RLE to binary mask. :return: binary mask (numpy 2D array) """ rle = self.annToRLE(ann) # m = maskUtils.decode(rle) raise NotImplementedError("maskUtils disabled!") return m
apache-2.0
dreadsci/forget-me-not
jobs.py
2
9060
''' BLINC Adaptive Prosthetics Toolkit - Bionic Limbs for Improved Natural Control, blinclab.ca [email protected] A toolkit for running machine learning experiments on prosthetic limb data This module file handles submitting experiments to Wesgrid Usage: jobs.py --log_name LOG_DIR [OPTIONS] Edit this file to set the experiment params. See class definition for job-submission parameters. ''' from experiment import * from local import base_dir, test_dir import subprocess # I think it is easier to edit this file than to use command-line args for the jobs exp_params = {'base_dir': [base_dir], 'platform': ['calgary'], 'protocol': ['bib'],#, 'book1', 'book2', 'geo', 'news', 'obj1', 'obj2', #'paper1', 'paper2', 'paper3', 'paper4', 'paper5', 'pic', 'progp', 'progl', 'progc'], 'model': ['FastCTW', 'PTW_FastCTW', 'FMN_FastCTW'], 'depth': [16, 32, 48, 64] } def pull_stats_from_file(filename): with open('logs/{}'.format(filename), 'r') as f: stats = f.readlines()[-7:] if 'Starting' in stats[-1]: return {'flaked': True} elif 'killed' in stats[-1]: return {'killed': stats[-1].split(':')[-1].strip()} data = {} for s in stats: try: parts = s.split(':') data[parts[0].strip()] = parts[1].split()[0] except IndexError: pass return data def pull_params_from_name(filename): data = {'filename': filename} (data['protocol'], data['model'], depth, *parts) = filename.split('-') data['depth'] = depth.split('.')[0] return data def get_all_logs(): data = {} for f in os.listdir('logs'): if '.log' in f: name = f.split('.')[0] params = pull_params_from_name(f) params.update(pull_stats_from_file(f)) data[name] = Series(params) return DataFrame(data) def graph_results(data, protocol): import matplotlib.pyplot as plt subset = data[data.protocol == protocol][['model', 'depth', 'Size']].convert_objects(convert_numeric=True) models = sorted(subset.model.unique()) depths = sorted(subset.depth.unique()) for m in models: subset[subset.model==m].plot(x='depth', y='Size', label=m, xticks=depths) plt.legend() plt.title('Compressed size of {} as a function of depth for each model type'.format(protocol)) class JobSet(Structure): """ JobSet takes the dictionary of parameter sets defined above and parses them into a sequence of experiment.py calls. Usage: jobs.py --log_name DIRNAME [OPTIONS] ---log_name The directory to store logs of the submission and output ---debug Do not call qsub, just print out command ---run_now Run the experiment directly (still submitting or not according to other parameters) ---safe_mode Do not overwrite files ---num_minutes Number of minutes to request ---num_hours """ _fields = [Dir('log_name', required=True, keyword=False, default='logs'), Boolean('debug', default=True, transient=True), Boolean('run_now', default=False, transient=True), Boolean('safe_mode', default=True, transient=True), Integer('num_minutes', default=20, transient=True), Integer('num_hours', default=0, transient=True), ] def run(self, **kwargs): # figure out which keys have multiple options interesting_keys = [k for k in kwargs if len(kwargs[k]) > 1] param_sets = unique_dict_sets(kwargs) self.num_checked = 0 self.num_submitted = 0 for ps in param_sets: self.num_checked += 1 infile = os.path.join(ps['base_dir'], ps['platform'], ps['protocol']) # check if we need to cat the file if not os.path.exists(infile): paths = [os.path.join(ps['base_dir'], ps['platform'], f) for f in ps['protocol'].split('_')] extra = "\n".join(["echo \"Checking the existence of the file {}\"".format(ps['protocol']), "if [ ! -e {} ]".format(infile), " then `cat {} > {}`".format(' '.join(paths), infile), " echo \"...created\"", "fi" ]) else: extra = "" #outfile = os.path.join(ps['base_dir'], ps['platform'], ps['protocol']+"_", ps['model']) #os.makedirs(os.path.dirname(outfile), exist_ok=True) more = True i = 0 name = '-'.join([ps['protocol'], ps['model'], str(ps['depth'])]) #if self.safe_mode: # print("Checking if log file for {} exists...".format(name)) #if os.path.exists(outfile): # print("already there, turn off safe mode to overwrite.") # continue argstring = "compress -m {model} -d {depth} {infile} {outfile}".format(model=ps['model'], infile=infile, depth=ps['depth'], outfile='/dev/null') self.submit_job(name, argstring, extra) self.num_submitted += 1 print("Submitted {} jobs out of {}".format(self.num_submitted, self.num_checked)) def get_jobfilename(self, **kwargs): filename = '' bits = {} for k in list(kwargs): if '_string' in k: filename = "_".join([filename, kwargs.pop(k)]) return "_".join([filename, clean_string(kwargs)]) def submit_job(self, filename, argstring, extra=None): """ Submit specific experiment to the pbs experiment queue Save the submission file with the jobid If debug is on, print job command rather than submitting it. If run_now is on, run the experiment directly. """ sh = self.pbs_template(filename, argstring, extra) tmpfile = os.path.join(self.log_dir, filename) print("Scheduling {} ... ".format(filename), end=""); sys.stdout.flush() with open(tmpfile, 'w') as shfile: shfile.write(sh) cmd = "qsub {}".format(tmpfile) if self.debug: print("\n"+cmd) pname = 'DEBUG' else: try: P = subprocess.check_output(cmd, shell=True) pname = P.decode('ascii').strip() print("Submitted {}".format(pname)) except Exception as e: print("Problem calling {}\n{}".format(cmd, e)) pname = "FAILED" if self.run_now: print("Running experiment") try: import z z.__main__(argstring.split()) except Exception as e: print("Problem with experiment: {}".format(e)) jobscript = "{}.{}.sh".format(filename, pname) print("Saving {} file".format(jobscript)) script_path = os.path.join(self.log_dir, jobscript) os.rename(tmpfile, script_path) return script_path def pbs_template(self, filename, argstring, extra=""): lines = ["#!/bin/sh", "", "#PBS -S /bin/sh", "#PBS -j oe", "#PBS -r n", "#PBS -o {0}/{1}.$PBS_JOBID.log".format(self.log_dir, filename), "#PBS -l nodes=1:ppn=1," #no comma here on purpose "walltime={}:{}:00,mem=4000mb".format(self.num_hours, self.num_minutes), "", extra, "cd $PBS_O_WORKDIR", "echo \"Current working directory is `pwd`\"", "echo \"Starting run at: `date`\"", "alias pypy=/home/akoop/pypy3-2.4-linux_x86_64-portable/bin/pypy3", "pypy z.py {}".format(argstring), "echo \"Completed run with exit code $? at: `date`\""] return "\n".join(lines) if __name__ == "__main__": if len(sys.argv) > 1: print("Creating...") setup = JobSet.from_args(sys.argv[1:]) print("Running...") setup.run(**exp_params) print("Done") else: print("Supply at least one command-line argument to run for real") setup = JobSet.from_args(['--run_now', '--debug', '--safe_mode', '--log_name', 'logs']) #setup.get_parser().print_help() print("Running in debug mode.") setup.run(**exp_params)
unlicense
RPGOne/Skynet
scikit-learn-0.18.1/sklearn/linear_model/ransac.py
16
17217
# coding: utf-8 # Author: Johannes Schönberger # # License: BSD 3 clause import numpy as np import warnings from ..base import BaseEstimator, MetaEstimatorMixin, RegressorMixin, clone from ..utils import check_random_state, check_array, check_consistent_length from ..utils.random import sample_without_replacement from ..utils.validation import check_is_fitted from .base import LinearRegression from ..utils.validation import has_fit_parameter _EPSILON = np.spacing(1) def _dynamic_max_trials(n_inliers, n_samples, min_samples, probability): """Determine number trials such that at least one outlier-free subset is sampled for the given inlier/outlier ratio. Parameters ---------- n_inliers : int Number of inliers in the data. n_samples : int Total number of samples in the data. min_samples : int Minimum number of samples chosen randomly from original data. probability : float Probability (confidence) that one outlier-free sample is generated. Returns ------- trials : int Number of trials. """ inlier_ratio = n_inliers / float(n_samples) nom = max(_EPSILON, 1 - probability) denom = max(_EPSILON, 1 - inlier_ratio ** min_samples) if nom == 1: return 0 if denom == 1: return float('inf') return abs(float(np.ceil(np.log(nom) / np.log(denom)))) class RANSACRegressor(BaseEstimator, MetaEstimatorMixin, RegressorMixin): """RANSAC (RANdom SAmple Consensus) algorithm. RANSAC is an iterative algorithm for the robust estimation of parameters from a subset of inliers from the complete data set. More information can be found in the general documentation of linear models. A detailed description of the algorithm can be found in the documentation of the ``linear_model`` sub-package. Read more in the :ref:`User Guide <ransac_regression>`. Parameters ---------- base_estimator : object, optional Base estimator object which implements the following methods: * `fit(X, y)`: Fit model to given training data and target values. * `score(X, y)`: Returns the mean accuracy on the given test data, which is used for the stop criterion defined by `stop_score`. Additionally, the score is used to decide which of two equally large consensus sets is chosen as the better one. If `base_estimator` is None, then ``base_estimator=sklearn.linear_model.LinearRegression()`` is used for target values of dtype float. Note that the current implementation only supports regression estimators. min_samples : int (>= 1) or float ([0, 1]), optional Minimum number of samples chosen randomly from original data. Treated as an absolute number of samples for `min_samples >= 1`, treated as a relative number `ceil(min_samples * X.shape[0]`) for `min_samples < 1`. This is typically chosen as the minimal number of samples necessary to estimate the given `base_estimator`. By default a ``sklearn.linear_model.LinearRegression()`` estimator is assumed and `min_samples` is chosen as ``X.shape[1] + 1``. residual_threshold : float, optional Maximum residual for a data sample to be classified as an inlier. By default the threshold is chosen as the MAD (median absolute deviation) of the target values `y`. is_data_valid : callable, optional This function is called with the randomly selected data before the model is fitted to it: `is_data_valid(X, y)`. If its return value is False the current randomly chosen sub-sample is skipped. is_model_valid : callable, optional This function is called with the estimated model and the randomly selected data: `is_model_valid(model, X, y)`. If its return value is False the current randomly chosen sub-sample is skipped. Rejecting samples with this function is computationally costlier than with `is_data_valid`. `is_model_valid` should therefore only be used if the estimated model is needed for making the rejection decision. max_trials : int, optional Maximum number of iterations for random sample selection. stop_n_inliers : int, optional Stop iteration if at least this number of inliers are found. stop_score : float, optional Stop iteration if score is greater equal than this threshold. stop_probability : float in range [0, 1], optional RANSAC iteration stops if at least one outlier-free set of the training data is sampled in RANSAC. This requires to generate at least N samples (iterations):: N >= log(1 - probability) / log(1 - e**m) where the probability (confidence) is typically set to high value such as 0.99 (the default) and e is the current fraction of inliers w.r.t. the total number of samples. residual_metric : callable, optional Metric to reduce the dimensionality of the residuals to 1 for multi-dimensional target values ``y.shape[1] > 1``. By default the sum of absolute differences is used:: lambda dy: np.sum(np.abs(dy), axis=1) NOTE: residual_metric is deprecated from 0.18 and will be removed in 0.20 Use ``loss`` instead. loss : string, callable, optional, default "absolute_loss" String inputs, "absolute_loss" and "squared_loss" are supported which find the absolute loss and squared loss per sample respectively. If ``loss`` is a callable, then it should be a function that takes two arrays as inputs, the true and predicted value and returns a 1-D array with the ``i``th value of the array corresponding to the loss on `X[i]`. If the loss on a sample is greater than the ``residual_threshold``, then this sample is classified as an outlier. random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Attributes ---------- estimator_ : object Best fitted model (copy of the `base_estimator` object). n_trials_ : int Number of random selection trials until one of the stop criteria is met. It is always ``<= max_trials``. inlier_mask_ : bool array of shape [n_samples] Boolean mask of inliers classified as ``True``. References ---------- .. [1] https://en.wikipedia.org/wiki/RANSAC .. [2] http://www.cs.columbia.edu/~belhumeur/courses/compPhoto/ransac.pdf .. [3] http://www.bmva.org/bmvc/2009/Papers/Paper355/Paper355.pdf """ def __init__(self, base_estimator=None, min_samples=None, residual_threshold=None, is_data_valid=None, is_model_valid=None, max_trials=100, stop_n_inliers=np.inf, stop_score=np.inf, stop_probability=0.99, residual_metric=None, loss='absolute_loss', random_state=None): self.base_estimator = base_estimator self.min_samples = min_samples self.residual_threshold = residual_threshold self.is_data_valid = is_data_valid self.is_model_valid = is_model_valid self.max_trials = max_trials self.stop_n_inliers = stop_n_inliers self.stop_score = stop_score self.stop_probability = stop_probability self.residual_metric = residual_metric self.random_state = random_state self.loss = loss def fit(self, X, y, sample_weight=None): """Fit estimator using RANSAC algorithm. Parameters ---------- X : array-like or sparse matrix, shape [n_samples, n_features] Training data. y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values. sample_weight : array-like, shape = [n_samples] Individual weights for each sample raises error if sample_weight is passed and base_estimator fit method does not support it. Raises ------ ValueError If no valid consensus set could be found. This occurs if `is_data_valid` and `is_model_valid` return False for all `max_trials` randomly chosen sub-samples. """ X = check_array(X, accept_sparse='csr') y = check_array(y, ensure_2d=False) check_consistent_length(X, y) if self.base_estimator is not None: base_estimator = clone(self.base_estimator) else: base_estimator = LinearRegression() if self.min_samples is None: # assume linear model by default min_samples = X.shape[1] + 1 elif 0 < self.min_samples < 1: min_samples = np.ceil(self.min_samples * X.shape[0]) elif self.min_samples >= 1: if self.min_samples % 1 != 0: raise ValueError("Absolute number of samples must be an " "integer value.") min_samples = self.min_samples else: raise ValueError("Value for `min_samples` must be scalar and " "positive.") if min_samples > X.shape[0]: raise ValueError("`min_samples` may not be larger than number " "of samples ``X.shape[0]``.") if self.stop_probability < 0 or self.stop_probability > 1: raise ValueError("`stop_probability` must be in range [0, 1].") if self.residual_threshold is None: # MAD (median absolute deviation) residual_threshold = np.median(np.abs(y - np.median(y))) else: residual_threshold = self.residual_threshold if self.residual_metric is not None: warnings.warn( "'residual_metric' was deprecated in version 0.18 and " "will be removed in version 0.20. Use 'loss' instead.", DeprecationWarning) if self.loss == "absolute_loss": if y.ndim == 1: loss_function = lambda y_true, y_pred: np.abs(y_true - y_pred) else: loss_function = lambda \ y_true, y_pred: np.sum(np.abs(y_true - y_pred), axis=1) elif self.loss == "squared_loss": if y.ndim == 1: loss_function = lambda y_true, y_pred: (y_true - y_pred) ** 2 else: loss_function = lambda \ y_true, y_pred: np.sum((y_true - y_pred) ** 2, axis=1) elif callable(self.loss): loss_function = self.loss else: raise ValueError( "loss should be 'absolute_loss', 'squared_loss' or a callable." "Got %s. " % self.loss) random_state = check_random_state(self.random_state) try: # Not all estimator accept a random_state base_estimator.set_params(random_state=random_state) except ValueError: pass estimator_fit_has_sample_weight = has_fit_parameter(base_estimator, "sample_weight") estimator_name = type(base_estimator).__name__ if (sample_weight is not None and not estimator_fit_has_sample_weight): raise ValueError("%s does not support sample_weight. Samples" " weights are only used for the calibration" " itself." % estimator_name) if sample_weight is not None: sample_weight = np.asarray(sample_weight) n_inliers_best = 0 score_best = np.inf inlier_mask_best = None X_inlier_best = None y_inlier_best = None # number of data samples n_samples = X.shape[0] sample_idxs = np.arange(n_samples) n_samples, _ = X.shape for self.n_trials_ in range(1, self.max_trials + 1): # choose random sample set subset_idxs = sample_without_replacement(n_samples, min_samples, random_state=random_state) X_subset = X[subset_idxs] y_subset = y[subset_idxs] # check if random sample set is valid if (self.is_data_valid is not None and not self.is_data_valid(X_subset, y_subset)): continue # fit model for current random sample set if sample_weight is None: base_estimator.fit(X_subset, y_subset) else: base_estimator.fit(X_subset, y_subset, sample_weight=sample_weight[subset_idxs]) # check if estimated model is valid if (self.is_model_valid is not None and not self.is_model_valid(base_estimator, X_subset, y_subset)): continue # residuals of all data for current random sample model y_pred = base_estimator.predict(X) # XXX: Deprecation: Remove this if block in 0.20 if self.residual_metric is not None: diff = y_pred - y if diff.ndim == 1: diff = diff.reshape(-1, 1) residuals_subset = self.residual_metric(diff) else: residuals_subset = loss_function(y, y_pred) # classify data into inliers and outliers inlier_mask_subset = residuals_subset < residual_threshold n_inliers_subset = np.sum(inlier_mask_subset) # less inliers -> skip current random sample if n_inliers_subset < n_inliers_best: continue if n_inliers_subset == 0: raise ValueError("No inliers found, possible cause is " "setting residual_threshold ({0}) too low.".format( self.residual_threshold)) # extract inlier data set inlier_idxs_subset = sample_idxs[inlier_mask_subset] X_inlier_subset = X[inlier_idxs_subset] y_inlier_subset = y[inlier_idxs_subset] # score of inlier data set score_subset = base_estimator.score(X_inlier_subset, y_inlier_subset) # same number of inliers but worse score -> skip current random # sample if (n_inliers_subset == n_inliers_best and score_subset < score_best): continue # save current random sample as best sample n_inliers_best = n_inliers_subset score_best = score_subset inlier_mask_best = inlier_mask_subset X_inlier_best = X_inlier_subset y_inlier_best = y_inlier_subset # break if sufficient number of inliers or score is reached if (n_inliers_best >= self.stop_n_inliers or score_best >= self.stop_score or self.n_trials_ >= _dynamic_max_trials(n_inliers_best, n_samples, min_samples, self.stop_probability)): break # if none of the iterations met the required criteria if inlier_mask_best is None: raise ValueError( "RANSAC could not find valid consensus set, because" " either the `residual_threshold` rejected all the samples or" " `is_data_valid` and `is_model_valid` returned False for all" " `max_trials` randomly ""chosen sub-samples. Consider " "relaxing the ""constraints.") # estimate final model using all inliers base_estimator.fit(X_inlier_best, y_inlier_best) self.estimator_ = base_estimator self.inlier_mask_ = inlier_mask_best return self def predict(self, X): """Predict using the estimated model. This is a wrapper for `estimator_.predict(X)`. Parameters ---------- X : numpy array of shape [n_samples, n_features] Returns ------- y : array, shape = [n_samples] or [n_samples, n_targets] Returns predicted values. """ check_is_fitted(self, 'estimator_') return self.estimator_.predict(X) def score(self, X, y): """Returns the score of the prediction. This is a wrapper for `estimator_.score(X, y)`. Parameters ---------- X : numpy array or sparse matrix of shape [n_samples, n_features] Training data. y : array, shape = [n_samples] or [n_samples, n_targets] Target values. Returns ------- z : float Score of the prediction. """ check_is_fitted(self, 'estimator_') return self.estimator_.score(X, y)
bsd-3-clause
mayblue9/scikit-learn
examples/cluster/plot_mini_batch_kmeans.py
265
4081
""" ==================================================================== Comparison of the K-Means and MiniBatchKMeans clustering algorithms ==================================================================== We want to compare the performance of the MiniBatchKMeans and KMeans: the MiniBatchKMeans is faster, but gives slightly different results (see :ref:`mini_batch_kmeans`). We will cluster a set of data, first with KMeans and then with MiniBatchKMeans, and plot the results. We will also plot the points that are labelled differently between the two algorithms. """ print(__doc__) import time import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import MiniBatchKMeans, KMeans from sklearn.metrics.pairwise import pairwise_distances_argmin from sklearn.datasets.samples_generator import make_blobs ############################################################################## # Generate sample data np.random.seed(0) batch_size = 45 centers = [[1, 1], [-1, -1], [1, -1]] n_clusters = len(centers) X, labels_true = make_blobs(n_samples=3000, centers=centers, cluster_std=0.7) ############################################################################## # Compute clustering with Means k_means = KMeans(init='k-means++', n_clusters=3, n_init=10) t0 = time.time() k_means.fit(X) t_batch = time.time() - t0 k_means_labels = k_means.labels_ k_means_cluster_centers = k_means.cluster_centers_ k_means_labels_unique = np.unique(k_means_labels) ############################################################################## # Compute clustering with MiniBatchKMeans mbk = MiniBatchKMeans(init='k-means++', n_clusters=3, batch_size=batch_size, n_init=10, max_no_improvement=10, verbose=0) t0 = time.time() mbk.fit(X) t_mini_batch = time.time() - t0 mbk_means_labels = mbk.labels_ mbk_means_cluster_centers = mbk.cluster_centers_ mbk_means_labels_unique = np.unique(mbk_means_labels) ############################################################################## # Plot result fig = plt.figure(figsize=(8, 3)) fig.subplots_adjust(left=0.02, right=0.98, bottom=0.05, top=0.9) colors = ['#4EACC5', '#FF9C34', '#4E9A06'] # We want to have the same colors for the same cluster from the # MiniBatchKMeans and the KMeans algorithm. Let's pair the cluster centers per # closest one. order = pairwise_distances_argmin(k_means_cluster_centers, mbk_means_cluster_centers) # KMeans ax = fig.add_subplot(1, 3, 1) for k, col in zip(range(n_clusters), colors): my_members = k_means_labels == k cluster_center = k_means_cluster_centers[k] ax.plot(X[my_members, 0], X[my_members, 1], 'w', markerfacecolor=col, marker='.') ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) ax.set_title('KMeans') ax.set_xticks(()) ax.set_yticks(()) plt.text(-3.5, 1.8, 'train time: %.2fs\ninertia: %f' % ( t_batch, k_means.inertia_)) # MiniBatchKMeans ax = fig.add_subplot(1, 3, 2) for k, col in zip(range(n_clusters), colors): my_members = mbk_means_labels == order[k] cluster_center = mbk_means_cluster_centers[order[k]] ax.plot(X[my_members, 0], X[my_members, 1], 'w', markerfacecolor=col, marker='.') ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) ax.set_title('MiniBatchKMeans') ax.set_xticks(()) ax.set_yticks(()) plt.text(-3.5, 1.8, 'train time: %.2fs\ninertia: %f' % (t_mini_batch, mbk.inertia_)) # Initialise the different array to all False different = (mbk_means_labels == 4) ax = fig.add_subplot(1, 3, 3) for l in range(n_clusters): different += ((k_means_labels == k) != (mbk_means_labels == order[k])) identic = np.logical_not(different) ax.plot(X[identic, 0], X[identic, 1], 'w', markerfacecolor='#bbbbbb', marker='.') ax.plot(X[different, 0], X[different, 1], 'w', markerfacecolor='m', marker='.') ax.set_title('Difference') ax.set_xticks(()) ax.set_yticks(()) plt.show()
bsd-3-clause
yabata/ficus
doc/conf.py
1
1826
# -*- coding: utf-8 -*- extensions = [ 'sphinx.ext.intersphinx', 'sphinx.ext.mathjax', ] #templates_path = ['_templates'] source_suffix = '.rst' master_doc = 'index' project = u'ficus' copyright = u'2015, Dennis Atabay' author = u'Dennis Atabay' version = '0.1' release = '0.1' exclude_patterns = ['_build'] #pygments_style = 'sphinx' # HTML output htmlhelp_basename = 'ficusdoc' # LaTeX output latex_elements = { 'papersize': 'a4paper', 'pointsize': '11pt', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'ficus.tex', u'ficus Documentation', u'Dannis Atabay', 'manual'), ] # Manual page output # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'ficus', u'ficus Documentation', [author], 1) ] # Texinfo output # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'ficus', u'ficus Documentation', author, 'ficus', 'A (mixed integer) linear optimisation model for local energy systems', 'Miscellaneous'), ] # Epub output # Bibliographic Dublin Core info. epub_title = u'ficus' epub_author = u'Dennis Atabay' epub_publisher = u'Dennis Atabay' epub_copyright = u'2015, Dennis Atabay' epub_exclude_files = ['search.html'] # Intersphinx # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = { 'http://docs.python.org/': None, 'pandas': ('http://pandas.pydata.org/pandas-docs/stable/', None), 'matplotlib': ('http://matplotlib.org/', None)}
gpl-3.0
Archman/beamline
beamline/datautils.py
1
10884
#!/usr/bin/env python # -*- coding: utf-8 -*- """ This module is created for data processing framework, to make rules for data saving, visualization issues, etc. """ try: import sdds SDDS_ = True except: SDDS_ = False import h5py import numpy as np import subprocess import os class DataExtracter(object): """ Extract required data from a SDDS formated file, to put into hdf5 formated file or just dump into RAM for post-processing. :param sddsfile: filename of SDDS data file :param kws: packed tuple/list options, usually sdds column names, e.g. ``('s', 'Sx')`` :Example: >>> # *sddsquery -col* shows it has 's', 'Sx' data columns >>> sddsfile = 'output.sdds' >>> param_list = ('s', 'Sx') >>> dh = DataExtracter(sddsfile, *param_list) >>> # *dh* is a newly created DataExtracter instance .. Author: Tong Zhang .. Date : 2016-03-10 """ def __init__(self, sddsfile, *kws): self.sddsfile = sddsfile self.kwslist = kws self.precision = '%.16e' self.dcmdline = 'sddsprintout {fn} -notitle -nolabel'.format(fn=self.sddsfile) self.h5data = '' if SDDS_: self.sddsobj = sdds.SDDS(1) self.sddsobj.load(self.sddsfile) def getAllCols(self, sddsfile=None): """ get all available column names from sddsfile :param sddsfile: sdds file name, if not given, rollback to the one that from ``__init__()`` :return: all sdds data column names :rtype: list :Example: >>> dh = DataExtracter('test.out') >>> print(dh.getAllCols()) ['x', 'xp', 'y', 'yp', 't', 'p', 'particleID'] >>> print(dh.getAllCols('test.twi')) ['s', 'betax', 'alphax', 'psix', 'etax', 'etaxp', 'xAperture', 'betay', 'alphay', 'psiy', 'etay', 'etayp', 'yAperture', 'pCentral0', 'ElementName', 'ElementOccurence', 'ElementType'] """ if SDDS_: if sddsfile is not None: sddsobj = sdds.SDDS(2) sddsobj.load(sddsfile) else: sddsobj = self.sddsobj return sddsobj.columnName else: if sddsfile is None: sddsfile = self.sddsfile return subprocess.check_output(['sddsquery', '-col', sddsfile]).split() def getAllPars(self, sddsfile=None): """ get all available parameter names from sddsfile :param sddsfile: sdds file name, if not given, rollback to the one that from ``__init__()`` :return: all sdds data parameter names :rtype: list .. warning:: `sdds` needs to be installed as an extra dependency. :Example: >>> dh = DataExtracter('test.w1') >>> print(dh.getAllPars()) ['Step', 'pCentral', 'Charge', 'Particles', 'IDSlotsPerBunch', 'SVNVersion', 'Pass', 'PassLength', 'PassCentralTime', 'ElapsedCoreTime', 'MemoryUsage', 's', 'Description', 'PreviousElementName'] :seealso: :func:`getAllCols` """ if SDDS_: if sddsfile is not None: sddsobj = sdds.SDDS(2) sddsobj.load(sddsfile) else: sddsobj = self.sddsobj return sddsobj.parameterName else: if sddsfile is None: sddsfile = self.sddsfile return subprocess.check_output(['sddsquery', '-par', sddsfile]).split() def extractData(self): """ return `self` with extracted data as `numpy array` Extract the data of the columns and parameters of `self.kws` and put them in a :np:func:`array` with all columns as columns or parameters as columns. If columns and parameters are requested at the same then each column is one row and all parameters are in the last row. This :np:func:`array` is saved in ``h5data``. .. note:: If you mix types (e. g. float and str) then the minimal fitting type is taken for all columns. .. warning:: Non float types need `sdds` as an extra dependency :return: instance of itself :Example: One column of the watch element >>> dh = DataExtracter('test.w1') >>> dh.kwslist = ['Step'] >>> print(dh.extractData().h5data) array([[1]]) Two columns of the watch element >>> dh = DataExtracter('test.w1') >>> dh.kwslist = ['s', 'betax'] >>> print(dh.extractData().h5data) array([[0, 1], [1, 2], [2, 1]]) Two columns of the watch element and one parameter. The columns transform to rows and the parameter row is at the end. Furthermore all elements are strings, because the type of `PreviousElementName` is str and not float. >>> dh = DataExtracter('test.w1') >>> dh.kwslist = ['s', 'PreviousElementName', 'betax'] >>> print(dh.extractData().h5data) array([['0', '1', '2'], ['1', '2', '1'], ['DR01']]) """ if SDDS_: columns = self.sddsobj.columnName parameters = self.sddsobj.parameterName data = [self.sddsobj.columnData[columns.index(col)][0] for col in self.kwslist if col in columns] data.append([self.sddsobj.parameterData[parameters.index(par)][0] for par in self.kwslist if par in parameters]) self.h5data = np.array(filter(None, data)).T else: for k in self.kwslist: self.dcmdline += ' -col={kw},format={p}'.format(kw=k, p=self.precision) cmdlist = ['bash', self.dscript, self.dpath, self.dcmdline] retlist = [] proc = subprocess.Popen(cmdlist, stdout=subprocess.PIPE) for line in proc.stdout: retlist.append([float(i) for i in line.split()]) self.h5data = np.array(retlist) return self def getH5Data(self): """ return extracted data as numpy array :return: numpy array after executing ``extractData()`` """ return self.h5data def getKws(self): """ return data column fields that defined in constructor, e.g. ``('s', 'Sx')`` :return: data columns keyword :rtype: tuple """ return self.kwslist def setDataScript(self, fullscriptpath='sddsprintdata.sh'): """ configure script that should be utilized by DataExtracter, to extract data colums from sddsfile. :param fullscriptpath: full path of script that handles the data extraction of sddsfile, default value is ``sddsprintdata.sh``, which is a script that distributed with ``beamline`` package. :return: None """ self.dscript = os.path.expanduser(fullscriptpath) def setDataPath(self, path): """ set full dir path of data files :param path: data path, usually is the directory where numerical simulation was taken place :return: None """ self.dpath = os.path.expanduser(path) def setH5file(self, h5filepath): """ set h5file full path name :param h5filepath: path for hdf5 file :return: None """ self.h5file = os.path.expanduser(h5filepath) def setKws(self, *kws): """ set keyword list, i.e. sdds field names, update ``kwslist`` property :param kws: packed tuple of sdds datafile column names :return None: """ self.kwslist = kws def dump(self): """ dump extracted data into a single hdf5file, :return: None :Example: >>> # dump data into an hdf5 formated file >>> datafields = ['s', 'Sx', 'Sy', 'enx', 'eny'] >>> datascript = 'sddsprintdata.sh' >>> datapath = './tests/tracking' >>> hdf5file = './tests/tracking/test.h5' >>> A = DataExtracter('test.sig', *datafields) >>> A.setDataScript(datascript) >>> A.setDataPath (datapath) >>> A.setH5file (hdf5file) >>> A.extractData().dump() >>> >>> # read dumped file >>> fd = h5py.File(hdf5file, 'r') >>> d_s = fd['s'][:] >>> d_sx = fd['Sx'][:] >>> >>> # plot dumped data >>> import matplotlib.pyplot as plt >>> plt.figure(1) >>> plt.plot(d_s, d_sx, 'r-') >>> plt.xlabel('$s$') >>> plt.ylabel('$\sigma_x$') >>> plt.show() Just like the following figure shows: .. image:: ../../images/test_DataExtracter.png :width: 400px """ f = h5py.File(self.h5file, 'w') for i, k in enumerate(self.kwslist): v = self.h5data[:, i] dset = f.create_dataset(k, shape=v.shape, dtype=v.dtype) dset[...] = v f.close() class DataVisualizer(object): """ for data visualization purposes, to be implemented .. Author: Tong Zhang .. Date : 2016-03-14 """ def __init__(self, data): self.data = data def inspectDataFile(self): """ inspect hdf5 data file """ pass def illustrate(self, xlabel, ylabel): """ plot x, y w.r.t. xlabel and ylabel :param ylabel: xlabel :param xlabel: ylabel """ pass def saveArtwork(self, name='image', fmt='jpg'): """ save figure by default name of image.jpg :param name: image name, 'image' by default :param fmt: image format, 'jpg' by default """ pass class DataStorage(object): """ for data storage management, to be implemented. communicate with database like mongodb, mysql, sqlite, etc. .. Author: Tong Zhang .. Date : 2016-03-14 """ def __init__(self, data): self.data = data def configDatabase(self): """ configure database """ pass def putData(self): """ put data into database """ pass def getData(self): """ get data from database """ pass def test(): # workflow datafields = ['s', 'Sx', 'Sy', 'enx', 'eny'] datascript = '~/Programming/projects/beamline/scripts/sddsprintdata.sh' datapath = '~/Programming/projects/beamline/tests/tracking' hdf5file = os.path.join(os.path.expanduser(datapath), 'test.h5') A = DataExtracter('test.sig', *datafields) A.setDataScript(datascript) A.setDataPath(datapath) A.setH5file(hdf5file) A.extractData().dump() fd = h5py.File(hdf5file, 'r') d_s = fd['s'][:] d_sx = fd['Sx'][:] import matplotlib.pyplot as plt plt.figure(1) plt.plot(d_s, d_sx, 'r-') plt.xlabel('$s$') plt.ylabel('$\sigma_x$') plt.show() if __name__ == '__main__': test()
mit
TomAugspurger/pandas
pandas/tests/arrays/categorical/test_repr.py
1
25894
import numpy as np from pandas import ( Categorical, CategoricalIndex, Series, date_range, option_context, period_range, timedelta_range, ) from pandas.tests.arrays.categorical.common import TestCategorical class TestCategoricalReprWithFactor(TestCategorical): def test_print(self): expected = ["[a, b, b, a, a, c, c, c]", "Categories (3, object): [a < b < c]"] expected = "\n".join(expected) actual = repr(self.factor) assert actual == expected class TestCategoricalRepr: def test_big_print(self): factor = Categorical([0, 1, 2, 0, 1, 2] * 100, ["a", "b", "c"], fastpath=True) expected = [ "[a, b, c, a, b, ..., b, c, a, b, c]", "Length: 600", "Categories (3, object): [a, b, c]", ] expected = "\n".join(expected) actual = repr(factor) assert actual == expected def test_empty_print(self): factor = Categorical([], ["a", "b", "c"]) expected = "[], Categories (3, object): [a, b, c]" actual = repr(factor) assert actual == expected assert expected == actual factor = Categorical([], ["a", "b", "c"], ordered=True) expected = "[], Categories (3, object): [a < b < c]" actual = repr(factor) assert expected == actual factor = Categorical([], []) expected = "[], Categories (0, object): []" assert expected == repr(factor) def test_print_none_width(self): # GH10087 a = Series(Categorical([1, 2, 3, 4])) exp = ( "0 1\n1 2\n2 3\n3 4\n" "dtype: category\nCategories (4, int64): [1, 2, 3, 4]" ) with option_context("display.width", None): assert exp == repr(a) def test_unicode_print(self): c = Categorical(["aaaaa", "bb", "cccc"] * 20) expected = """\ [aaaaa, bb, cccc, aaaaa, bb, ..., bb, cccc, aaaaa, bb, cccc] Length: 60 Categories (3, object): [aaaaa, bb, cccc]""" assert repr(c) == expected c = Categorical(["ああああ", "いいいいい", "ううううううう"] * 20) expected = """\ [ああああ, いいいいい, ううううううう, ああああ, いいいいい, ..., いいいいい, ううううううう, ああああ, いいいいい, ううううううう] Length: 60 Categories (3, object): [ああああ, いいいいい, ううううううう]""" # noqa assert repr(c) == expected # unicode option should not affect to Categorical, as it doesn't care # the repr width with option_context("display.unicode.east_asian_width", True): c = Categorical(["ああああ", "いいいいい", "ううううううう"] * 20) expected = """[ああああ, いいいいい, ううううううう, ああああ, いいいいい, ..., いいいいい, ううううううう, ああああ, いいいいい, ううううううう] Length: 60 Categories (3, object): [ああああ, いいいいい, ううううううう]""" # noqa assert repr(c) == expected def test_categorical_repr(self): c = Categorical([1, 2, 3]) exp = """[1, 2, 3] Categories (3, int64): [1, 2, 3]""" assert repr(c) == exp c = Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3]) exp = """[1, 2, 3, 1, 2, 3] Categories (3, int64): [1, 2, 3]""" assert repr(c) == exp c = Categorical([1, 2, 3, 4, 5] * 10) exp = """[1, 2, 3, 4, 5, ..., 1, 2, 3, 4, 5] Length: 50 Categories (5, int64): [1, 2, 3, 4, 5]""" assert repr(c) == exp c = Categorical(np.arange(20)) exp = """[0, 1, 2, 3, 4, ..., 15, 16, 17, 18, 19] Length: 20 Categories (20, int64): [0, 1, 2, 3, ..., 16, 17, 18, 19]""" assert repr(c) == exp def test_categorical_repr_ordered(self): c = Categorical([1, 2, 3], ordered=True) exp = """[1, 2, 3] Categories (3, int64): [1 < 2 < 3]""" assert repr(c) == exp c = Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3], ordered=True) exp = """[1, 2, 3, 1, 2, 3] Categories (3, int64): [1 < 2 < 3]""" assert repr(c) == exp c = Categorical([1, 2, 3, 4, 5] * 10, ordered=True) exp = """[1, 2, 3, 4, 5, ..., 1, 2, 3, 4, 5] Length: 50 Categories (5, int64): [1 < 2 < 3 < 4 < 5]""" assert repr(c) == exp c = Categorical(np.arange(20), ordered=True) exp = """[0, 1, 2, 3, 4, ..., 15, 16, 17, 18, 19] Length: 20 Categories (20, int64): [0 < 1 < 2 < 3 ... 16 < 17 < 18 < 19]""" assert repr(c) == exp def test_categorical_repr_datetime(self): idx = date_range("2011-01-01 09:00", freq="H", periods=5) c = Categorical(idx) exp = ( "[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, " "2011-01-01 12:00:00, 2011-01-01 13:00:00]\n" "Categories (5, datetime64[ns]): [2011-01-01 09:00:00, " "2011-01-01 10:00:00, 2011-01-01 11:00:00,\n" " 2011-01-01 12:00:00, " "2011-01-01 13:00:00]" "" ) assert repr(c) == exp c = Categorical(idx.append(idx), categories=idx) exp = ( "[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, " "2011-01-01 12:00:00, 2011-01-01 13:00:00, 2011-01-01 09:00:00, " "2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, " "2011-01-01 13:00:00]\n" "Categories (5, datetime64[ns]): [2011-01-01 09:00:00, " "2011-01-01 10:00:00, 2011-01-01 11:00:00,\n" " 2011-01-01 12:00:00, " "2011-01-01 13:00:00]" ) assert repr(c) == exp idx = date_range("2011-01-01 09:00", freq="H", periods=5, tz="US/Eastern") c = Categorical(idx) exp = ( "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, " "2011-01-01 13:00:00-05:00]\n" "Categories (5, datetime64[ns, US/Eastern]): " "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00,\n" " " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00,\n" " " "2011-01-01 13:00:00-05:00]" ) assert repr(c) == exp c = Categorical(idx.append(idx), categories=idx) exp = ( "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, " "2011-01-01 13:00:00-05:00, 2011-01-01 09:00:00-05:00, " "2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, " "2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00]\n" "Categories (5, datetime64[ns, US/Eastern]): " "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00,\n" " " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00,\n" " " "2011-01-01 13:00:00-05:00]" ) assert repr(c) == exp def test_categorical_repr_datetime_ordered(self): idx = date_range("2011-01-01 09:00", freq="H", periods=5) c = Categorical(idx, ordered=True) exp = """[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00] Categories (5, datetime64[ns]): [2011-01-01 09:00:00 < 2011-01-01 10:00:00 < 2011-01-01 11:00:00 < 2011-01-01 12:00:00 < 2011-01-01 13:00:00]""" # noqa assert repr(c) == exp c = Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00, 2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00] Categories (5, datetime64[ns]): [2011-01-01 09:00:00 < 2011-01-01 10:00:00 < 2011-01-01 11:00:00 < 2011-01-01 12:00:00 < 2011-01-01 13:00:00]""" # noqa assert repr(c) == exp idx = date_range("2011-01-01 09:00", freq="H", periods=5, tz="US/Eastern") c = Categorical(idx, ordered=True) exp = """[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00] Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00 < 2011-01-01 10:00:00-05:00 < 2011-01-01 11:00:00-05:00 < 2011-01-01 12:00:00-05:00 < 2011-01-01 13:00:00-05:00]""" # noqa assert repr(c) == exp c = Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00, 2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00] Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00 < 2011-01-01 10:00:00-05:00 < 2011-01-01 11:00:00-05:00 < 2011-01-01 12:00:00-05:00 < 2011-01-01 13:00:00-05:00]""" # noqa assert repr(c) == exp def test_categorical_repr_int_with_nan(self): c = Categorical([1, 2, np.nan]) c_exp = """[1, 2, NaN]\nCategories (2, int64): [1, 2]""" assert repr(c) == c_exp s = Series([1, 2, np.nan], dtype="object").astype("category") s_exp = """0 1\n1 2\n2 NaN dtype: category Categories (2, int64): [1, 2]""" assert repr(s) == s_exp def test_categorical_repr_period(self): idx = period_range("2011-01-01 09:00", freq="H", periods=5) c = Categorical(idx) exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00] Categories (5, period[H]): [2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]""" # noqa assert repr(c) == exp c = Categorical(idx.append(idx), categories=idx) exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00, 2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00] Categories (5, period[H]): [2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]""" # noqa assert repr(c) == exp idx = period_range("2011-01", freq="M", periods=5) c = Categorical(idx) exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05] Categories (5, period[M]): [2011-01, 2011-02, 2011-03, 2011-04, 2011-05]""" assert repr(c) == exp c = Categorical(idx.append(idx), categories=idx) exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05, 2011-01, 2011-02, 2011-03, 2011-04, 2011-05] Categories (5, period[M]): [2011-01, 2011-02, 2011-03, 2011-04, 2011-05]""" # noqa assert repr(c) == exp def test_categorical_repr_period_ordered(self): idx = period_range("2011-01-01 09:00", freq="H", periods=5) c = Categorical(idx, ordered=True) exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00] Categories (5, period[H]): [2011-01-01 09:00 < 2011-01-01 10:00 < 2011-01-01 11:00 < 2011-01-01 12:00 < 2011-01-01 13:00]""" # noqa assert repr(c) == exp c = Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00, 2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00] Categories (5, period[H]): [2011-01-01 09:00 < 2011-01-01 10:00 < 2011-01-01 11:00 < 2011-01-01 12:00 < 2011-01-01 13:00]""" # noqa assert repr(c) == exp idx = period_range("2011-01", freq="M", periods=5) c = Categorical(idx, ordered=True) exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05] Categories (5, period[M]): [2011-01 < 2011-02 < 2011-03 < 2011-04 < 2011-05]""" assert repr(c) == exp c = Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05, 2011-01, 2011-02, 2011-03, 2011-04, 2011-05] Categories (5, period[M]): [2011-01 < 2011-02 < 2011-03 < 2011-04 < 2011-05]""" # noqa assert repr(c) == exp def test_categorical_repr_timedelta(self): idx = timedelta_range("1 days", periods=5) c = Categorical(idx) exp = """[1 days, 2 days, 3 days, 4 days, 5 days] Categories (5, timedelta64[ns]): [1 days, 2 days, 3 days, 4 days, 5 days]""" assert repr(c) == exp c = Categorical(idx.append(idx), categories=idx) exp = """[1 days, 2 days, 3 days, 4 days, 5 days, 1 days, 2 days, 3 days, 4 days, 5 days] Categories (5, timedelta64[ns]): [1 days, 2 days, 3 days, 4 days, 5 days]""" # noqa assert repr(c) == exp idx = timedelta_range("1 hours", periods=20) c = Categorical(idx) exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00] Length: 20 Categories (20, timedelta64[ns]): [0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, ..., 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00]""" # noqa assert repr(c) == exp c = Categorical(idx.append(idx), categories=idx) exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00] Length: 40 Categories (20, timedelta64[ns]): [0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, ..., 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00]""" # noqa assert repr(c) == exp def test_categorical_repr_timedelta_ordered(self): idx = timedelta_range("1 days", periods=5) c = Categorical(idx, ordered=True) exp = """[1 days, 2 days, 3 days, 4 days, 5 days] Categories (5, timedelta64[ns]): [1 days < 2 days < 3 days < 4 days < 5 days]""" # noqa assert repr(c) == exp c = Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[1 days, 2 days, 3 days, 4 days, 5 days, 1 days, 2 days, 3 days, 4 days, 5 days] Categories (5, timedelta64[ns]): [1 days < 2 days < 3 days < 4 days < 5 days]""" # noqa assert repr(c) == exp idx = timedelta_range("1 hours", periods=20) c = Categorical(idx, ordered=True) exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00] Length: 20 Categories (20, timedelta64[ns]): [0 days 01:00:00 < 1 days 01:00:00 < 2 days 01:00:00 < 3 days 01:00:00 ... 16 days 01:00:00 < 17 days 01:00:00 < 18 days 01:00:00 < 19 days 01:00:00]""" # noqa assert repr(c) == exp c = Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00] Length: 40 Categories (20, timedelta64[ns]): [0 days 01:00:00 < 1 days 01:00:00 < 2 days 01:00:00 < 3 days 01:00:00 ... 16 days 01:00:00 < 17 days 01:00:00 < 18 days 01:00:00 < 19 days 01:00:00]""" # noqa assert repr(c) == exp def test_categorical_index_repr(self): idx = CategoricalIndex(Categorical([1, 2, 3])) exp = """CategoricalIndex([1, 2, 3], categories=[1, 2, 3], ordered=False, dtype='category')""" # noqa assert repr(idx) == exp i = CategoricalIndex(Categorical(np.arange(10))) exp = """CategoricalIndex([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], categories=[0, 1, 2, 3, 4, 5, 6, 7, ...], ordered=False, dtype='category')""" # noqa assert repr(i) == exp def test_categorical_index_repr_ordered(self): i = CategoricalIndex(Categorical([1, 2, 3], ordered=True)) exp = """CategoricalIndex([1, 2, 3], categories=[1, 2, 3], ordered=True, dtype='category')""" # noqa assert repr(i) == exp i = CategoricalIndex(Categorical(np.arange(10), ordered=True)) exp = """CategoricalIndex([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], categories=[0, 1, 2, 3, 4, 5, 6, 7, ...], ordered=True, dtype='category')""" # noqa assert repr(i) == exp def test_categorical_index_repr_datetime(self): idx = date_range("2011-01-01 09:00", freq="H", periods=5) i = CategoricalIndex(Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00:00', '2011-01-01 10:00:00', '2011-01-01 11:00:00', '2011-01-01 12:00:00', '2011-01-01 13:00:00'], categories=[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00], ordered=False, dtype='category')""" # noqa assert repr(i) == exp idx = date_range("2011-01-01 09:00", freq="H", periods=5, tz="US/Eastern") i = CategoricalIndex(Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00', '2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00', '2011-01-01 13:00:00-05:00'], categories=[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00], ordered=False, dtype='category')""" # noqa assert repr(i) == exp def test_categorical_index_repr_datetime_ordered(self): idx = date_range("2011-01-01 09:00", freq="H", periods=5) i = CategoricalIndex(Categorical(idx, ordered=True)) exp = """CategoricalIndex(['2011-01-01 09:00:00', '2011-01-01 10:00:00', '2011-01-01 11:00:00', '2011-01-01 12:00:00', '2011-01-01 13:00:00'], categories=[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00], ordered=True, dtype='category')""" # noqa assert repr(i) == exp idx = date_range("2011-01-01 09:00", freq="H", periods=5, tz="US/Eastern") i = CategoricalIndex(Categorical(idx, ordered=True)) exp = """CategoricalIndex(['2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00', '2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00', '2011-01-01 13:00:00-05:00'], categories=[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00], ordered=True, dtype='category')""" # noqa assert repr(i) == exp i = CategoricalIndex(Categorical(idx.append(idx), ordered=True)) exp = """CategoricalIndex(['2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00', '2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00', '2011-01-01 13:00:00-05:00', '2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00', '2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00', '2011-01-01 13:00:00-05:00'], categories=[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00], ordered=True, dtype='category')""" # noqa assert repr(i) == exp def test_categorical_index_repr_period(self): # test all length idx = period_range("2011-01-01 09:00", freq="H", periods=1) i = CategoricalIndex(Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00'], categories=[2011-01-01 09:00], ordered=False, dtype='category')""" # noqa assert repr(i) == exp idx = period_range("2011-01-01 09:00", freq="H", periods=2) i = CategoricalIndex(Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00], ordered=False, dtype='category')""" # noqa assert repr(i) == exp idx = period_range("2011-01-01 09:00", freq="H", periods=3) i = CategoricalIndex(Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00], ordered=False, dtype='category')""" # noqa assert repr(i) == exp idx = period_range("2011-01-01 09:00", freq="H", periods=5) i = CategoricalIndex(Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00', '2011-01-01 12:00', '2011-01-01 13:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00], ordered=False, dtype='category')""" # noqa assert repr(i) == exp i = CategoricalIndex(Categorical(idx.append(idx))) exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00', '2011-01-01 12:00', '2011-01-01 13:00', '2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00', '2011-01-01 12:00', '2011-01-01 13:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00], ordered=False, dtype='category')""" # noqa assert repr(i) == exp idx = period_range("2011-01", freq="M", periods=5) i = CategoricalIndex(Categorical(idx)) exp = """CategoricalIndex(['2011-01', '2011-02', '2011-03', '2011-04', '2011-05'], categories=[2011-01, 2011-02, 2011-03, 2011-04, 2011-05], ordered=False, dtype='category')""" # noqa assert repr(i) == exp def test_categorical_index_repr_period_ordered(self): idx = period_range("2011-01-01 09:00", freq="H", periods=5) i = CategoricalIndex(Categorical(idx, ordered=True)) exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00', '2011-01-01 12:00', '2011-01-01 13:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00], ordered=True, dtype='category')""" # noqa assert repr(i) == exp idx = period_range("2011-01", freq="M", periods=5) i = CategoricalIndex(Categorical(idx, ordered=True)) exp = """CategoricalIndex(['2011-01', '2011-02', '2011-03', '2011-04', '2011-05'], categories=[2011-01, 2011-02, 2011-03, 2011-04, 2011-05], ordered=True, dtype='category')""" # noqa assert repr(i) == exp def test_categorical_index_repr_timedelta(self): idx = timedelta_range("1 days", periods=5) i = CategoricalIndex(Categorical(idx)) exp = """CategoricalIndex(['1 days', '2 days', '3 days', '4 days', '5 days'], categories=[1 days 00:00:00, 2 days 00:00:00, 3 days 00:00:00, 4 days 00:00:00, 5 days 00:00:00], ordered=False, dtype='category')""" # noqa assert repr(i) == exp idx = timedelta_range("1 hours", periods=10) i = CategoricalIndex(Categorical(idx)) exp = """CategoricalIndex(['0 days 01:00:00', '1 days 01:00:00', '2 days 01:00:00', '3 days 01:00:00', '4 days 01:00:00', '5 days 01:00:00', '6 days 01:00:00', '7 days 01:00:00', '8 days 01:00:00', '9 days 01:00:00'], categories=[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, 5 days 01:00:00, 6 days 01:00:00, 7 days 01:00:00, ...], ordered=False, dtype='category')""" # noqa assert repr(i) == exp def test_categorical_index_repr_timedelta_ordered(self): idx = timedelta_range("1 days", periods=5) i = CategoricalIndex(Categorical(idx, ordered=True)) exp = """CategoricalIndex(['1 days', '2 days', '3 days', '4 days', '5 days'], categories=[1 days 00:00:00, 2 days 00:00:00, 3 days 00:00:00, 4 days 00:00:00, 5 days 00:00:00], ordered=True, dtype='category')""" # noqa assert repr(i) == exp idx = timedelta_range("1 hours", periods=10) i = CategoricalIndex(Categorical(idx, ordered=True)) exp = """CategoricalIndex(['0 days 01:00:00', '1 days 01:00:00', '2 days 01:00:00', '3 days 01:00:00', '4 days 01:00:00', '5 days 01:00:00', '6 days 01:00:00', '7 days 01:00:00', '8 days 01:00:00', '9 days 01:00:00'], categories=[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, 5 days 01:00:00, 6 days 01:00:00, 7 days 01:00:00, ...], ordered=True, dtype='category')""" # noqa assert repr(i) == exp
bsd-3-clause
wzbozon/scikit-learn
examples/applications/plot_model_complexity_influence.py
323
6372
""" ========================== Model Complexity Influence ========================== Demonstrate how model complexity influences both prediction accuracy and computational performance. The dataset is the Boston Housing dataset (resp. 20 Newsgroups) for regression (resp. classification). For each class of models we make the model complexity vary through the choice of relevant model parameters and measure the influence on both computational performance (latency) and predictive power (MSE or Hamming Loss). """ print(__doc__) # Author: Eustache Diemert <[email protected]> # License: BSD 3 clause import time import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.parasite_axes import host_subplot from mpl_toolkits.axisartist.axislines import Axes from scipy.sparse.csr import csr_matrix from sklearn import datasets from sklearn.utils import shuffle from sklearn.metrics import mean_squared_error from sklearn.svm.classes import NuSVR from sklearn.ensemble.gradient_boosting import GradientBoostingRegressor from sklearn.linear_model.stochastic_gradient import SGDClassifier from sklearn.metrics import hamming_loss ############################################################################### # Routines # initialize random generator np.random.seed(0) def generate_data(case, sparse=False): """Generate regression/classification data.""" bunch = None if case == 'regression': bunch = datasets.load_boston() elif case == 'classification': bunch = datasets.fetch_20newsgroups_vectorized(subset='all') X, y = shuffle(bunch.data, bunch.target) offset = int(X.shape[0] * 0.8) X_train, y_train = X[:offset], y[:offset] X_test, y_test = X[offset:], y[offset:] if sparse: X_train = csr_matrix(X_train) X_test = csr_matrix(X_test) else: X_train = np.array(X_train) X_test = np.array(X_test) y_test = np.array(y_test) y_train = np.array(y_train) data = {'X_train': X_train, 'X_test': X_test, 'y_train': y_train, 'y_test': y_test} return data def benchmark_influence(conf): """ Benchmark influence of :changing_param: on both MSE and latency. """ prediction_times = [] prediction_powers = [] complexities = [] for param_value in conf['changing_param_values']: conf['tuned_params'][conf['changing_param']] = param_value estimator = conf['estimator'](**conf['tuned_params']) print("Benchmarking %s" % estimator) estimator.fit(conf['data']['X_train'], conf['data']['y_train']) conf['postfit_hook'](estimator) complexity = conf['complexity_computer'](estimator) complexities.append(complexity) start_time = time.time() for _ in range(conf['n_samples']): y_pred = estimator.predict(conf['data']['X_test']) elapsed_time = (time.time() - start_time) / float(conf['n_samples']) prediction_times.append(elapsed_time) pred_score = conf['prediction_performance_computer']( conf['data']['y_test'], y_pred) prediction_powers.append(pred_score) print("Complexity: %d | %s: %.4f | Pred. Time: %fs\n" % ( complexity, conf['prediction_performance_label'], pred_score, elapsed_time)) return prediction_powers, prediction_times, complexities def plot_influence(conf, mse_values, prediction_times, complexities): """ Plot influence of model complexity on both accuracy and latency. """ plt.figure(figsize=(12, 6)) host = host_subplot(111, axes_class=Axes) plt.subplots_adjust(right=0.75) par1 = host.twinx() host.set_xlabel('Model Complexity (%s)' % conf['complexity_label']) y1_label = conf['prediction_performance_label'] y2_label = "Time (s)" host.set_ylabel(y1_label) par1.set_ylabel(y2_label) p1, = host.plot(complexities, mse_values, 'b-', label="prediction error") p2, = par1.plot(complexities, prediction_times, 'r-', label="latency") host.legend(loc='upper right') host.axis["left"].label.set_color(p1.get_color()) par1.axis["right"].label.set_color(p2.get_color()) plt.title('Influence of Model Complexity - %s' % conf['estimator'].__name__) plt.show() def _count_nonzero_coefficients(estimator): a = estimator.coef_.toarray() return np.count_nonzero(a) ############################################################################### # main code regression_data = generate_data('regression') classification_data = generate_data('classification', sparse=True) configurations = [ {'estimator': SGDClassifier, 'tuned_params': {'penalty': 'elasticnet', 'alpha': 0.001, 'loss': 'modified_huber', 'fit_intercept': True}, 'changing_param': 'l1_ratio', 'changing_param_values': [0.25, 0.5, 0.75, 0.9], 'complexity_label': 'non_zero coefficients', 'complexity_computer': _count_nonzero_coefficients, 'prediction_performance_computer': hamming_loss, 'prediction_performance_label': 'Hamming Loss (Misclassification Ratio)', 'postfit_hook': lambda x: x.sparsify(), 'data': classification_data, 'n_samples': 30}, {'estimator': NuSVR, 'tuned_params': {'C': 1e3, 'gamma': 2 ** -15}, 'changing_param': 'nu', 'changing_param_values': [0.1, 0.25, 0.5, 0.75, 0.9], 'complexity_label': 'n_support_vectors', 'complexity_computer': lambda x: len(x.support_vectors_), 'data': regression_data, 'postfit_hook': lambda x: x, 'prediction_performance_computer': mean_squared_error, 'prediction_performance_label': 'MSE', 'n_samples': 30}, {'estimator': GradientBoostingRegressor, 'tuned_params': {'loss': 'ls'}, 'changing_param': 'n_estimators', 'changing_param_values': [10, 50, 100, 200, 500], 'complexity_label': 'n_trees', 'complexity_computer': lambda x: x.n_estimators, 'data': regression_data, 'postfit_hook': lambda x: x, 'prediction_performance_computer': mean_squared_error, 'prediction_performance_label': 'MSE', 'n_samples': 30}, ] for conf in configurations: prediction_performances, prediction_times, complexities = \ benchmark_influence(conf) plot_influence(conf, prediction_performances, prediction_times, complexities)
bsd-3-clause
lobnek/pyutil
test/test_timeseries/test_merge.py
1
2040
import pandas as pd import pandas.testing as pt import pytest from pyutil.timeseries.merge import merge, last_index, first_index, to_datetime, to_date from test.config import read_pd @pytest.fixture() def ts(): return read_pd("ts.csv", squeeze=True, header=None, parse_dates=True, index_col=0) class TestMerge(object): def test_last_index(self, ts): t = last_index(ts) t0 = pd.Timestamp("2015-04-22") assert t == t0 assert not last_index(None) assert last_index(None, default=t0) == t0 assert last_index(pd.Series({}, dtype=float), default=t0) == t0 def test_first_index(self, ts): t = first_index(ts) t0 = pd.Timestamp("2014-01-01") assert t == t0 assert not first_index(None) assert first_index(None, default=t0) == t0 assert first_index(pd.Series({}, dtype=float), default=t0) == t0 def test_merge(self, ts): x = merge(new=ts) pt.assert_series_equal(x, ts) x = merge(new=ts, old=ts) pt.assert_series_equal(x, ts) x = merge(new=5*ts, old=ts) pt.assert_series_equal(x, 5 * ts) y = merge(None) assert not y y = merge(pd.Series({}, dtype=float), None) pt.assert_series_equal(y, pd.Series({}, dtype=float)) y = merge(pd.Series({}, dtype=float), pd.Series({}, dtype=float)) pt.assert_series_equal(y, pd.Series({}, dtype=float)) def test_to_datetime(self): assert not to_datetime(None) t0 = pd.Timestamp("2015-04-22") x = pd.Series(index=[t0], data=[2.0]) # should be safe to apply to_datetime pt.assert_series_equal(x, to_datetime(x)) def test_to_date(self): assert not to_date(None) t0 = pd.Timestamp("2015-04-22") x = pd.Series(index=[t0], data=[2.0]) pt.assert_series_equal(pd.Series(index=[t0.date()], data=[2.0]), to_date(x)) pt.assert_series_equal(to_date(ts=x, format="%Y%m%d"), pd.Series(index=["20150422"], data=[2.0]))
mit
vivekmishra1991/scikit-learn
sklearn/tests/test_discriminant_analysis.py
35
11709
try: # Python 2 compat reload except NameError: # Regular Python 3+ import from importlib import reload import numpy as np from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_greater from sklearn.utils.testing import ignore_warnings from sklearn.datasets import make_blobs from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis # Data is just 6 separable points in the plane X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]], dtype='f') y = np.array([1, 1, 1, 2, 2, 2]) y3 = np.array([1, 1, 2, 2, 3, 3]) # Degenerate data with only one feature (still should be separable) X1 = np.array([[-2, ], [-1, ], [-1, ], [1, ], [1, ], [2, ]], dtype='f') # Data is just 9 separable points in the plane X6 = np.array([[0, 0], [-2, -2], [-2, -1], [-1, -1], [-1, -2], [1, 3], [1, 2], [2, 1], [2, 2]]) y6 = np.array([1, 1, 1, 1, 1, 2, 2, 2, 2]) y7 = np.array([1, 2, 3, 2, 3, 1, 2, 3, 1]) # Degenerate data with 1 feature (still should be separable) X7 = np.array([[-3, ], [-2, ], [-1, ], [-1, ], [0, ], [1, ], [1, ], [2, ], [3, ]]) # Data that has zero variance in one dimension and needs regularization X2 = np.array([[-3, 0], [-2, 0], [-1, 0], [-1, 0], [0, 0], [1, 0], [1, 0], [2, 0], [3, 0]]) # One element class y4 = np.array([1, 1, 1, 1, 1, 1, 1, 1, 2]) # Data with less samples in a class than n_features X5 = np.c_[np.arange(8), np.zeros((8, 3))] y5 = np.array([0, 0, 0, 0, 0, 1, 1, 1]) solver_shrinkage = [('svd', None), ('lsqr', None), ('eigen', None), ('lsqr', 'auto'), ('lsqr', 0), ('lsqr', 0.43), ('eigen', 'auto'), ('eigen', 0), ('eigen', 0.43)] def test_lda_predict(): # Test LDA classification. # This checks that LDA implements fit and predict and returns correct # values for simple toy data. for test_case in solver_shrinkage: solver, shrinkage = test_case clf = LinearDiscriminantAnalysis(solver=solver, shrinkage=shrinkage) y_pred = clf.fit(X, y).predict(X) assert_array_equal(y_pred, y, 'solver %s' % solver) # Assert that it works with 1D data y_pred1 = clf.fit(X1, y).predict(X1) assert_array_equal(y_pred1, y, 'solver %s' % solver) # Test probability estimates y_proba_pred1 = clf.predict_proba(X1) assert_array_equal((y_proba_pred1[:, 1] > 0.5) + 1, y, 'solver %s' % solver) y_log_proba_pred1 = clf.predict_log_proba(X1) assert_array_almost_equal(np.exp(y_log_proba_pred1), y_proba_pred1, 8, 'solver %s' % solver) # Primarily test for commit 2f34950 -- "reuse" of priors y_pred3 = clf.fit(X, y3).predict(X) # LDA shouldn't be able to separate those assert_true(np.any(y_pred3 != y3), 'solver %s' % solver) # Test invalid shrinkages clf = LinearDiscriminantAnalysis(solver="lsqr", shrinkage=-0.2231) assert_raises(ValueError, clf.fit, X, y) clf = LinearDiscriminantAnalysis(solver="eigen", shrinkage="dummy") assert_raises(ValueError, clf.fit, X, y) clf = LinearDiscriminantAnalysis(solver="svd", shrinkage="auto") assert_raises(NotImplementedError, clf.fit, X, y) # Test unknown solver clf = LinearDiscriminantAnalysis(solver="dummy") assert_raises(ValueError, clf.fit, X, y) def test_lda_priors(): # Test priors (negative priors) priors = np.array([0.5, -0.5]) clf = LinearDiscriminantAnalysis(priors=priors) msg = "priors must be non-negative" assert_raise_message(ValueError, msg, clf.fit, X, y) # Test that priors passed as a list are correctly handled (run to see if # failure) clf = LinearDiscriminantAnalysis(priors=[0.5, 0.5]) clf.fit(X, y) # Test that priors always sum to 1 priors = np.array([0.5, 0.6]) prior_norm = np.array([0.45, 0.55]) clf = LinearDiscriminantAnalysis(priors=priors) clf.fit(X, y) assert_array_almost_equal(clf.priors_, prior_norm, 2) def test_lda_coefs(): # Test if the coefficients of the solvers are approximately the same. n_features = 2 n_classes = 2 n_samples = 1000 X, y = make_blobs(n_samples=n_samples, n_features=n_features, centers=n_classes, random_state=11) clf_lda_svd = LinearDiscriminantAnalysis(solver="svd") clf_lda_lsqr = LinearDiscriminantAnalysis(solver="lsqr") clf_lda_eigen = LinearDiscriminantAnalysis(solver="eigen") clf_lda_svd.fit(X, y) clf_lda_lsqr.fit(X, y) clf_lda_eigen.fit(X, y) assert_array_almost_equal(clf_lda_svd.coef_, clf_lda_lsqr.coef_, 1) assert_array_almost_equal(clf_lda_svd.coef_, clf_lda_eigen.coef_, 1) assert_array_almost_equal(clf_lda_eigen.coef_, clf_lda_lsqr.coef_, 1) def test_lda_transform(): # Test LDA transform. clf = LinearDiscriminantAnalysis(solver="svd", n_components=1) X_transformed = clf.fit(X, y).transform(X) assert_equal(X_transformed.shape[1], 1) clf = LinearDiscriminantAnalysis(solver="eigen", n_components=1) X_transformed = clf.fit(X, y).transform(X) assert_equal(X_transformed.shape[1], 1) clf = LinearDiscriminantAnalysis(solver="lsqr", n_components=1) clf.fit(X, y) msg = "transform not implemented for 'lsqr'" assert_raise_message(NotImplementedError, msg, clf.transform, X) def test_lda_explained_variance_ratio(): # Test if the sum of the normalized eigen vectors values equals 1 n_features = 2 n_classes = 2 n_samples = 1000 X, y = make_blobs(n_samples=n_samples, n_features=n_features, centers=n_classes, random_state=11) clf_lda_eigen = LinearDiscriminantAnalysis(solver="eigen") clf_lda_eigen.fit(X, y) assert_almost_equal(clf_lda_eigen.explained_variance_ratio_.sum(), 1.0, 3) def test_lda_orthogonality(): # arrange four classes with their means in a kite-shaped pattern # the longer distance should be transformed to the first component, and # the shorter distance to the second component. means = np.array([[0, 0, -1], [0, 2, 0], [0, -2, 0], [0, 0, 5]]) # We construct perfectly symmetric distributions, so the LDA can estimate # precise means. scatter = np.array([[0.1, 0, 0], [-0.1, 0, 0], [0, 0.1, 0], [0, -0.1, 0], [0, 0, 0.1], [0, 0, -0.1]]) X = (means[:, np.newaxis, :] + scatter[np.newaxis, :, :]).reshape((-1, 3)) y = np.repeat(np.arange(means.shape[0]), scatter.shape[0]) # Fit LDA and transform the means clf = LinearDiscriminantAnalysis(solver="svd").fit(X, y) means_transformed = clf.transform(means) d1 = means_transformed[3] - means_transformed[0] d2 = means_transformed[2] - means_transformed[1] d1 /= np.sqrt(np.sum(d1 ** 2)) d2 /= np.sqrt(np.sum(d2 ** 2)) # the transformed within-class covariance should be the identity matrix assert_almost_equal(np.cov(clf.transform(scatter).T), np.eye(2)) # the means of classes 0 and 3 should lie on the first component assert_almost_equal(np.abs(np.dot(d1[:2], [1, 0])), 1.0) # the means of classes 1 and 2 should lie on the second component assert_almost_equal(np.abs(np.dot(d2[:2], [0, 1])), 1.0) def test_lda_scaling(): # Test if classification works correctly with differently scaled features. n = 100 rng = np.random.RandomState(1234) # use uniform distribution of features to make sure there is absolutely no # overlap between classes. x1 = rng.uniform(-1, 1, (n, 3)) + [-10, 0, 0] x2 = rng.uniform(-1, 1, (n, 3)) + [10, 0, 0] x = np.vstack((x1, x2)) * [1, 100, 10000] y = [-1] * n + [1] * n for solver in ('svd', 'lsqr', 'eigen'): clf = LinearDiscriminantAnalysis(solver=solver) # should be able to separate the data perfectly assert_equal(clf.fit(x, y).score(x, y), 1.0, 'using covariance: %s' % solver) def test_qda(): # QDA classification. # This checks that QDA implements fit and predict and returns # correct values for a simple toy dataset. clf = QuadraticDiscriminantAnalysis() y_pred = clf.fit(X6, y6).predict(X6) assert_array_equal(y_pred, y6) # Assure that it works with 1D data y_pred1 = clf.fit(X7, y6).predict(X7) assert_array_equal(y_pred1, y6) # Test probas estimates y_proba_pred1 = clf.predict_proba(X7) assert_array_equal((y_proba_pred1[:, 1] > 0.5) + 1, y6) y_log_proba_pred1 = clf.predict_log_proba(X7) assert_array_almost_equal(np.exp(y_log_proba_pred1), y_proba_pred1, 8) y_pred3 = clf.fit(X6, y7).predict(X6) # QDA shouldn't be able to separate those assert_true(np.any(y_pred3 != y7)) # Classes should have at least 2 elements assert_raises(ValueError, clf.fit, X6, y4) def test_qda_priors(): clf = QuadraticDiscriminantAnalysis() y_pred = clf.fit(X6, y6).predict(X6) n_pos = np.sum(y_pred == 2) neg = 1e-10 clf = QuadraticDiscriminantAnalysis(priors=np.array([neg, 1 - neg])) y_pred = clf.fit(X6, y6).predict(X6) n_pos2 = np.sum(y_pred == 2) assert_greater(n_pos2, n_pos) def test_qda_store_covariances(): # The default is to not set the covariances_ attribute clf = QuadraticDiscriminantAnalysis().fit(X6, y6) assert_true(not hasattr(clf, 'covariances_')) # Test the actual attribute: clf = QuadraticDiscriminantAnalysis(store_covariances=True).fit(X6, y6) assert_true(hasattr(clf, 'covariances_')) assert_array_almost_equal( clf.covariances_[0], np.array([[0.7, 0.45], [0.45, 0.7]]) ) assert_array_almost_equal( clf.covariances_[1], np.array([[0.33333333, -0.33333333], [-0.33333333, 0.66666667]]) ) def test_qda_regularization(): # the default is reg_param=0. and will cause issues # when there is a constant variable clf = QuadraticDiscriminantAnalysis() with ignore_warnings(): y_pred = clf.fit(X2, y6).predict(X2) assert_true(np.any(y_pred != y6)) # adding a little regularization fixes the problem clf = QuadraticDiscriminantAnalysis(reg_param=0.01) with ignore_warnings(): clf.fit(X2, y6) y_pred = clf.predict(X2) assert_array_equal(y_pred, y6) # Case n_samples_in_a_class < n_features clf = QuadraticDiscriminantAnalysis(reg_param=0.1) with ignore_warnings(): clf.fit(X5, y5) y_pred5 = clf.predict(X5) assert_array_equal(y_pred5, y5) def test_deprecated_lda_qda_deprecation(): def import_lda_module(): import sklearn.lda # ensure that we trigger DeprecationWarning even if the sklearn.lda # was loaded previously by another test. reload(sklearn.lda) return sklearn.lda lda = assert_warns(DeprecationWarning, import_lda_module) assert lda.LDA is LinearDiscriminantAnalysis def import_qda_module(): import sklearn.qda # ensure that we trigger DeprecationWarning even if the sklearn.qda # was loaded previously by another test. reload(sklearn.qda) return sklearn.qda qda = assert_warns(DeprecationWarning, import_qda_module) assert qda.QDA is QuadraticDiscriminantAnalysis
bsd-3-clause
xavierwu/scikit-learn
sklearn/grid_search.py
61
37197
""" The :mod:`sklearn.grid_search` includes utilities to fine-tune the parameters of an estimator. """ from __future__ import print_function # Author: Alexandre Gramfort <[email protected]>, # Gael Varoquaux <[email protected]> # Andreas Mueller <[email protected]> # Olivier Grisel <[email protected]> # License: BSD 3 clause from abc import ABCMeta, abstractmethod from collections import Mapping, namedtuple, Sized from functools import partial, reduce from itertools import product import operator import warnings import numpy as np from .base import BaseEstimator, is_classifier, clone from .base import MetaEstimatorMixin, ChangedBehaviorWarning from .cross_validation import check_cv from .cross_validation import _fit_and_score from .externals.joblib import Parallel, delayed from .externals import six from .utils import check_random_state from .utils.random import sample_without_replacement from .utils.validation import _num_samples, indexable from .utils.metaestimators import if_delegate_has_method from .metrics.scorer import check_scoring __all__ = ['GridSearchCV', 'ParameterGrid', 'fit_grid_point', 'ParameterSampler', 'RandomizedSearchCV'] class ParameterGrid(object): """Grid of parameters with a discrete number of values for each. Can be used to iterate over parameter value combinations with the Python built-in function iter. Read more in the :ref:`User Guide <grid_search>`. Parameters ---------- param_grid : dict of string to sequence, or sequence of such The parameter grid to explore, as a dictionary mapping estimator parameters to sequences of allowed values. An empty dict signifies default parameters. A sequence of dicts signifies a sequence of grids to search, and is useful to avoid exploring parameter combinations that make no sense or have no effect. See the examples below. Examples -------- >>> from sklearn.grid_search import ParameterGrid >>> param_grid = {'a': [1, 2], 'b': [True, False]} >>> list(ParameterGrid(param_grid)) == ( ... [{'a': 1, 'b': True}, {'a': 1, 'b': False}, ... {'a': 2, 'b': True}, {'a': 2, 'b': False}]) True >>> grid = [{'kernel': ['linear']}, {'kernel': ['rbf'], 'gamma': [1, 10]}] >>> list(ParameterGrid(grid)) == [{'kernel': 'linear'}, ... {'kernel': 'rbf', 'gamma': 1}, ... {'kernel': 'rbf', 'gamma': 10}] True >>> ParameterGrid(grid)[1] == {'kernel': 'rbf', 'gamma': 1} True See also -------- :class:`GridSearchCV`: uses ``ParameterGrid`` to perform a full parallelized parameter search. """ def __init__(self, param_grid): if isinstance(param_grid, Mapping): # wrap dictionary in a singleton list to support either dict # or list of dicts param_grid = [param_grid] self.param_grid = param_grid def __iter__(self): """Iterate over the points in the grid. Returns ------- params : iterator over dict of string to any Yields dictionaries mapping each estimator parameter to one of its allowed values. """ for p in self.param_grid: # Always sort the keys of a dictionary, for reproducibility items = sorted(p.items()) if not items: yield {} else: keys, values = zip(*items) for v in product(*values): params = dict(zip(keys, v)) yield params def __len__(self): """Number of points on the grid.""" # Product function that can handle iterables (np.product can't). product = partial(reduce, operator.mul) return sum(product(len(v) for v in p.values()) if p else 1 for p in self.param_grid) def __getitem__(self, ind): """Get the parameters that would be ``ind``th in iteration Parameters ---------- ind : int The iteration index Returns ------- params : dict of string to any Equal to list(self)[ind] """ # This is used to make discrete sampling without replacement memory # efficient. for sub_grid in self.param_grid: # XXX: could memoize information used here if not sub_grid: if ind == 0: return {} else: ind -= 1 continue # Reverse so most frequent cycling parameter comes first keys, values_lists = zip(*sorted(sub_grid.items())[::-1]) sizes = [len(v_list) for v_list in values_lists] total = np.product(sizes) if ind >= total: # Try the next grid ind -= total else: out = {} for key, v_list, n in zip(keys, values_lists, sizes): ind, offset = divmod(ind, n) out[key] = v_list[offset] return out raise IndexError('ParameterGrid index out of range') class ParameterSampler(object): """Generator on parameters sampled from given distributions. Non-deterministic iterable over random candidate combinations for hyper- parameter search. If all parameters are presented as a list, sampling without replacement is performed. If at least one parameter is given as a distribution, sampling with replacement is used. It is highly recommended to use continuous distributions for continuous parameters. Note that as of SciPy 0.12, the ``scipy.stats.distributions`` do not accept a custom RNG instance and always use the singleton RNG from ``numpy.random``. Hence setting ``random_state`` will not guarantee a deterministic iteration whenever ``scipy.stats`` distributions are used to define the parameter search space. Read more in the :ref:`User Guide <grid_search>`. Parameters ---------- param_distributions : dict Dictionary where the keys are parameters and values are distributions from which a parameter is to be sampled. Distributions either have to provide a ``rvs`` function to sample from them, or can be given as a list of values, where a uniform distribution is assumed. n_iter : integer Number of parameter settings that are produced. random_state : int or RandomState Pseudo random number generator state used for random uniform sampling from lists of possible values instead of scipy.stats distributions. Returns ------- params : dict of string to any **Yields** dictionaries mapping each estimator parameter to as sampled value. Examples -------- >>> from sklearn.grid_search import ParameterSampler >>> from scipy.stats.distributions import expon >>> import numpy as np >>> np.random.seed(0) >>> param_grid = {'a':[1, 2], 'b': expon()} >>> param_list = list(ParameterSampler(param_grid, n_iter=4)) >>> rounded_list = [dict((k, round(v, 6)) for (k, v) in d.items()) ... for d in param_list] >>> rounded_list == [{'b': 0.89856, 'a': 1}, ... {'b': 0.923223, 'a': 1}, ... {'b': 1.878964, 'a': 2}, ... {'b': 1.038159, 'a': 2}] True """ def __init__(self, param_distributions, n_iter, random_state=None): self.param_distributions = param_distributions self.n_iter = n_iter self.random_state = random_state def __iter__(self): # check if all distributions are given as lists # in this case we want to sample without replacement all_lists = np.all([not hasattr(v, "rvs") for v in self.param_distributions.values()]) rnd = check_random_state(self.random_state) if all_lists: # look up sampled parameter settings in parameter grid param_grid = ParameterGrid(self.param_distributions) grid_size = len(param_grid) if grid_size < self.n_iter: raise ValueError( "The total space of parameters %d is smaller " "than n_iter=%d." % (grid_size, self.n_iter) + " For exhaustive searches, use GridSearchCV.") for i in sample_without_replacement(grid_size, self.n_iter, random_state=rnd): yield param_grid[i] else: # Always sort the keys of a dictionary, for reproducibility items = sorted(self.param_distributions.items()) for _ in six.moves.range(self.n_iter): params = dict() for k, v in items: if hasattr(v, "rvs"): params[k] = v.rvs() else: params[k] = v[rnd.randint(len(v))] yield params def __len__(self): """Number of points that will be sampled.""" return self.n_iter def fit_grid_point(X, y, estimator, parameters, train, test, scorer, verbose, error_score='raise', **fit_params): """Run fit on one set of parameters. Parameters ---------- X : array-like, sparse matrix or list Input data. y : array-like or None Targets for input data. estimator : estimator object This estimator will be cloned and then fitted. parameters : dict Parameters to be set on estimator for this grid point. train : ndarray, dtype int or bool Boolean mask or indices for training set. test : ndarray, dtype int or bool Boolean mask or indices for test set. scorer : callable or None. If provided must be a scorer callable object / function with signature ``scorer(estimator, X, y)``. verbose : int Verbosity level. **fit_params : kwargs Additional parameter passed to the fit function of the estimator. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Returns ------- score : float Score of this parameter setting on given training / test split. parameters : dict The parameters that have been evaluated. n_samples_test : int Number of test samples in this split. """ score, n_samples_test, _ = _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, error_score) return score, parameters, n_samples_test def _check_param_grid(param_grid): if hasattr(param_grid, 'items'): param_grid = [param_grid] for p in param_grid: for v in p.values(): if isinstance(v, np.ndarray) and v.ndim > 1: raise ValueError("Parameter array should be one-dimensional.") check = [isinstance(v, k) for k in (list, tuple, np.ndarray)] if True not in check: raise ValueError("Parameter values should be a list.") if len(v) == 0: raise ValueError("Parameter values should be a non-empty " "list.") class _CVScoreTuple (namedtuple('_CVScoreTuple', ('parameters', 'mean_validation_score', 'cv_validation_scores'))): # A raw namedtuple is very memory efficient as it packs the attributes # in a struct to get rid of the __dict__ of attributes in particular it # does not copy the string for the keys on each instance. # By deriving a namedtuple class just to introduce the __repr__ method we # would also reintroduce the __dict__ on the instance. By telling the # Python interpreter that this subclass uses static __slots__ instead of # dynamic attributes. Furthermore we don't need any additional slot in the # subclass so we set __slots__ to the empty tuple. __slots__ = () def __repr__(self): """Simple custom repr to summarize the main info""" return "mean: {0:.5f}, std: {1:.5f}, params: {2}".format( self.mean_validation_score, np.std(self.cv_validation_scores), self.parameters) class BaseSearchCV(six.with_metaclass(ABCMeta, BaseEstimator, MetaEstimatorMixin)): """Base class for hyper parameter search with cross-validation.""" @abstractmethod def __init__(self, estimator, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score='raise'): self.scoring = scoring self.estimator = estimator self.n_jobs = n_jobs self.fit_params = fit_params if fit_params is not None else {} self.iid = iid self.refit = refit self.cv = cv self.verbose = verbose self.pre_dispatch = pre_dispatch self.error_score = error_score @property def _estimator_type(self): return self.estimator._estimator_type def score(self, X, y=None): """Returns the score on the given data, if the estimator has been refit This uses the score defined by ``scoring`` where provided, and the ``best_estimator_.score`` method otherwise. Parameters ---------- X : array-like, shape = [n_samples, n_features] Input data, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. Returns ------- score : float Notes ----- * The long-standing behavior of this method changed in version 0.16. * It no longer uses the metric provided by ``estimator.score`` if the ``scoring`` parameter was set when fitting. """ if self.scorer_ is None: raise ValueError("No score function explicitly defined, " "and the estimator doesn't provide one %s" % self.best_estimator_) if self.scoring is not None and hasattr(self.best_estimator_, 'score'): warnings.warn("The long-standing behavior to use the estimator's " "score function in {0}.score has changed. The " "scoring parameter is now used." "".format(self.__class__.__name__), ChangedBehaviorWarning) return self.scorer_(self.best_estimator_, X, y) @if_delegate_has_method(delegate='estimator') def predict(self, X): """Call predict on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``predict``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.predict(X) @if_delegate_has_method(delegate='estimator') def predict_proba(self, X): """Call predict_proba on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``predict_proba``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.predict_proba(X) @if_delegate_has_method(delegate='estimator') def predict_log_proba(self, X): """Call predict_log_proba on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``predict_log_proba``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.predict_log_proba(X) @if_delegate_has_method(delegate='estimator') def decision_function(self, X): """Call decision_function on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``decision_function``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.decision_function(X) @if_delegate_has_method(delegate='estimator') def transform(self, X): """Call transform on the estimator with the best found parameters. Only available if the underlying estimator supports ``transform`` and ``refit=True``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.transform(X) @if_delegate_has_method(delegate='estimator') def inverse_transform(self, Xt): """Call inverse_transform on the estimator with the best found parameters. Only available if the underlying estimator implements ``inverse_transform`` and ``refit=True``. Parameters ----------- Xt : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.transform(Xt) def _fit(self, X, y, parameter_iterable): """Actual fitting, performing the search over parameters.""" estimator = self.estimator cv = self.cv self.scorer_ = check_scoring(self.estimator, scoring=self.scoring) n_samples = _num_samples(X) X, y = indexable(X, y) if y is not None: if len(y) != n_samples: raise ValueError('Target variable (y) has a different number ' 'of samples (%i) than data (X: %i samples)' % (len(y), n_samples)) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) if self.verbose > 0: if isinstance(parameter_iterable, Sized): n_candidates = len(parameter_iterable) print("Fitting {0} folds for each of {1} candidates, totalling" " {2} fits".format(len(cv), n_candidates, n_candidates * len(cv))) base_estimator = clone(self.estimator) pre_dispatch = self.pre_dispatch out = Parallel( n_jobs=self.n_jobs, verbose=self.verbose, pre_dispatch=pre_dispatch )( delayed(_fit_and_score)(clone(base_estimator), X, y, self.scorer_, train, test, self.verbose, parameters, self.fit_params, return_parameters=True, error_score=self.error_score) for parameters in parameter_iterable for train, test in cv) # Out is a list of triplet: score, estimator, n_test_samples n_fits = len(out) n_folds = len(cv) scores = list() grid_scores = list() for grid_start in range(0, n_fits, n_folds): n_test_samples = 0 score = 0 all_scores = [] for this_score, this_n_test_samples, _, parameters in \ out[grid_start:grid_start + n_folds]: all_scores.append(this_score) if self.iid: this_score *= this_n_test_samples n_test_samples += this_n_test_samples score += this_score if self.iid: score /= float(n_test_samples) else: score /= float(n_folds) scores.append((score, parameters)) # TODO: shall we also store the test_fold_sizes? grid_scores.append(_CVScoreTuple( parameters, score, np.array(all_scores))) # Store the computed scores self.grid_scores_ = grid_scores # Find the best parameters by comparing on the mean validation score: # note that `sorted` is deterministic in the way it breaks ties best = sorted(grid_scores, key=lambda x: x.mean_validation_score, reverse=True)[0] self.best_params_ = best.parameters self.best_score_ = best.mean_validation_score if self.refit: # fit the best estimator using the entire dataset # clone first to work around broken estimators best_estimator = clone(base_estimator).set_params( **best.parameters) if y is not None: best_estimator.fit(X, y, **self.fit_params) else: best_estimator.fit(X, **self.fit_params) self.best_estimator_ = best_estimator return self class GridSearchCV(BaseSearchCV): """Exhaustive search over specified parameter values for an estimator. Important members are fit, predict. GridSearchCV implements a "fit" method and a "predict" method like any classifier except that the parameters of the classifier used to predict is optimized by cross-validation. Read more in the :ref:`User Guide <grid_search>`. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods A object of that type is instantiated for each grid point. param_grid : dict or list of dictionaries Dictionary with parameters names (string) as keys and lists of parameter settings to try as values, or a list of such dictionaries, in which case the grids spanned by each dictionary in the list are explored. This enables searching over any sequence of parameter settings. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. fit_params : dict, optional Parameters to pass to the fit method. n_jobs : int, default 1 Number of jobs to run in parallel. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' iid : boolean, default=True If True, the data is assumed to be identically distributed across the folds, and the loss minimized is the total loss per sample, and not the mean loss across the folds. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if ``y`` is binary or multiclass, :class:`StratifiedKFold` used. If the estimator is a classifier or if ``y`` is neither binary nor multiclass, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. refit : boolean, default=True Refit the best estimator with the entire dataset. If "False", it is impossible to make predictions using this GridSearchCV instance after fitting. verbose : integer Controls the verbosity: the higher, the more messages. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Examples -------- >>> from sklearn import svm, grid_search, datasets >>> iris = datasets.load_iris() >>> parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]} >>> svr = svm.SVC() >>> clf = grid_search.GridSearchCV(svr, parameters) >>> clf.fit(iris.data, iris.target) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS GridSearchCV(cv=None, error_score=..., estimator=SVC(C=1.0, cache_size=..., class_weight=..., coef0=..., decision_function_shape=None, degree=..., gamma=..., kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=..., verbose=False), fit_params={}, iid=..., n_jobs=1, param_grid=..., pre_dispatch=..., refit=..., scoring=..., verbose=...) Attributes ---------- grid_scores_ : list of named tuples Contains scores for all parameter combinations in param_grid. Each entry corresponds to one parameter setting. Each named tuple has the attributes: * ``parameters``, a dict of parameter settings * ``mean_validation_score``, the mean score over the cross-validation folds * ``cv_validation_scores``, the list of scores for each fold best_estimator_ : estimator Estimator that was chosen by the search, i.e. estimator which gave highest score (or smallest loss if specified) on the left out data. Not available if refit=False. best_score_ : float Score of best_estimator on the left out data. best_params_ : dict Parameter setting that gave the best results on the hold out data. scorer_ : function Scorer function used on the held out data to choose the best parameters for the model. Notes ------ The parameters selected are those that maximize the score of the left out data, unless an explicit score is passed in which case it is used instead. If `n_jobs` was set to a value higher than one, the data is copied for each point in the grid (and not `n_jobs` times). This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is large and not enough memory is available. A workaround in this case is to set `pre_dispatch`. Then, the memory is copied only `pre_dispatch` many times. A reasonable value for `pre_dispatch` is `2 * n_jobs`. See Also --------- :class:`ParameterGrid`: generates all the combinations of a an hyperparameter grid. :func:`sklearn.cross_validation.train_test_split`: utility function to split the data into a development set usable for fitting a GridSearchCV instance and an evaluation set for its final evaluation. :func:`sklearn.metrics.make_scorer`: Make a scorer from a performance metric or loss function. """ def __init__(self, estimator, param_grid, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score='raise'): super(GridSearchCV, self).__init__( estimator, scoring, fit_params, n_jobs, iid, refit, cv, verbose, pre_dispatch, error_score) self.param_grid = param_grid _check_param_grid(param_grid) def fit(self, X, y=None): """Run fit with all sets of parameters. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. """ return self._fit(X, y, ParameterGrid(self.param_grid)) class RandomizedSearchCV(BaseSearchCV): """Randomized search on hyper parameters. RandomizedSearchCV implements a "fit" method and a "predict" method like any classifier except that the parameters of the classifier used to predict is optimized by cross-validation. In contrast to GridSearchCV, not all parameter values are tried out, but rather a fixed number of parameter settings is sampled from the specified distributions. The number of parameter settings that are tried is given by n_iter. If all parameters are presented as a list, sampling without replacement is performed. If at least one parameter is given as a distribution, sampling with replacement is used. It is highly recommended to use continuous distributions for continuous parameters. Read more in the :ref:`User Guide <randomized_parameter_search>`. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods A object of that type is instantiated for each parameter setting. param_distributions : dict Dictionary with parameters names (string) as keys and distributions or lists of parameters to try. Distributions must provide a ``rvs`` method for sampling (such as those from scipy.stats.distributions). If a list is given, it is sampled uniformly. n_iter : int, default=10 Number of parameter settings that are sampled. n_iter trades off runtime vs quality of the solution. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. fit_params : dict, optional Parameters to pass to the fit method. n_jobs : int, default=1 Number of jobs to run in parallel. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' iid : boolean, default=True If True, the data is assumed to be identically distributed across the folds, and the loss minimized is the total loss per sample, and not the mean loss across the folds. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if ``y`` is binary or multiclass, :class:`StratifiedKFold` used. If the estimator is a classifier or if ``y`` is neither binary nor multiclass, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. refit : boolean, default=True Refit the best estimator with the entire dataset. If "False", it is impossible to make predictions using this RandomizedSearchCV instance after fitting. verbose : integer Controls the verbosity: the higher, the more messages. random_state : int or RandomState Pseudo random number generator state used for random uniform sampling from lists of possible values instead of scipy.stats distributions. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Attributes ---------- grid_scores_ : list of named tuples Contains scores for all parameter combinations in param_grid. Each entry corresponds to one parameter setting. Each named tuple has the attributes: * ``parameters``, a dict of parameter settings * ``mean_validation_score``, the mean score over the cross-validation folds * ``cv_validation_scores``, the list of scores for each fold best_estimator_ : estimator Estimator that was chosen by the search, i.e. estimator which gave highest score (or smallest loss if specified) on the left out data. Not available if refit=False. best_score_ : float Score of best_estimator on the left out data. best_params_ : dict Parameter setting that gave the best results on the hold out data. Notes ----- The parameters selected are those that maximize the score of the held-out data, according to the scoring parameter. If `n_jobs` was set to a value higher than one, the data is copied for each parameter setting(and not `n_jobs` times). This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is large and not enough memory is available. A workaround in this case is to set `pre_dispatch`. Then, the memory is copied only `pre_dispatch` many times. A reasonable value for `pre_dispatch` is `2 * n_jobs`. See Also -------- :class:`GridSearchCV`: Does exhaustive search over a grid of parameters. :class:`ParameterSampler`: A generator over parameter settins, constructed from param_distributions. """ def __init__(self, estimator, param_distributions, n_iter=10, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', random_state=None, error_score='raise'): self.param_distributions = param_distributions self.n_iter = n_iter self.random_state = random_state super(RandomizedSearchCV, self).__init__( estimator=estimator, scoring=scoring, fit_params=fit_params, n_jobs=n_jobs, iid=iid, refit=refit, cv=cv, verbose=verbose, pre_dispatch=pre_dispatch, error_score=error_score) def fit(self, X, y=None): """Run fit on the estimator with randomly drawn parameters. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. """ sampled_params = ParameterSampler(self.param_distributions, self.n_iter, random_state=self.random_state) return self._fit(X, y, sampled_params)
bsd-3-clause
btallman/incubator-airflow
docs/conf.py
33
8957
# -*- coding: utf-8 -*- # # Airflow documentation build configuration file, created by # sphinx-quickstart on Thu Oct 9 20:50:01 2014. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import os import sys import mock MOCK_MODULES = [ 'apiclient', 'apiclient.discovery', 'apiclient.http', 'mesos', 'mesos.interface', 'mesos.native', 'oauth2client.service_account', 'pandas.io.gbq', ] for mod_name in MOCK_MODULES: sys.modules[mod_name] = mock.Mock() # Hack to allow changing for piece of the code to behave differently while # the docs are being built. The main objective was to alter the # behavior of the utils.apply_default that was hiding function headers os.environ['BUILDING_AIRFLOW_DOCS'] = 'TRUE' from airflow import settings # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.coverage', 'sphinx.ext.viewcode', 'sphinxarg.ext', ] viewcode_import = True # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Airflow' #copyright = u'' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. #version = '1.0.0' # The full version, including alpha/beta/rc tags. #release = '1.0.0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] import sphinx_rtd_theme html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". html_title = "Airflow Documentation" # A shorter title for the navigation bar. Default is the same as html_title. html_short_title = "" # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. html_show_copyright = False # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'Airflowdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ('index', 'Airflow.tex', u'Airflow Documentation', u'Maxime Beauchemin', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'airflow', u'Airflow Documentation', [u'Maxime Beauchemin'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [( 'index', 'Airflow', u'Airflow Documentation', u'Maxime Beauchemin', 'Airflow', 'Airflow is a system to programmaticaly author, schedule and monitor data pipelines.', 'Miscellaneous' ),] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False
apache-2.0
moonbury/pythonanywhere
github/MasteringPandas/2060_11_Code/run_svm_titanic.py
3
3341
#!/home/femibyte/local/anaconda/bin/python import pandas as pd import numpy as np from sklearn.linear_model import LogisticRegression from sklearn import metrics,svm from patsy import dmatrix, dmatrices import re train_df = pd.read_csv('csv/train.csv', header=0) test_df = pd.read_csv('csv/test.csv', header=0) formula1 = 'C(Pclass) + C(Sex) + Fare' formula2 = 'C(Pclass) + C(Sex)' formula3 = 'C(Sex)' formula4 = 'C(Pclass) + C(Sex) + Age + SibSp + Parch' formula5 = 'C(Pclass) + C(Sex) + Age + SibSp + Parch + C(Embarked)' formula6 = 'C(Pclass) + C(Sex) + C(Embarked)' formula7 = 'C(Pclass) + C(Sex) + Age + Parch + C(Embarked)' formula8 = 'C(Pclass) + C(Sex) + SibSp + Parch + C(Embarked)' formula_map = {'PClass_Sex_Fare' : formula1, 'PClass_Sex' : formula2, 'Sex' : formula3, 'PClass_Sex_Age_Sibsp_Parch' : formula4, 'PClass_Sex_Age_Sibsp_Parch_Embarked' : formula5 } #formula_map={'PClass_Sex_Embarked' : formula6} formula_map = {'PClass_Sex_SibSp_Parch_Embarked' : formula8} kernel_types=['linear','rbf','poly'] kernel_types=['poly'] #kernel_types=['rbf'] def main(): train_df_filled=fill_null_vals(train_df,'Fare') train_df_filled=fill_null_vals(train_df_filled,'Age') assert len(train_df_filled)==len(train_df) test_df_filled=fill_null_vals(test_df,'Fare') test_df_filled=fill_null_vals(test_df_filled,'Age') assert len(test_df_filled)==len(test_df) for formula_name, formula in formula_map.iteritems(): print "name=%s formula=%s" % (formula_name,formula) y_train,X_train = dmatrices('Survived ~ ' + formula, train_df_filled,return_type='dataframe') print "Running SVM with formula : %s" % formula print "X_train cols=%s " % X_train.columns y_train = np.ravel(y_train) for kernel in kernel_types: #model = svm.SVC(kernel=kernel,gamma=3) model = svm.SVC(kernel=kernel) print "About to fit..." svm_model = model.fit(X_train, y_train) print "Kernel: %s" % kernel print "Training score:%s" % svm_model.score(X_train,y_train) X_test=dmatrix(formula,test_df_filled) predicted=svm_model.predict(X_test) print "predicted:%s\n" % predicted[:5] assert len(predicted)==len(test_df) pred_results=pd.Series(predicted,name='Survived') svm_results=pd.concat([test_df['PassengerId'],pred_results],axis=1) svm_results.Survived=svm_results.Survived.astype(int) results_file='csv/svm_%s_%s.csv' % (kernel,formula_name) #results_file = re.sub('[+ ()C]','',results_file) svm_results.to_csv(results_file,index=False) def fill_null_vals(df,col_name): null_passengers=df[df[col_name].isnull()] passenger_id_list=null_passengers['PassengerId'].tolist() df_filled=df.copy() for pass_id in passenger_id_list: idx=df[df['PassengerId']==pass_id].index[0] similar_passengers=df[(df['Sex']==null_passengers['Sex'][idx]) & (df['Pclass']==null_passengers['Pclass'][idx])] mean_val=np.mean(similar_passengers[col_name].dropna()) df_filled.loc[idx,col_name]=mean_val return df_filled if __name__ == '__main__': main()
gpl-3.0
Vishruit/DDP_models
miscellaneous/code/ae.py
1
5430
import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from keras.layers import Input, Dense,Reshape, Conv2D, MaxPooling2D, UpSampling3D, Conv3D, MaxPooling3D from keras.models import Model from keras.layers.core import Lambda from keras.utils.io_utils import HDF5Matrix from keras.utils.np_utils import normalize import keras.backend as K import h5py from keras.models import load_model import tensorflow as tf from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, LambdaCallback, CSVLogger import sys import numpy as np import matplotlib.pyplot as plt tf.device('/gpu:0') # Add commentsgfswsrfssgsdhge from keras.datasets import mnist import numpy as np # with h5py.File('../data_small.h5', 'r') as hdf: # # data = hdf['data_small'][:,:150,:,:] # data = hdf['data_small'][:10] # print ('Hi1') # # data = data.reshape((len(data)*data.shape[1]),1,data.shape[2],data.shape[3]) # data = data.reshape(len(data),data.shape[1],data.shape[2],data.shape[3],1) # print ('Hi2') # print(data.shape) # # # x_train = data[:int(6*len(data)/10)] # x_test = data[int(6*len(data)/10):] # print(x_train.shape, x_test.shape) def data_preprocess(data): # data = data.reshape((len(data)*data.shape[1]),data.shape[2],data.shape[3],1) # print (data.shape) # print (data.dtype, type(data)) maxVal = np.max(data) data = data / (maxVal+0.00001) # sys.exit() # data = data.astype('float32') # normalize(data, axis=1, order=2) # data = data[:int(6*len(data)/10)] # print(x_train.shape) # x_test = data[int(6*len(data)/10):] # maxVal= K.max(data) # print("#####################################") # data = data / maxVal # print(type(data), data.dtype, K.is_keras_tensor(data)) # data = np.array return data with h5py.File('../data_small_100.h5', 'r') as hdf: # data = hdf['data_small'][:20] # print(len(hdf['data_small'])) data_slice_size = 202 x_train = HDF5Matrix('../data_small_100.h5', 'data_small', start=0, end=int(6*data_slice_size/10), normalizer=lambda x: data_preprocess(x)) x_test = HDF5Matrix('../data_small_100.h5', 'data_small', start=int(6*data_slice_size/10), end=data_slice_size, normalizer=lambda x: data_preprocess(x)) # print (data_hdf.shape, type(data_hdf)) print(x_train.shape) print ('Hi3') frames = x_train.shape[1] height = x_train.shape[2] width = x_train.shape[3] input_img = Input(shape=(frames, height, width)) x = Reshape((x_train.shape[1],x_train.shape[2],x_train.shape[3], 1))(input_img) x = Conv3D(16, (3, 3, 3), activation='relu', padding='same')(x) x = MaxPooling3D((2, 2, 2), padding='same')(x) x = Conv3D(8, (3, 3, 3), activation='relu', padding='same')(x) x = MaxPooling3D((2, 2, 2), padding='same')(x) x = Conv3D(8, (3, 3, 3), activation='relu', padding='same')(x) encoded = MaxPooling3D((5, 2, 2), padding='same')(x) # at this point the representation is (8, 4, 4) i.e. 128-dimensional x = Conv3D(8, (3, 3, 3), activation='relu', padding='same')(encoded) x = UpSampling3D((5, 2, 2))(x) x = Conv3D(8, (3, 3, 3), activation='relu', padding='same')(x) x = UpSampling3D((2, 2, 2))(x) x = Conv3D(16, (3, 3, 3), activation='relu', padding='same')(x) x = UpSampling3D((2, 2, 2))(x) decoded = Conv3D(1, (3, 3, 3), activation='sigmoid', padding='same')(x) decoded = Reshape((x_train.shape[1],x_train.shape[2],x_train.shape[3]))(decoded) autoencoder = Model(input_img, decoded) autoencoder.compile(optimizer='adam', loss='binary_crossentropy') autoencoder.summary() chkpt = ModelCheckpoint('./CheckPoint/weights_adam.{epoch:02d}-{val_loss:.2f}.hdf5', monitor='val_loss', verbose=0, save_best_only=False, save_weights_only=False, mode='auto', period=1) reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=10, verbose=0, mode='auto', epsilon=0.0001, cooldown=0, min_lr=0) # Plot the loss after every epoch. plot_loss_callback = LambdaCallback( on_epoch_end=lambda epoch, logs: plt.plot(np.arange(epoch), logs['loss'])) csvLogger = CSVLogger('./CheckPoint/csv_log_file_50_5_adamReal_200.csv', separator=',', append=False) # callback_list = [chkpt, reduce_lr, plot_loss_callback, csvLogger] callback_list = [chkpt, reduce_lr, csvLogger] autoencoder.fit(x_train, x_train,\ epochs=50,\ batch_size=2,\ shuffle='batch',\ validation_data=(x_test, x_test), \ callbacks=callback_list) # decoded_imgs = autoencoder.predict(x_test[:n]) n = 10 # decoded_imgs = autoencoder.predict(x_test[0:n]) plt.figure(figsize=(20, 4)) for i in range(n): decoded_imgs = autoencoder.predict(x_test[i].reshape(1, x_test.shape[1], x_test.shape[2], x_test.shape[3])) # display original ax = plt.subplot(2, n, i + 1) # TODO remove hard links print(x_test[i].shape) plt.imshow(x_test[i].reshape(frames, 256, 320)[i,...]) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) #plt.savefig('original.jpg') # display reconstruction ax = plt.subplot(2, n, i + n + 1) plt.imshow(decoded_imgs.reshape(frames, 256, 320)[i,...]) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) plt.savefig('reconstruction1_50_5_adamReal_200.png')
gpl-3.0
alpinedatalabs/ODST
notebooks/logreg.py
4
1420
# logreg supporting functions # Nitin Borwankar # Open Data Science Training import matplotlib.pyplot as plt import numpy as np def nfl_outcomes(): scores = [3,11,12,13,20,22,21,25, 26,27,28,29,30,31,33,35,37,41,42,43] outcomes = [0,0,0,0,0,0,0,1,1,0,1,1,1,1,1,1,1,1,1,1] figsize = (8, 5) fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111) line = ax.plot(scores,outcomes,'o')[0] #x = np.arange(5,50,5) #y = (1.1/30.)*x-0.3 #line2 = ax.plot(x,y) ax.set_title('Win/Loss Outcomes for an NFL team') ax.set_xlabel('Score') ax.set_ylabel('Proability of a Win') ax.set_ylim((-0.1,1.1)) ax.grid(True) #line.set_marker('o') #plt.savefig('oo.png',dpi=150) plt.show() return ax,fig def nfl_outcomes_with_line(): scores = [3,11,12,13,20,22,21,25, 26,27,28,29,30,31,33,35,37,41,42,43] outcomes = [0,0,0,0,0,0,0,1,1,0,1,1,1,1,1,1,1,1,1,1] figsize = (8, 5) fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111) line = ax.plot(scores,outcomes,'o')[0] x = np.arange(5,50,5) y = (1.1/30.)*x-0.3 line2 = ax.plot(x,y) ax.set_title('Win/Loss Outcomes for an NFL team') ax.set_xlabel('Score') ax.set_ylabel('Proability of a Win') ax.set_ylim((-0.1,1.1)) ax.grid(True) #line.set_marker('o') #plt.savefig('oo.png',dpi=150) plt.show() return ax,fig def fz(fico,amt,coeff): z = coeff[0]+coeff[1]*fico+coeff[2]*amt return 1/(1+exp(-1*z))
bsd-2-clause
seansu4you87/kupo
projects/MOOCs/udacity/drive/project-4-advanced-lane-finding/sobel/sobel.py
1
2232
import cv2 import matplotlib.pyplot as plt import matplotlib.image as mpimg import numpy as np image = mpimg.imread("./signs_vehicles_xygrad.png") def abs_sobel_thresh(img, orient="x", ksize=3, thresh=(0, 255)): gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) if orient == "x": sobel = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=ksize) else: sobel = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=ksize) abs_sobel = np.absolute(sobel) scaled = np.uint8(255 * abs_sobel / np.max(abs_sobel)) binary = np.zeros_like(scaled) binary[(scaled >= thresh[0]) & (scaled <= thresh[1])] = 1 return binary def mag_thresh(img, ksize=3, thresh=(0, 255)): gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) sobel_x = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=ksize) sobel_y = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=ksize) mag = np.sqrt(sobel_x ** 2 + sobel_y ** 2) scaled = np.uint8(255 * mag / np.max(mag)) binary = np.zeros_like(scaled) binary[(scaled >= thresh[0]) & (scaled <= thresh[1])] = 1 return binary def dir_thresh(img, ksize=3, thresh=(0, np.pi / 2)): gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) sobel_x = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=ksize) sobel_y = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=ksize) abs_x = np.absolute(sobel_x) abs_y = np.absolute(sobel_y) arc = np.arctan2(abs_y, abs_x) binary = np.zeros_like(arc) binary[(arc >= thresh[0]) & (arc <= thresh[1])] = 1 return binary lanes_x = abs_sobel_thresh(image, orient="x", ksize=9, thresh=(30, 100)) lanes_y = abs_sobel_thresh(image, orient="y", ksize=9, thresh=(30, 100)) lanes_mag = mag_thresh(image, ksize=9, thresh=(100, 200)) lanes_dir = dir_thresh(image, ksize=9, thresh=(0.7, 1.3)) lanes = np.zeros_like(image) lanes[ ((lanes_x == 1) & (lanes_y == 1)) | ((lanes_mag == 1) & (lanes_dir == 1)) ] = 1 # lanes = np.concatenate([lanes_x, lanes_y, lanes_mag, lanes_dir]) f, (ax1, ax2) = plt.subplots(1, 2, figsize=(24, 9)) f.tight_layout() ax1.imshow(image) ax1.set_title("Original Image", fontsize=50) ax2.imshow(lanes) ax2.set_title("Lane Lines", fontsize=50) plt.subplots_adjust(left=0., right=1, top=0.9, bottom=0.) plt.show(block=True)
mit
eg-zhang/scikit-learn
examples/model_selection/plot_train_error_vs_test_error.py
349
2577
""" ========================= Train error vs Test error ========================= Illustration of how the performance of an estimator on unseen data (test data) is not the same as the performance on training data. As the regularization increases the performance on train decreases while the performance on test is optimal within a range of values of the regularization parameter. The example with an Elastic-Net regression model and the performance is measured using the explained variance a.k.a. R^2. """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import numpy as np from sklearn import linear_model ############################################################################### # Generate sample data n_samples_train, n_samples_test, n_features = 75, 150, 500 np.random.seed(0) coef = np.random.randn(n_features) coef[50:] = 0.0 # only the top 10 features are impacting the model X = np.random.randn(n_samples_train + n_samples_test, n_features) y = np.dot(X, coef) # Split train and test data X_train, X_test = X[:n_samples_train], X[n_samples_train:] y_train, y_test = y[:n_samples_train], y[n_samples_train:] ############################################################################### # Compute train and test errors alphas = np.logspace(-5, 1, 60) enet = linear_model.ElasticNet(l1_ratio=0.7) train_errors = list() test_errors = list() for alpha in alphas: enet.set_params(alpha=alpha) enet.fit(X_train, y_train) train_errors.append(enet.score(X_train, y_train)) test_errors.append(enet.score(X_test, y_test)) i_alpha_optim = np.argmax(test_errors) alpha_optim = alphas[i_alpha_optim] print("Optimal regularization parameter : %s" % alpha_optim) # Estimate the coef_ on full data with optimal regularization parameter enet.set_params(alpha=alpha_optim) coef_ = enet.fit(X, y).coef_ ############################################################################### # Plot results functions import matplotlib.pyplot as plt plt.subplot(2, 1, 1) plt.semilogx(alphas, train_errors, label='Train') plt.semilogx(alphas, test_errors, label='Test') plt.vlines(alpha_optim, plt.ylim()[0], np.max(test_errors), color='k', linewidth=3, label='Optimum on test') plt.legend(loc='lower left') plt.ylim([0, 1.2]) plt.xlabel('Regularization parameter') plt.ylabel('Performance') # Show estimated coef_ vs true coef plt.subplot(2, 1, 2) plt.plot(coef, label='True coef') plt.plot(coef_, label='Estimated coef') plt.legend() plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.26) plt.show()
bsd-3-clause
Eigenstate/msmbuilder
msmbuilder/cluster/__init__.py
8
3364
# Author: Robert McGibbon <[email protected]> # Contributors: Matthew Harrigan <[email protected]>, Brooke Husic <[email protected]> # Copyright (c) 2016, Stanford University # All rights reserved. from __future__ import absolute_import, print_function, division import warnings from sklearn import cluster try: # sklearn >= 0.18 from sklearn.mixture import GaussianMixture as sklearn_GMM except ImportError: from sklearn.mixture import GMM as sklearn_GMM from ..base import BaseEstimator from .base import MultiSequenceClusterMixin from .kcenters import KCenters from .ndgrid import NDGrid from .agglomerative import LandmarkAgglomerative from .regularspatial import RegularSpatial from .kmedoids import KMedoids from .minibatchkmedoids import MiniBatchKMedoids from .apm import APM warnings.filterwarnings("once", '', DeprecationWarning, r'^sklearn\.') __all__ = ['KMeans', 'MiniBatchKMeans', 'AffinityPropagation', 'MeanShift', 'GMM', 'SpectralClustering', 'KCenters', 'NDGrid', 'LandmarkAgglomerative', 'RegularSpatial', 'KMedoids', 'MiniBatchKMedoids', 'MultiSequenceClusterMixin', 'APM', 'AgglomerativeClustering'] def _replace_labels(doc): """Really hacky find-and-replace method that modifies one of the sklearn docstrings to change the semantics of labels_ for the subclasses""" lines = doc.splitlines() labelstart, labelend = None, None foundattributes = False for i, line in enumerate(lines): stripped = line.strip() if stripped == 'Attributes': foundattributes = True if foundattributes and not labelstart and stripped.startswith('labels_'): labelstart = len('\n'.join(lines[:i])) + 1 if labelstart and not labelend and stripped == '': labelend = len('\n'.join(lines[:i + 1])) if labelstart is None or labelend is None: return doc replace = '\n'.join([ ' labels_ : list of arrays, each of shape [sequence_length, ]', ' The label of each point is an integer in [0, n_clusters).', '', ]) return doc[:labelstart] + replace + doc[labelend:] class KMeans(MultiSequenceClusterMixin, cluster.KMeans, BaseEstimator): __doc__ = _replace_labels(cluster.KMeans.__doc__) class MiniBatchKMeans(MultiSequenceClusterMixin, cluster.MiniBatchKMeans, BaseEstimator): __doc__ = _replace_labels(cluster.MiniBatchKMeans.__doc__) class AffinityPropagation(MultiSequenceClusterMixin, cluster.AffinityPropagation, BaseEstimator): __doc__ = _replace_labels(cluster.AffinityPropagation.__doc__) class MeanShift(MultiSequenceClusterMixin, cluster.MeanShift, BaseEstimator): __doc__ = _replace_labels(cluster.MeanShift.__doc__) class SpectralClustering(MultiSequenceClusterMixin, cluster.SpectralClustering, BaseEstimator): __doc__ = _replace_labels(cluster.SpectralClustering.__doc__) class AgglomerativeClustering(MultiSequenceClusterMixin, cluster.AgglomerativeClustering, BaseEstimator): __doc__ = _replace_labels(cluster.AgglomerativeClustering.__doc__) class GMM(MultiSequenceClusterMixin, sklearn_GMM, BaseEstimator): __doc__ = _replace_labels(sklearn_GMM.__doc__)
lgpl-2.1
dsullivan7/scikit-learn
sklearn/linear_model/stochastic_gradient.py
8
50342
# Authors: Peter Prettenhofer <[email protected]> (main author) # Mathieu Blondel (partial_fit support) # # License: BSD 3 clause """Classification and regression using Stochastic Gradient Descent (SGD).""" import numpy as np import scipy.sparse as sp from abc import ABCMeta, abstractmethod from ..externals.joblib import Parallel, delayed from .base import LinearClassifierMixin, SparseCoefMixin from ..base import BaseEstimator, RegressorMixin from ..feature_selection.from_model import _LearntSelectorMixin from ..utils import (check_array, check_random_state, check_X_y, deprecated) from ..utils.extmath import safe_sparse_dot from ..utils.multiclass import _check_partial_fit_first_call from ..utils.validation import check_is_fitted from ..externals import six from .sgd_fast import plain_sgd, average_sgd from ..utils.seq_dataset import ArrayDataset, CSRDataset from ..utils import compute_class_weight from .sgd_fast import Hinge from .sgd_fast import SquaredHinge from .sgd_fast import Log from .sgd_fast import ModifiedHuber from .sgd_fast import SquaredLoss from .sgd_fast import Huber from .sgd_fast import EpsilonInsensitive from .sgd_fast import SquaredEpsilonInsensitive LEARNING_RATE_TYPES = {"constant": 1, "optimal": 2, "invscaling": 3, "pa1": 4, "pa2": 5} PENALTY_TYPES = {"none": 0, "l2": 2, "l1": 1, "elasticnet": 3} SPARSE_INTERCEPT_DECAY = 0.01 """For sparse data intercept updates are scaled by this decay factor to avoid intercept oscillation.""" DEFAULT_EPSILON = 0.1 """Default value of ``epsilon`` parameter. """ class BaseSGD(six.with_metaclass(ABCMeta, BaseEstimator, SparseCoefMixin)): """Base class for SGD classification and regression.""" def __init__(self, loss, penalty='l2', alpha=0.0001, C=1.0, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=0.1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, warm_start=False, average=False): self.loss = loss self.penalty = penalty self.learning_rate = learning_rate self.epsilon = epsilon self.alpha = alpha self.C = C self.l1_ratio = l1_ratio self.fit_intercept = fit_intercept self.n_iter = n_iter self.shuffle = shuffle self.random_state = random_state self.verbose = verbose self.eta0 = eta0 self.power_t = power_t self.warm_start = warm_start self.average = average self._validate_params() self.coef_ = None if self.average > 0: self.standard_coef_ = None self.average_coef_ = None # iteration count for learning rate schedule # must not be int (e.g. if ``learning_rate=='optimal'``) self.t_ = None def set_params(self, *args, **kwargs): super(BaseSGD, self).set_params(*args, **kwargs) self._validate_params() return self @abstractmethod def fit(self, X, y): """Fit model.""" def _validate_params(self): """Validate input params. """ if not isinstance(self.shuffle, bool): raise ValueError("shuffle must be either True or False") if self.n_iter <= 0: raise ValueError("n_iter must be > zero") if not (0.0 <= self.l1_ratio <= 1.0): raise ValueError("l1_ratio must be in [0, 1]") if self.alpha < 0.0: raise ValueError("alpha must be >= 0") if self.learning_rate in ("constant", "invscaling"): if self.eta0 <= 0.0: raise ValueError("eta0 must be > 0") # raises ValueError if not registered self._get_penalty_type(self.penalty) self._get_learning_rate_type(self.learning_rate) if self.loss not in self.loss_functions: raise ValueError("The loss %s is not supported. " % self.loss) def _get_loss_function(self, loss): """Get concrete ``LossFunction`` object for str ``loss``. """ try: loss_ = self.loss_functions[loss] loss_class, args = loss_[0], loss_[1:] if loss in ('huber', 'epsilon_insensitive', 'squared_epsilon_insensitive'): args = (self.epsilon, ) return loss_class(*args) except KeyError: raise ValueError("The loss %s is not supported. " % loss) def _get_learning_rate_type(self, learning_rate): try: return LEARNING_RATE_TYPES[learning_rate] except KeyError: raise ValueError("learning rate %s " "is not supported. " % learning_rate) def _get_penalty_type(self, penalty): penalty = str(penalty).lower() try: return PENALTY_TYPES[penalty] except KeyError: raise ValueError("Penalty %s is not supported. " % penalty) def _validate_sample_weight(self, sample_weight, n_samples): """Set the sample weight array.""" if sample_weight is None: # uniform sample weights sample_weight = np.ones(n_samples, dtype=np.float64, order='C') else: # user-provided array sample_weight = np.asarray(sample_weight, dtype=np.float64, order="C") if sample_weight.shape[0] != n_samples: raise ValueError("Shapes of X and sample_weight do not match.") return sample_weight def _allocate_parameter_mem(self, n_classes, n_features, coef_init=None, intercept_init=None): """Allocate mem for parameters; initialize if provided.""" if n_classes > 2: # allocate coef_ for multi-class if coef_init is not None: coef_init = np.asarray(coef_init, order="C") if coef_init.shape != (n_classes, n_features): raise ValueError("Provided ``coef_`` does not match dataset. ") self.coef_ = coef_init else: self.coef_ = np.zeros((n_classes, n_features), dtype=np.float64, order="C") # allocate intercept_ for multi-class if intercept_init is not None: intercept_init = np.asarray(intercept_init, order="C") if intercept_init.shape != (n_classes, ): raise ValueError("Provided intercept_init " "does not match dataset.") self.intercept_ = intercept_init else: self.intercept_ = np.zeros(n_classes, dtype=np.float64, order="C") else: # allocate coef_ for binary problem if coef_init is not None: coef_init = np.asarray(coef_init, dtype=np.float64, order="C") coef_init = coef_init.ravel() if coef_init.shape != (n_features,): raise ValueError("Provided coef_init does not " "match dataset.") self.coef_ = coef_init else: self.coef_ = np.zeros(n_features, dtype=np.float64, order="C") # allocate intercept_ for binary problem if intercept_init is not None: intercept_init = np.asarray(intercept_init, dtype=np.float64) if intercept_init.shape != (1,) and intercept_init.shape != (): raise ValueError("Provided intercept_init " "does not match dataset.") self.intercept_ = intercept_init.reshape(1,) else: self.intercept_ = np.zeros(1, dtype=np.float64, order="C") # initialize average parameters if self.average > 0: self.standard_coef_ = self.coef_ self.standard_intercept_ = self.intercept_ self.average_coef_ = np.zeros(self.coef_.shape, dtype=np.float64, order="C") self.average_intercept_ = np.zeros(self.standard_intercept_.shape, dtype=np.float64, order="C") def _make_dataset(X, y_i, sample_weight): """Create ``Dataset`` abstraction for sparse and dense inputs. This also returns the ``intercept_decay`` which is different for sparse datasets. """ if sp.issparse(X): dataset = CSRDataset(X.data, X.indptr, X.indices, y_i, sample_weight) intercept_decay = SPARSE_INTERCEPT_DECAY else: dataset = ArrayDataset(X, y_i, sample_weight) intercept_decay = 1.0 return dataset, intercept_decay def _prepare_fit_binary(est, y, i): """Initialization for fit_binary. Returns y, coef, intercept. """ y_i = np.ones(y.shape, dtype=np.float64, order="C") y_i[y != est.classes_[i]] = -1.0 average_intercept = 0 average_coef = None if len(est.classes_) == 2: if not est.average: coef = est.coef_.ravel() intercept = est.intercept_[0] else: coef = est.standard_coef_.ravel() intercept = est.standard_intercept_[0] average_coef = est.average_coef_.ravel() average_intercept = est.average_intercept_[0] else: if not est.average: coef = est.coef_[i] intercept = est.intercept_[i] else: coef = est.standard_coef_[i] intercept = est.standard_intercept_[i] average_coef = est.average_coef_[i] average_intercept = est.average_intercept_[i] return y_i, coef, intercept, average_coef, average_intercept def fit_binary(est, i, X, y, alpha, C, learning_rate, n_iter, pos_weight, neg_weight, sample_weight): """Fit a single binary classifier. The i'th class is considered the "positive" class. """ # if average is not true, average_coef, and average_intercept will be # unused y_i, coef, intercept, average_coef, average_intercept = \ _prepare_fit_binary(est, y, i) assert y_i.shape[0] == y.shape[0] == sample_weight.shape[0] dataset, intercept_decay = _make_dataset(X, y_i, sample_weight) penalty_type = est._get_penalty_type(est.penalty) learning_rate_type = est._get_learning_rate_type(learning_rate) # XXX should have random_state_! random_state = check_random_state(est.random_state) # numpy mtrand expects a C long which is a signed 32 bit integer under # Windows seed = random_state.randint(0, np.iinfo(np.int32).max) if not est.average: return plain_sgd(coef, intercept, est.loss_function, penalty_type, alpha, C, est.l1_ratio, dataset, n_iter, int(est.fit_intercept), int(est.verbose), int(est.shuffle), seed, pos_weight, neg_weight, learning_rate_type, est.eta0, est.power_t, est.t_, intercept_decay) else: standard_coef, standard_intercept, average_coef, \ average_intercept = average_sgd(coef, intercept, average_coef, average_intercept, est.loss_function, penalty_type, alpha, C, est.l1_ratio, dataset, n_iter, int(est.fit_intercept), int(est.verbose), int(est.shuffle), seed, pos_weight, neg_weight, learning_rate_type, est.eta0, est.power_t, est.t_, intercept_decay, est.average) if len(est.classes_) == 2: est.average_intercept_[0] = average_intercept else: est.average_intercept_[i] = average_intercept return standard_coef, standard_intercept class BaseSGDClassifier(six.with_metaclass(ABCMeta, BaseSGD, LinearClassifierMixin)): loss_functions = { "hinge": (Hinge, 1.0), "squared_hinge": (SquaredHinge, 1.0), "perceptron": (Hinge, 0.0), "log": (Log, ), "modified_huber": (ModifiedHuber, ), "squared_loss": (SquaredLoss, ), "huber": (Huber, DEFAULT_EPSILON), "epsilon_insensitive": (EpsilonInsensitive, DEFAULT_EPSILON), "squared_epsilon_insensitive": (SquaredEpsilonInsensitive, DEFAULT_EPSILON), } @abstractmethod def __init__(self, loss="hinge", penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, n_jobs=1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, class_weight=None, warm_start=False, average=False): super(BaseSGDClassifier, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start, average=average) self.class_weight = class_weight self.classes_ = None self.n_jobs = int(n_jobs) def _partial_fit(self, X, y, alpha, C, loss, learning_rate, n_iter, classes, sample_weight, coef_init, intercept_init): X, y = check_X_y(X, y, 'csr', dtype=np.float64, order="C") n_samples, n_features = X.shape self._validate_params() _check_partial_fit_first_call(self, classes) n_classes = self.classes_.shape[0] # Allocate datastructures from input arguments self._expanded_class_weight = compute_class_weight(self.class_weight, self.classes_, y) sample_weight = self._validate_sample_weight(sample_weight, n_samples) if self.coef_ is None or coef_init is not None: self._allocate_parameter_mem(n_classes, n_features, coef_init, intercept_init) elif n_features != self.coef_.shape[-1]: raise ValueError("Number of features %d does not match previous data %d." % (n_features, self.coef_.shape[-1])) self.loss_function = self._get_loss_function(loss) if self.t_ is None: self.t_ = 1.0 # delegate to concrete training procedure if n_classes > 2: self._fit_multiclass(X, y, alpha=alpha, C=C, learning_rate=learning_rate, sample_weight=sample_weight, n_iter=n_iter) elif n_classes == 2: self._fit_binary(X, y, alpha=alpha, C=C, learning_rate=learning_rate, sample_weight=sample_weight, n_iter=n_iter) else: raise ValueError("The number of class labels must be " "greater than one.") return self def _fit(self, X, y, alpha, C, loss, learning_rate, coef_init=None, intercept_init=None, sample_weight=None): if hasattr(self, "classes_"): self.classes_ = None X, y = check_X_y(X, y, 'csr', dtype=np.float64, order="C") n_samples, n_features = X.shape # labels can be encoded as float, int, or string literals # np.unique sorts in asc order; largest class id is positive class classes = np.unique(y) if self.warm_start and self.coef_ is not None: if coef_init is None: coef_init = self.coef_ if intercept_init is None: intercept_init = self.intercept_ else: self.coef_ = None self.intercept_ = None if self.average > 0: self.standard_coef_ = self.coef_ self.standard_intercept_ = self.intercept_ self.average_coef_ = None self.average_intercept_ = None # Clear iteration count for multiple call to fit. self.t_ = None self._partial_fit(X, y, alpha, C, loss, learning_rate, self.n_iter, classes, sample_weight, coef_init, intercept_init) return self def _fit_binary(self, X, y, alpha, C, sample_weight, learning_rate, n_iter): """Fit a binary classifier on X and y. """ coef, intercept = fit_binary(self, 1, X, y, alpha, C, learning_rate, n_iter, self._expanded_class_weight[1], self._expanded_class_weight[0], sample_weight) self.t_ += n_iter * X.shape[0] # need to be 2d if self.average > 0: if self.average <= self.t_ - 1: self.coef_ = self.average_coef_.reshape(1, -1) self.intercept_ = self.average_intercept_ else: self.coef_ = self.standard_coef_.reshape(1, -1) self.standard_intercept_ = np.atleast_1d(intercept) self.intercept_ = self.standard_intercept_ else: self.coef_ = coef.reshape(1, -1) # intercept is a float, need to convert it to an array of length 1 self.intercept_ = np.atleast_1d(intercept) def _fit_multiclass(self, X, y, alpha, C, learning_rate, sample_weight, n_iter): """Fit a multi-class classifier by combining binary classifiers Each binary classifier predicts one class versus all others. This strategy is called OVA: One Versus All. """ # Use joblib to fit OvA in parallel. result = Parallel(n_jobs=self.n_jobs, backend="threading", verbose=self.verbose)( delayed(fit_binary)(self, i, X, y, alpha, C, learning_rate, n_iter, self._expanded_class_weight[i], 1., sample_weight) for i in range(len(self.classes_))) for i, (_, intercept) in enumerate(result): self.intercept_[i] = intercept self.t_ += n_iter * X.shape[0] if self.average > 0: if self.average <= self.t_ - 1.0: self.coef_ = self.average_coef_ self.intercept_ = self.average_intercept_ else: self.coef_ = self.standard_coef_ self.standard_intercept_ = np.atleast_1d(intercept) self.intercept_ = self.standard_intercept_ def partial_fit(self, X, y, classes=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Subset of the training data y : numpy array, shape (n_samples,) Subset of the target values classes : array, shape (n_classes,) Classes across all calls to partial_fit. Can be obtained by via `np.unique(y_all)`, where y_all is the target vector of the entire dataset. This argument is required for the first call to partial_fit and can be omitted in the subsequent calls. Note that y doesn't need to contain all labels in `classes`. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. Returns ------- self : returns an instance of self. """ if self.class_weight == 'auto': raise ValueError("class_weight 'auto' is not supported for " "partial_fit. In order to use 'auto' weights, " "use compute_class_weight('auto', classes, y). " "In place of y you can us a large enough sample " "of the full training set target to properly " "estimate the class frequency distributions. " "Pass the resulting weights as the class_weight " "parameter.") return self._partial_fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, n_iter=1, classes=classes, sample_weight=sample_weight, coef_init=None, intercept_init=None) def fit(self, X, y, coef_init=None, intercept_init=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data y : numpy array, shape (n_samples,) Target values coef_init : array, shape (n_classes, n_features) The initial coefficients to warm-start the optimization. intercept_init : array, shape (n_classes,) The initial intercept to warm-start the optimization. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. These weights will be multiplied with class_weight (passed through the contructor) if class_weight is specified Returns ------- self : returns an instance of self. """ return self._fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, coef_init=coef_init, intercept_init=intercept_init, sample_weight=sample_weight) class SGDClassifier(BaseSGDClassifier, _LearntSelectorMixin): """Linear classifiers (SVM, logistic regression, a.o.) with SGD training. This estimator implements regularized linear models with stochastic gradient descent (SGD) learning: the gradient of the loss is estimated each sample at a time and the model is updated along the way with a decreasing strength schedule (aka learning rate). SGD allows minibatch (online/out-of-core) learning, see the partial_fit method. For best results using the default learning rate schedule, the data should have zero mean and unit variance. This implementation works with data represented as dense or sparse arrays of floating point values for the features. The model it fits can be controlled with the loss parameter; by default, it fits a linear support vector machine (SVM). The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for learning sparse models and achieve online feature selection. Parameters ---------- loss : str, 'hinge', 'log', 'modified_huber', 'squared_hinge',\ 'perceptron', or a regression loss: 'squared_loss', 'huber',\ 'epsilon_insensitive', or 'squared_epsilon_insensitive' The loss function to be used. Defaults to 'hinge', which gives a linear SVM. The 'log' loss gives logistic regression, a probabilistic classifier. 'modified_huber' is another smooth loss that brings tolerance to outliers as well as probability estimates. 'squared_hinge' is like hinge but is quadratically penalized. 'perceptron' is the linear loss used by the perceptron algorithm. The other losses are designed for regression but can be useful in classification as well; see SGDRegressor for a description. penalty : str, 'none', 'l2', 'l1', or 'elasticnet' The penalty (aka regularization term) to be used. Defaults to 'l2' which is the standard regularizer for linear SVM models. 'l1' and 'elasticnet' might bring sparsity to the model (feature selection) not achievable with 'l2'. alpha : float Constant that multiplies the regularization term. Defaults to 0.0001 l1_ratio : float The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1. l1_ratio=0 corresponds to L2 penalty, l1_ratio=1 to L1. Defaults to 0.15. fit_intercept : bool Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True. n_iter : int, optional The number of passes over the training data (aka epochs). The number of iterations is set to 1 if using partial_fit. Defaults to 5. shuffle : bool, optional Whether or not the training data should be shuffled after each epoch. Defaults to True. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. verbose : integer, optional The verbosity level epsilon : float Epsilon in the epsilon-insensitive loss functions; only if `loss` is 'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive'. For 'huber', determines the threshold at which it becomes less important to get the prediction exactly right. For epsilon-insensitive, any differences between the current prediction and the correct label are ignored if they are less than this threshold. n_jobs : integer, optional The number of CPUs to use to do the OVA (One Versus All, for multi-class problems) computation. -1 means 'all CPUs'. Defaults to 1. learning_rate : string, optional The learning rate schedule: constant: eta = eta0 optimal: eta = 1.0 / (t + t0) [default] invscaling: eta = eta0 / pow(t, power_t) where t0 is chosen by a heuristic proposed by Leon Bottou. eta0 : double The initial learning rate for the 'constant' or 'invscaling' schedules. The default value is 0.0 as eta0 is not used by the default schedule 'optimal'. power_t : double The exponent for inverse scaling learning rate [default 0.5]. class_weight : dict, {class_label: weight} or "auto" or None, optional Preset for the class_weight fit parameter. Weights associated with classes. If not given, all classes are supposed to have weight one. The "auto" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. average : bool or int, optional When set to True, computes the averaged SGD weights and stores the result in the ``coef_`` attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches average. So average=10 will begin averaging after seeing 10 samples. Attributes ---------- coef_ : array, shape (1, n_features) if n_classes == 2 else (n_classes,\ n_features) Weights assigned to the features. intercept_ : array, shape (1,) if n_classes == 2 else (n_classes,) Constants in decision function. Examples -------- >>> import numpy as np >>> from sklearn import linear_model >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> Y = np.array([1, 1, 2, 2]) >>> clf = linear_model.SGDClassifier() >>> clf.fit(X, Y) ... #doctest: +NORMALIZE_WHITESPACE SGDClassifier(alpha=0.0001, average=False, class_weight=None, epsilon=0.1, eta0=0.0, fit_intercept=True, l1_ratio=0.15, learning_rate='optimal', loss='hinge', n_iter=5, n_jobs=1, penalty='l2', power_t=0.5, random_state=None, shuffle=True, verbose=0, warm_start=False) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- LinearSVC, LogisticRegression, Perceptron """ def __init__(self, loss="hinge", penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, n_jobs=1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, class_weight=None, warm_start=False, average=False): super(SGDClassifier, self).__init__( loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, n_jobs=n_jobs, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, class_weight=class_weight, warm_start=warm_start, average=average) def _check_proba(self): check_is_fitted(self, "t_") if self.loss not in ("log", "modified_huber"): raise AttributeError("probability estimates are not available for" " loss=%r" % self.loss) @property def predict_proba(self): """Probability estimates. This method is only available for log loss and modified Huber loss. Multiclass probability estimates are derived from binary (one-vs.-rest) estimates by simple normalization, as recommended by Zadrozny and Elkan. Binary probability estimates for loss="modified_huber" are given by (clip(decision_function(X), -1, 1) + 1) / 2. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples, n_classes) Returns the probability of the sample for each class in the model, where classes are ordered as they are in `self.classes_`. References ---------- Zadrozny and Elkan, "Transforming classifier scores into multiclass probability estimates", SIGKDD'02, http://www.research.ibm.com/people/z/zadrozny/kdd2002-Transf.pdf The justification for the formula in the loss="modified_huber" case is in the appendix B in: http://jmlr.csail.mit.edu/papers/volume2/zhang02c/zhang02c.pdf """ self._check_proba() return self._predict_proba def _predict_proba(self, X): if self.loss == "log": return self._predict_proba_lr(X) elif self.loss == "modified_huber": binary = (len(self.classes_) == 2) scores = self.decision_function(X) if binary: prob2 = np.ones((scores.shape[0], 2)) prob = prob2[:, 1] else: prob = scores np.clip(scores, -1, 1, prob) prob += 1. prob /= 2. if binary: prob2[:, 0] -= prob prob = prob2 else: # the above might assign zero to all classes, which doesn't # normalize neatly; work around this to produce uniform # probabilities prob_sum = prob.sum(axis=1) all_zero = (prob_sum == 0) if np.any(all_zero): prob[all_zero, :] = 1 prob_sum[all_zero] = len(self.classes_) # normalize prob /= prob_sum.reshape((prob.shape[0], -1)) return prob else: raise NotImplementedError("predict_(log_)proba only supported when" " loss='log' or loss='modified_huber' " "(%r given)" % self.loss) @property def predict_log_proba(self): """Log of probability estimates. This method is only available for log loss and modified Huber loss. When loss="modified_huber", probability estimates may be hard zeros and ones, so taking the logarithm is not possible. See ``predict_proba`` for details. Parameters ---------- X : array-like, shape (n_samples, n_features) Returns ------- T : array-like, shape (n_samples, n_classes) Returns the log-probability of the sample for each class in the model, where classes are ordered as they are in `self.classes_`. """ self._check_proba() return self._predict_log_proba def _predict_log_proba(self, X): return np.log(self.predict_proba(X)) class BaseSGDRegressor(BaseSGD, RegressorMixin): loss_functions = { "squared_loss": (SquaredLoss, ), "huber": (Huber, DEFAULT_EPSILON), "epsilon_insensitive": (EpsilonInsensitive, DEFAULT_EPSILON), "squared_epsilon_insensitive": (SquaredEpsilonInsensitive, DEFAULT_EPSILON), } @abstractmethod def __init__(self, loss="squared_loss", penalty="l2", alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, random_state=None, learning_rate="invscaling", eta0=0.01, power_t=0.25, warm_start=False, average=False): super(BaseSGDRegressor, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start, average=average) def _partial_fit(self, X, y, alpha, C, loss, learning_rate, n_iter, sample_weight, coef_init, intercept_init): X, y = check_X_y(X, y, "csr", copy=False, order='C', dtype=np.float64) y = y.astype(np.float64) n_samples, n_features = X.shape self._validate_params() # Allocate datastructures from input arguments sample_weight = self._validate_sample_weight(sample_weight, n_samples) if self.coef_ is None: self._allocate_parameter_mem(1, n_features, coef_init, intercept_init) elif n_features != self.coef_.shape[-1]: raise ValueError("Number of features %d does not match previous data %d." % (n_features, self.coef_.shape[-1])) if self.average > 0 and self.average_coef_ is None: self.average_coef_ = np.zeros(n_features, dtype=np.float64, order="C") self.average_intercept_ = np.zeros(1, dtype=np.float64, order="C") self._fit_regressor(X, y, alpha, C, loss, learning_rate, sample_weight, n_iter) return self def partial_fit(self, X, y, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Subset of training data y : numpy array of shape (n_samples,) Subset of target values sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. Returns ------- self : returns an instance of self. """ return self._partial_fit(X, y, self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, n_iter=1, sample_weight=sample_weight, coef_init=None, intercept_init=None) def _fit(self, X, y, alpha, C, loss, learning_rate, coef_init=None, intercept_init=None, sample_weight=None): if self.warm_start and self.coef_ is not None: if coef_init is None: coef_init = self.coef_ if intercept_init is None: intercept_init = self.intercept_ else: self.coef_ = None self.intercept_ = None if self.average > 0: self.standard_intercept_ = self.intercept_ self.standard_coef_ = self.coef_ self.average_coef_ = None self.average_intercept_ = None # Clear iteration count for multiple call to fit. self.t_ = None return self._partial_fit(X, y, alpha, C, loss, learning_rate, self.n_iter, sample_weight, coef_init, intercept_init) def fit(self, X, y, coef_init=None, intercept_init=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data y : numpy array, shape (n_samples,) Target values coef_init : array, shape (n_features,) The initial coefficients to warm-start the optimization. intercept_init : array, shape (1,) The initial intercept to warm-start the optimization. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples (1. for unweighted). Returns ------- self : returns an instance of self. """ return self._fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, coef_init=coef_init, intercept_init=intercept_init, sample_weight=sample_weight) @deprecated(" and will be removed in 0.19.") def decision_function(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples,) Predicted target values per element in X. """ check_is_fitted(self, ["t_", "coef_", "intercept_"], all_or_any=all) X = check_array(X, accept_sparse='csr') scores = safe_sparse_dot(X, self.coef_.T, dense_output=True) + self.intercept_ return scores.ravel() def predict(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples,) Predicted target values per element in X. """ return self.decision_function(X) def _fit_regressor(self, X, y, alpha, C, loss, learning_rate, sample_weight, n_iter): dataset, intercept_decay = _make_dataset(X, y, sample_weight) loss_function = self._get_loss_function(loss) penalty_type = self._get_penalty_type(self.penalty) learning_rate_type = self._get_learning_rate_type(learning_rate) if self.t_ is None: self.t_ = 1.0 random_state = check_random_state(self.random_state) # numpy mtrand expects a C long which is a signed 32 bit integer under # Windows seed = random_state.randint(0, np.iinfo(np.int32).max) if self.average > 0: self.standard_coef_, self.standard_intercept_, \ self.average_coef_, self.average_intercept_ =\ average_sgd(self.standard_coef_, self.standard_intercept_[0], self.average_coef_, self.average_intercept_[0], loss_function, penalty_type, alpha, C, self.l1_ratio, dataset, n_iter, int(self.fit_intercept), int(self.verbose), int(self.shuffle), seed, 1.0, 1.0, learning_rate_type, self.eta0, self.power_t, self.t_, intercept_decay, self.average) self.average_intercept_ = np.atleast_1d(self.average_intercept_) self.standard_intercept_ = np.atleast_1d(self.standard_intercept_) self.t_ += n_iter * X.shape[0] if self.average <= self.t_ - 1.0: self.coef_ = self.average_coef_ self.intercept_ = self.average_intercept_ else: self.coef_ = self.standard_coef_ self.intercept_ = self.standard_intercept_ else: self.coef_, self.intercept_ = \ plain_sgd(self.coef_, self.intercept_[0], loss_function, penalty_type, alpha, C, self.l1_ratio, dataset, n_iter, int(self.fit_intercept), int(self.verbose), int(self.shuffle), seed, 1.0, 1.0, learning_rate_type, self.eta0, self.power_t, self.t_, intercept_decay) self.t_ += n_iter * X.shape[0] self.intercept_ = np.atleast_1d(self.intercept_) class SGDRegressor(BaseSGDRegressor, _LearntSelectorMixin): """Linear model fitted by minimizing a regularized empirical loss with SGD SGD stands for Stochastic Gradient Descent: the gradient of the loss is estimated each sample at a time and the model is updated along the way with a decreasing strength schedule (aka learning rate). The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for learning sparse models and achieve online feature selection. This implementation works with data represented as dense numpy arrays of floating point values for the features. Parameters ---------- loss : str, 'squared_loss', 'huber', 'epsilon_insensitive', \ or 'squared_epsilon_insensitive' The loss function to be used. Defaults to 'squared_loss' which refers to the ordinary least squares fit. 'huber' modifies 'squared_loss' to focus less on getting outliers correct by switching from squared to linear loss past a distance of epsilon. 'epsilon_insensitive' ignores errors less than epsilon and is linear past that; this is the loss function used in SVR. 'squared_epsilon_insensitive' is the same but becomes squared loss past a tolerance of epsilon. penalty : str, 'none', 'l2', 'l1', or 'elasticnet' The penalty (aka regularization term) to be used. Defaults to 'l2' which is the standard regularizer for linear SVM models. 'l1' and 'elasticnet' might bring sparsity to the model (feature selection) not achievable with 'l2'. alpha : float Constant that multiplies the regularization term. Defaults to 0.0001 l1_ratio : float The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1. l1_ratio=0 corresponds to L2 penalty, l1_ratio=1 to L1. Defaults to 0.15. fit_intercept : bool Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True. n_iter : int, optional The number of passes over the training data (aka epochs). The number of iterations is set to 1 if using partial_fit. Defaults to 5. shuffle : bool, optional Whether or not the training data should be shuffled after each epoch. Defaults to True. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. verbose : integer, optional The verbosity level. epsilon : float Epsilon in the epsilon-insensitive loss functions; only if `loss` is 'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive'. For 'huber', determines the threshold at which it becomes less important to get the prediction exactly right. For epsilon-insensitive, any differences between the current prediction and the correct label are ignored if they are less than this threshold. learning_rate : string, optional The learning rate: constant: eta = eta0 optimal: eta = 1.0/(alpha * t) invscaling: eta = eta0 / pow(t, power_t) [default] eta0 : double, optional The initial learning rate [default 0.01]. power_t : double, optional The exponent for inverse scaling learning rate [default 0.25]. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. average : bool or int, optional When set to True, computes the averaged SGD weights and stores the result in the ``coef_`` attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches average. So ``average=10 will`` begin averaging after seeing 10 samples. Attributes ---------- coef_ : array, shape (n_features,) Weights assigned to the features. intercept_ : array, shape (1,) The intercept term. `average_coef_` : array, shape (n_features,) Averaged weights assigned to the features. `average_intercept_` : array, shape (1,) The averaged intercept term. Examples -------- >>> import numpy as np >>> from sklearn import linear_model >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = linear_model.SGDRegressor() >>> clf.fit(X, y) ... #doctest: +NORMALIZE_WHITESPACE SGDRegressor(alpha=0.0001, average=False, epsilon=0.1, eta0=0.01, fit_intercept=True, l1_ratio=0.15, learning_rate='invscaling', loss='squared_loss', n_iter=5, penalty='l2', power_t=0.25, random_state=None, shuffle=True, verbose=0, warm_start=False) See also -------- Ridge, ElasticNet, Lasso, SVR """ def __init__(self, loss="squared_loss", penalty="l2", alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, random_state=None, learning_rate="invscaling", eta0=0.01, power_t=0.25, warm_start=False, average=False): super(SGDRegressor, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start, average=average)
bsd-3-clause
tebeka/arrow
python/pyarrow/tests/test_array.py
1
41758
# -*- coding: utf-8 -*- # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import collections import datetime import hypothesis as h import hypothesis.strategies as st import itertools import pickle import pytest import struct import sys import numpy as np import pandas as pd import pandas.util.testing as tm try: import pickle5 except ImportError: pickle5 = None import pyarrow as pa import pyarrow.tests.strategies as past from pyarrow.pandas_compat import get_logical_type def test_total_bytes_allocated(): assert pa.total_allocated_bytes() == 0 def test_getitem_NULL(): arr = pa.array([1, None, 2]) assert arr[1] is pa.NULL def test_constructor_raises(): # This could happen by wrong capitalization. # ARROW-2638: prevent calling extension class constructors directly with pytest.raises(TypeError): pa.Array([1, 2]) def test_list_format(): arr = pa.array([[1], None, [2, 3, None]]) result = arr.format() expected = """\ [ [ 1 ], null, [ 2, 3, null ] ]""" assert result == expected def test_string_format(): arr = pa.array([u'', None, u'foo']) result = arr.format() expected = """\ [ "", null, "foo" ]""" assert result == expected def test_long_array_format(): arr = pa.array(range(100)) result = arr.format(window=2) expected = """\ [ 0, 1, ... 98, 99 ]""" assert result == expected def test_to_numpy_zero_copy(): arr = pa.array(range(10)) old_refcount = sys.getrefcount(arr) np_arr = arr.to_numpy() np_arr[0] = 1 assert arr[0] == 1 assert sys.getrefcount(arr) == old_refcount arr = None import gc gc.collect() # Ensure base is still valid assert np_arr.base is not None expected = np.arange(10) expected[0] = 1 np.testing.assert_array_equal(np_arr, expected) def test_to_numpy_unsupported_types(): # ARROW-2871: Some primitive types are not yet supported in to_numpy bool_arr = pa.array([True, False, True]) with pytest.raises(NotImplementedError): bool_arr.to_numpy() null_arr = pa.array([None, None, None]) with pytest.raises(NotImplementedError): null_arr.to_numpy() def test_to_pandas_zero_copy(): import gc arr = pa.array(range(10)) for i in range(10): np_arr = arr.to_pandas() assert sys.getrefcount(np_arr) == 2 np_arr = None # noqa assert sys.getrefcount(arr) == 2 for i in range(10): arr = pa.array(range(10)) np_arr = arr.to_pandas() arr = None gc.collect() # Ensure base is still valid # Because of py.test's assert inspection magic, if you put getrefcount # on the line being examined, it will be 1 higher than you expect base_refcount = sys.getrefcount(np_arr.base) assert base_refcount == 2 np_arr.sum() def test_asarray(): arr = pa.array(range(4)) # The iterator interface gives back an array of Int64Value's np_arr = np.asarray([_ for _ in arr]) assert np_arr.tolist() == [0, 1, 2, 3] assert np_arr.dtype == np.dtype('O') assert type(np_arr[0]) == pa.lib.Int64Value # Calling with the arrow array gives back an array with 'int64' dtype np_arr = np.asarray(arr) assert np_arr.tolist() == [0, 1, 2, 3] assert np_arr.dtype == np.dtype('int64') # An optional type can be specified when calling np.asarray np_arr = np.asarray(arr, dtype='str') assert np_arr.tolist() == ['0', '1', '2', '3'] # If PyArrow array has null values, numpy type will be changed as needed # to support nulls. arr = pa.array([0, 1, 2, None]) assert arr.type == pa.int64() np_arr = np.asarray(arr) elements = np_arr.tolist() assert elements[:3] == [0., 1., 2.] assert np.isnan(elements[3]) assert np_arr.dtype == np.dtype('float64') def test_array_getitem(): arr = pa.array(range(10, 15)) lst = arr.to_pylist() for idx in range(-len(arr), len(arr)): assert arr[idx].as_py() == lst[idx] for idx in range(-2 * len(arr), -len(arr)): with pytest.raises(IndexError): arr[idx] for idx in range(len(arr), 2 * len(arr)): with pytest.raises(IndexError): arr[idx] def test_array_slice(): arr = pa.array(range(10)) sliced = arr.slice(2) expected = pa.array(range(2, 10)) assert sliced.equals(expected) sliced2 = arr.slice(2, 4) expected2 = pa.array(range(2, 6)) assert sliced2.equals(expected2) # 0 offset assert arr.slice(0).equals(arr) # Slice past end of array assert len(arr.slice(len(arr))) == 0 with pytest.raises(IndexError): arr.slice(-1) # Test slice notation assert arr[2:].equals(arr.slice(2)) assert arr[2:5].equals(arr.slice(2, 3)) assert arr[-5:].equals(arr.slice(len(arr) - 5)) with pytest.raises(IndexError): arr[::-1] with pytest.raises(IndexError): arr[::2] n = len(arr) for start in range(-n * 2, n * 2): for stop in range(-n * 2, n * 2): assert arr[start:stop].to_pylist() == arr.to_pylist()[start:stop] def test_array_iter(): arr = pa.array(range(10)) for i, j in zip(range(10), arr): assert i == j assert isinstance(arr, collections.Iterable) def test_struct_array_slice(): # ARROW-2311: slicing nested arrays needs special care ty = pa.struct([pa.field('a', pa.int8()), pa.field('b', pa.float32())]) arr = pa.array([(1, 2.5), (3, 4.5), (5, 6.5)], type=ty) assert arr[1:].to_pylist() == [{'a': 3, 'b': 4.5}, {'a': 5, 'b': 6.5}] def test_array_factory_invalid_type(): arr = np.array([datetime.timedelta(1), datetime.timedelta(2)]) with pytest.raises(ValueError): pa.array(arr) def test_array_ref_to_ndarray_base(): arr = np.array([1, 2, 3]) refcount = sys.getrefcount(arr) arr2 = pa.array(arr) # noqa assert sys.getrefcount(arr) == (refcount + 1) def test_array_eq_raises(): # ARROW-2150: we are raising when comparing arrays until we define the # behavior to either be elementwise comparisons or data equality arr1 = pa.array([1, 2, 3], type=pa.int32()) arr2 = pa.array([1, 2, 3], type=pa.int32()) with pytest.raises(NotImplementedError): arr1 == arr2 def test_array_from_buffers(): values_buf = pa.py_buffer(np.int16([4, 5, 6, 7])) nulls_buf = pa.py_buffer(np.uint8([0b00001101])) arr = pa.Array.from_buffers(pa.int16(), 4, [nulls_buf, values_buf]) assert arr.type == pa.int16() assert arr.to_pylist() == [4, None, 6, 7] arr = pa.Array.from_buffers(pa.int16(), 4, [None, values_buf]) assert arr.type == pa.int16() assert arr.to_pylist() == [4, 5, 6, 7] arr = pa.Array.from_buffers(pa.int16(), 3, [nulls_buf, values_buf], offset=1) assert arr.type == pa.int16() assert arr.to_pylist() == [None, 6, 7] with pytest.raises(TypeError): pa.Array.from_buffers(pa.int16(), 3, [u'', u''], offset=1) with pytest.raises(NotImplementedError): pa.Array.from_buffers(pa.list_(pa.int16()), 4, [None, values_buf]) def test_dictionary_from_numpy(): indices = np.repeat([0, 1, 2], 2) dictionary = np.array(['foo', 'bar', 'baz'], dtype=object) mask = np.array([False, False, True, False, False, False]) d1 = pa.DictionaryArray.from_arrays(indices, dictionary) d2 = pa.DictionaryArray.from_arrays(indices, dictionary, mask=mask) assert d1.indices.to_pylist() == indices.tolist() assert d1.indices.to_pylist() == indices.tolist() assert d1.dictionary.to_pylist() == dictionary.tolist() assert d2.dictionary.to_pylist() == dictionary.tolist() for i in range(len(indices)): assert d1[i].as_py() == dictionary[indices[i]] if mask[i]: assert d2[i] is pa.NULL else: assert d2[i].as_py() == dictionary[indices[i]] def test_dictionary_from_boxed_arrays(): indices = np.repeat([0, 1, 2], 2) dictionary = np.array(['foo', 'bar', 'baz'], dtype=object) iarr = pa.array(indices) darr = pa.array(dictionary) d1 = pa.DictionaryArray.from_arrays(iarr, darr) assert d1.indices.to_pylist() == indices.tolist() assert d1.dictionary.to_pylist() == dictionary.tolist() for i in range(len(indices)): assert d1[i].as_py() == dictionary[indices[i]] def test_dictionary_from_arrays_boundscheck(): indices1 = pa.array([0, 1, 2, 0, 1, 2]) indices2 = pa.array([0, -1, 2]) indices3 = pa.array([0, 1, 2, 3]) dictionary = pa.array(['foo', 'bar', 'baz']) # Works fine pa.DictionaryArray.from_arrays(indices1, dictionary) with pytest.raises(pa.ArrowException): pa.DictionaryArray.from_arrays(indices2, dictionary) with pytest.raises(pa.ArrowException): pa.DictionaryArray.from_arrays(indices3, dictionary) # If we are confident that the indices are "safe" we can pass safe=False to # disable the boundschecking pa.DictionaryArray.from_arrays(indices2, dictionary, safe=False) def test_dictionary_with_pandas(): indices = np.repeat([0, 1, 2], 2) dictionary = np.array(['foo', 'bar', 'baz'], dtype=object) mask = np.array([False, False, True, False, False, False]) d1 = pa.DictionaryArray.from_arrays(indices, dictionary) d2 = pa.DictionaryArray.from_arrays(indices, dictionary, mask=mask) pandas1 = d1.to_pandas() ex_pandas1 = pd.Categorical.from_codes(indices, categories=dictionary) tm.assert_series_equal(pd.Series(pandas1), pd.Series(ex_pandas1)) pandas2 = d2.to_pandas() ex_pandas2 = pd.Categorical.from_codes(np.where(mask, -1, indices), categories=dictionary) tm.assert_series_equal(pd.Series(pandas2), pd.Series(ex_pandas2)) def test_list_from_arrays(): offsets_arr = np.array([0, 2, 5, 8], dtype='i4') offsets = pa.array(offsets_arr, type='int32') pyvalues = [b'a', b'b', b'c', b'd', b'e', b'f', b'g', b'h'] values = pa.array(pyvalues, type='binary') result = pa.ListArray.from_arrays(offsets, values) expected = pa.array([pyvalues[:2], pyvalues[2:5], pyvalues[5:8]]) assert result.equals(expected) # With nulls offsets = [0, None, 2, 6] values = ['a', 'b', 'c', 'd', 'e', 'f'] result = pa.ListArray.from_arrays(offsets, values) expected = pa.array([values[:2], None, values[2:]]) assert result.equals(expected) # Another edge case offsets2 = [0, 2, None, 6] result = pa.ListArray.from_arrays(offsets2, values) expected = pa.array([values[:2], values[2:], None]) assert result.equals(expected) def test_union_from_dense(): binary = pa.array([b'a', b'b', b'c', b'd'], type='binary') int64 = pa.array([1, 2, 3], type='int64') types = pa.array([0, 1, 0, 0, 1, 1, 0], type='int8') value_offsets = pa.array([0, 0, 2, 1, 1, 2, 3], type='int32') result = pa.UnionArray.from_dense(types, value_offsets, [binary, int64]) assert result.to_pylist() == [b'a', 1, b'c', b'b', 2, 3, b'd'] def test_union_from_sparse(): binary = pa.array([b'a', b' ', b'b', b'c', b' ', b' ', b'd'], type='binary') int64 = pa.array([0, 1, 0, 0, 2, 3, 0], type='int64') types = pa.array([0, 1, 0, 0, 1, 1, 0], type='int8') result = pa.UnionArray.from_sparse(types, [binary, int64]) assert result.to_pylist() == [b'a', 1, b'b', b'c', 2, 3, b'd'] def test_union_array_slice(): # ARROW-2314 arr = pa.UnionArray.from_sparse(pa.array([0, 0, 1, 1], type=pa.int8()), [pa.array(["a", "b", "c", "d"]), pa.array([1, 2, 3, 4])]) assert arr[1:].to_pylist() == ["b", 3, 4] binary = pa.array([b'a', b'b', b'c', b'd'], type='binary') int64 = pa.array([1, 2, 3], type='int64') types = pa.array([0, 1, 0, 0, 1, 1, 0], type='int8') value_offsets = pa.array([0, 0, 2, 1, 1, 2, 3], type='int32') arr = pa.UnionArray.from_dense(types, value_offsets, [binary, int64]) lst = arr.to_pylist() for i in range(len(arr)): for j in range(i, len(arr)): assert arr[i:j].to_pylist() == lst[i:j] def test_string_from_buffers(): array = pa.array(["a", None, "b", "c"]) buffers = array.buffers() copied = pa.StringArray.from_buffers( len(array), buffers[1], buffers[2], buffers[0], array.null_count, array.offset) assert copied.to_pylist() == ["a", None, "b", "c"] copied = pa.StringArray.from_buffers( len(array), buffers[1], buffers[2], buffers[0]) assert copied.to_pylist() == ["a", None, "b", "c"] sliced = array[1:] buffers = sliced.buffers() copied = pa.StringArray.from_buffers( len(sliced), buffers[1], buffers[2], buffers[0], -1, sliced.offset) assert copied.to_pylist() == [None, "b", "c"] assert copied.null_count == 1 # Slice but exclude all null entries so that we don't need to pass # the null bitmap. sliced = array[2:] buffers = sliced.buffers() copied = pa.StringArray.from_buffers( len(sliced), buffers[1], buffers[2], None, -1, sliced.offset) assert copied.to_pylist() == ["b", "c"] assert copied.null_count == 0 def _check_cast_case(case, safe=True): in_data, in_type, out_data, out_type = case expected = pa.array(out_data, type=out_type) # check casting an already created array in_arr = pa.array(in_data, type=in_type) casted = in_arr.cast(out_type, safe=safe) assert casted.equals(expected) # constructing an array with out type which optionally involves casting # for more see ARROW-1949 in_arr = pa.array(in_data, type=out_type, safe=safe) assert in_arr.equals(expected) def test_cast_integers_safe(): safe_cases = [ (np.array([0, 1, 2, 3], dtype='i1'), 'int8', np.array([0, 1, 2, 3], dtype='i4'), pa.int32()), (np.array([0, 1, 2, 3], dtype='i1'), 'int8', np.array([0, 1, 2, 3], dtype='u4'), pa.uint16()), (np.array([0, 1, 2, 3], dtype='i1'), 'int8', np.array([0, 1, 2, 3], dtype='u1'), pa.uint8()), (np.array([0, 1, 2, 3], dtype='i1'), 'int8', np.array([0, 1, 2, 3], dtype='f8'), pa.float64()) ] for case in safe_cases: _check_cast_case(case) unsafe_cases = [ (np.array([50000], dtype='i4'), 'int32', 'int16'), (np.array([70000], dtype='i4'), 'int32', 'uint16'), (np.array([-1], dtype='i4'), 'int32', 'uint16'), (np.array([50000], dtype='u2'), 'uint16', 'int16') ] for in_data, in_type, out_type in unsafe_cases: in_arr = pa.array(in_data, type=in_type) with pytest.raises(pa.ArrowInvalid): in_arr.cast(out_type) def test_cast_none(): # ARROW-3735: Ensure that calling cast(None) doesn't segfault. arr = pa.array([1, 2, 3]) col = pa.column('foo', [arr]) with pytest.raises(TypeError): arr.cast(None) with pytest.raises(TypeError): col.cast(None) def test_cast_column(): arrays = [pa.array([1, 2, 3]), pa.array([4, 5, 6])] col = pa.column('foo', arrays) target = pa.float64() casted = col.cast(target) expected = pa.column('foo', [x.cast(target) for x in arrays]) assert casted.equals(expected) def test_cast_integers_unsafe(): # We let NumPy do the unsafe casting unsafe_cases = [ (np.array([50000], dtype='i4'), 'int32', np.array([50000], dtype='i2'), pa.int16()), (np.array([70000], dtype='i4'), 'int32', np.array([70000], dtype='u2'), pa.uint16()), (np.array([-1], dtype='i4'), 'int32', np.array([-1], dtype='u2'), pa.uint16()), (np.array([50000], dtype='u2'), pa.uint16(), np.array([50000], dtype='i2'), pa.int16()) ] for case in unsafe_cases: _check_cast_case(case, safe=False) def test_floating_point_truncate_safe(): safe_cases = [ (np.array([1.0, 2.0, 3.0], dtype='float32'), 'float32', np.array([1, 2, 3], dtype='i4'), pa.int32()), (np.array([1.0, 2.0, 3.0], dtype='float64'), 'float64', np.array([1, 2, 3], dtype='i4'), pa.int32()), (np.array([-10.0, 20.0, -30.0], dtype='float64'), 'float64', np.array([-10, 20, -30], dtype='i4'), pa.int32()), ] for case in safe_cases: _check_cast_case(case, safe=True) def test_floating_point_truncate_unsafe(): unsafe_cases = [ (np.array([1.1, 2.2, 3.3], dtype='float32'), 'float32', np.array([1, 2, 3], dtype='i4'), pa.int32()), (np.array([1.1, 2.2, 3.3], dtype='float64'), 'float64', np.array([1, 2, 3], dtype='i4'), pa.int32()), (np.array([-10.1, 20.2, -30.3], dtype='float64'), 'float64', np.array([-10, 20, -30], dtype='i4'), pa.int32()), ] for case in unsafe_cases: # test safe casting raises with pytest.raises(pa.ArrowInvalid, match='Floating point value truncated'): _check_cast_case(case, safe=True) # test unsafe casting truncates _check_cast_case(case, safe=False) def test_safe_cast_nan_to_int_raises(): arr = pa.array([np.nan, 1.]) with pytest.raises(pa.ArrowInvalid, match='Floating point value truncated'): arr.cast(pa.int64(), safe=True) def test_cast_timestamp_unit(): # ARROW-1680 val = datetime.datetime.now() s = pd.Series([val]) s_nyc = s.dt.tz_localize('tzlocal()').dt.tz_convert('America/New_York') us_with_tz = pa.timestamp('us', tz='America/New_York') arr = pa.Array.from_pandas(s_nyc, type=us_with_tz) # ARROW-1906 assert arr.type == us_with_tz arr2 = pa.Array.from_pandas(s, type=pa.timestamp('us')) assert arr[0].as_py() == s_nyc[0] assert arr2[0].as_py() == s[0] # Disallow truncation arr = pa.array([123123], type='int64').cast(pa.timestamp('ms')) expected = pa.array([123], type='int64').cast(pa.timestamp('s')) target = pa.timestamp('s') with pytest.raises(ValueError): arr.cast(target) result = arr.cast(target, safe=False) assert result.equals(expected) # ARROW-1949 series = pd.Series([pd.Timestamp(1), pd.Timestamp(10), pd.Timestamp(1000)]) expected = pa.array([0, 0, 1], type=pa.timestamp('us')) with pytest.raises(ValueError): pa.array(series, type=pa.timestamp('us')) with pytest.raises(ValueError): pa.Array.from_pandas(series, type=pa.timestamp('us')) result = pa.Array.from_pandas(series, type=pa.timestamp('us'), safe=False) assert result.equals(expected) result = pa.array(series, type=pa.timestamp('us'), safe=False) assert result.equals(expected) def test_cast_signed_to_unsigned(): safe_cases = [ (np.array([0, 1, 2, 3], dtype='i1'), pa.uint8(), np.array([0, 1, 2, 3], dtype='u1'), pa.uint8()), (np.array([0, 1, 2, 3], dtype='i2'), pa.uint16(), np.array([0, 1, 2, 3], dtype='u2'), pa.uint16()) ] for case in safe_cases: _check_cast_case(case) def test_unique_simple(): cases = [ (pa.array([1, 2, 3, 1, 2, 3]), pa.array([1, 2, 3])), (pa.array(['foo', None, 'bar', 'foo']), pa.array(['foo', 'bar'])) ] for arr, expected in cases: result = arr.unique() assert result.equals(expected) result = pa.column("column", arr).unique() assert result.equals(expected) result = pa.chunked_array([arr]).unique() assert result.equals(expected) def test_dictionary_encode_simple(): cases = [ (pa.array([1, 2, 3, None, 1, 2, 3]), pa.DictionaryArray.from_arrays( pa.array([0, 1, 2, None, 0, 1, 2], type='int32'), [1, 2, 3])), (pa.array(['foo', None, 'bar', 'foo']), pa.DictionaryArray.from_arrays( pa.array([0, None, 1, 0], type='int32'), ['foo', 'bar'])) ] for arr, expected in cases: result = arr.dictionary_encode() assert result.equals(expected) result = pa.column("column", arr).dictionary_encode() assert result.data.chunk(0).equals(expected) result = pa.chunked_array([arr]).dictionary_encode() assert result.chunk(0).equals(expected) def test_cast_time32_to_int(): arr = pa.array(np.array([0, 1, 2], dtype='int32'), type=pa.time32('s')) expected = pa.array([0, 1, 2], type='i4') result = arr.cast('i4') assert result.equals(expected) def test_cast_time64_to_int(): arr = pa.array(np.array([0, 1, 2], dtype='int64'), type=pa.time64('us')) expected = pa.array([0, 1, 2], type='i8') result = arr.cast('i8') assert result.equals(expected) def test_cast_timestamp_to_int(): arr = pa.array(np.array([0, 1, 2], dtype='int64'), type=pa.timestamp('us')) expected = pa.array([0, 1, 2], type='i8') result = arr.cast('i8') assert result.equals(expected) def test_cast_date32_to_int(): arr = pa.array([0, 1, 2], type='i4') result1 = arr.cast('date32') result2 = result1.cast('i4') expected1 = pa.array([ datetime.date(1970, 1, 1), datetime.date(1970, 1, 2), datetime.date(1970, 1, 3) ]).cast('date32') assert result1.equals(expected1) assert result2.equals(arr) def test_cast_binary_to_utf8(): binary_arr = pa.array([b'foo', b'bar', b'baz'], type=pa.binary()) utf8_arr = binary_arr.cast(pa.utf8()) expected = pa.array(['foo', 'bar', 'baz'], type=pa.utf8()) assert utf8_arr.equals(expected) non_utf8_values = [(u'mañana').encode('utf-16-le')] non_utf8_binary = pa.array(non_utf8_values) assert non_utf8_binary.type == pa.binary() with pytest.raises(ValueError): non_utf8_binary.cast(pa.string()) non_utf8_all_null = pa.array(non_utf8_values, mask=np.array([True]), type=pa.binary()) # No error casted = non_utf8_all_null.cast(pa.string()) assert casted.null_count == 1 def test_cast_date64_to_int(): arr = pa.array(np.array([0, 1, 2], dtype='int64'), type=pa.date64()) expected = pa.array([0, 1, 2], type='i8') result = arr.cast('i8') assert result.equals(expected) @pytest.mark.parametrize(('ty', 'values'), [ ('bool', [True, False, True]), ('uint8', range(0, 255)), ('int8', range(0, 128)), ('uint16', range(0, 10)), ('int16', range(0, 10)), ('uint32', range(0, 10)), ('int32', range(0, 10)), ('uint64', range(0, 10)), ('int64', range(0, 10)), ('float', [0.0, 0.1, 0.2]), ('double', [0.0, 0.1, 0.2]), ('string', ['a', 'b', 'c']), ('binary', [b'a', b'b', b'c']), (pa.binary(3), [b'abc', b'bcd', b'cde']) ]) def test_cast_identities(ty, values): arr = pa.array(values, type=ty) assert arr.cast(ty).equals(arr) pickle_test_parametrize = pytest.mark.parametrize( ('data', 'typ'), [ ([True, False, True, True], pa.bool_()), ([1, 2, 4, 6], pa.int64()), ([1.0, 2.5, None], pa.float64()), (['a', None, 'b'], pa.string()), ([], None), ([[1, 2], [3]], pa.list_(pa.int64())), ([['a'], None, ['b', 'c']], pa.list_(pa.string())), ([(1, 'a'), (2, 'c'), None], pa.struct([pa.field('a', pa.int64()), pa.field('b', pa.string())])) ] ) @pickle_test_parametrize def test_array_pickle(data, typ): # Allocate here so that we don't have any Arrow data allocated. # This is needed to ensure that allocator tests can be reliable. array = pa.array(data, type=typ) for proto in range(0, pickle.HIGHEST_PROTOCOL + 1): result = pickle.loads(pickle.dumps(array, proto)) assert array.equals(result) @h.given( past.arrays( past.all_types, size=st.integers(min_value=0, max_value=10) ) ) def test_pickling(arr): data = pickle.dumps(arr) restored = pickle.loads(data) assert arr.equals(restored) @pickle_test_parametrize def test_array_pickle5(data, typ): # Test zero-copy pickling with protocol 5 (PEP 574) picklemod = pickle5 or pickle if pickle5 is None and picklemod.HIGHEST_PROTOCOL < 5: pytest.skip("need pickle5 package or Python 3.8+") array = pa.array(data, type=typ) addresses = [buf.address if buf is not None else 0 for buf in array.buffers()] for proto in range(5, pickle.HIGHEST_PROTOCOL + 1): buffers = [] pickled = picklemod.dumps(array, proto, buffer_callback=buffers.append) result = picklemod.loads(pickled, buffers=buffers) assert array.equals(result) result_addresses = [buf.address if buf is not None else 0 for buf in result.buffers()] assert result_addresses == addresses @pytest.mark.parametrize( 'narr', [ np.arange(10, dtype=np.int64), np.arange(10, dtype=np.int32), np.arange(10, dtype=np.int16), np.arange(10, dtype=np.int8), np.arange(10, dtype=np.uint64), np.arange(10, dtype=np.uint32), np.arange(10, dtype=np.uint16), np.arange(10, dtype=np.uint8), np.arange(10, dtype=np.float64), np.arange(10, dtype=np.float32), np.arange(10, dtype=np.float16), ] ) def test_to_numpy_roundtrip(narr): arr = pa.array(narr) assert narr.dtype == arr.to_numpy().dtype np.testing.assert_array_equal(narr, arr.to_numpy()) np.testing.assert_array_equal(narr[:6], arr[:6].to_numpy()) np.testing.assert_array_equal(narr[2:], arr[2:].to_numpy()) np.testing.assert_array_equal(narr[2:6], arr[2:6].to_numpy()) @pytest.mark.parametrize( ('type', 'expected'), [ (pa.null(), 'empty'), (pa.bool_(), 'bool'), (pa.int8(), 'int8'), (pa.int16(), 'int16'), (pa.int32(), 'int32'), (pa.int64(), 'int64'), (pa.uint8(), 'uint8'), (pa.uint16(), 'uint16'), (pa.uint32(), 'uint32'), (pa.uint64(), 'uint64'), (pa.float16(), 'float16'), (pa.float32(), 'float32'), (pa.float64(), 'float64'), (pa.date32(), 'date'), (pa.date64(), 'date'), (pa.binary(), 'bytes'), (pa.binary(length=4), 'bytes'), (pa.string(), 'unicode'), (pa.list_(pa.list_(pa.int16())), 'list[list[int16]]'), (pa.decimal128(18, 3), 'decimal'), (pa.timestamp('ms'), 'datetime'), (pa.timestamp('us', 'UTC'), 'datetimetz'), (pa.time32('s'), 'time'), (pa.time64('us'), 'time') ] ) def test_logical_type(type, expected): assert get_logical_type(type) == expected def test_array_uint64_from_py_over_range(): arr = pa.array([2 ** 63], type=pa.uint64()) expected = pa.array(np.array([2 ** 63], dtype='u8')) assert arr.equals(expected) def test_array_conversions_no_sentinel_values(): arr = np.array([1, 2, 3, 4], dtype='int8') refcount = sys.getrefcount(arr) arr2 = pa.array(arr) # noqa assert sys.getrefcount(arr) == (refcount + 1) assert arr2.type == 'int8' arr3 = pa.array(np.array([1, np.nan, 2, 3, np.nan, 4], dtype='float32'), type='float32') assert arr3.type == 'float32' assert arr3.null_count == 0 def test_array_from_numpy_datetimeD(): arr = np.array([None, datetime.date(2017, 4, 4)], dtype='datetime64[D]') result = pa.array(arr) expected = pa.array([None, datetime.date(2017, 4, 4)], type=pa.date32()) assert result.equals(expected) @pytest.mark.parametrize(('dtype', 'type'), [ ('datetime64[s]', pa.timestamp('s')), ('datetime64[ms]', pa.timestamp('ms')), ('datetime64[us]', pa.timestamp('us')), ('datetime64[ns]', pa.timestamp('ns')) ]) def test_array_from_numpy_datetime(dtype, type): data = [ None, datetime.datetime(2017, 4, 4, 12, 11, 10), datetime.datetime(2018, 1, 1, 0, 2, 0) ] # from numpy array arr = pa.array(np.array(data, dtype=dtype)) expected = pa.array(data, type=type) assert arr.equals(expected) # from list of numpy scalars arr = pa.array(list(np.array(data, dtype=dtype))) assert arr.equals(expected) def test_array_from_different_numpy_datetime_units_raises(): data = [ None, datetime.datetime(2017, 4, 4, 12, 11, 10), datetime.datetime(2018, 1, 1, 0, 2, 0) ] s = np.array(data, dtype='datetime64[s]') ms = np.array(data, dtype='datetime64[ms]') data = list(s[:2]) + list(ms[2:]) with pytest.raises(pa.ArrowNotImplementedError): pa.array(data) @pytest.mark.parametrize('unit', ['ns', 'us', 'ms', 's']) def test_array_from_list_of_timestamps(unit): n = np.datetime64('NaT', unit) x = np.datetime64('2017-01-01 01:01:01.111111111', unit) y = np.datetime64('2018-11-22 12:24:48.111111111', unit) a1 = pa.array([n, x, y]) a2 = pa.array([n, x, y], type=pa.timestamp(unit)) assert a1.type == a2.type assert a1.type.unit == unit assert a1[0] == a2[0] def test_array_from_timestamp_with_generic_unit(): n = np.datetime64('NaT') x = np.datetime64('2017-01-01 01:01:01.111111111') y = np.datetime64('2018-11-22 12:24:48.111111111') with pytest.raises(pa.ArrowNotImplementedError, match='Unbound or generic datetime64 time unit'): pa.array([n, x, y]) def test_array_from_py_float32(): data = [[1.2, 3.4], [9.0, 42.0]] t = pa.float32() arr1 = pa.array(data[0], type=t) arr2 = pa.array(data, type=pa.list_(t)) expected1 = np.array(data[0], dtype=np.float32) expected2 = pd.Series([np.array(data[0], dtype=np.float32), np.array(data[1], dtype=np.float32)]) assert arr1.type == t assert arr1.equals(pa.array(expected1)) assert arr2.equals(pa.array(expected2)) def test_array_from_numpy_ascii(): arr = np.array(['abcde', 'abc', ''], dtype='|S5') arrow_arr = pa.array(arr) assert arrow_arr.type == 'binary' expected = pa.array(['abcde', 'abc', ''], type='binary') assert arrow_arr.equals(expected) mask = np.array([False, True, False]) arrow_arr = pa.array(arr, mask=mask) expected = pa.array(['abcde', None, ''], type='binary') assert arrow_arr.equals(expected) # Strided variant arr = np.array(['abcde', 'abc', ''] * 5, dtype='|S5')[::2] mask = np.array([False, True, False] * 5)[::2] arrow_arr = pa.array(arr, mask=mask) expected = pa.array(['abcde', '', None, 'abcde', '', None, 'abcde', ''], type='binary') assert arrow_arr.equals(expected) # 0 itemsize arr = np.array(['', '', ''], dtype='|S0') arrow_arr = pa.array(arr) expected = pa.array(['', '', ''], type='binary') assert arrow_arr.equals(expected) def test_array_from_numpy_unicode(): dtypes = ['<U5', '>U5'] for dtype in dtypes: arr = np.array(['abcde', 'abc', ''], dtype=dtype) arrow_arr = pa.array(arr) assert arrow_arr.type == 'utf8' expected = pa.array(['abcde', 'abc', ''], type='utf8') assert arrow_arr.equals(expected) mask = np.array([False, True, False]) arrow_arr = pa.array(arr, mask=mask) expected = pa.array(['abcde', None, ''], type='utf8') assert arrow_arr.equals(expected) # Strided variant arr = np.array(['abcde', 'abc', ''] * 5, dtype=dtype)[::2] mask = np.array([False, True, False] * 5)[::2] arrow_arr = pa.array(arr, mask=mask) expected = pa.array(['abcde', '', None, 'abcde', '', None, 'abcde', ''], type='utf8') assert arrow_arr.equals(expected) # 0 itemsize arr = np.array(['', '', ''], dtype='<U0') arrow_arr = pa.array(arr) expected = pa.array(['', '', ''], type='utf8') assert arrow_arr.equals(expected) def test_buffers_primitive(): a = pa.array([1, 2, None, 4], type=pa.int16()) buffers = a.buffers() assert len(buffers) == 2 null_bitmap = buffers[0].to_pybytes() assert 1 <= len(null_bitmap) <= 64 # XXX this is varying assert bytearray(null_bitmap)[0] == 0b00001011 # Slicing does not affect the buffers but the offset a_sliced = a[1:] buffers = a_sliced.buffers() a_sliced.offset == 1 assert len(buffers) == 2 null_bitmap = buffers[0].to_pybytes() assert 1 <= len(null_bitmap) <= 64 # XXX this is varying assert bytearray(null_bitmap)[0] == 0b00001011 assert struct.unpack('hhxxh', buffers[1].to_pybytes()) == (1, 2, 4) a = pa.array(np.int8([4, 5, 6])) buffers = a.buffers() assert len(buffers) == 2 # No null bitmap from Numpy int array assert buffers[0] is None assert struct.unpack('3b', buffers[1].to_pybytes()) == (4, 5, 6) a = pa.array([b'foo!', None, b'bar!!']) buffers = a.buffers() assert len(buffers) == 3 null_bitmap = buffers[0].to_pybytes() assert bytearray(null_bitmap)[0] == 0b00000101 offsets = buffers[1].to_pybytes() assert struct.unpack('4i', offsets) == (0, 4, 4, 9) values = buffers[2].to_pybytes() assert values == b'foo!bar!!' def test_buffers_nested(): a = pa.array([[1, 2], None, [3, None, 4, 5]], type=pa.list_(pa.int64())) buffers = a.buffers() assert len(buffers) == 4 # The parent buffers null_bitmap = buffers[0].to_pybytes() assert bytearray(null_bitmap)[0] == 0b00000101 offsets = buffers[1].to_pybytes() assert struct.unpack('4i', offsets) == (0, 2, 2, 6) # The child buffers null_bitmap = buffers[2].to_pybytes() assert bytearray(null_bitmap)[0] == 0b00110111 values = buffers[3].to_pybytes() assert struct.unpack('qqq8xqq', values) == (1, 2, 3, 4, 5) a = pa.array([(42, None), None, (None, 43)], type=pa.struct([pa.field('a', pa.int8()), pa.field('b', pa.int16())])) buffers = a.buffers() assert len(buffers) == 5 # The parent buffer null_bitmap = buffers[0].to_pybytes() assert bytearray(null_bitmap)[0] == 0b00000101 # The child buffers: 'a' null_bitmap = buffers[1].to_pybytes() assert bytearray(null_bitmap)[0] == 0b00000001 values = buffers[2].to_pybytes() assert struct.unpack('bxx', values) == (42,) # The child buffers: 'b' null_bitmap = buffers[3].to_pybytes() assert bytearray(null_bitmap)[0] == 0b00000100 values = buffers[4].to_pybytes() assert struct.unpack('4xh', values) == (43,) def test_invalid_tensor_constructor_repr(): # ARROW-2638: prevent calling extension class constructors directly with pytest.raises(TypeError): repr(pa.Tensor([1])) def test_invalid_tensor_construction(): with pytest.raises(TypeError): pa.Tensor() def test_list_array_flatten(): typ2 = pa.list_( pa.list_( pa.int64() ) ) arr2 = pa.array([ None, [ [1, None, 2], None, [3, 4] ], [], [ [], [5, 6], None ], [ [7, 8] ] ]) assert arr2.type.equals(typ2) typ1 = pa.list_(pa.int64()) arr1 = pa.array([ [1, None, 2], None, [3, 4], [], [5, 6], None, [7, 8] ]) assert arr1.type.equals(typ1) typ0 = pa.int64() arr0 = pa.array([ 1, None, 2, 3, 4, 5, 6, 7, 8 ]) assert arr0.type.equals(typ0) assert arr2.flatten().equals(arr1) assert arr1.flatten().equals(arr0) assert arr2.flatten().flatten().equals(arr0) def test_struct_array_flatten(): ty = pa.struct([pa.field('x', pa.int16()), pa.field('y', pa.float32())]) a = pa.array([(1, 2.5), (3, 4.5), (5, 6.5)], type=ty) xs, ys = a.flatten() assert xs.type == pa.int16() assert ys.type == pa.float32() assert xs.to_pylist() == [1, 3, 5] assert ys.to_pylist() == [2.5, 4.5, 6.5] xs, ys = a[1:].flatten() assert xs.to_pylist() == [3, 5] assert ys.to_pylist() == [4.5, 6.5] a = pa.array([(1, 2.5), None, (3, 4.5)], type=ty) xs, ys = a.flatten() assert xs.to_pylist() == [1, None, 3] assert ys.to_pylist() == [2.5, None, 4.5] xs, ys = a[1:].flatten() assert xs.to_pylist() == [None, 3] assert ys.to_pylist() == [None, 4.5] a = pa.array([(1, None), (2, 3.5), (None, 4.5)], type=ty) xs, ys = a.flatten() assert xs.to_pylist() == [1, 2, None] assert ys.to_pylist() == [None, 3.5, 4.5] xs, ys = a[1:].flatten() assert xs.to_pylist() == [2, None] assert ys.to_pylist() == [3.5, 4.5] a = pa.array([(1, None), None, (None, 2.5)], type=ty) xs, ys = a.flatten() assert xs.to_pylist() == [1, None, None] assert ys.to_pylist() == [None, None, 2.5] xs, ys = a[1:].flatten() assert xs.to_pylist() == [None, None] assert ys.to_pylist() == [None, 2.5] def test_struct_array_field(): ty = pa.struct([pa.field('x', pa.int16()), pa.field('y', pa.float32())]) a = pa.array([(1, 2.5), (3, 4.5), (5, 6.5)], type=ty) x0 = a.field(0) y0 = a.field(1) x1 = a.field(-2) y1 = a.field(-1) x2 = a.field('x') y2 = a.field('y') assert isinstance(x0, pa.lib.Int16Array) assert isinstance(y1, pa.lib.FloatArray) assert x0.equals(pa.array([1, 3, 5], type=pa.int16())) assert y0.equals(pa.array([2.5, 4.5, 6.5], type=pa.float32())) assert x0.equals(x1) assert x0.equals(x2) assert y0.equals(y1) assert y0.equals(y2) for invalid_index in [None, pa.int16()]: with pytest.raises(TypeError): a.field(invalid_index) for invalid_index in [3, -3]: with pytest.raises(IndexError): a.field(invalid_index) for invalid_name in ['z', '']: with pytest.raises(KeyError): a.field(invalid_name) def test_empty_cast(): types = [ pa.null(), pa.bool_(), pa.int8(), pa.int16(), pa.int32(), pa.int64(), pa.uint8(), pa.uint16(), pa.uint32(), pa.uint64(), pa.float16(), pa.float32(), pa.float64(), pa.date32(), pa.date64(), pa.binary(), pa.binary(length=4), pa.string(), ] for (t1, t2) in itertools.product(types, types): try: # ARROW-4766: Ensure that supported types conversion don't segfault # on empty arrays of common types pa.array([], type=t1).cast(t2) except pa.lib.ArrowNotImplementedError: continue def test_nested_dictionary_array(): dict_arr = pa.DictionaryArray.from_arrays([0, 1, 0], ['a', 'b']) list_arr = pa.ListArray.from_arrays([0, 2, 3], dict_arr) assert list_arr.to_pylist() == [['a', 'b'], ['a']] dict_arr = pa.DictionaryArray.from_arrays([0, 1, 0], ['a', 'b']) dict_arr2 = pa.DictionaryArray.from_arrays([0, 1, 2, 1, 0], dict_arr) assert dict_arr2.to_pylist() == ['a', 'b', 'a', 'b', 'a'] def test_array_from_numpy_str_utf8(): # ARROW-3890 -- in Python 3, NPY_UNICODE arrays are produced, but in Python # 2 they are NPY_STRING (binary), so we must do UTF-8 validation vec = np.array(["toto", "tata"]) vec2 = np.array(["toto", "tata"], dtype=object) arr = pa.array(vec, pa.string()) arr2 = pa.array(vec2, pa.string()) expected = pa.array([u"toto", u"tata"]) assert arr.equals(expected) assert arr2.equals(expected) # with mask, separate code path mask = np.array([False, False], dtype=bool) arr = pa.array(vec, pa.string(), mask=mask) assert arr.equals(expected) # UTF8 validation failures vec = np.array([(u'mañana').encode('utf-16-le')]) with pytest.raises(ValueError): pa.array(vec, pa.string()) with pytest.raises(ValueError): pa.array(vec, pa.string(), mask=np.array([False])) @pytest.mark.large_memory def test_numpy_string_overflow_to_chunked(): # ARROW-3762 # 2^31 + 1 bytes values = [b'x'] # Make 10 unique 1MB strings then repeat then 2048 times unique_strings = { i: b'x' * ((1 << 20) - 1) + str(i % 10).encode('utf8') for i in range(10) } values += [unique_strings[i % 10] for i in range(1 << 11)] arr = np.array(values) arrow_arr = pa.array(arr) assert isinstance(arrow_arr, pa.ChunkedArray) # Split up into 16MB chunks. 128 * 16 = 2048, so 129 assert arrow_arr.num_chunks == 129 value_index = 0 for i in range(arrow_arr.num_chunks): chunk = arrow_arr.chunk(i) for val in chunk: assert val.as_py() == values[value_index] value_index += 1
apache-2.0
gplepage/lsqfit
doc/source/eg-spline.py
1
3601
""" eg-spline.py --- fitting a spline to data in file spline.json """ # Created by G. Peter Lepage (Cornell University) on 2014-04-28. # Copyright (c) 2020 G. Peter Lepage. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # any later version (see <http://www.gnu.org/licenses/>). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. from __future__ import print_function # makes this work for python2 and 3 import gvar as gv import lsqfit import numpy as np def main(): param, data = collect_data('spline.p') F, prior = make_fcn_prior(param) fit = lsqfit.nonlinear_fit(data=data, prior=prior, fcn=F) print(fit) # create f(m) f = gv.cspline.CSpline(fit.p['mknot'], fit.p['fknot']) # create error budget outputs = {'f(1)':f(1), 'f(5)':f(5), 'f(9)':f(9)} inputs = {'data':data} inputs.update(prior) print(gv.fmt_values(outputs)) print(gv.fmt_errorbudget(outputs=outputs, inputs=inputs)) make_plot(param, data, fit) def make_fcn_prior(param): def F(p): f = gv.cspline.CSpline(p['mknot'], p['fknot']) ans = {} for s in param: ainv, am = param[s] m = am * ainv ans[s] = f(m) for i,ci in enumerate(p['c']): ans[s] += ci * am ** (2 + 2 * i) return ans prior = gv.gvar(dict( mknot=['1.00(1)', '1.5(5)', '3(1)', '9.00(1)'], fknot=['0(1)', '1(1)', '1(1)', '1(1)'], # mknot=['1.00(1)', '1.5(5)', '3(1)', '6(2)', '9.00(1)'], # fknot=['0(1)', '1(1)', '1(1)', '1(1)', '1(1)'], c=['0(1)'] * 5, )) return F, prior def collect_data(datafile): param = dict( A=(10., np.array([0.1, 0.3, 0.5, 0.7, 0.9])), B=(5., np.array([0.3, 0.5, 0.7, 0.9])), C=(2.5, np.array([0.5, 0.7, 0.9])), ) data = gv.load(datafile) return param,data def make_plot(param, data, fit): import matplotlib.pyplot as plt plt.cla() f = gv.cspline.CSpline( fit.p['mknot'], fit.p['fknot'], ) coliter = iter(['r', 'b', 'g']) m = np.arange(1, 9, 0.1) fm = f(m) fmavg = gv.mean(fm) fmplus = fmavg + gv.sdev(fm) fmminus = fmavg - gv.sdev(fm) plt.fill_between(m, fmplus, fmminus, color='k', alpha=0.20) plt.plot(m, fmavg, 'k:') # true function fm = 1. - .3 / m - .3 / m**2 plt.plot(m, fm, 'k--') for s in data: plt.plot() ainv, am = param[s] ms = ainv * am d = gv.mean(data[s]) derr = gv.sdev(data[s]) col = next(coliter) plt.errorbar(x=ms, y=d, yerr=derr, fmt=col + 'o') plt.text(ms[-1] - 0.6, d[-1], s, color=col, fontsize='x-large') fs = gv.mean(fm) ams = m / ainv idx = ams < am[-1] ams = ams[idx] fs = gv.mean(fm[idx]) for i, ci in enumerate(fit.p['c']): fs += ci.mean * ams ** (2 * (i + 1)) plt.plot(m[idx], fs, col + ':') plt.xlabel('m') plt.ylabel('f') plt.text(8, 0.65, 'f(m)', fontsize='x-large') plt.savefig('eg-spline.png', bbox_inches='tight') plt.show() if __name__ == "__main__": import tee import sys sys.stdout = tee.tee(sys.stdout, open('eg-spline.out', 'w')) main()
gpl-3.0
JeanKossaifi/scikit-learn
examples/cluster/plot_lena_segmentation.py
271
2444
""" ========================================= Segmenting the picture of Lena in regions ========================================= This example uses :ref:`spectral_clustering` on a graph created from voxel-to-voxel difference on an image to break this image into multiple partly-homogeneous regions. This procedure (spectral clustering on an image) is an efficient approximate solution for finding normalized graph cuts. There are two options to assign labels: * with 'kmeans' spectral clustering will cluster samples in the embedding space using a kmeans algorithm * whereas 'discrete' will iteratively search for the closest partition space to the embedding space. """ print(__doc__) # Author: Gael Varoquaux <[email protected]>, Brian Cheung # License: BSD 3 clause import time import numpy as np import scipy as sp import matplotlib.pyplot as plt from sklearn.feature_extraction import image from sklearn.cluster import spectral_clustering lena = sp.misc.lena() # Downsample the image by a factor of 4 lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2] lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2] # Convert the image into a graph with the value of the gradient on the # edges. graph = image.img_to_graph(lena) # Take a decreasing function of the gradient: an exponential # The smaller beta is, the more independent the segmentation is of the # actual image. For beta=1, the segmentation is close to a voronoi beta = 5 eps = 1e-6 graph.data = np.exp(-beta * graph.data / lena.std()) + eps # Apply spectral clustering (this step goes much faster if you have pyamg # installed) N_REGIONS = 11 ############################################################################### # Visualize the resulting regions for assign_labels in ('kmeans', 'discretize'): t0 = time.time() labels = spectral_clustering(graph, n_clusters=N_REGIONS, assign_labels=assign_labels, random_state=1) t1 = time.time() labels = labels.reshape(lena.shape) plt.figure(figsize=(5, 5)) plt.imshow(lena, cmap=plt.cm.gray) for l in range(N_REGIONS): plt.contour(labels == l, contours=1, colors=[plt.cm.spectral(l / float(N_REGIONS)), ]) plt.xticks(()) plt.yticks(()) plt.title('Spectral clustering: %s, %.2fs' % (assign_labels, (t1 - t0))) plt.show()
bsd-3-clause
berkeley-stat159/project-epsilon
code/utils/scripts/multi_comparison_script.py
1
12928
""" Purpose: ----------------------------------------------------------------------------------- We seek the activated voxel positionsi through multi-comparison of beta values across subjects Step ----------------------------------------------------------------------------------- 1. calculate the mean of each single beta values across subject and plot them 2. calculate the variance of each single beta values across subject and plot them 3. calculate the t-stat of each single beta values across subject and plot them 4. calculate the p-value of each single betav values across subject and plot them """ from __future__ import print_function, division import sys, os import pdb import numpy as np import nibabel as nib import matplotlib.pyplot as plt sys.path.append(os.path.join(os.path.dirname('__file__'), "../functions/")) sys.path.append(os.path.join(os.path.dirname('__file__'), "./")) from glm_func import * from matplotlib import colors from smoothing import * from plot_mosaic import * from scipy.stats import t as t_dist nice_cmap_values = np.loadtxt('actc.txt') nice_cmap = colors.ListedColormap(nice_cmap_values, 'actc') dirs = ['../../../txt_output/multi_beta','../../../fig/multi_beta'] plt.rcParams['image.cmap'] = 'gray' plt.rcParams['image.interpolation'] = 'nearest' project_path='../../../' for d in dirs: if not os.path.exists(d): os.makedirs(d) #Template to plot brain images template = nib.load(project_path+\ 'data/mni_icbm152_t1_tal_nlin_asym_09c_2mm.nii') template_data_int = template.get_data() template_data = template_data_int.astype(float) task = dict() gain = dict() loss = dict() print("\n================================================================================") print("Starting multi comparison analysis for the selected subjects") subject_list = [str(i) for i in range(1,17)) #subject_list = ['1','5'] #load all of them #for x in range(1,17): for sub in subject_list: task[sub] = np.loadtxt(dirs[0]+'/ds005_sub'+str(sub).zfill(3)+'_t1r1_beta_task.txt') #for x in range(1,17): gain[sub] = np.loadtxt(dirs[0]+'/ds005_sub'+str(sub).zfill(3)+'_t1r1_beta_gain.txt') #for x in range(1,17): loss[sub] = np.loadtxt(dirs[0]+'/ds005_sub'+str(sub).zfill(3)+'_t1r1_beta_loss.txt') # for x in range(1,17): # dist[x] = np.loadtxt(dirs[0]+'/ds005_sub'+str(x).zfill(3)+'_t1r1_beta_dist.txt') ##################################### MEAN plot ######################################### print("\n================================================================================") print("Starting analysis for the mean voxels values accross subjects") #calculate mean and plot (let's try for task) #task_sum = task[1] #for x in range(2,17): # task_sum +=task[x] #task_mean = task_sum/16 #task_mean = task_sum/len(subject_list) #task_mean_reshape = task_mean.reshape(91,109,91) #gain_sum = gain[1] #for x in range(2,17): # gain_sum +=gain[x] #gain_mean = gain_sum/16 #gain_mean_reshape = gain_mean.reshape(91,109,91) #loss_sum = gain[1] #for x in range(2,17): # loss_sum +=loss[x] #loss_mean = loss_sum/16 #loss_mean_reshape = loss_mean.reshape(91,109,91) for mydict in [task, gain, loss]: mydict['mean'] = sum([task[sub] for sub in subject_list])/(len(subject_list)) mydict['mean_reshape'] = mydict['mean'].reshape(91,109,91) mydict['mean_mask'] = (mydict['mean_reshape'] - 0.0) < 0.01 mydict['mean_reshape_plot'] = mydict['mean_reshape'] mydict['mean_reshape_plot'][~mydict['mean_mask']] = np.nan print("Creating plots for the voxel mean accross subjects analysis") task_mean = task['mean'] gain_mean = gain['mean'] loss_mean = loss['mean'] in_brain_task = task['mean_mask'] in_brain_gain = gain['mean_mask'] in_brain_loss = loss['mean_mask'] plt.title('In brain activated voxels - \nmean across ' + str(len(subject_list)) +' subjects on TASK condition', fontsize=12) plt.imshow(plot_mosaic(template_data, transpose=False), cmap='gray', alpha=1) plt.imshow(plot_mosaic(task['mean_reshape_plot'], transpose=False), \ cmap='seismic', alpha=1, vmin=task['mean_reshape_plot'].min(), vmax= task['mean_reshape_plot'].max()) plt.colorbar() plt.savefig(dirs[1]+'/mean_task.png') #plt.show() plt.clf() print(" Plot for the TASK condition saved in " + dirs[1]+'/mean_task.png') plt.title('In brain activated voxels - \nmean across ' + str(len(subject_list)) + ' subjects on GAIN condition', fontsize=12) plt.imshow(plot_mosaic(template_data, transpose=False), cmap='gray', alpha=1) plt.imshow(plot_mosaic(gain['mean_reshape_plot'], transpose=False), \ cmap='seismic', alpha=1, vmin=gain['mean_reshape_plot'].min(), vmax= gain['mean_reshape_plot'].max()) plt.colorbar() plt.savefig(dirs[1]+'/mean_gain.png') #plt.show() plt.clf() print(" Plot for the GAIN condition saved in " + dirs[1] + '/mean_gain.png') plt.title('In brain activated voxels - \nmean across ' + str(len(subject_list)) + ' subjects on LOSS condition', fontsize=12) plt.imshow(plot_mosaic(template_data, transpose=False), cmap='gray', alpha=1) plt.imshow(plot_mosaic(loss['mean_reshape_plot'], transpose=False), \ cmap='seismic', alpha=1, vmin=loss['mean_reshape_plot'].min(), vmax= loss['mean_reshape_plot'].max()) plt.colorbar() plt.savefig(dirs[1]+'/mean_loss.png') #plt.show() plt.clf() print(" Plot for the LOSS condition saved in " + dirs[1] + '/mean_loss.png') #################################### SD plot ######################################### print("\n================================================================================") print("Starting analysis and plot for the mean variance accross subjects") #calculate variance and plot stdlst = [] for x in subject_list: stdlst.append(task[x]) stdarray = np.array(stdlst) task_std = stdarray.std(axis=0) #task_std.shape -> (902629,0) task_std_reshape = task_std.reshape(91,109,91) task_std_reshape_plot = task_std_reshape task_std_reshape_plot[~in_brain_gain] = np.nan stdlst = [] #for x in range(1,17): for x in subject_list: stdlst.append(gain[x]) stdarray = np.array(stdlst) gain_std = stdarray.std(axis=0) #task_std.shape -> (902629,0) gain_std_reshape = gain_std.reshape(91,109,91) gain_std_reshape_plot = gain_std_reshape gain_std_reshape_plot[~in_brain_gain] = np.nan stdlst = [] for x in subject_list: stdlst.append(loss[x]) stdarray = np.array(stdlst) loss_std = stdarray.std(axis=0) #task_std.shape -> (902629,0) loss_std_reshape = loss_std.reshape(91,109,91) loss_std_reshape_plot = loss_std_reshape loss_std_reshape_plot[~in_brain_loss] = np.nan print("Creating plots for the voxel mean variance accross subjects analysis") plt.title('In brain activated voxels - \nStandard Deviation across ' + str(len(subject_list)) + ' subjects on TASK condition', fontsize=12) plt.imshow(plot_mosaic(template_data, transpose=False), cmap='gray', alpha=1) plt.imshow(plot_mosaic(task_std_reshape_plot, transpose=False), cmap='seismic', alpha=1, vmin=task_std_reshape_plot.min(), vmax= task_std_reshape_plot.max()) plt.colorbar() plt.savefig(dirs[1]+'/std_task.png') #plt.show() plt.clf() print(" Plot for the TASK condition saved in " + dirs[1] + '/std_task.png') plt.title('In brain activated voxels - \nStandard Deviation across ' + str(len(subject_list)) + ' subjects on GAIN condition', fontsize=12) plt.imshow(plot_mosaic(template_data, transpose=False), cmap='gray', alpha=1) plt.imshow(plot_mosaic(gain_std_reshape_plot, transpose=False), cmap='seismic', alpha=1, vmin=gain_std_reshape_plot.min(), vmax= gain_std_reshape_plot.max()) plt.colorbar() plt.savefig(dirs[1]+'/std_gain.png') #plt.show() plt.clf() print(" Plot for the GAIN condition saved in " + dirs[1] + '/std_task.png') plt.title('In brain activated voxels - \nStandard Deviation across ' + str(len(subject_list)) + ' subjects on LOSS condition', fontsize=12) plt.imshow(plot_mosaic(template_data, transpose=False), cmap='gray', alpha=1) plt.imshow(plot_mosaic(loss_std_reshape_plot, transpose=False), cmap='seismic', alpha=1, vmin=loss_std_reshape_plot.min(), vmax= loss_std_reshape_plot.max()) plt.colorbar() plt.savefig(dirs[1]+'/std_loss.png') #plt.show() plt.clf() print(" Plot for the LOSS condition saved in " + dirs[1] + '/std_loss.png') ##################################### stat plot ######################################### print("\n================================================================================") print("Starting analysis and plot for the t-test accross subjects") #calculate t-stat and plot task_tstat = task_mean/(task_std/np.sqrt(15)) task_tstat = np.nan_to_num(task_tstat) task_tstat_reshape = task_tstat.reshape(91,109,91) task_tstat_reshape_plot = task_tstat_reshape task_tstat_reshape_plot[~in_brain_task] = np.nan gain_tstat = gain_mean/(gain_std/np.sqrt(15)) gain_tstat = np.nan_to_num(gain_tstat) gain_tstat_reshape = gain_tstat.reshape(91,109,91) gain_tstat_reshape_plot = gain_tstat_reshape gain_tstat_reshape_plot[~in_brain_gain] = np.nan loss_tstat = loss_mean/(loss_std/np.sqrt(15)) loss_tstat = np.nan_to_num(loss_tstat) loss_tstat_reshape = loss_tstat.reshape(91,109,91) loss_tstat_reshape_plot = loss_tstat_reshape loss_tstat_reshape_plot[~in_brain_loss] = np.nan plt.title('In brain activated voxels - \nT-statistics across ' + str(len(subject_list)) + ' subjects on TASK condition', fontsize=12) plt.imshow(plot_mosaic(template_data, transpose=False), cmap='gray', alpha=1) plt.imshow(plot_mosaic(task_tstat_reshape_plot, transpose=False), cmap='seismic', alpha=1, vmin=task_tstat_reshape_plot.min(), vmax=task_tstat_reshape_plot.max()) plt.colorbar() plt.savefig(dirs[1]+'/tstat_task.png') #plt.show() plt.clf() print(" Plot for the TASK condition saved in " + dirs[1] + '/tstat_task.png') plt.title('In brain activated voxels - \nT-statistics across ' + str(len(subject_list)) + ' subjects on GAIN condition', fontsize=12) plt.imshow(plot_mosaic(template_data, transpose=False), cmap='gray', alpha=1) plt.imshow(plot_mosaic(gain_tstat_reshape_plot, transpose=False), cmap='seismic', alpha=1, vmin=gain_tstat_reshape_plot.min(), vmax=gain_tstat_reshape_plot.max()) plt.colorbar() plt.savefig(dirs[1]+'/tstat_gain.png') #plt.show() plt.clf() print(" Plot for the GAIN condition saved in " + dirs[1] + '/tstat_gain.png') plt.title('In brain activated voxels - \nT-statistics across ' + str(len(subject_list)) + ' subjects on LOSS condition', fontsize=12) plt.imshow(plot_mosaic(template_data, transpose=False), cmap='gray', alpha=1) plt.imshow(plot_mosaic(loss_tstat_reshape_plot, transpose=False), cmap='seismic', alpha=1, vmin=loss_tstat_reshape_plot.min(), vmax=loss_tstat_reshape_plot.max()) plt.colorbar() plt.savefig(dirs[1]+'/tstat_loss.png') #plt.show() plt.clf() print(" Plot for the LOSS condition saved in " + dirs[1] + '/tstat_loss.png') ##################################### P-value plot ######################################### print("\n================================================================================") print("Starting analysis and plot for the p-values accross subjects") #calculate p-value and plot task_pval = t_dist.cdf(abs(task_tstat), 15) task_pval_reshape_old = task_pval.reshape(91,109,91) task_pval_reshape = np.ones((91,109,91))-task_pval_reshape_old task_pval_reshape_plot = task_pval_reshape mask = task_pval_reshape_plot < 0.10 task_pval_reshape_plot[~mask] = np.nan gain_pval = t_dist.cdf(abs(gain_tstat), 15) gain_pval_reshape_old = gain_pval.reshape(91,109,91) gain_pval_reshape = np.ones((91,109,91))-gain_pval_reshape_old gain_pval_reshape_plot = gain_pval_reshape mask = gain_pval_reshape_plot < 0.10 gain_pval_reshape_plot[~mask] = np.nan loss_pval = t_dist.cdf(abs(loss_tstat), 15) loss_pval_reshape_old = loss_pval.reshape(91,109,91) loss_pval_reshape = np.ones((91,109,91))-loss_pval_reshape_old loss_pval_reshape_plot = loss_pval_reshape #loss_pval_reshape_plot[~in_brain_task] = np.nan p_value_thres = 0.05/(91*109*91) plt.title('In brain activated voxels - \nP-value across ' + str(len(subject_list)) + ' subjects on TASK condition', fontsize=12) plt.imshow(plot_mosaic(template_data, transpose=False), cmap='gray', alpha=1) plt.imshow(plot_mosaic(task_pval_reshape_plot, transpose=False), cmap='seismic', alpha=1, vmin=task_pval_reshape_plot.min(), vmax=task_pval_reshape_plot.max()) plt.colorbar() plt.savefig(dirs[1]+'/pval_task.png') #plt.show() plt.clf() print(" Plot for the TASK condition saved in " + dirs[1] + '/pval_task.png') plt.title('In brain activated voxels - \nP-value across ' + str(len(subject_list)) +' subjects on GAIN condition', fontsize=12) plt.imshow(plot_mosaic(template_data, transpose=False), cmap='gray', alpha=1) plt.imshow(plot_mosaic(gain_pval_reshape_plot, transpose=False), cmap='seismic', alpha=1, vmin=gain_pval_reshape_plot.min(), vmax=gain_pval_reshape_plot.max()) plt.colorbar() plt.savefig(dirs[1]+'/pval_gain.png') #plt.show() plt.clf() print(" Plot for the GAIN condition saved in " + dirs[1] + '/pval_gain.png') print("Multi comparison analysis done")
bsd-3-clause
serazing/xscale
xscale/filtering/linearfilters.py
1
15487
"""Define functions for linear filtering that works on multi-dimensional xarray.DataArray and xarray.Dataset objects. """ # Python 2/3 compatibility from __future__ import absolute_import, division, print_function # Internal import copy from collections import Iterable # Numpy and scipy import numpy as np import scipy.signal as sig import scipy.ndimage as im import xarray as xr # Matplotlib import matplotlib import matplotlib.pyplot as plt from matplotlib import transforms # Current package from .. import _utils from ..spectral.fft import fft, psd import pdb @xr.register_dataarray_accessor('window') @xr.register_dataset_accessor('window') class Window(object): """ Class for all different type of windows """ _attributes = ['order', 'cutoff', 'dx', 'window'] def __init__(self, xarray_obj): self._obj = xarray_obj self.obj = xarray_obj # Associated xarray object self.n = None # Size of the window self.dims = None # Dimensions of the window self.ndim = 0 # Number of dimensions self.cutoff = None # Window cutoff self.window = None # Window type (scipy-like type) self.order = None # Window order self.coefficients = 1. # Window coefficients self._depth = dict() # Overlap between different blocks self.fnyq = dict() # Nyquist frequency def __repr__(self): """ Provide a nice string representation of the window object """ # Function copied from xarray.core.rolling attrs = ["{k}->{v}".format(k=k, v=getattr(self, k)) for k in self._attributes if getattr(self, k, None) is not None] return "{klass} [{attrs}]".format(klass=self.__class__.__name__, attrs=', '.join(attrs)) def set(self, n=None, dim=None, cutoff=None, dx=None, window='boxcar', chunks=None): """Set the different properties of the current window. Parameters ---------- n : int, sequence or dict, optional Window order over dimensions specified through an integer coupled with the ``dim`` parameter. A dictionnary can also be used to specify the order. dim : str or sequence, optional Names of the dimensions associated with the window. cutoff : float, sequence or dict, optional The window cutoff over the dimensions specified through a dictionnary or coupled with the dim parameter. If None, the cutoff is not used to desgin the filter. dx : float, sequence or dict, optional Define the resolution of the dimensions. If None, the resolution is directly infered from the coordinates associated to the dimensions. trim : bool, optional If True, choose to only keep the valid data not affected by the boundaries. window : string, tupple, or string and parameters values, or dict, optional Window to use, see :py:func:`scipy.signal.get_window` for a list of windows and required parameters chunks : int, tuple or dict, optional Chunk sizes along each dimension, e.g., ``5``, ``(5, 5)`` or ``{'x': 5, 'y': 5}`` """ # Check and interpret n and dims parameters self.n, self.dims = _utils.infer_n_and_dims(self._obj, n, dim) self.ndim = len(self.dims) self.order = {di: nbw for nbw, di in zip(self.n, self.dims)} self.cutoff = _utils.infer_arg(cutoff, self.dims) self.dx = _utils.infer_arg(dx, self.dims) self.window = _utils.infer_arg(window, self.dims, default_value='boxcar') # Rechunk if needed self.obj = self._obj.chunk(chunks=chunks) # Reset attributes self.fnyq = dict() self.coefficients = xr.DataArray(1.) #/!\ Modif for Dataset #self._depth = dict() # Build the multi-dimensional window: the hard part for di in self.obj.dims: #/!\ Modif for Dataset #axis_num = self.obj.get_axis_num(di) #dim_chunk = self.obj.chunks[di][0] if di in self.dims: #/!\ Modif for Dataset #self._depth[axis_num] = self.order[di] // 2 if self.dx[di] is None: self.dx[di] = _utils.get_dx(self.obj, di) self.fnyq[di] = 1. / (2. * self.dx[di]) # Compute the coefficients associated to the window using scipy functions if self.cutoff[di] is None: # Use get_window if the cutoff is undefined coefficients1d = sig.get_window(self.window[di], self.order[di]) else: # Use firwin if the cutoff is defined coefficients1d = sig.firwin(self.order[di], 1. / self.cutoff[di], window=self.window[di], nyq=self.fnyq[di]) try: chunks = self.obj.chunks[di][0] except TypeError: axis_num = self.obj.get_axis_num(di) chunks = self.obj.chunks[axis_num][0] n = len(coefficients1d) coords = {di: np.arange(-(n - 1) // 2, (n + 1) // 2)} coeffs1d = xr.DataArray(coefficients1d, dims=di, coords=coords).chunk(chunks=chunks) self.coefficients = self.coefficients * coeffs1d # TODO: Try to add the rotational convention using meshgrid, # in complement to the outer product #self.coefficients = self.coefficients.squeeze() else: self.coefficients = self.coefficients.expand_dims(di, axis=-1) # self.coefficients = self.coefficients.expand_dim(di, axis=-1) # np.expand_dims(self.coefficients, # axis=axis_num) def convolve(self, mode='reflect', weights=1., trim=False): """Convolve the current window with the data Parameters ---------- mode : {'reflect', 'periodic', 'any-constant'}, optional The mode parameter determines how the array borders are handled. Default is 'reflect'. weights : DataArray, optional Array to weight the result of the convolution close to the boundaries. trim : bool, optional If True, choose to only keep the valid data not affected by the boundaries. Returns ------- res : xarray.DataArray Return a filtered DataArray """ if isinstance(self.obj, xr.DataArray): res = _convolve(self.obj, self.coefficients, self.dims, self.order, mode, weights, trim) elif isinstance(self.obj, xr.Dataset): res = self.obj.apply(_convolve, keep_attrs=True, args=(self.coefficients, self.dims, self.order, mode, weights, trim)) return res def boundary_weights(self, mode='reflect', mask=None, drop_dims=[], trim=False): """ Compute the boundary weights Parameters ---------- mode : {'reflect', 'periodic', 'any-constant'}, optional The mode parameter determines how the array borders are handled. Default is 'reflect'. mask : array-like, optional Specify the mask, if None the mask is inferred from missing values drop_dims : list, optional Specify dimensions along which the weights do not need to be computed Returns ------- weights : xarray.DataArray or xarray.Dataset Return a DataArray or a Dataset containing the weights """ # Drop extra dimensions if if drop_dims: new_coeffs = self.coefficients.squeeze() else: new_coeffs = self.coefficients if mask is None: # Select only the first new_obj = self.obj.isel(**{di: 0 for di in drop_dims}).squeeze() mask = 1. - np.isnan(new_obj) if isinstance(mask, xr.DataArray): res = _convolve(mask, new_coeffs, self.dims, self.order, mode, 1., trim) elif isinstance(mask, xr.Dataset): res = mask.apply(_convolve, keep_attrs=True, args=(self.coefficients, self.dims, self.order, mode, 1., trim)) # Mask the output res = res.where(mask == 1.) return res def tapper(self, overlap=0.): """ Do a tappering of the data using the current window Parameters ---------- overlap: Returns ------- data_tappered : dask array The data tappered y the window Notes ----- """ # TODO: Improve this function to implement multitapper res = xr.DataArray(self.coefficients * self.obj.data, dims=self.obj.dims, coords=self.obj.coords, name=self.obj.name) return res def plot(self): """ Plot the weights distribution of the window and the associated spectrum (work only for 1D and 2D windows). """ win_array = xr.DataArray(self.coefficients.squeeze(), dims=self.dims).squeeze() win_spectrum = psd(fft(win_array, nfft=1024, dim=self.dims, dx=self.dx, sym=True)) win_spectrum_norm = 20 * np.log10(win_spectrum / abs(win_spectrum).max()) self.win_spectrum_norm = win_spectrum_norm if self.ndim == 1: _plot1d_window(win_array, win_spectrum_norm) elif self.ndim == 2: _plot2d_window(win_array, win_spectrum_norm) else: raise ValueError("This number of dimension is not supported by the " "plot function") def _plot1d_window(win_array, win_spectrum_norm): dim = win_spectrum_norm.dims[0] freq = win_spectrum_norm[dim] min_freq = np.extract(freq > 0, freq).min() # next, should eventually be udpated in order to delete call to .values # https://github.com/pydata/xarray/issues/1388 # Changed by using load() cutoff_3db = 1. / abs(freq[np.abs(win_spectrum_norm + 3).argmin(dim).data]) cutoff_6db = 1. / abs(freq[np.abs(win_spectrum_norm + 6).argmin(dim).data]) # Plot window properties fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(10, 5)) # First plot: weight distribution win_array.plot(ax=ax1) ax1.set_ylabel("Amplitude") ax1.set_xlabel("Sample") # Second plot: frequency response win_spectrum_norm.plot(ax=ax2) ax2.set_xscale('symlog', linthreshx=min_freq, subsx=[2, 3, 4, 5, 6, 7, 8, 9]) box = dict(boxstyle='round', facecolor='white', alpha=1) textstr = '$\lambda^{3dB}=%.1f$ \n $\lambda^{6dB}=%.1f$' % (cutoff_3db, cutoff_6db) ax2.text(0.5, 0.45, textstr, transform=ax2.transAxes, fontsize=14, verticalalignment='top', horizontalalignment='center', bbox=box) ax2.set_ylim((-200, 20)) ax2.set_ylabel("Normalized magnitude [dB]") ax2.set_xlabel("Frequency [cycles per sample]") ax2.grid(True) plt.tight_layout() def _plot2d_window(win_array, win_spectrum_norm): fig = plt.figure(figsize=(18, 9)) n_x, n_y = win_array.shape n_fx, n_fy = win_spectrum_norm.shape dim_fx, dim_fy = win_spectrum_norm.dims win_array_x = win_array[:, n_y // 2] win_array_y = win_array[n_x // 2, :] win_spectrum_x = win_spectrum_norm.isel(**{dim_fy: n_fy // 2}) win_spectrum_y = win_spectrum_norm.isel(**{dim_fx: n_fx // 2}) freq_x, freq_y = win_spectrum_norm[dim_fx], win_spectrum_norm[dim_fy] min_freq_x = np.extract(freq_x > 0, freq_x).min() min_freq_y = np.extract(freq_y > 0, freq_y).min() cutoff_x_3db = 1. / abs(freq_x[np.abs(win_spectrum_x + 3).argmin(dim_fx).data]) cutoff_x_6db = 1. / abs(freq_x[np.abs(win_spectrum_x + 6).argmin(dim_fx).data]) cutoff_y_3db = 1. / abs(freq_y[np.abs(win_spectrum_y + 3).argmin(dim_fy).data]) cutoff_y_6db = 1. / abs(freq_y[np.abs(win_spectrum_y + 6).argmin(dim_fy).data]) #fig = plt.figure(1, figsize=(16, 8)) # Definitions for the axes left, width = 0.05, 0.25 bottom, height = 0.05, 0.5 offset = 0.05 bottom_h = bottom + height + offset rect_2D_weights = [left, bottom, width, height] rect_x_weights = [left, bottom_h, width, height / 2] rect_y_weights = [left + width + offset, bottom, width / 2, height] rect_2D_spectrum = [left + 3. / 2 * width + 2 * offset, bottom, width, height] rect_x_spectrum = [left + 3. / 2 * width + 2 * offset, bottom_h, width, height / 2] rect_y_spectrum = [left + 5. / 2 * width + 3 * offset, bottom, width / 2, height] ax_2D_weights = plt.axes(rect_2D_weights) ax_x_weights = plt.axes(rect_x_weights) ax_y_weights = plt.axes(rect_y_weights) ax_x_spectrum = plt.axes(rect_x_spectrum) ax_y_spectrum = plt.axes(rect_y_spectrum) ax_2D_spectrum = plt.axes(rect_2D_spectrum) # Weight disribution along y win_array_y.squeeze().plot(ax=ax_x_weights) ax_x_weights.set_ylabel('') ax_x_weights.set_xlabel('') # Weight disribution along x base = ax_y_weights.transData rot = transforms.Affine2D().rotate_deg(270) win_array_x.plot(ax=ax_y_weights, transform=rot + base) ax_y_weights.set_ylabel('') ax_y_weights.set_xlabel('') # Full 2d weight distribution win_array.plot(ax=ax_2D_weights, add_colorbar=False) # Spectrum along f_y win_spectrum_y.plot(ax=ax_x_spectrum) ax_x_spectrum.set_xscale('symlog', linthreshx=min_freq_y, subsx=[2, 3, 4, 5, 6, 7, 8, 9]) ax_x_spectrum.set_ylim([-200, 20]) ax_x_spectrum.grid() ax_x_spectrum.set_ylabel("Normalized magnitude [dB]") ax_x_spectrum.set_xlabel("") box = dict(boxstyle='round', facecolor='white', alpha=1) # place a text box in upper left in axes coords textstr = '$\lambda_y^{3dB}=%.1f$ \n $\lambda_y^{6dB}=%.1f$' % ( cutoff_y_3db, cutoff_y_6db) ax_x_spectrum.text(0.5, 0.45, textstr, transform=ax_x_spectrum.transAxes, fontsize=14, verticalalignment='top', horizontalalignment='center', bbox=box) # Spectrum along f_x base = ax_y_spectrum.transData rot = transforms.Affine2D().rotate_deg(270) win_spectrum_x.squeeze().plot(ax=ax_y_spectrum, transform=rot + base) ax_y_spectrum.set_yscale('symlog', linthreshy=min_freq_x, subsy=[2, 3, 4, 5, 6, 7, 8, 9]) ax_y_spectrum.set_xlim([-200, 20]) ax_y_spectrum.grid() ax_y_spectrum.set_ylabel("") ax_y_spectrum.set_xlabel("Normalized magnitude [dB]") textstr = '$\lambda_x^{3dB}=%.1f$ \n $\lambda_x^{6dB}=%.1f$' % ( cutoff_x_3db, cutoff_x_6db) ax_y_spectrum.text(0.7, 0.5, textstr, transform=ax_y_spectrum.transAxes, fontsize=14, verticalalignment='center', horizontalalignment='right', bbox=box) # Full 2d spectrum win_spectrum_norm.plot(ax=ax_2D_spectrum, add_colorbar=False, vmin=-200, vmax=0, cmap=matplotlib.cm.Spectral_r) ax_2D_spectrum.set_xscale('symlog', linthreshx=min_freq_y) ax_2D_spectrum.set_yscale('symlog', linthreshy=min_freq_x) def _convolve(dataarray, coeffs, dims, order, mode, weights, trim): """Convolve the current window with the data """ # Check if the kernel has more dimensions than the input data, # if so the extra dimensions of the kernel are squeezed squeezed_dims = [di for di in dims if di not in dataarray.dims] new_coeffs = coeffs.squeeze(squeezed_dims) new_coeffs /= new_coeffs.sum() if trim: mode = np.nan mode_conv = 'constant' new_data = dataarray.data else: new_data = dataarray.fillna(0.).data if mode is 'periodic': mode_conv = 'wrap' else: mode_conv = mode boundary = {dataarray.get_axis_num(di): mode for di in dims} depth = {dataarray.get_axis_num(di): order[di] // 2 for di in dims} conv = lambda x: im.convolve(x, new_coeffs.data, mode=mode_conv) data_conv = new_data.map_overlap(conv, depth=depth, boundary=boundary, trim=True) res = 1. / weights * xr.DataArray(data_conv, dims=dataarray.dims, coords=dataarray.coords, name=dataarray.name) return res
apache-2.0
Aasmi/scikit-learn
examples/ensemble/plot_forest_iris.py
335
6271
""" ==================================================================== Plot the decision surfaces of ensembles of trees on the iris dataset ==================================================================== Plot the decision surfaces of forests of randomized trees trained on pairs of features of the iris dataset. This plot compares the decision surfaces learned by a decision tree classifier (first column), by a random forest classifier (second column), by an extra- trees classifier (third column) and by an AdaBoost classifier (fourth column). In the first row, the classifiers are built using the sepal width and the sepal length features only, on the second row using the petal length and sepal length only, and on the third row using the petal width and the petal length only. In descending order of quality, when trained (outside of this example) on all 4 features using 30 estimators and scored using 10 fold cross validation, we see:: ExtraTreesClassifier() # 0.95 score RandomForestClassifier() # 0.94 score AdaBoost(DecisionTree(max_depth=3)) # 0.94 score DecisionTree(max_depth=None) # 0.94 score Increasing `max_depth` for AdaBoost lowers the standard deviation of the scores (but the average score does not improve). See the console's output for further details about each model. In this example you might try to: 1) vary the ``max_depth`` for the ``DecisionTreeClassifier`` and ``AdaBoostClassifier``, perhaps try ``max_depth=3`` for the ``DecisionTreeClassifier`` or ``max_depth=None`` for ``AdaBoostClassifier`` 2) vary ``n_estimators`` It is worth noting that RandomForests and ExtraTrees can be fitted in parallel on many cores as each tree is built independently of the others. AdaBoost's samples are built sequentially and so do not use multiple cores. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import clone from sklearn.datasets import load_iris from sklearn.ensemble import (RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier) from sklearn.externals.six.moves import xrange from sklearn.tree import DecisionTreeClassifier # Parameters n_classes = 3 n_estimators = 30 plot_colors = "ryb" cmap = plt.cm.RdYlBu plot_step = 0.02 # fine step width for decision surface contours plot_step_coarser = 0.5 # step widths for coarse classifier guesses RANDOM_SEED = 13 # fix the seed on each iteration # Load data iris = load_iris() plot_idx = 1 models = [DecisionTreeClassifier(max_depth=None), RandomForestClassifier(n_estimators=n_estimators), ExtraTreesClassifier(n_estimators=n_estimators), AdaBoostClassifier(DecisionTreeClassifier(max_depth=3), n_estimators=n_estimators)] for pair in ([0, 1], [0, 2], [2, 3]): for model in models: # We only take the two corresponding features X = iris.data[:, pair] y = iris.target # Shuffle idx = np.arange(X.shape[0]) np.random.seed(RANDOM_SEED) np.random.shuffle(idx) X = X[idx] y = y[idx] # Standardize mean = X.mean(axis=0) std = X.std(axis=0) X = (X - mean) / std # Train clf = clone(model) clf = model.fit(X, y) scores = clf.score(X, y) # Create a title for each column and the console by using str() and # slicing away useless parts of the string model_title = str(type(model)).split(".")[-1][:-2][:-len("Classifier")] model_details = model_title if hasattr(model, "estimators_"): model_details += " with {} estimators".format(len(model.estimators_)) print( model_details + " with features", pair, "has a score of", scores ) plt.subplot(3, 4, plot_idx) if plot_idx <= len(models): # Add a title at the top of each column plt.title(model_title) # Now plot the decision boundary using a fine mesh as input to a # filled contour plot x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)) # Plot either a single DecisionTreeClassifier or alpha blend the # decision surfaces of the ensemble of classifiers if isinstance(model, DecisionTreeClassifier): Z = model.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=cmap) else: # Choose alpha blend level with respect to the number of estimators # that are in use (noting that AdaBoost can use fewer estimators # than its maximum if it achieves a good enough fit early on) estimator_alpha = 1.0 / len(model.estimators_) for tree in model.estimators_: Z = tree.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, alpha=estimator_alpha, cmap=cmap) # Build a coarser grid to plot a set of ensemble classifications # to show how these are different to what we see in the decision # surfaces. These points are regularly space and do not have a black outline xx_coarser, yy_coarser = np.meshgrid(np.arange(x_min, x_max, plot_step_coarser), np.arange(y_min, y_max, plot_step_coarser)) Z_points_coarser = model.predict(np.c_[xx_coarser.ravel(), yy_coarser.ravel()]).reshape(xx_coarser.shape) cs_points = plt.scatter(xx_coarser, yy_coarser, s=15, c=Z_points_coarser, cmap=cmap, edgecolors="none") # Plot the training points, these are clustered together and have a # black outline for i, c in zip(xrange(n_classes), plot_colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=c, label=iris.target_names[i], cmap=cmap) plot_idx += 1 # move on to the next plot in sequence plt.suptitle("Classifiers on feature subsets of the Iris dataset") plt.axis("tight") plt.show()
bsd-3-clause
rr1964/Caterpillar
JSS Exploration.py
1
4242
# -*- coding: utf-8 -*- """ Created on Thu Jun 01 11:26:48 2017 @author: reeserd2 """ print "Entering JSS Analysis mode." ####All of the following is now done by my module simpleRead #import csv # #with open('C:/Users/reeserd2/Desktop/JSS Analysis/data/JSS_fixed_CIM_CapIQ_20170525_fixed.csv', mode = 'r') as f: # readIn = csv.reader(f, delimiter = ',', skipinitialspace=True) # # lineData = list() # # cols = next(readIn) # print(cols) # # for col in cols: # # Create a list in lineData for each column of data. # lineData.append(list()) # # # for line in readIn: # for i in xrange(0, len(lineData)): # # Copy the data from the line into the correct columns. # lineData[i].append(line[i]) # # data = dict() # # for i in xrange(0, len(cols)): ## Create each key in the dict with the data in its column. # data[cols[i]] = lineData[i] # #print(data) # #f.close() import simpleRead as sr###A crude module I personally wrote for reading in raw csv files. import numpy as np import math as m import matplotlib import pylab as pl import pandas print matplotlib.__version__ """ I am learning some work from 'Python for Data Analysis'. """ ####One way of reading in the data. A bit choppy, but you can get at it at a more "raw" level. #raw_data = sr.simpleReadCSV('C:/Users/reeserd2/Desktop/JSS Analysis/data/JSS_fixed_CIM_CapIQ_20170525_fixed.csv') #my_data.keys() #print my_data["ISWON"] def make_float(s): s = s.strip() return float(s) if s else 'NA' #raw_data["RoAPer"] = map(make_float, raw_data["RoAPer"]) #print my_data["RoAPer"] ###dataf = pd.DataFrame(raw_data, columns = []) ####pandas.read_csv() most closely resembles R's ability to intelligently read in a csv file. JSS_Data = pandas.read_csv('../JSS Analysis/data/JSS_fixed_CIM_CapIQ_20170525_fixed.csv') print JSS_Data.keys() JSS_Data["Rev"] JSS_Data.count() JSS_Data.sum()##Who knows what this does for strings.....But I believe it ignores NaN. It also seems to ignore string coulmns. #%% import json path = "C:/Users/reeserd2/Documents/bitlyData.txt" bitly =[json.loads(line) for line in open(path)] ###Note the list constructor using a for loop. #print bitly[2]["tz"] time_zones = [record['tz'] for record in bitly if "tz" in record] ###Again, the list constructor using a for loop. time_zones[:15]###The index is not inclusive remember. from collections import defaultdict def get_counts(seq): counts = defaultdict(int)###Initializes all values to 0. for rec in seq: counts[rec] += 1 return counts tzCounts = get_counts(time_zones) tzCounts['America/New_York'] #%%% ###We can find the top 5 most common time zones, but it requires us "flipping" the dictionary so to speak. def top_counts(count_dict, n = 5): value_key = [(count,tz) for tz,count in count_dict.items()] value_key.sort(reverse = True) #value_key.sort() ###sorts based on the FIRST value in the tuple. ###The value_key list now remains sorted. No need to cache. To not modify the list, use sorted(LIST) return value_key[-n:] top_counts(tzCounts, n = 10) ###This same thing can be done using some tools that are importable from the collections module. from collections import Counter tzCounts_simple = Counter(time_zones) ###A single function to cover the last 20 lines or so. tzCounts_simple.most_common(10) #Also presents these in a top to bottom format. #%% ###All of the time zone stuff can be done by using DataFrame in pandas. import pandas as pd df = pd.DataFrame(bitly) df['tz'][:10] ##print df["tz"].value_counts()[:10] clean_tz = df['tz'].fillna('Missing') clean_tz[clean_tz == ''] = 'Unknown' tz_counts = clean_tz.value_counts() tz_counts[:10] #%% import matplotlib.pyplot as plt plt.figure(figsize=(10, 4)) tz_counts[:10].plot(kind='barh', rot=0) df['a'][1] df['a'][50] df['a'][51] results = pd.Series([x.split()[0] for x in df.a.dropna()]) results[:5] #%% #%% #%% #%% #%% #%% #%%
gpl-3.0
DuCorey/bokeh
examples/app/stocks/main.py
11
4555
''' Create a simple stocks correlation dashboard. Choose stocks to compare in the drop down widgets, and make selections on the plots to update the summary and histograms accordingly. .. note:: Running this example requires downloading sample data. See the included `README`_ for more information. Use the ``bokeh serve`` command to run the example by executing: bokeh serve stocks at your command prompt. Then navigate to the URL http://localhost:5006/stocks .. _README: https://github.com/bokeh/bokeh/blob/master/examples/app/stocks/README.md ''' try: from functools import lru_cache except ImportError: # Python 2 does stdlib does not have lru_cache so let's just # create a dummy decorator to avoid crashing print ("WARNING: Cache for this example is available on Python 3 only.") def lru_cache(): def dec(f): def _(*args, **kws): return f(*args, **kws) return _ return dec from os.path import dirname, join import pandas as pd from bokeh.io import curdoc from bokeh.layouts import row, column from bokeh.models import ColumnDataSource from bokeh.models.widgets import PreText, Select from bokeh.plotting import figure DATA_DIR = join(dirname(__file__), 'daily') DEFAULT_TICKERS = ['AAPL', 'GOOG', 'INTC', 'BRCM', 'YHOO'] def nix(val, lst): return [x for x in lst if x != val] @lru_cache() def load_ticker(ticker): fname = join(DATA_DIR, 'table_%s.csv' % ticker.lower()) data = pd.read_csv(fname, header=None, parse_dates=['date'], names=['date', 'foo', 'o', 'h', 'l', 'c', 'v']) data = data.set_index('date') return pd.DataFrame({ticker: data.c, ticker+'_returns': data.c.diff()}) @lru_cache() def get_data(t1, t2): df1 = load_ticker(t1) df2 = load_ticker(t2) data = pd.concat([df1, df2], axis=1) data = data.dropna() data['t1'] = data[t1] data['t2'] = data[t2] data['t1_returns'] = data[t1+'_returns'] data['t2_returns'] = data[t2+'_returns'] return data # set up widgets stats = PreText(text='', width=500) ticker1 = Select(value='AAPL', options=nix('GOOG', DEFAULT_TICKERS)) ticker2 = Select(value='GOOG', options=nix('AAPL', DEFAULT_TICKERS)) # set up plots source = ColumnDataSource(data=dict(date=[], t1=[], t2=[], t1_returns=[], t2_returns=[])) source_static = ColumnDataSource(data=dict(date=[], t1=[], t2=[], t1_returns=[], t2_returns=[])) tools = 'pan,wheel_zoom,xbox_select,reset' corr = figure(plot_width=350, plot_height=350, tools='pan,wheel_zoom,box_select,reset') corr.circle('t1_returns', 't2_returns', size=2, source=source, selection_color="orange", alpha=0.6, nonselection_alpha=0.1, selection_alpha=0.4) ts1 = figure(plot_width=900, plot_height=200, tools=tools, x_axis_type='datetime', active_drag="xbox_select") ts1.line('date', 't1', source=source_static) ts1.circle('date', 't1', size=1, source=source, color=None, selection_color="orange") ts2 = figure(plot_width=900, plot_height=200, tools=tools, x_axis_type='datetime', active_drag="xbox_select") ts2.x_range = ts1.x_range ts2.line('date', 't2', source=source_static) ts2.circle('date', 't2', size=1, source=source, color=None, selection_color="orange") # set up callbacks def ticker1_change(attrname, old, new): ticker2.options = nix(new, DEFAULT_TICKERS) update() def ticker2_change(attrname, old, new): ticker1.options = nix(new, DEFAULT_TICKERS) update() def update(selected=None): t1, t2 = ticker1.value, ticker2.value data = get_data(t1, t2) source.data = source.from_df(data[['t1', 't2', 't1_returns', 't2_returns']]) source_static.data = source.data update_stats(data, t1, t2) corr.title.text = '%s returns vs. %s returns' % (t1, t2) ts1.title.text, ts2.title.text = t1, t2 def update_stats(data, t1, t2): stats.text = str(data[[t1, t2, t1+'_returns', t2+'_returns']].describe()) ticker1.on_change('value', ticker1_change) ticker2.on_change('value', ticker2_change) def selection_change(attrname, old, new): t1, t2 = ticker1.value, ticker2.value data = get_data(t1, t2) selected = source.selected['1d']['indices'] if selected: data = data.iloc[selected, :] update_stats(data, t1, t2) source.on_change('selected', selection_change) # set up layout widgets = column(ticker1, ticker2, stats) main_row = row(corr, widgets) series = column(ts1, ts2) layout = column(main_row, series) # initialize update() curdoc().add_root(layout) curdoc().title = "Stocks"
bsd-3-clause
NicovincX2/Python-3.5
Physique/Mesure physique/Traitement du signal/Traitement numérique du signal/Filtrage_fort.py
1
1223
# -*- coding: utf-8 -*- import os import numpy as np import matplotlib.pyplot as plt def X(t0, T, h): return np.arange(t0, t0 + T, h) def Y(t0, T, h, y0, Phi): t = X(t0, T, h) y = np.zeros(len(t)) y[0] = y0 for k in range(len(t) - 1): y[k + 1] = y[k] + h * Phi(k, t[k], y[k], h) return y def F(k, t, y): return b * (eb[k] - y) def Euler(k, t, y, h): return F(k, t, y) def Heun(k, t, y, h): return (F(k, t, y) + F(k + 1, t + h, y + h * F(k, t, y))) / 2 donnees = np.loadtxt('Filtrage_fort.csv', delimiter=';') n, p = np.shape(donnees) t0, T = 0, 1 y0 = 0 t, h = np.linspace(t0, t0 + T, num=n + 1, retstep=True) b = 1000 eb = donnees[:, 0] # données brutes ef = donnees[:, 1] # données filtrées plt.grid() plt.title('Comparaison des 2 méthodes à partir de données discrètes') plt.xlabel('Valeurs de $t$') plt.ylabel('Valeurs de $y$') t = X(t0, T, h) plt.plot(t, Y(t0, T, h, y0, Euler), 'b:', linewidth=2, label='Euler') plt.plot(t, Y(t0, T, h, y0, Heun), 'y--', linewidth=2, label='Heun') plt.plot(t, eb, 'k-.', linewidth=3, label='Entrée brute') plt.plot(t, ef, 'k-', linewidth=1, label='Entrée filtrée') plt.legend(loc=0) plt.show() os.system("pause")
gpl-3.0
pmaunz/pyqtgraph
pyqtgraph/widgets/MatplotlibWidget.py
4
1576
from ..Qt import QtGui, QtCore, USE_PYSIDE, USE_PYQT5 import matplotlib if not USE_PYQT5: if USE_PYSIDE: matplotlib.rcParams['backend.qt4']='PySide' from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas try: from matplotlib.backends.backend_qt4agg import NavigationToolbar2QTAgg as NavigationToolbar except ImportError: from matplotlib.backends.backend_qt4agg import NavigationToolbar2QT as NavigationToolbar else: from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar from matplotlib.figure import Figure class MatplotlibWidget(QtGui.QWidget): """ Implements a Matplotlib figure inside a QWidget. Use getFigure() and redraw() to interact with matplotlib. Example:: mw = MatplotlibWidget() subplot = mw.getFigure().add_subplot(111) subplot.plot(x,y) mw.draw() """ def __init__(self, size=(5.0, 4.0), dpi=100): QtGui.QWidget.__init__(self) self.fig = Figure(size, dpi=dpi) self.canvas = FigureCanvas(self.fig) self.canvas.setParent(self) self.toolbar = NavigationToolbar(self.canvas, self) self.vbox = QtGui.QVBoxLayout() self.vbox.addWidget(self.toolbar) self.vbox.addWidget(self.canvas) self.setLayout(self.vbox) def getFigure(self): return self.fig def draw(self): self.canvas.draw()
mit
harry0519/nsnqt
nsnqtlib/strategies/FundBGRIDStrategy.py
1
19601
# -*- coding:utf-8 -*- from nsnqtlib.strategies.strategy import basestrategy,reportforms import pandas as pd import tushare as ts from datetime import datetime class FundBstrategy(basestrategy): ''' 重写买入条件和卖出条件, ''' def __init__(self,startdate=(2011, 1, 1),enddate=[],emafast=12,emaslow=26,demday=9): self.pre_MA = False self.curr_MA = False self.buyprice = 0 self.startingprice = 0 self.buytimes = 0 self.selltimes = 0 self.bought = False self.tempstatus = [] self.collection = '' self.procedurevol = ["stock", "date", "close", "startprice", "buytimes", "selltimes"] super(FundBstrategy, self).__init__(startdate, enddate) # 获取需要交易股票列表 def import_stocklist(self, stocklistname): df = pd.read_csv(str(stocklistname) + '.csv') #df = pd.read_csv(str(stocklistname) + '.csv', parse_dates=['startdate']) df['stock'] = df['stock'].astype('str') count = 0 df_len = len(df.index) while (count < df_len): stock_name = str(df.iat[count, 0]) if len(stock_name) == 1: stock_name = '00000' + stock_name df.iat[count, 0] = stock_name elif len(stock_name) == 2: stock_name = '0000' + stock_name df.iat[count, 0] = stock_name elif len(stock_name) == 3: stock_name = '000' + stock_name df.iat[count, 0] = stock_name elif len(stock_name) == 4: stock_name = '00' + stock_name df.iat[count, 0] = stock_name elif len(stock_name) == 5: stock_name = '0' + stock_name df.iat[count, 0] = stock_name count = count + 1 return df def setlooplist(self,lst=[]): if not lst: self.looplist = self.m.getallcollections("etf") else: self.looplist = lst return self.looplist def _getdata(self,collection="600455.SH",db="ml_security_table",out=[],isfilt=True,filt={}): self.collection = collection if db == "tushare": #d1 = datetime.datetime.now() #d2 = d1 + datetime.timedelta(-240) #d1 = d1.strftime('%Y-%m-%d') #d2 = d2.strftime('%Y-%m-%d') #query = ts.get_hist_data(collection, start=d2, end=d1, ) query = ts.get_hist_data(collection, start='2012-01-01', end='2017-02-03') query['date'] = query.index query = query.sort_index(axis=0, ascending=True) query['pre_close'] = query['close'].shift(1) query.to_csv(collection + 'new.csv') return query elif db == 'local': query = pd.read_csv(str(collection) + '.csv') #out = self.formatlist return query else: if not out: out = self.formatlist if isfilt and not filt: filt = {"date": {"$gt": self.startdate}} query = self.m.read_data(db, collection, filt=filt) #query.to_csv(collection) #df = pd.DataFrame(query) #df.to_csv(collection+'new.csv') print(query) print('downloaded') return self.formatquery(query, out) def historyreturn(self, collection, par): trading_record = [] holding_record = [] data = self._getdata(collection,'ab') print(data) #data = self._getdata(collection, "tushare") #df = pd.DataFrame(data) #df.to_csv(collection+'new.csv') #datalen = len(data) #if datalen <= 200: return trading_record, holding_record, False self.selltimes = 0 self.buytimes = 0 self.startingprice = 0 self.bought = False lst = [l for l in data[self.formatlist].fillna(0).values if l[1] != 0] count = 0 for line in lst[:]: isbuy = self.buy(lst, count, par) for b in holding_record[:]: issell, traderecord = self.sell(lst, count, b) if issell: holding_record.remove(b) trading_record.append(traderecord) break if isbuy: print(collection) holding_record.append(([i for i in line], count, collection)) print(count) count += 1 self.trading_records = trading_record self.savetrading2db(db="regressiontraderesult", strategyname="strategytradersult") return trading_record, holding_record #返回值的最后一个是代表是否有超过200个交易日的数据 def dailyupdate(self, collection, par): trading_record = [] holding_record = [] out = ["stock", "date", "close", "startprice", "buytimes", "selltimes"] #下载股票数据 data = self._getdata(collection, 'ab') #data = self._getdata(collection,"tushare") datalen = len(data) if datalen <= 200: return trading_record, holding_record, False lst = [l for l in data[self.formatlist].fillna(0).values if l[1] != 0] #下载历史交易数据 df = self._getdata(collection, "etfgrid", out=out, isfilt=False) df_len = len(df.index) - 1 #df.to_csv(collection+'new_df.csv') self.selltimes = df['selltimes'].iloc[df_len].astype('float64') #self.selltimes = 0 #print('selltimes:' + str(self.selltimes)) self.buytimes = df['buytimes'].iloc[df_len].astype('float64') #self.buytimes = 0 #print('buytimes:' + str(self.buytimes)) self.startingprice = df['startprice'].iloc[df_len].astype('float64') #self.startingprice = 0 #print('startingprice:' + str(self.startingprice)) self.bought = False if self.buytimes > 0: self.bought = True count = datalen-10 for line in lst[datalen-10:datalen]: #print(line) isbuy = self.buy(lst, count, par) for b in holding_record[:]: issell, traderecord = self.sell(lst, count, b) if issell: holding_record.remove(b) trading_record.append(traderecord) break if isbuy: print(collection) holding_record.append(([i for i in line], count, collection)) print(count) count += 1 return trading_record, holding_record, True def looplist_historyreturn(self, df, actiontype="regression"): buy = [] sell = [] buylist = [] selllist = [] error_list = [] count = 0 df_len = len(df.index) column_num = len(df.count()) #df_len = 2 while (count < df_len): columncount = 1 par = [] while (columncount < column_num): par.append(df.iat[count, columncount]) columncount = columncount + 1 print(par) #stock_name = str(df.iat[count, 'stock']) stock_name = str(df.ix[count, 'stock']) self.lateststatus = [] #try: if actiontype == 'regression': tr,hr = self.historyreturn(stock_name, par) #self.lateststatus.append(self.tempstatus) self.trading_records.extend(tr) self.holding_records.extend(hr) self.saveprocedure2db(collection=stock_name) elif actiontype == 'dailyupdate': tr,hr = self.dailyupdate(stock_name, par) #self.lateststatus.append(self.tempstatus) self.trading_records.extend(tr) self.holding_records.extend(hr) self.saveprocedure2db(collection=stock_name) elif actiontype == 'trade': print(stock_name) #stock_name = stock_name[0:6] #print(stock_name) buy, sell = self.getprocedure(isdb=True, collection=stock_name) buylist.extend(buy) selllist.extend(sell) #print(buy) #print(sell) #except: #error_list.append(stock_name) count = count + 1 print(error_list) print('buylist:') print(buylist) print('selllist:') print(selllist) return self.trading_records,self.holding_records, buylist, selllist def buy(self, lst, count, par): ''' input: line: [] ,row data in every stock data,default is in self.formatlist = ["date","volume","close","high","low","open","pre_close"] count: float, the number to the row since first row ouput: bool, can buy or not buy [], buy record,if can't buy,is empty list ''' rst = False #vol_day = 10 #price_day = 60 #vol_weight = 1.2 #count = len(lst) #if count <= 200: return rst #if count <= 200: return False dat = lst[count][0] close = lst[count][2] pre_close = lst[count][6] #position = self.getposition(lst,dat) #print(position) #position = lst_index[0] / lst_len #print(position) #lst[count][6] = position #and self.condition7(close, par[0]) and self.condition9(close, pre_close) #if self.condition10(close) and self.condition9(close, pre_close) and self.MA_condition(lst, count): if self.ETFGridbuycondition2(close, float(par[0])) and self.bought == False: #self.startingprice = close self.startingprice = float(par[0]) #print('startingprice'+str(self.startingprice)+' ') #print('statingdate'+str(dat)) if self.ETFGridbuycondition1(close, self.startingprice, self.buytimes) and self.startingprice > 0: #print('buy:'+str(close)) self.buytimes = self.buytimes + 1 self.bought = True rst = True self.setprocedure(lst, count) self.lateststatus.append(self.tempstatus) return rst def sell(self, lst, count, buyrecord): currentday_high = lst[count][3] gain_grads = 0.2 loss_grads = -0.05 dayout = 60 currentday_low = lst[count][4] sell_date = lst[count][0] close = lst[count][2] high = lst[count][3] low = lst[count][4] buy_price = buyrecord[0][2] hold_days = count - buyrecord[1] #hold_days = float(holdd) buy_date = buyrecord[0][0] collection = buyrecord[2] #if self.holdingtime_condition(hold_days, dayout) or self.ETFGridsellcondition1(high, self.startingprice, self.selltimes): if self.ETFGridsellcondition1(high, self.startingprice, self.selltimes): sell_date = sell_date.strftime('%Y-%m-%d') buy_date = buy_date.strftime('%Y-%m-%d') self.selltimes = self.selltimes + 1 self.buytimes = self.buytimes - 1 print('sell date:'+str(sell_date)+' sell price:'+str(close)) print('sell times:'+str(self.selltimes)) print('buytimes @ sell: '+str(self.buytimes)) if self.buytimes == 0: self.bought = False self.startingprice = 0 self.selltimes = 0 print('self.bought: False') #if self.selltimes > 5: #self.selltimes = 0 return True, [collection, buy_date, sell_date, hold_days, (close - buy_price) / buy_price, ''] return False, None def getposition(self,lst, dat): count = len(lst) #print(count) if count <= 200: return False new_lst = lst.copy() new_lst.sort(key=lambda x: x[3]) l = [x[0] for x in new_lst] lst_index = self.find_index(l, dat) lst_len = len(l) position = lst_index[0] / lst_len #lst[count][6] = position return position #取实时数据,根据历史回测数据比较是否存在交易机会 def getprocedure(self, filename="procedure_records.csv", isdb=False, collection="processstatus", db="etfgrid"): '''"stock","date","data","s_ema","f_ema","diff","dem","macd","status" ''' buy = [] sell = [] newlist = [] newdatalist = [] out = ["stock", "date", "close", "startprice", "buytimes", "selltimes"] if isdb: #df = self._getdata(collection, db, out=out, isfilt=False)[out] df = self._getdata(collection, db, out=out, isfilt=False) #print(df) else: #df = pd.read_csv(filename)[out] df = pd.read_csv(filename) #df.to_csv(collection) #datalen = len(df.index) #if datalen < 200: return buy, sell, False #print('downloaded') #print(df) print(df) print(collection) stock = str(df['stock'].iloc[0]) print('stock name:') print(stock) print('realtime quetes:') print(collection[0:6]) collection = collection[0:6] new_df = ts.get_realtime_quotes(collection) #print(new_df) price = float(new_df['ask'].iloc[0]) high = float(new_df['high'].iloc[0]) #price = 0.89 df_len = len(df.index) - 1 # if df_len < 200: return buy, sell startprice = df['startprice'].iloc[df_len] buynumber = df['buytimes'].iloc[df_len] sellnumber = df['selltimes'].iloc[df_len] print('startprice:'+str(startprice)) print('buynumber:' + str(buynumber)) print('sellnumber:' + str(sellnumber)) if buynumber == 0: if price < startprice: buy.append(collection) elif self.ETFGridbuycondition1(price, startprice, buynumber) and buynumber > 0: #elif price < startprice: buy.append(collection) elif self.ETFGridsellcondition1(high, startprice, sellnumber): sell.append(collection) #print(buy) return buy, sell def setprocedure(self, lst, count): dat = lst[count][0] close = lst[count][2] self.tempstatus = [self.collection, dat, close, self.startingprice, self.buytimes,self.selltimes] def saveprocedure(self,filename="procedure_records.csv"): df = pd.DataFrame(self.lateststatus,columns=self.procedurevol) #df = pd.DataFrame(self.lateststatus) df.to_csv(filename) return def saveprocedure2db(self, db="etfgrid", collection="processstatus"): self.lateststatus #print('daily update data:') #print(self.lateststatus) db = eval("self.m.client.{}".format(db)) bulk = db[collection].initialize_ordered_bulk_op() for line in self.lateststatus: bulk.find({'date': line[1]}).upsert().update( \ {'$set': {'stock': line[0], \ 'date': line[1], \ 'close': line[2], \ 'startprice': line[3], \ 'buytimes': line[4], \ 'selltimes': line[5], \ }}) bulk.execute() return ''' def savetraderecord2db(self, db="etfgrid", collection="traderecords"): db = eval("self.m.client.{}".format(db)) bulk = db[collection].initialize_ordered_bulk_op() for line in self.lateststatus: bulk.find({'date': line[1]}).upsert().update( \ {'$set': {'stock': line[0], \ 'close': line[2], \ 'startprice': line[3], \ 'buytimes': line[4], \ 'selltimes': line[5], \ }}) bulk.execute() return ''' ''' def savetraderecord2db(self, data, db="etfgrid", collection="traderecords"): if not data: return localbackup = [] db = eval('self.m.client.{}'.format(db)) print(data) for line in data: #buydate = line[1] #buydate = buydate.strftime('%Y-%m-%d') localbackup.append({"stock": '500123', "buy_date": line[1], "sell_date": line[2], "holddays": " ", "profit":"", "features":""}) db[collection].insert_many(localbackup) print('save trade record to db') return ''' def stopgain_condition(self, buy_price, current_price, grads=0.1): if (current_price - buy_price) / buy_price >= grads: return True return False def stoploss_condition(self, buy_price, current_price, grads=-0.05): if (current_price - buy_price) / buy_price <= grads: return True return False def holdingtime_condition(self, hold_days, dayout=10): if hold_days >= dayout: return True return False def ETFGridbuycondition1(self, close, startingprice, buytime): if close <= startingprice *(1- buytime * 0.05) and buytime < 6: #print(self.buytimes) #print(str(startingprice *(1- self.buytimes * 0.05))) return True return False def ETFGridbuycondition2(self, price, startprice): if price < startprice: return True return False def ETFGridsellcondition1(self, close, startingprice, selltime): #if close > startingprice * (1.1 + selltime*0.05) and self.bought == True: if close > startingprice * 1.1 and self.bought == True: #print('sell times: '+str(self.selltimes)) return True return False def find_index(self, arr, item): return [i for i, a in enumerate(arr) if a == item] if __name__ == '__main__': s = FundBstrategy() #df_stocklist = s.import_stocklist("fundb") #print(df_stocklist) formatlist = ['stock', 'startprice'] df_stocklist = s._getdata('FundBstrategy', 'strategyconfig',formatlist,isfilt=False) df_stocklist = df_stocklist[['stock', 'startprice']] #print(newdf) print(df_stocklist) #stocklst = s.setlooplist() #df_stocklist = pd.DataFrame(s.setlooplist()) #stock = df_stocklist.iat[0,0] #print("test:"+stock) #df.iat[count, 0] #s.setlooplist()' s.looplist_historyreturn(df_stocklist,actiontype="regression") s.savetrading2csv() s.savetrading2db(strategyname='FundBGrid') #data = s._getdata('traderecords') #print('trade records:') #print(data) #s.saveholding2csv() ''' df = pd.read_csv('trading_records.csv') report = reportforms(df) report.cumulative_graph() report.positiongain(20) ''' #buy = s.getprocedure('procedure_records.csv') #print(s.tempstatus) #print(s.lateststatus) #df = pd.DataFrame(s.lateststatus) #df.to_csv('lateststatus.csv') #s.saveprocedure() #s.saveprocedure2db(collection=stock) #new_df = ts.get_realtime_quotes(stock) #print(new_df) #print(new_df['ask'].iloc[0]) #print(new_df.ix[0, 'ask']) #print(new_df[['code','name','price','bid','ask','volume','amount','time']]) ''' ls = s.getcurrentdata() new_df = pd.DataFrame(ls) new_df.to_csv('new_df.csv') print(ls) ''' #df = pd.read_csv('trading_records.csv') #report = reportforms(df) #report.cumulative_graph() #report.positiongain(100)
bsd-2-clause
philouc/pyhrf
python/pyhrf/tools/misc.py
1
64867
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*- import os import os.path as op import sys import numpy as np import scipy.linalg import scipy.signal import string import cPickle import hashlib import gzip from itertools import izip import datetime import inspect from time import time import re from collections import defaultdict import pyhrf try: from joblib.memory import MemorizedFunc except ImportError: class MemorizedFunc: pass #Dummy class try: from itertools import product as iproduct except ImportError: def iproduct(*args, **kwds): # product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy # product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111 pools = map(tuple, args) * kwds.get('repeat', 1) result = [[]] for pool in pools: result = [x+[y] for x in result for y in pool] for prod in result: yield tuple(prod) def is_importable(module_name, func_name=None): """ Return True if given *module_name* (str) is importable """ try: __import__(module_name) except ImportError: return False else: if func_name is None: return True else: return func_name in dir(module_name) def report_arrays_in_obj(o): for a in dir(o): attr = eval('o.%s' %a) if isinstance(attr, np.ndarray): print a,'->', attr.shape, attr.dtype, '[id=%s]' %str(id(attr)) elif (isinstance(attr, list) or isinstance(attr, tuple)) and len(attr)>0 and \ isinstance(attr[0], np.ndarray): print a, '-> list of %d arrays (first array: %s, %s), [id=%s]' \ %(len(attr), str(attr[0].shape), str(attr[0].dtype),str(id(attr))) elif isinstance(attr, dict) \ and len(attr)>0 and isinstance(attr[attr.keys()[0]], np.ndarray): print a, 'is a dict of arrays comprising:' for k,v in attr.iteritems(): print k, '->' report_arrays_in_obj(v) print 'end of listing dict "%s"' %a def has_ext(fn, ext): if fn.endswith('gz'): return fn.split('.')[-2] == ext else: return fn.split('.')[-1] == ext def replace_ext(fn, ext): if fn.endswith('gz'): return '.'.join(fn.split('.')[:-2]+[ext,'gz']) else: return '.'.join(fn.split('.')[:-1]+[ext]) def add_suffix(fn, suffix): """ Add a suffix before file extension. >>> add_suffix('./my_file.txt', '_my_suffix') './my_file_my_suffix.txt' """ if suffix is None: return fn sfn = op.splitext(fn) if sfn[1] == '.gz': sfn = op.splitext(fn[:-3]) sfn = (sfn[0], sfn[1] + '.gz') return sfn[0] + suffix + sfn[1] def add_prefix(fn, prefix): """ Add a prefix at the beginning of a file name. >>> add_prefix('./my_file.txt', 'my_prefix_') './my_prefix_.txt' """ if prefix is None: return fn sfn = op.split(fn) if sfn[1] == '.gz': sfn = op.splitext(fn[:-3]) sfn = (sfn[0], sfn[1] + '.gz') return op.join(sfn[0], prefix + sfn[1]) def assert_path_not_in_src(p): p = op.realpath(p) src_path = op.realpath(op.join(op.dirname(pyhrf.__file__),'../../')) if op.commonprefix([p, src_path]) == src_path: raise Exception('Directory %s is in source path' %p) def assert_file_exists(fn): if not op.exists(fn): raise Exception('File %s does not exists' %fn) def non_existent_canditate(f, start_idx=1): yield f i = start_idx while True: yield add_suffix(f,'_%d' %i) i += 1 def non_existent_file(f): for f in non_existent_canditate(f): if not op.exists(f): return f # s = suffix_int() # in_f = f # for f in # while op.exists(f): # print f, 'exists' # f = add_suffix(in_f,s.next()) # return f def do_if_nonexistent_file(*dargs, **kwargs): force = kwargs.get('force', False) vlevel = kwargs.get('verbose', 1) def wrapper(func): def wrapper(*args,**kwargs): if force: return func(*args,**kwargs) ins_a,_,_, d = inspect.getargspec(func) # print 'args:', args # print 'ins_a:', ins_a # print 'func.func_code.co_varnames;', func.func_code.co_varnames do_func = False checked_fns = [] for a in dargs: if a in kwargs: fn = kwargs[a] else: try: iarg = func.func_code.co_varnames.index(a) fn = args[iarg] # print 'iarg:', iarg except (IndexError, ValueError): try: la, ld = len(ins_a), len(d) i = ins_a[la-ld:].index(a) except (IndexError, ValueError): msg = 'Error when defining decorator '\ 'do_if_nonexistent_file: '\ '"%s" is not a valid '\ 'argument of func %s' \ %(a,func.func_name) raise Exception(msg) fn = d[i] if not isinstance(fn, str): raise Exception('Arg %s should be a string, %s found'\ %(fn, type(fn))) if not op.exists(fn): pyhrf.verbose(vlevel, 'func %s executed because file "%s" does'\ ' not exist' %(func.func_name, fn)) do_func = True break checked_fns.append(fn) if do_func: return func(*args,**kwargs) pyhrf.verbose(vlevel, 'func %s not executed because file(s) '\ 'exist(s)' %func.func_name) pyhrf.verbose(vlevel+1, '\n'.join(['-> '+ f for f in checked_fns])) return None return wrapper return wrapper def cartesian(*sequences): """ Generate the "cartesian product" of all 'sequences'. Each member of the product is a list containing an element taken from each original sequence. Note: equivalent to itertools.product, which is at least 2x faster !! """ length = len(sequences) if length < 5: # Cases 1, 2 and 3, 4 are for speed only, these are not really required. if length == 4: for first in sequences[0]: for second in sequences[1]: for third in sequences[2]: for fourth in sequences[3]: yield [first, second, third, fourth] elif length == 3: for first in sequences[0]: for second in sequences[1]: for third in sequences[2]: yield [first, second, third] elif length == 2: for first in sequences[0]: for second in sequences[1]: yield [first, second] elif length == 1: for first in sequences[0]: yield [first] else: yield [] else: head, tail = sequences[:-1], sequences[-1] for result in cartesian(*head): for last in tail: yield result + [last] def cartesian_combine_args(varying_args, fixed_args=None): """ Construst the cartesian product of varying_args and append fixed_args to it. 'varying_args': Specify the arguments which are varying as a dict mapping arg names to iterables of arg values. e.g: { 'my_arg1' : ['a','b','c'], 'my_arg2' : [2, 5, 10], } 'fixed_args' : Specify the argument which remain constant as a dict mapping arg names to arg values e.g: { 'my_arg3' : ['fixed_value'] } Example: >>> from pyhrf.tools import cartesian_combine_args >>> vargs = { 'my_arg1' : ['a','b','c'], 'my_arg2' : [2, 5, 10], } >>> fargs = { 'my_arg3' : 'fixed_value' } >>> cartesian_combine_args(vargs, fargs) [{'my_arg1': 'a', 'my_arg2': 2, 'my_arg3': 'fixed_value'}, {'my_arg1': 'b', 'my_arg2': 2, 'my_arg3': 'fixed_value'}, {'my_arg1': 'c', 'my_arg2': 2, 'my_arg3': 'fixed_value'}, {'my_arg1': 'a', 'my_arg2': 5, 'my_arg3': 'fixed_value'}, {'my_arg1': 'b', 'my_arg2': 5, 'my_arg3': 'fixed_value'}, {'my_arg1': 'c', 'my_arg2': 5, 'my_arg3': 'fixed_value'}, {'my_arg1': 'a', 'my_arg2': 10, 'my_arg3': 'fixed_value'}, {'my_arg1': 'b', 'my_arg2': 10, 'my_arg3': 'fixed_value'}, {'my_arg1': 'c', 'my_arg2': 10, 'my_arg3': 'fixed_value'}] """ if fixed_args is None: fixed_args = {} return [dict(zip(varying_args.keys(),vp) + fixed_args.items()) \ for vp in iproduct(*varying_args.values())] def icartesian_combine_args(varying_args, fixed_args=None): """ Same as cartesian_combine_args but return an iterator over the list of argument combinations """ if fixed_args is None: fixed_args = {} return (dict(zip(varying_args.keys(),vp) + fixed_args.items()) \ for vp in iproduct(*varying_args.values())) def cartesian_apply(varying_args, func, fixed_args=None): args_iter = icartesian_combine_args(varying_args, fixed_args) return [func(**kwargs) for kwargs in args_iter] def format_duration(dt): s = '' if dt/3600 >= 1: s += '%dH' %int(dt/3600) dt = dt%3600 if dt/60 >= 1: s += '%dmin' %int(dt/60) dt = int(dt%60) s += '%1.3fsec' %dt return s import pyhrf.ndarray def swapaxes(array, a1, a2): if isinstance(array, np.ndarray): return np.swapaxes(array, a1, a2) elif isinstance(array, pyhrf.ndarray.xndarray): return array.swapaxes(a1, a2) else: raise Exception('Unknown array type: %s' %str(type(array))) def rescale_values(a, v_min=0., v_max=1., axis=None): a = a.astype(np.float64) #make sure that precision is sufficient a_min = a.min(axis=axis) a_max = a.max(axis=axis) if axis is not None and axis != 0: a = np.swapaxes(a, 0, axis) #make target axis be the 1st to enable bcast res = (v_min - v_max)*1. / (a_min - a_max) * (a - a_max) + v_max if axis is not None and axis != 0: res = np.swapaxes(res, 0, axis) #reposition target axis at original pos return res def cartesian_params(**kwargs): keys = kwargs.keys() for p in cartesian(*kwargs.itervalues()): yield dict(zip(keys, p)) def cartesian_eval(func, varargs, fixedargs=None): resultTree = {} if fixedargs is None: fixedargs = {} #print 'varargs.keys():', varargs.keys() for p in cartesian_params(**varargs): fargs = dict(p.items() + fixedargs.items()) #print 'fargs:', fargs #print 'p.keys:', p.keys() #print 'p.values:', [p[k] for k in varargs.iterkeys()] set_leaf(resultTree, [p[k] for k in varargs.iterkeys()], func(**fargs)) return varargs.keys(), resultTree class PickleableStaticMethod(object): def __init__(self, fn, cls=None): self.cls = cls self.fn = fn self.__name__ = fn.__name__ #self.im_func = fn.im_func def __call__(self, *args, **kwargs): if self.cls is None: return self.fn(*args, **kwargs) else: return self.fn(self.cls, *args, **kwargs) def __get__(self, obj, cls): return PickleableStaticMethod(self.fn, cls) def __getstate__(self): return (self.cls, self.fn.__name__) def __setstate__(self, state): self.cls, name = state self.fn = getattr(self.cls, name).fn def cuboidPrinter(c): print c.descrip() def my_func(**kwargs): from pyhrf.ndarray import xndarray return xndarray(np.zeros(kwargs['shape']) + kwargs['val']) def cartesian_test(): branchLabels, resTree = cartesian_eval(my_func, {'shape':[(2,5),(6,8)], 'val':[4,1.3]}) pprint(resTree) apply_to_leaves(resTree, cuboidPrinter) def crop_array(a, m=None, extension=0): """ Return a sub array where as many zeros as possible are discarded Increase bounding box of mask by *extension* """ if m is None: m = np.where(a!=0.) else: m = np.where(m!=0) mm = np.vstack(m).transpose() #print 'mm', mm #print mm.ptp(0) d = np.zeros(tuple(mm.ptp(0)+1+2*extension), dtype=a.dtype) #print 'tuple((mm-mm.min(0)).transpose()):' #print tuple((mm-mm.min(0)).transpose()) d[tuple((mm-mm.min(0)+extension).transpose())] = a[m] return d def buildPolyMat(paramLFD, n ,dt): regressors = dt*np.arange(0, n) timePower = np.arange(0,paramLFD+1, dtype=int) regMat = np.zeros((len(regressors),paramLFD+1),dtype=float) pyhrf.verbose(2, 'regMat: %s' %str(regMat.shape)) for v in xrange(paramLFD+1): regMat[:,v] = regressors[:] tPowerMat = np.tile(timePower, (n, 1)) lfdMat = np.power(regMat,tPowerMat) lfdMat = np.array(scipy.linalg.orth(lfdMat)) #print 'lfdMat :', lfdMat return lfdMat def polyFit(signal, tr=1., order=5): """ Polynomial fit of signals. 'signal' is a 2D matrix with first axis being time and second being position. 'tr' is the time resolution (dt). 'order' is the order of the polynom. Return the orthogonal polynom basis matrix (P) and fitted coefficients (l), such that P.l yields fitted polynoms. """ n = len(signal) print 'n:', n, 'tr:', tr p = buildPolyMat(order, n, tr) ptp = np.dot(p.transpose(),p) invptp = np.linalg.inv(ptp) invptppt = np.dot(invptp, p.transpose()) l = np.dot(invptppt,signal) return (p, l) def undrift(signal, tr, order=5): """ Remove the low frequency trend from 'signal' by a polynomial fit. Assume axis 3 of 'signal' is time. """ print 'signal:', signal.shape m = np.where(np.ones(signal.shape[:3])) sm = string.join(['m[%d]'%d for d in xrange(signal.ndim-1)],',') signal_flat = eval('signal[%s,:]' %sm) print 'signal_flat:', signal_flat.shape # Least square estimate of drift p,l = polyFit(signal_flat.transpose(), tr, order) usignal_flat = signal_flat.transpose() - np.dot(p,l) usignal = np.zeros_like(signal) print 'usignal:', usignal.shape exec('usignal[%s,:] = usignal_flat.transpose()' %sm) return usignal def root3(listCoeffs): length = len(listCoeffs) if length != 4: raise polyError(listCoeffs,"wrong poly order") if listCoeffs[0]==0: raise polyError(listCoeffs[0],"wrong poly order:null coefficient") a=P[1]/P[0] b=P[2]/P[0] c=P[2]/P[0] #change of variables: z = x -a/3 #Polynome Q(Z)=Z^3 - pZ -q #np.sqrt(np.complex(-1)) p = a**2/3. -b q= (a*b)/3. -2./27.*a**3-c if np.abs(p)<1e-16: polycoeffs = np.zeros((1,3),dtype=complex) polycoeffs[0] = 1 polycoeffs[1] = (1j)**(4/3.) polycoeffs[2] = (-1j)**(4/3.) rp = np.multiply(polycoeffs,(np.sign(q)*q)**(1/3.)) - a/3. elif p<0: t2 = 2*p/3./q*np.sqrt(-p/3.) tho = ( (np.sqrt(1.+t2**2) -1)/t2)**(1/3.) tho2 = 2.*tho/(1-tho**2) tho3 = 2.*tho/(1+tho**2) rp = - a/3.*np.ones((1,3),dtype=complex) fracTho2 = np.sqrt(-p/3.)/tho2 fracTho3 = np.sqrt(-p)/tho3 rp[0] += -2.*fracTho2 rp[1] += fracTho2 + 1j*fracTho3 rp[2] += fracTho2 - 1j*fracTho3 else: if np.abs((p/3.)**3 - q**2/2.)<1e-16: rp = - a/3.*np.ones((1,3),dtype=float) rp[0] +=-3 *q/2./p rp[1] +=-3 *q/2./p rp[2] += 3.* q/p def gaussian_kernel(shape): """ Returns a normalized ND gauss kernel array for convolutions """ grid = eval('np.mgrid[%s]'%(string.join(['-%d:%d+1' %(s,s) for s in shape],','))) k = 1./np.prod([np.exp((grid[d]**2/float(shape[d]))) for d in xrange(len(shape))],axis=0) return k / k.sum() def gaussian_blur(a, shape): assert a.ndim == len(shape) k = gaussian_kernel(shape) return scipy.signal.convolve(a, k, mode='valid') def foo(*args, **kwargs): pass class polyError(Exception): def __init__(self, expression,message): self.expression = expression self.message = message def convex_hull_mask(mask): """ Compute the convex hull of the positions defined by the given binary mask Args: - mask (numpy.ndarray): binary mask of positions to build the chull from Return: a numpy.ndarray binary mask of positions within the convex hull """ from scipy.spatial import Delaunay hull = Delaunay(np.array(np.where(mask)).T) result = np.zeros_like(mask) m = np.where(np.ones_like(mask)) result[m] = hull.find_simplex(np.array(m).T)>=0 return result def peelVolume3D(volume, backgroundLabel=0): # Make sure that boundaries are filled with zeros # -> expand volume with zeros: vs = volume.shape expVol = np.zeros((vs[0]+2, vs[1]+2, vs[2]+2), dtype=int) expVol[1:-1, 1:-1, 1:-1] = volume!=backgroundLabel # 27-neighbourhood mask: neighbMask = np.array([c for c in cartesian([0,-1,1], [0,-1,1], [0,-1,1])][1:]) mask = np.where(expVol!=0) coords = np.array(mask).transpose() # For each position, compute the number of valid neighbours: marks = np.zeros_like(expVol) for iv in xrange(len(mask[0])): cn = (neighbMask + coords[iv]).transpose() curNeighbMask = (cn[0], cn[1], cn[2]) marks[mask[0][iv],mask[1][iv],mask[2][iv]] = expVol[curNeighbMask].sum() # Let's go back to the original volume shape: trimmedMarks = marks[1:-1,1:-1,1:-1] # Keep only positions which have 26 neighbours (completely burried): peeledVolume = np.zeros_like(volume) validPos = np.where(trimmedMarks==26) peeledVolume[validPos] = volume[validPos] return peeledVolume def distance(c1, c2, coord_system=None): #TODO: use coordinate system (xform) return ((c1-c2)**2).sum()**.5 def inspect_default_args(args, defaults): if defaults is None: return {} kw_defaults = {} firstdefault = len(args) - len(defaults) for i in range(firstdefault, len(args)): kw_defaults[args[i]]= defaults[i - firstdefault] return kw_defaults class Pipeline: THE_ROOT = 0 def __init__(self, quantities): #, cached=False, cache_dir='./'): """ Handles a graph of quantities. A quantity can be a variable or a callable. """ self.roots = set([]) # will store roots, ie quantities # which have no dependency self.quantities = {} # mapping value_label => compute function # will hold all labels: self.labels = set() self.siblings = {} # sibling labels associated to the same quantity # -> eg when a func returns multiple values for l, q in quantities.iteritems(): if isinstance(l, (tuple,list)): for e in l: self.quantities[e] = q self.siblings[e] = l self.labels.update(l) else: self.quantities[l] = q self.siblings[l] = (l,) self.labels.add(l) pyhrf.verbose(4, 'labels at init: %s (%d)' \ %(str(self.labels),len(self.labels))) #self.load_from_cache = dict([ (label,False) for label in self.labels ]) #self.force_eval = dict([ (label,False) for label in self.labels ]) self.dependencies = dict( (l,set()) for l in self.labels ) self.dependers = dict( (l,set()) for l in self.labels ) #print 'dependers at init:', self.dependers self.dependers[self.THE_ROOT] = set() # virtual common root of the forest self.values = {} # will hold all values # self.cached = cached # self.cache_dir = cache_dir #assert len(self.labels) == len(quantities) self.init_dependencies(quantities) def add_root(self, label): self.roots.add(label) # Virtually plant the forest at a common root: self.dependers[self.THE_ROOT].add(label) def init_dependencies(self, quantities): pyhrf.verbose(3,'Pipeline.init_dependencies ...') for labels, val in quantities.iteritems(): if not isinstance(labels, (list, tuple)): labels = (labels,) pyhrf.verbose(4,'treating quantities: %s' %str(labels)) pyhrf.verbose(4,'val: %s' %str(val)) func = self.get_func(val) if func is not None: pyhrf.verbose(4, '... is a function') arg_spec = inspect.getargspec(func) args = arg_spec[0] #print 'args:', args for label in labels: #print 'treating label:', label assert label not in args for arg in args: #print 'arg:', arg if self.dependers.has_key(arg): #print '-> in dependers!' self.dependencies[label].add(arg) self.dependers[arg].add(label) else: # print arg # print len(args)-len(arg_spec[3]) # print 'args:', args # print 'arg_spec[3]:', arg_spec[3] # print 'args[len(args)-len(arg_spec[3]):]' # print args[len(args)-len(arg_spec[3]):] if arg_spec[3] is None or \ arg not in args[len(args)-len(arg_spec[3]):]: raise Exception('arg "%s" of function "%s" ' \ 'undefined (no quantity found' \ ' or no default value)' \ %(arg, val.__name__)) #print '-> current dependers', self.dependers #print '-> current dependencies', self.dependencies if len(self.dependencies[label]) == 0: self.add_root(label) else: pyhrf.verbose(4, '... is of type %s' %val.__class__) #self.load_from_cache.pop(label) #It won't be cached for label in labels: self.add_root(label) if 0: print 'dependers:' print self.dependers print 'dependencies:' print self.dependencies print 'roots:' print self.roots print 'self.quantities:' print self.quantities self.checkGraph() def save_graph_plot(self, image_filename, images=None): import pygraphviz as pgv g = pgv.AGraph(directed=True) for label in self.labels: for deper in self.dependers[label]: #print 'label:', label, 'deper:', deper g.add_edge(label, deper) for label in self.roots: try: n = g.get_node(label) n.attr['shape'] = 'box' except Exception, e: print e pass if images is not None: blank_image = pyhrf.get_data_file_name('empty.png') #image = images.values()[0] for label in self.labels: n = g.get_node(label) if images.has_key(label): n.attr['image'] = images[label] #n.attr['imagescale'] = '4' n.attr['labelloc'] = 'b' else: n.attr['image'] = blank_image g.layout('dot') g.draw(image_filename) def update_subgraph(self, root): #TODO : limit init of force_eval only to quantities involved # in current subgraph self.force_eval = dict([ (label,False) for label in self.labels ]) depths = {} for lab in self.labels: depths[lab] = -1 # mark as not visited self.setDepths(root, depths, 0) #print 'depths:', depths maxDepth = max(depths.values()) levels = range(maxDepth+1) levels = [[] for d in xrange(maxDepth+1)] for lab,depth in depths.iteritems(): if depth != -1 : levels[depth].append(lab) updated = dict((l,False) for l in self.labels) for level in levels: for lab in level: self.update_quantity(lab, updated) # def updated_from_cache(self): # print 'load_from_cache:', self.load_from_cache # return all(self.load_from_cache.values()) def setDepths(self, label, depths, curDepth): # print 'setDepths ...' # print 'label:', label # print 'curDepth:', curDepth for deper in self.dependers[label]: # if depth not yet set for this node # or # if a deeper path has been found to reach this node : if depths[deper] == -1 or depths[deper] < curDepth: depths[deper] = curDepth self.setDepths(deper, depths, curDepth+1) def resolve(self): self.update_subgraph(self.THE_ROOT) def get_value(self, label): """ Return the value associated with 'label' """ if len(self.values) == 0: self.resolve() return self.values[label] def get_values(self): """ Return all computed values. Perform a full update if not done yet. """ if len(self.values) == 0: self.resolve() return self.values def reportChange(rootLabel): """ Trigger update of the sub graph starting at the given root """ assert rootLabel in self.roots #pyhrf.verbose(5, # '%s reported as changed ... spreading the news ...' # %rootLabel) self.update_subgraph(rootLabel) def reprAllDeps(self): """ Build a string representing the while graph : a concatenation of representations of all nodes (see reprDep) """ s = "" for lab in self.labels: s += self.reprDep(lab) s += '\n' return s def reprDep(self, label): """ Build a string representing all dependencies and dependers of the variable 'label'. The returned string is in the form : label depee1 <- depee2 <- -> deper1 -> deper2 """ deps = self.dependencies[label] if len(deps) > 0: maxLDepee = max([len(dep) for dep in deps]) else: maxLDepee = 1 depeeMark = ' <-\n' s = string.join([string.ljust(' '+dep,maxLDepee) for dep in deps]+[''], depeeMark) deps = self.dependers[label] deperMark = string.rjust('-> ', maxLDepee+len(depeeMark)+1) s += string.join([deperMark+dep for dep in deps],'\n') res = '*'+string.rjust(label, maxLDepee)+'*\n'+s return res def checkGraph(self): """ Check the rightness of the builded graph (acyclicity, uniqueness and no short-circuits) """ # check acyclicity : self.visited = {} #print 'detect cycl ...' for r in self.roots: #print 'starting from ', r self.detectCyclity([r]) # Check there is no short-circuit: depths = {} for r in self.roots: for lab in self.labels: depths[lab] = -1 depths[r] = 0 self.detectShortCircuit(r, 1, depths) def detectShortCircuit(self, curRoot, curDepth, depths): """ Recursive method which detects and corrects short-circuits """ ## Breadth graph walk : for deper in self.dependers[curRoot]: dDeper = depths[deper] # if depender was visited and its depth is smaller if dDeper != -1 and dDeper < curDepth: # Short-circuit detected -> removing it : self.removeShortCircuits(deper, depths) # Setting depth to the right one : depths[dDeper] = curDepth # Continue walking ... for deper in self.dependers[curRoot]: self.detectShortCircuit(deper, curDepth+1, depths) def removeShortCircuits(self, label, depths): d = depths[label] # Look in direction leaf -> root, one level : for depee in self.dependencies[label]: dDepee = depths[depee] # if dependence was not visited and dependence if further than # depth-1 : if dDepee != -1 and dDepee != d-1: # Remove discovered shunt : print 'removing shunt : %s <-> %s' \ %(depee, label) self.dependers[depee].remove(label) self.dependencies[label].remove(depee) def detectCyclity(self, viewedNodes): #print 'viewedNodes :', viewedNodes ## Depth graph walk, root->leaf direction : ##if viewedNodes root = viewedNodes[-1] #print 'root :', root for deper in self.dependers[root]: #print 'deper :', deper if deper in viewedNodes: msg = 'Cyclicity detected in dependency graph :\n'+ \ ' origin is %s and dep is %s' %(root,deper) raise Exception(msg) else: viewedNodes.append(deper) self.detectCyclity(viewedNodes) viewedNodes.pop() ## def hasChanged(self, fifo, visited, infifo): ## print 'hasChanged :', fifo[0] ## ## level by level graph walk, root->leaf direction : ## print 'dependers :', self.dependers[fifo[0]] ## for deper in self.dependers[fifo.p ## opleft()]: ## if deper not in self.roots: ## self.update(deper) ## fifo.appendleft(deper) ## self.hasChanged(fifo) def get_func(self, f): if isinstance(f, MemorizedFunc): return f.func elif inspect.isfunction(f): return f else: return None def update_quantity(self, label, updated): if updated[label]: #already updated return pyhrf.verbose(4, " ------------- Update quantity '%s' -----------" \ %label) quantity = self.quantities[label] siblings = self.siblings[label] func = self.get_func(quantity) if func is not None: if pyhrf.verbose.verbosity > 4: pyhrf.verbose(4, " -> %s" %str(func)) t0 = time() fargs = {} args,_,_,d = inspect.getargspec(func) defaults = inspect_default_args(args,d) #print "defaults:", defaults #print "args:", args for depee in args: #print "depee:", depee #print '-> val:', self.values.get(depee,defaults.get(depee,None)) fargs[depee] = self.values.get(depee,defaults.get(depee,None)) #print self.cached #raw_input('') # if self.cached: # pyhrf.verbose(4, 'Cache enabled') # if self.force_eval[label]: # new_eval = True # self.load_from_cache[label] = False # else: # cache_existent = cache_exists(quantity, fargs, # path=self.cache_dir, # digest_code=True) \ # and self.cached # self.load_from_cache[label] = cache_existent # new_eval = not self.load_from_cache[label] # if self.load_from_cache[label]: # pyhrf.verbose(4, 'Load from cache') # if new_eval: # pyhrf.verbose(4, 'New evaluation %s ...' \ # %(['','(forced)'][self.force_eval[label]])) # # Dependers must be updated too # depers = self.dependers[label] # pyhrf.verbose(4, 'Force update of dependent quantities '\ # '-> %s' %(','.join(depers))) # for deper in depers: # self.force_eval[deper] = True # else: # new_eval = True #seval = ['E','Cached e'][self.cached] pyhrf.verbose(4, 'Eval of %s ...' %(label)) # self.values[label] = cached_eval(quantity, fargs, # new=new_eval, # save=self.cached, # path=self.cache_dir, # digest_code=True) results = quantity(**fargs) pyhrf.verbose(4, 'Quantity %s updated in %s' \ %(label, format_duration(time()-t0))) else: if pyhrf.verbose.verbosity > 4: if isinstance(quantity, np.ndarray): pyhrf.verbose(4,' -> ndarray of shape %s and type %s' %(str(quantity.shape), str(quantity.dtype))) #pyhrf.verbose.printNdarray(3, quantity) else: pyhrf.verbose(4, " -> %s" %str(quantity)) results = quantity if len(siblings) > 1: assert len(results) == len(siblings) else: results = (results,) for l,r in zip(siblings, results): self.values[l] = r updated[l] = True def rebin(a, newshape): '''Rebin an array to a new shape. Can be used to rebin a func image onto a anat image ''' assert len(a.shape) == len(newshape) slices = [ slice(0,old, float(old)/new) \ for old,new in zip(a.shape,newshape) ] coordinates = np.mgrid[slices] #choose the biggest smaller integer index: indices = coordinates.astype('i') return a[tuple(indices)] def resampleToGrid(x, y, xgrid): # assert that target grid is included in original x #assert x[0] <= xgrid[0] #assert x[-1] >= xgrid[-1] ## print 'x :', x ## print 'y :', y ## print 'xgrid :', xgrid i = 1 yg = np.empty(xgrid.shape,dtype=y.dtype) for ig, xg in enumerate(xgrid): while i<len(x) and xg > x[i]: i += 1 if i>=len(x) : i-=1 #if ig == 0: # print 'ig=0, xg=%f' %xg # print 'i = %d, y[i]=%f, x[i]=%f, x[i-1]=%f' \ # %(i, y[i], x[i], x[i-1]) #if xg < x[i] : dx = 0. if x[i]!=x[i-1] else 0.0000001 yg[ig] = (y[i]-y[i-1])*(xg-x[i])/((x[i]+dx)-(x[i-1]-dx)) + y[i] #yg[ig] = (y[i]-y[i-1])*xg/((x[i]+dx)-(x[i-1]-dx))+ y[i-1] #print 'i:', i #print 'ig:', ig #print 'xg:', xg #print 'y[i] et y[i-1]:', y[i], y[i-1] #print 'dx:', dx #print 'x[i] et x[i-1]:', x[i], x[i-1] #print 'yg[ig]:', yg[ig] #if ig == 0: # print ' -> yg[ig]=%f' %yg[ig] #else: # yg[ig] = y[i] ## import matplotlib.pyplot as plt ## print "x :" ## print x ## print 'y :' ## print y ## plt.plot(x,y,'o-') ## plt.plot(xgrid,yg,'x-') ## plt.show() return yg def resampleSignal(s, osf): ls = len(s) ## print 'ls =', ls ## print s.shape timeMarks = np.arange(osf*(ls-1),dtype=float)/osf ## print 'timeMarks :' ## print timeMarks prevTMarksSrc = np.array(np.floor(timeMarks), dtype=int) ## print 'prevTMarksSrc:' ## print prevTMarksSrc nextTMarksSrc = np.array(np.ceil(timeMarks), dtype=int) ## print 'nextTMarksSrc :' ## print nextTMarksSrc deltaBold = s[nextTMarksSrc,:]-s[prevTMarksSrc,:] deltaTime = timeMarks-prevTMarksSrc sr = s[prevTMarksSrc,:] + \ (deltaBold.transpose()*deltaTime).transpose() ## print sr return sr def diagBlock(mats, rep=0): """ Construct a diagonal block matrix from blocks which can be 1D or 2D arrays. 1D arrays are taken as column vectors. If 'rep' is a non null positive number then blocks are diagonaly 'rep' times """ if type(mats) == np.ndarray: finalMat = mats elif type(mats)==list and len(mats) == 1: finalMat = mats[0] elif type(mats)==list : m = 0 # nbLines n = 0 # nbCols for mat in mats: m += mat.shape[0] n += 1 if len(mat.shape) < 2 else mat.shape[1] finalMat = np.zeros((m,n), dtype=float) lOffset = 0 cOffset = 0 for mat in mats: m = mat.shape[0] n = 1 if len(mat.shape) < 2 else mat.shape[1] sh = finalMat[lOffset:lOffset+m, cOffset:cOffset+n].shape finalMat[lOffset:lOffset+m, cOffset:cOffset+n] = mat.reshape(sh)[:] lOffset += m cOffset += n else: raise Exception('diagBlock: unrecognised type for "mats"') if rep > 0: return diagBlock([finalMat]*rep) else: return finalMat def extractRoiMask(nmask, roiId): mask = nmask==roiId m = np.where(mask) mm = np.vstack(m).transpose() cropMask = np.zeros(mm.ptp(0)+1, dtype=int) cropMask[tuple((mm-mm.min(0)).transpose())] = mask[m] return cropMask def describeRois(roiMask): s = 'Number of voxels : %d\n' %(roiMask!=0).sum() s += 'Number of regions : %d\n' %(len(np.unique(roiMask))-int(0 in roiMask)) s += 'Region sizes :\n' counts = np.bincount(roiMask[roiMask>0]) s += np.array2string(counts) + '\n' nbr = (counts >= 60).sum() s += 'Nb of region with size > 60: %d\n' %nbr return s def array_summary(a, precision=4): return '%s -- %1.*f(%1.*f)[%1.*f...%1.*f]' %(str(a.shape), precision, a.mean(), precision, a.std(), precision, a.min(), precision, a.max()) def get_2Dtable_string(val, rownames, colnames, precision=4, col_sep='|', line_end='', line_start='', outline_char=None): """ Return a nice tabular string representation of a 2D numeric array #TODO : make colnames and rownames optional """ if val.ndim == 1: val = val.reshape(val.shape[0], 1) nrows, ncols = val.shape[:2] if np.isscalar(val[0,0]): valWidth = len(str('%1.*f' %(precision,-3.141658938325))) else: if (val>=0).all(): valWidth = len(array_summary(val[0,0], precision=precision)) else: valWidth = len(array_summary(np.abs(val[0,0]) * -1, precision=precision)) rowWidth = max([len(str(rn)) for rn in rownames]) colWidth = [max([valWidth, len(cn)]) for cn in colnames ] sheader = line_start + ' ' * rowWidth + ' ' + col_sep sheader += col_sep.join([' %*s ' %(colWidth[j], cn) for j,cn in enumerate(colnames)]) sheader += line_end + '\n' scontent = '' #print 'nrows:',nrows #print 'rownames:', rownames for i in xrange(nrows): line = line_start + ' %*s ' %(rowWidth, str(rownames[i])) + col_sep for j in xrange(ncols): if np.isscalar(val[i,j]): line += ' %*.*f ' %(colWidth[j], precision, val[i,j]) + col_sep else: line += ' %*s ' %(valWidth, array_summary(val[i,j], precision)) + col_sep if outline_char is not None: outline = outline_char * (len(line)-1 + len(line_end)) + '\n' else: outline = '' scontent += outline + line[:-len(col_sep)] + line_end + '\n' return outline + sheader + scontent + outline def get_leaf(element, branch): """ Return the nested leaf element corresponding to all dictionnary keys in branch from element """ if isinstance(element, dict) and len(branch)>0: return get_leaf(element[branch[0]], branch[1:]) else: return element def set_leaf(tree, branch, leaf, branch_classes=None): """ Set the nested *leaf* element corresponding to all dictionnary keys defined in *branch*, within *tree* """ assert isinstance(tree, dict) if len(branch) == 1: tree[branch[0]] = leaf return if not tree.has_key(branch[0]): if branch_classes is None: tree[branch[0]] = tree.__class__() else: tree[branch[0]] = branch_classes[0]() else: assert isinstance(tree[branch[0]], dict) if branch_classes is not None: set_leaf(tree[branch[0]], branch[1:], leaf, branch_classes[1:]) else: set_leaf(tree[branch[0]], branch[1:], leaf) def swap_layers(t, labels, l1, l2): """ Create a new tree from t where layers labeled by l1 and l2 are swapped. labels contains the branch labels of t. """ i1 = labels.index(l1) i2 = labels.index(l2) nt = t.__class__() # new tree init from the input tree # can be dict or OrderedDict for b,l in izip(treeBranches(t), tree_leaves(t)): nb = list(b) nb[i1], nb[i2] = nb[i2], nb[i1] set_leaf(nt, nb, l) return nt def tree_rearrange(t, oldlabels, newlabels): """ Create a new tree from t where layers are rearranged following newlabels. oldlabels contains the branch labels of t. """ order = [oldlabels.index(nl) for nl in newlabels] nt = t.__class__() # new tree for b,l in izip(treeBranches(t), tree_leaves(t)): nb = [b[i] for i in order] set_leaf(nt, nb, l) return nt def treeBranches(tree, branch=None): #print "tree", tree #print "branch", branch if branch is None: branch = [] if isinstance(tree, dict): for k in tree.iterkeys(): #print "k", k #print 'tree[k],', tree[k] for b in treeBranches(tree[k], branch+[k]): yield b else: yield branch def treeBranchesClasses(tree, branch=None): #print "tree", tree #print "branch", branch if branch is None: branch = [] if isinstance(tree, dict): for k,v in tree.iteritems(): #print "k", k #print 'tree[k],', tree[k] for b in treeBranchesClasses(tree[k], branch+[v.__class__]): yield b else: yield branch def tree_leaves(tree): for branch in treeBranches(tree): yield get_leaf(tree, branch) def tree_items(tree): """ """ for branch in treeBranches(tree): yield (branch,get_leaf(tree, branch)) def stack_trees(trees, join_func=None): """ Stack trees (python dictionnaries) with identical structures into one tree so that one leaf of the resulting tree is a list of the corresponding leaves across input trees. 'trees' is a list of dict """ stackedTree = trees[0].__class__() for branch, branch_classes in izip(treeBranches(trees[0]), treeBranchesClasses(trees[0])): if join_func is None: leaveList = [get_leaf(tree, branch) for tree in trees] else: leaveList = join_func([get_leaf(tree, branch) for tree in trees]) set_leaf(stackedTree, branch, leaveList, branch_classes) return stackedTree def unstack_trees(tree): """ Return a list of tree from a tree where leaves are all lists with the same number of items """ first_list = tree_leaves(tree).next() tree_list = [ tree.__class__() for i in xrange(len(first_list)) ] for b,l in tree_items(tree): for t,item in zip(tree_list,l): set_leaf(t, b, item) return tree_list from pprint import pprint def apply_to_leaves(tree, func, funcArgs=None, funcKwargs=None): """ Apply function 'func' to all leaves in given 'tree' and return a new tree. """ if funcKwargs is None: funcKwargs = {} if funcArgs is None: funcArgs = [] newTree = tree.__class__() # could be dict or OrderedDict for branch,leaf in tree_items(tree): set_leaf(newTree, branch, func(leaf,*funcArgs,**funcKwargs)) return newTree def map_dict(func, d): return d.__class__( (k,func(v)) for k,v in d.iteritems() ) def get_cache_filename(args, path='./', prefix=None, gz=True): hashArgs = hashlib.sha512(repr(args)).hexdigest() if prefix is not None: fn = os.path.join(path, prefix + '_' + hashArgs + '.pck') else: fn = os.path.join(path, hashArgs + '.pck') if gz: return fn + '.gz' else: return fn def hash_func_input(func, args, digest_code): if isinstance(args, dict): # sort keys to_digest = '' for k in sorted(args.keys()): v = args[k] to_digest += repr(k) + repr(v) else: to_digest = repr(args) if digest_code: to_digest += inspect.getsource(func) return hashlib.sha512(to_digest).hexdigest() def cache_filename(func, args=None, prefix=None, path='./', digest_code=False): if prefix is None: prefix = func.__name__ else: prefix = prefix + '_' + func.__name__ hashArgs = hash_func_input(func, args, digest_code) fn = os.path.join(path, prefix + '_' + hashArgs + '.pck.gz') return fn def cache_exists(func, args=None, prefix=None, path='./', digest_code=False): return op.exists(cache_filename(func, args=args, prefix=prefix, path=path,digest_code=digest_code)) def cached_eval(func, args=None, new=False, save=True, prefix=None, path='./', return_file=False, digest_code=False, gzip_mode='cmd'): fn = cache_filename(func, args=args, prefix=prefix, path=path,digest_code=digest_code) if not os.path.exists(fn) or new: if args is None: r = func() elif isinstance(args, tuple) or isinstance(args, list): r = func(*args) elif isinstance(args, dict): r = func(**args) else: raise Exception("type of arg (%s) is not valid. Should be tuple, "\ "list or dict" %str(arg.__class__)) if save: if gzip_mode=='pygzip' and os.system('gzip -V') != 0: #print 'use python gzip' f = gzip.open(fn,'w') cPickle.dump(r,f) f.close() else: #print 'use gzip command' f = open(fn[:-3],'w') cPickle.dump(r,f) f.close() os.system("gzip -f %s" %fn[:-3]) if not return_file: return r else: return fn else: if not return_file: return cPickle.load(gzip.open(fn)) else: return fn def montecarlo(datagen, festim, nbit=None): """Perform a Monte Carlo loop with data generator 'datagen' and estimation function 'festim'. 'datagen' have to be iterable. 'festim' must return an object on which ** and + operators can be applied. If 'nbit' is provided then use it for the maximum iterations else loop until datagen stops. """ itgen = iter(datagen) s = itgen.next() e = festim(s) cumul = e cumul2 = e**2 if nbit is None: nbit = 0 for s in itgen: e = festim(s) cumul += e cumul2 += e**2 nbit += 1 else: for i in xrange(1, nbit): s = itgen.next() e = festim(s) cumul += e cumul2 += e**2 m = cumul / float(nbit) v = cumul2 / float(nbit) - m**2 return m, v def closestsorted(a, val): i = np.searchsorted(a, val) if i == len(a)-1: return i elif np.abs(a[i]-val) < np.abs(a[i+1]-val): return i else: return i+1 ################## def calc_nc2D(a, b): return a + b + 2*(a-1)*(b-1) - 2 def nc2DGrid(maxSize): nc2D = np.zeros((maxSize, maxSize), dtype=int) for a in xrange(maxSize): for b in xrange(maxSize): nc2D[a,b] = calc_nc2D(a,b) return nc2D # nc2D = cached_eval(nc2DGrid, (1000,)) # nbCliques = 4752 # sol = where(nc2D==nbCliques) # print 'Configuration where nb cliques =', nbCliques, ':' # for i in xrange(len(sol[0])): # a,b = sol[0][i], sol[1][i] # print a,"x",b,"=",a*b def now(): return datetime.datetime.fromtimestamp(time()) def time_diff_str(diff): return '%dH%dmin%dsec' %(diff.seconds/3600, (diff.seconds%3600)/60, (diff.seconds%3600)%60) class AnsiColorizer: """ Format strings with an ANSI escape sequence to encode color """ BEGINC = '\033[' COLORS = { 'purple' : '95', 'blue' : '94', 'green' : '92', 'yellow' : '93', 'red' : '91', } ENDC = '\033[0m' def __init__(self): self.disabled = False self.do_tty_check = True def disable(self): self.disabled = True def enable(self): self.disabled = False def no_tty_check(self): self.do_tty_check = False def tty_check(self): self.do_tty_check = True def __call__(self, s, color, bright=False, bold=False): if color not in self.COLORS: raise Exception('Invalid color "%s". Available colors: %s' \ %(color, str(self.COLORS))) col = self.COLORS[color] if self.disabled or (self.do_tty_check and not sys.stdout.isatty()): return s else: ansi_codes = ";".join([['','1'][bright],col]) return '%s%sm%s%s' %(self.BEGINC, ansi_codes, s, self.ENDC) colorizer = AnsiColorizer() def extract_file_series(files): """ group all file names sharing a common prefix followed by a number, ie: <prefix><number><extension> Return a dictionnary with two levels (<tag>,<extension>), mapped to all corresponding series index found. """ #print 'extract_file_series ...' series = {} # will map (tag,extension) to number series rexpSeries = re.compile("(.*?)([0-9]+)[.]([a-zA-Z.~]*?)\Z") series = defaultdict(lambda: defaultdict(list)) for f in files: #print 'f:', f r = rexpSeries.match(f) if r is not None: (tag,idx,ext) = r.groups() ext = '.' + ext #print '-> %s | %s | %s' %(tag, idx, ext) else: tag,ext = op.splitext(f) #print '-> %s | %s' %(tag, ext) idx = '' series[tag][ext].append(idx) return series def format_serie(istart, iend): return colorizer(['[%d...%d]'%(istart,iend), '[%d]'%(istart)][istart==iend], 'red') def condense_series(numbers): if len(numbers) == 1: return numbers[0] else: inumbers = np.sort(np.array(map(int,numbers))) if (np.diff(inumbers) == 1).all(): return format_serie(inumbers.min(),inumbers.max()) else: segment_start = 0 s = '' for segment_end in np.where(np.diff(inumbers)!=1)[0]: s += format_serie(inumbers[segment_start],inumbers[segment_end]) segment_start = segment_end+1 s += format_serie(inumbers[segment_start],inumbers[-1]) return s def group_file_series(series, group_rules=None): if group_rules is None: group_rules = [] groups = defaultdict(dict) dummy_tag = 0 for tag,ext_data in series.iteritems(): tag_has_been_grouped = False for gr in group_rules: r = gr.match(tag) if r is not None: gname = r.group('group_name') groups[gname]['...'] = gname tag_has_been_grouped = True break if not tag_has_been_grouped: for ext,numbers in ext_data.iteritems(): if '' in numbers: groups[dummy_tag][ext] = tag numbers.remove('') if len(numbers) > 0: groups[tag][ext] = tag + condense_series(numbers) dummy_tag += 1 final_groups = [] for tag,series in groups.iteritems(): sv = series.values() if len(sv) > 1 and len(set(sv)) == 1: exts = [ext[1:] for ext in series.keys()] final_groups.append(sv[0]+colorizer('.{%s}'%','.join(exts),'green')) else: for ext,s in series.iteritems(): if ext == '...': ext = colorizer('...', 'purple') final_groups.append(s + ext) return sorted(final_groups) # def group_file_series(files): # """ # group all file names sharing a common prefix followed by a number, ie: # <prefix><number><extension>. # Return a dictionnary with two levels (<tag>,<extension>), mapped to all # corresponding series index found. # """ # series = {} # maps (tag,extension) to indexes # rexpSeries = re.compile("(.*?)([0-9]+)[.]([a-zA-Z]*)\Z") # for f in files: # r = rexpSeries.match(f) # if r is not None: # (tag,idx,ext) = r.groups() # if not series.has_key(tag): # series[tag] = {} # if not series[tag].has_key(ext): # series[tag][ext] = [] # series[tag][ext].append(idx) # return series # def find_file_series(path): # """ Find all files in directory 'path' which are formated as # <tag><number><extension>. Sub-directories are ignored. # Return a dictionnary with two levels (<tag>,<extension>), mapped to all # corresponding series index found. # """ # return group_file_series([f for f in os.listdir(path) \ # if op.isfile(op.join(path,f))]) def check_files_series(fseries, verbose=False): ok_status = True for tag,dext in fseries.iteritems(): for ext,indexes in dext.iteritems(): if 0: print 'tag',tag,'ext',ext print 'indexes:',indexes sorted_indexes = sorted(indexes) last = int(sorted_indexes[-1]) first = int(sorted_indexes[0]) diff = last - first + 1 - len(indexes) if diff != 0: ok_status = False if verbose: print '%d items missing for series %s[...].%s' \ %(diff,tag,ext) print '-> Series should have %d items (%s to %s)' \ ' - found %d items' \ %(last-first+1,first,last,len(indexes)) return ok_status #Factorisation of the code: functions creations def Extract_TTP_whM_hrf(hrf, dt): """ Extract TTP and whM from an hrf """ from scipy.interpolate import interp1d from pyhrf.boldsynth.hrf import getCanoHRF hcano = getCanoHRF() Abscisses = np.arange(hrf.size)*dt # TTP calculus TTP = hrf.argmax()*dt print 'found TTP:', TTP #whM calculus #1/ Round the HRF HRF_rounded = np.round(hrf, 5) #2/ Interpolation to obtain more values Abscisses_round = np.arange(HRF_rounded.size)*dt f = interp1d(Abscisses, hrf) r = 0.00001 HRF_interp = f(np.arange(0,Abscisses_round[len(Abscisses_round)-1], r)) HRF_interp_rounded = np.round(HRF_interp, 5) #To reconvert from interpolation to correct values in seconds len_use = len(HRF_interp) dt_interp = (hcano[0][len(hcano[0])-1])/len(HRF_interp) #3/ Where the half max is found Pts_1_2_h = np.where(abs(HRF_interp_rounded-HRF_rounded.max()/2.)<0.001) #Pts_1_2_h = np.where(HRF_interp==HRF_interp[TTP/r]/2) Values_pts_1_2_h = HRF_interp[Pts_1_2_h] #print 'Max/2, Abscisses, Y :', HRF_rounded.max()/2., Pts_1_2_h, Values_pts_1_2_h if Pts_1_2_h[0].shape[0]==0: print '#### No point found ####' #Selection of Pts of abscisse<max Diff1 = abs(Pts_1_2_h - HRF_interp_rounded.argmax())*(Pts_1_2_h<HRF_interp_rounded.argmax()) #Diff1 = (Pts_1_2_h - HRF_interp[TTP/r])*(Pts_1_2_h<HRF_interp[TTP/r]) Diff1_non_zeros=Diff1[0][np.where(Diff1[0]>0)] #retrieve positions#0 Diff1_non_zeros.sort() #to sort all differences First_diff1 = Diff1_non_zeros.mean() #Selection of Pts of abscisse>max Diff2 = abs(HRF_interp_rounded.argmax() - Pts_1_2_h)*(Pts_1_2_h>HRF_interp_rounded.argmax()) #Diff2 = (HRF_interp[TTP/r] - Pts_1_2_h)*(Pts_1_2_h>HRF_interp[TTP/r]) Diff2_non_zeros=Diff2[0][np.where(Diff2[0]>0)] #retrieve positions#0 Diff2_non_zeros.sort() #to sort all differences First_diff2 = Diff2_non_zeros.mean() #addition of the two differences and *dt_interp to obtain whM in seconds whM = (First_diff1 + First_diff2)*dt_interp print 'found whM:', whM return TTP, whM def Extract_TTP_whM_from_group(hrfs_pck_file, dt, model, Path_data, acq): """ Extract TTP and whM from a group of hrfs whose values are saved in a .pck (size nb_subjects * nb_coeff_hrf) """ from scipy.interpolate import interp1d from pyhrf.boldsynth.hrf import getCanoHRF hcano = getCanoHRF() hrfs = cPickle.load(open(hrfs_pck_file)) nb_subjects = hrfs.shape[0] TTP_tot = np.zeros((nb_subjects)) whM_tot = np.zeros((nb_subjects)) for isubj in np.arange(nb_subjects): HRF_at_max = hrfs[isubj, :] Abscisses = np.arange(HRF_at_max.size)*dt # TTP calculus TTP = HRF_at_max.argmax()*dt print 'found TTP:', TTP TTP_tot[isubj] = TTP #whM calculus #1/ Round the HRF HRF_rounded = np.round(HRF_at_max, 5) #2/ Interpolation to obtain more values Abscisses_round = np.arange(HRF_rounded.size)*dt f = interp1d(Abscisses, HRF_at_max) r = 0.00001 HRF_interp = f(np.arange(0,Abscisses_round[len(Abscisses_round)-1], r)) HRF_interp_rounded = np.round(HRF_interp, 5) #To reconvert from interpolation to correct values in seconds len_use = len(HRF_interp) dt_interp = (hcano[0][len(hcano[0])-1])/len(HRF_interp) #3/ Where the half max is found Pts_1_2_h = np.where(abs(HRF_interp_rounded-HRF_rounded.max()/2.)<0.001) #Pts_1_2_h = np.where(HRF_interp==HRF_interp[TTP/r]/2) Values_pts_1_2_h = HRF_interp[Pts_1_2_h] #print 'Max/2, Abscisses, Y :', HRF_rounded.max()/2., Pts_1_2_h, Values_pts_1_2_h if Pts_1_2_h[0].shape[0]==0: print '#### No point found ####' #Selection of Pts of abscisse<max Diff1 = abs(Pts_1_2_h - HRF_interp_rounded.argmax())*(Pts_1_2_h<HRF_interp_rounded.argmax()) #Diff1 = (Pts_1_2_h - HRF_interp[TTP/r])*(Pts_1_2_h<HRF_interp[TTP/r]) Diff1_non_zeros=Diff1[0][np.where(Diff1[0]>0)] #retrieve positions#0 Diff1_non_zeros.sort() #to sort all differences First_diff1 = Diff1_non_zeros.mean() #Selection of Pts of abscisse>max Diff2 = abs(HRF_interp_rounded.argmax() - Pts_1_2_h)*(Pts_1_2_h>HRF_interp_rounded.argmax()) #Diff2 = (HRF_interp[TTP/r] - Pts_1_2_h)*(Pts_1_2_h>HRF_interp[TTP/r]) Diff2_non_zeros=Diff2[0][np.where(Diff2[0]>0)] #retrieve positions#0 Diff2_non_zeros.sort() #to sort all differences First_diff2 = Diff2_non_zeros.mean() #addition of the two differences and *dt_interp to obtain whM in seconds whM = (First_diff1 + First_diff2)*dt_interp print 'found whM:', whM whM_tot[isubj] = np.round(whM,1) cPickle.dump(TTP_tot, open(Path_data + '/_TTPs_at_peak_by_hand_' + '_' + model + '_' + acq + '.pck', 'w')) cPickle.dump(whM_tot, open(Path_data + '/_whMs_at_peak_by_hand_' + '_' + model + '_' + acq + '.pck', 'w')) return TTP_tot, whM_tot def PPMcalculus_jde(threshold_value, apost_mean_activ_fn, apost_var_activ_fn, \ apost_mean_inactiv_fn, apost_var_inactiv_fn, labels_activ_fn, \ labels_inactiv_fn, nrls_fn, mask_file, null_hyp=True): ''' Function to calculate the probability that the nrl in voxel j, condition m, is superior to a given hreshold_value Computation for all voxels Compute Tvalue according to null hypothesis ''' from scipy.integrate import quad from pyhrf.ndarray import xndarray from scipy.stats import norm #m1 = apost_mean_activ #sig1 = apost_var_activ #m2 = apost_mean_inactiv #sig2 = apost_var_inactiv #perc1 = labels_activ #proportion of samples drawn from the activ class #perc2 = labels_inactiv #proportion of samples drawn from the inactiv class mask = xndarray.load(mask_file).data apost_mean_activ = xndarray.load(apost_mean_activ_fn) apost_mean_inactiv = xndarray.load(apost_mean_inactiv_fn) apost_var_activ = xndarray.load(apost_var_activ_fn) apost_var_inactiv = xndarray.load( apost_var_inactiv_fn) labels_activ = xndarray.load(labels_activ_fn) labels_inactiv = xndarray.load( labels_inactiv_fn) nrls = xndarray.load(nrls_fn) #flattend data m1 = apost_mean_activ.flatten(mask, axes=['sagittal', 'coronal', 'axial'], new_axis='position').data m2 = apost_mean_inactiv.flatten(mask, axes=['sagittal', 'coronal', 'axial'], new_axis='position').data var1 = apost_var_activ.flatten(mask, axes=['sagittal', 'coronal', 'axial'], new_axis='position').data var2 = apost_var_inactiv.flatten(mask, axes=['sagittal', 'coronal', 'axial'], new_axis='position').data perc1 = labels_activ.flatten(mask, axes=['sagittal', 'coronal', 'axial'], new_axis='position').data perc2 = labels_inactiv.flatten(mask, axes=['sagittal', 'coronal', 'axial'], new_axis='position').data nrls_values = nrls.flatten(mask, axes=['sagittal', 'coronal', 'axial'], new_axis='position').data Probas=np.zeros(perc1.shape[0]) if null_hyp: Pvalues=np.zeros(perc1.shape[0]) #to detect positions activ and inactiv Comp=perc1-perc2 Pos_activ = np.where(Comp[:,0]) Pos_inactiv = np.where(Comp[:,0]<0) Means = np.zeros(perc1.shape[0]) Vars = np.zeros(perc1.shape[0]) for i in xrange(perc1.shape[0]): #posterior probability distribution fmix = lambda x: perc1[i]*norm.pdf(x,m1[i], var1[i]**.5) + perc2[i]*norm.pdf(x,m2[i], var2[i]**.5) #fmix = lambda t: perc1[i] * 1/np.sqrt(2*np.pi*sig1[i]**2)*np.exp(- (t - m1[i])**2 / (2*sig1[i]**2) ) + \ #perc2[i] * 1/np.sqrt(2*np.pi*sig2[i]**2)*np.exp(- (t - m2[i])**2 / (2*sig2[i]**2) ) Probas[i] = quad(fmix, threshold_value, float('inf'))[0] #if Probas[i]>1: Probas[i]=1 if null_hyp: Means[Pos_activ] = m1[Pos_activ] Means[Pos_inactiv] = m2[Pos_inactiv] Vars[Pos_activ] = var1[Pos_activ] Vars[Pos_inactiv] = var2[Pos_inactiv] for i in xrange(perc1.shape[0]): nrl_val = nrls_values[i] fmix = lambda x:norm.pdf(x,0, Vars[i]**.5) Pvalues[i] = quad(fmix, nrl_val, float('inf'))[0] #deflatten to retrieve original shape PPM_ = xndarray(Probas, axes_names=['position']) PPM = PPM_.expand(mask, 'position', ['sagittal','coronal','axial']) PPMinvv = 1-Probas #to obtain more readable maps PPMinv_ = xndarray(PPMinvv, axes_names=['position']) PPMinv = PPMinv_.expand(mask, 'position', ['sagittal','coronal','axial']) Pval_ = xndarray(Pvalues, axes_names=['position']) Pval = Pval_.expand(mask, 'position', ['sagittal','coronal','axial']) return PPM.data, PPMinv.data, Pval.data
gpl-3.0
kenshay/ImageScript
ProgramData/SystemFiles/Python/Lib/site-packages/pandas/tests/series/test_asof.py
7
4718
# coding=utf-8 import nose import numpy as np from pandas import (offsets, Series, notnull, isnull, date_range, Timestamp) import pandas.util.testing as tm from .common import TestData class TestSeriesAsof(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_basic(self): # array or list or dates N = 50 rng = date_range('1/1/1990', periods=N, freq='53s') ts = Series(np.random.randn(N), index=rng) ts[15:30] = np.nan dates = date_range('1/1/1990', periods=N * 3, freq='25s') result = ts.asof(dates) self.assertTrue(notnull(result).all()) lb = ts.index[14] ub = ts.index[30] result = ts.asof(list(dates)) self.assertTrue(notnull(result).all()) lb = ts.index[14] ub = ts.index[30] mask = (result.index >= lb) & (result.index < ub) rs = result[mask] self.assertTrue((rs == ts[lb]).all()) val = result[result.index[result.index >= ub][0]] self.assertEqual(ts[ub], val) def test_scalar(self): N = 30 rng = date_range('1/1/1990', periods=N, freq='53s') ts = Series(np.arange(N), index=rng) ts[5:10] = np.NaN ts[15:20] = np.NaN val1 = ts.asof(ts.index[7]) val2 = ts.asof(ts.index[19]) self.assertEqual(val1, ts[4]) self.assertEqual(val2, ts[14]) # accepts strings val1 = ts.asof(str(ts.index[7])) self.assertEqual(val1, ts[4]) # in there result = ts.asof(ts.index[3]) self.assertEqual(result, ts[3]) # no as of value d = ts.index[0] - offsets.BDay() self.assertTrue(np.isnan(ts.asof(d))) def test_with_nan(self): # basic asof test rng = date_range('1/1/2000', '1/2/2000', freq='4h') s = Series(np.arange(len(rng)), index=rng) r = s.resample('2h').mean() result = r.asof(r.index) expected = Series([0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6.], index=date_range('1/1/2000', '1/2/2000', freq='2h')) tm.assert_series_equal(result, expected) r.iloc[3:5] = np.nan result = r.asof(r.index) expected = Series([0, 0, 1, 1, 1, 1, 3, 3, 4, 4, 5, 5, 6.], index=date_range('1/1/2000', '1/2/2000', freq='2h')) tm.assert_series_equal(result, expected) r.iloc[-3:] = np.nan result = r.asof(r.index) expected = Series([0, 0, 1, 1, 1, 1, 3, 3, 4, 4, 4, 4, 4.], index=date_range('1/1/2000', '1/2/2000', freq='2h')) tm.assert_series_equal(result, expected) def test_periodindex(self): from pandas import period_range, PeriodIndex # array or list or dates N = 50 rng = period_range('1/1/1990', periods=N, freq='H') ts = Series(np.random.randn(N), index=rng) ts[15:30] = np.nan dates = date_range('1/1/1990', periods=N * 3, freq='37min') result = ts.asof(dates) self.assertTrue(notnull(result).all()) lb = ts.index[14] ub = ts.index[30] result = ts.asof(list(dates)) self.assertTrue(notnull(result).all()) lb = ts.index[14] ub = ts.index[30] pix = PeriodIndex(result.index.values, freq='H') mask = (pix >= lb) & (pix < ub) rs = result[mask] self.assertTrue((rs == ts[lb]).all()) ts[5:10] = np.nan ts[15:20] = np.nan val1 = ts.asof(ts.index[7]) val2 = ts.asof(ts.index[19]) self.assertEqual(val1, ts[4]) self.assertEqual(val2, ts[14]) # accepts strings val1 = ts.asof(str(ts.index[7])) self.assertEqual(val1, ts[4]) # in there self.assertEqual(ts.asof(ts.index[3]), ts[3]) # no as of value d = ts.index[0].to_timestamp() - offsets.BDay() self.assertTrue(isnull(ts.asof(d))) def test_errors(self): s = Series([1, 2, 3], index=[Timestamp('20130101'), Timestamp('20130103'), Timestamp('20130102')]) # non-monotonic self.assertFalse(s.index.is_monotonic) with self.assertRaises(ValueError): s.asof(s.index[0]) # subset with Series N = 10 rng = date_range('1/1/1990', periods=N, freq='53s') s = Series(np.random.randn(N), index=rng) with self.assertRaises(ValueError): s.asof(s.index[0], subset='foo') if __name__ == '__main__': nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
gpl-3.0