repo_name
stringlengths
7
79
path
stringlengths
4
179
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
959
798k
license
stringclasses
15 values
bsipocz/statsmodels
statsmodels/tools/testing.py
23
1443
"""assert functions from numpy and pandas testing """ import re from distutils.version import StrictVersion import numpy as np import numpy.testing as npt import pandas import pandas.util.testing as pdt # for pandas version check def strip_rc(version): return re.sub(r"rc\d+$", "", version) def is_pandas_min_version(min_version): '''check whether pandas is at least min_version ''' from pandas.version import short_version as pversion return StrictVersion(strip_rc(pversion)) >= min_version # local copies, all unchanged from numpy.testing import (assert_allclose, assert_almost_equal, assert_approx_equal, assert_array_almost_equal, assert_array_almost_equal_nulp, assert_array_equal, assert_array_less, assert_array_max_ulp, assert_raises, assert_string_equal, assert_warns) # adjusted functions def assert_equal(actual, desired, err_msg='', verbose=True, **kwds): if not is_pandas_min_version('0.14.1'): npt.assert_equal(actual, desired, err_msg='', verbose=True) else: if isinstance(desired, pandas.Index): pdt.assert_index_equal(actual, desired) elif isinstance(desired, pandas.Series): pdt.assert_series_equal(actual, desired, **kwds) elif isinstance(desired, pandas.DataFrame): pdt.assert_frame_equal(actual, desired, **kwds) else: npt.assert_equal(actual, desired, err_msg='', verbose=True)
bsd-3-clause
czhengsci/pymatgen
pymatgen/command_line/critic2_caller.py
5
22763
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. from __future__ import division, unicode_literals import os import subprocess import warnings import numpy as np import glob import itertools import matplotlib.pyplot as plt from scipy.spatial import KDTree from pymatgen.core import Structure from pymatgen.io.vasp.outputs import Chgcar from pymatgen.io.vasp.inputs import Potcar from pymatgen.symmetry.groups import PointGroup from pymatgen.analysis.graphs import StructureGraph from monty.os.path import which from monty.dev import requires from monty.json import MSONable from monty.tempfile import ScratchDir from enum import Enum from textwrap import dedent import logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) """ This module implements an interface to the critic2 Bader analysis code. For most Bader analysis purposes, users are referred to pymatgen.command_line.bader_caller instead, this module is for advanced usage requiring identification of critical points in the charge density. This module depends on a compiled critic2 executable available in the path. Please follow the instructions at https://github.com/aoterodelaroza/critic2 to compile or, if using macOS and homebrew, use `brew tap homebrew/science` followed by `brew install critic2`. New users are *strongly* recommended to read the critic2 manual first. In brief, * critic2 searches for critical points in charge density * a critical point can be one of four types: nucleus, bond, ring or cage * it does this by seeding locations for likely critical points and then searching in these regions * there are two lists of critical points in the output, a list of non-equivalent points (with in-depth information about the field at those points), and a full list of points generated by the appropriate symmetry operations * connectivity between these points is also provided when appropriate (e.g. the two nucleus critical points linked to a bond critical point) * critic2 can do many other things besides If you use this module, please cite the following: A. Otero-de-la-Roza, E. R. Johnson and V. Luaña, Comput. Phys. Commun. 185, 1007-1018 (2014) (http://dx.doi.org/10.1016/j.cpc.2013.10.026) A. Otero-de-la-Roza, M. A. Blanco, A. Martín Pendás and V. Luaña, Comput. Phys. Commun. 180, 157–166 (2009) (http://dx.doi.org/10.1016/j.cpc.2008.07.018) """ __author__ = "Matthew Horton" __version__ = "0.1" __maintainer__ = "Matthew Horton" __email__ = "[email protected]" __status__ = "Production" __date__ = "July 2017" class Critic2Caller: @requires(which("critic2"), "Critic2Caller requires the executable critic to be in the path. " "Please follow the instructions at https://github.com/aoterodelaroza/critic2.") def __init__(self, structure, chgcar=None, chgcar_ref=None, user_input_settings=None, write_cml=False): """ Run Critic2 in automatic mode on a supplied structure, charge density (chgcar) and reference charge density (chgcar_ref). The reason for a separate reference field is that in VASP, the CHGCAR charge density only contains valence electrons and may be missing substantial charge at nuclei leading to misleading results. Thus, a reference field is commonly constructed from the sum of AECCAR0 and AECCAR2 which is the total charge density, but then the valence charge density is used for the final analysis. If chgcar_ref is not supplied, chgcar will be used as the reference field. If chgcar is not supplied, the promolecular charge density will be used as the reference field -- this can often still give useful results if only topological information is wanted. User settings is a dictionary that can contain: * GRADEPS, float (field units), gradient norm threshold * CPEPS, float (Bohr units in crystals), minimum distance between critical points for them to be equivalent * NUCEPS, same as CPEPS but specifically for nucleus critical points (critic2 default is depedent on grid dimensions) * NUCEPSH, same as NUCEPS but specifically for hydrogen nuclei since associated charge density can be significantly displaced from hydrogen nucleus * EPSDEGEN, float (field units), discard critical point if any element of the diagonal of the Hessian is below this value, useful for discarding points in vacuum regions * DISCARD, float (field units), discard critical points with field value below this value, useful for discarding points in vacuum regions * SEED, list of strings, strategies for seeding points, default is ['WS 1', 'PAIR 10'] which seeds critical points by sub-dividing the Wigner-Seitz cell and between every atom pair closer than 10 Bohr, see critic2 manual for more options :param structure: Structure to analyze :param chgcar: Charge density to use for analysis. If None, will use promolecular density. :param chgcar_ref: Reference charge density. If None, will use chgcar as reference. :param user_input_settings (dict): :param write_cml (bool): Useful for debug, if True will write all critical points to a file 'table.cml' in the working directory useful for visualization """ settings = {'CPEPS': 0.1, 'SEED': ["WS", "PAIR DIST 10"]} if user_input_settings: settings.update(user_input_settings) # Load crystal structure input_script = ["crystal POSCAR"] # Load data to use as reference field if chgcar_ref: input_script += ["load VASPCHG CHGCAR_ref id chgcar_ref", "reference chgcar_ref"] # Load data to use for analysis if chgcar: input_script += ["load VASPCHG CHGCAR_int id chgcar", "integrable chgcar"] # Command to run automatic analysis auto = "auto " for k, v in settings.items(): if isinstance(v, list): for item in v: auto += '{} {} '.format(k, item) else: auto += '{} {} '.format(k, v) input_script += [auto] if write_cml: input_script += ["cpreport ../table.cml cell border graph"] input_script = "\n".join(input_script) with ScratchDir(".") as temp_dir: os.chdir(temp_dir) with open('input_script.cri', 'w') as f: f.write(input_script) structure.to(filename='POSCAR') if chgcar: chgcar.write_file('CHGCAR_int') if chgcar_ref: chgcar_ref.write_file('CHGCAR_ref') args = ["critic2", "input_script.cri"] rs = subprocess.Popen(args, stdout=subprocess.PIPE, stdin=subprocess.PIPE, close_fds=True) stdout, stderr = rs.communicate() stdout = stdout.decode() if stderr: stderr = stderr.decode() warnings.warn(stderr) if rs.returncode != 0: raise RuntimeError("critic2 exited with return code {}.".format(rs.returncode)) self._stdout = stdout self._stderr = stderr self.output = Critic2Output(structure, stdout) @classmethod def from_path(cls, path, suffix=''): """ Convenience method to run critic2 analysis on a folder containing typical VASP output files. This method will: 1. Look for files CHGCAR, AECAR0, AECAR2, POTCAR or their gzipped counterparts. 2. If AECCAR* files are present, constructs a temporary reference file as AECCAR0 + AECCAR2 3. Runs critic2 analysis twice: once for charge, and a second time for the charge difference (magnetization density). :param path: path to folder to search in :param suffix: specific suffix to look for (e.g. '.relax1' for 'CHGCAR.relax1.gz') :return: """ def _get_filepath(filename, warning, path=path, suffix=suffix): paths = glob.glob(os.path.join(path, filename + suffix + '*')) if not paths: warnings.warn(warning) return None if len(paths) > 1: # using reverse=True because, if multiple files are present, # they likely have suffixes 'static', 'relax', 'relax2', etc. # and this would give 'static' over 'relax2' over 'relax' # however, better to use 'suffix' kwarg to avoid this! paths.sort(reverse=True) warnings.warn('Multiple files detected, using {}'.format(os.path.basename(path))) path = paths[0] return path chgcar_path = _get_filepath('CHGCAR', 'Could not find CHGCAR!') chgcar = Chgcar.from_file(chgcar_path) aeccar0_path = _get_filepath('AECCAR0', 'Could not find AECCAR0, interpret Bader results with caution.') aeccar0 = Chgcar.from_file(aeccar0_path) if aeccar0_path else None aeccar2_path = _get_filepath('AECCAR2', 'Could not find AECCAR2, interpret Bader results with caution.') aeccar2 = Chgcar.from_file(aeccar2_path) if aeccar2_path else None chgcar_ref = aeccar0.linear_add(aeccar2) if (aeccar0 and aeccar2) else None return cls(chgcar.structure, chgcar, chgcar_ref) class CriticalPointType(Enum): nucleus = "nucleus" # (3, -3) bond = "bond" # (3, -1) ring = "ring" # (3, 1) cage = "cage" # (3, 3) class CriticalPoint(MSONable): def __init__(self, index, type, frac_coords, point_group, multiplicity, field, field_gradient, coords=None, field_hessian=None): """ Class to characterise a critical point from a topological analysis of electron charge density. Note this class is usually associated with a Structure, so has information on multiplicity/point group symmetry. :param index: index of point :param type: type of point, given as a string :param coords: Cartesian co-ordinates in Angstroms :param frac_coords: fractional co-ordinates :param point_group: point group associated with critical point :param multiplicity: number of equivalent critical points :param field: value of field at point (f) :param field_gradient: gradient of field at point (grad f) :param field_hessian: hessian of field at point (del^2 f) """ self.index = index self._type = type self.coords = coords self.frac_coords = frac_coords self.point_group = point_group self.multiplicity = multiplicity self.field = field self.field_gradient = field_gradient self.field_hessian = field_hessian @property def type(self): return CriticalPointType(self._type) def __str__(self): return "Critical Point: {} ({})".format(self.type.name, self.frac_coords) @property def laplacian(self): return np.trace(self.field_hessian) @property def ellipticity(self): ''' Most meaningful for bond critical points, can be physically interpreted as e.g. degree of pi-bonding in organic molecules. Consult literature for more information. :return: ''' eig = np.linalg.eig(self.field_hessian) eig.sort() return eig[0]/eig[1] - 1 class Critic2Output(MSONable): def __init__(self, structure, critic2_stdout): """ This class is used to store results from the Critic2Caller. To explore the bond graph, use the "structure_graph" method, which returns a user-friendly StructureGraph class with bonding information. By default, this returns a StructureGraph with edge weights as bond lengths, but can optionally return a graph with edge weights as any property supported by the `CriticalPoint` class, such as bond ellipticity. This class also provides an interface to explore just the non-symmetrically-equivalent critical points via the `critical_points` attribute, and also all critical points (via nodes dict) and connections between them (via edges dict). The user should be familiar with critic2 before trying to understand these. Indexes of nucleus critical points in the nodes dict are the same as the corresponding sites in structure, with indices of other critical points arbitrarily assigned. :param structure: associated Structure :param critic2_stdout: stdout from running critic2 in automatic mode """ self.structure = structure self._critic2_stdout = critic2_stdout self.nodes = {} self.edges = {} self._parse_stdout(critic2_stdout) def structure_graph(self, edge_weight="bond_length", edge_weight_units="Å"): """ A StructureGraph object describing bonding information in the crystal. Lazily constructed. :param edge_weight: a value to store on the Graph edges, by default this is "bond_length" but other supported values are any of the attributes of CriticalPoint :return: """ sg = StructureGraph.with_empty_graph(self.structure, name="bonds", edge_weight_name=edge_weight, edge_weight_units=edge_weight_units) edges = self.edges.copy() idx_to_delete = [] # check for duplicate bonds for idx, edge in edges.items(): unique_idx = self.nodes[idx]['unique_idx'] # only check edges representing bonds, not rings if self.critical_points[unique_idx].type == CriticalPointType.bond: if idx not in idx_to_delete: for idx2, edge2 in edges.items(): if idx != idx2 and edge == edge2: idx_to_delete.append(idx2) warnings.warn("Duplicate edge detected, try re-running " "critic2 with custom parameters to fix this. " "Mostly harmless unless user is also " "interested in rings/cages.") logger.debug("Duplicate edge between points {} (unique point {})" "and {} ({}).".format(idx, self.nodes[idx]['unique_idx'], idx2, self.nodes[idx2]['unique_idx'])) # and remove any duplicate bonds present for idx in idx_to_delete: del edges[idx] for idx, edge in edges.items(): unique_idx = self.nodes[idx]['unique_idx'] # only add edges representing bonds, not rings if self.critical_points[unique_idx].type == CriticalPointType.bond: from_idx = edge['from_idx'] to_idx = edge['to_idx'] from_lvec = edge['from_lvec'] to_lvec = edge['to_lvec'] if edge_weight == "bond_length": weight = self.structure.get_distance(from_idx, to_idx) else: weight = getattr(self.critical_points[unique_idx], edge_weight, None) sg.add_edge(from_idx, to_idx, from_jimage=from_lvec, to_jimage=to_lvec, weight=weight) return sg def get_critical_point_for_site(self, n): return self.critical_points[self.nodes[n]['unique_idx']] def _parse_stdout(self, stdout): stdout = stdout.split("\n") # NOTE WE ARE USING 0-BASED INDEXING: # This is different from critic2 which # uses 1-based indexing, so all parsed # indices have 1 subtracted. # Parsing happens in two stages: # 1. We construct a list of unique critical points # (i.e. non-equivalent by the symmetry of the crystal) # and the properties of the field at those points # 2. We construct a list of nodes and edges describing # all critical points in the crystal # Steps 1. and 2. are essentially indepdendent, except # that the critical points in 2. have a pointer to their # associated unique critical point in 1. so that more # information on that point can be retrieved if necessary. unique_critical_points = [] # parse unique critical points for i, line in enumerate(stdout): if "* Critical point list, final report (non-equivalent cps)" in line: start_i = i + 4 elif "* Analysis of system bonds" in line: end_i = i - 2 # if start_i and end_i haven't been found, we # need to re-evaluate assumptions in this parser! for i, line in enumerate(stdout): if i >= start_i and i <= end_i: l = line.replace("(", "").replace(")", "").split() unique_idx = int(l[0]) - 1 point_group = l[1] # type = l[2] # type from definition of critical point e.g. (3, -3) type = l[3] # type from name, e.g. nucleus frac_coords = [float(l[4]), float(l[5]), float(l[6])] multiplicity = float(l[7]) # name = float(l[8]) field = float(l[9]) field_gradient = float(l[10]) # laplacian = float(l[11]) point = CriticalPoint(unique_idx, type, frac_coords, point_group, multiplicity, field, field_gradient) unique_critical_points.append(point) # TODO: may be other useful information to parse here too for i, line in enumerate(stdout): if '+ Critical point no.' in line: unique_idx = int(line.split()[4]) - 1 elif "Hessian:" in line: l1 = list(map(float, stdout[i + 1].split())) l2 = list(map(float, stdout[i + 2].split())) l3 = list(map(float, stdout[i + 3].split())) hessian = [[l1[0], l1[1], l1[2]], [l2[0], l2[1], l2[2]], [l3[0], l3[1], l3[2]]] unique_critical_points[unique_idx].field_hessian = hessian self.critical_points = unique_critical_points # parse graph connecting critical points for i, line in enumerate(stdout): if "* Complete CP list, bcp and rcp connectivity table" in line: start_i = i + 3 elif "* Attractor connectivity matrix" in line: end_i = i - 2 # if start_i and end_i haven't been found, we # need to re-evaluate assumptions in this parser! # Order of nuclei provided by critic2 doesn't # necessarily match order of sites in Structure. # We perform a mapping from one to the other, # and re-index all nodes accordingly. node_mapping = {} # critic2_index:structure_index # ensure frac coords are in [0,1] range frac_coords = np.array(self.structure.frac_coords) % 1 kd = KDTree(frac_coords) for i, line in enumerate(stdout): if i >= start_i and i <= end_i: l = line.split() if l[2] == "n": critic2_idx = int(l[0]) - 1 frac_coord = np.array([float(l[3]), float(l[4]), float(l[5])]) % 1 node_mapping[critic2_idx] = kd.query(frac_coord)[1] if len(node_mapping) != len(self.structure): warnings.warn("Check that all sites in input structure have " "been detected by critic2.") def _remap(critic2_idx): return node_mapping.get(critic2_idx, critic2_idx) for i, line in enumerate(stdout): if i >= start_i and i <= end_i: l = line.replace("(", "").replace(")", "").split() idx = _remap(int(l[0]) - 1) unique_idx = int(l[1]) - 1 frac_coords = [float(l[3]), float(l[4]), float(l[5])] self._add_node(idx, unique_idx, frac_coords) if len(l) > 6: from_idx = _remap(int(l[6]) - 1) to_idx = _remap(int(l[10]) - 1) self._add_edge(idx, from_idx=from_idx, from_lvec=(int(l[7]), int(l[8]), int(l[9])), to_idx=to_idx, to_lvec=(int(l[11]), int(l[12]), int(l[13]))) self._map = node_mapping def _add_node(self, idx, unique_idx, frac_coords): """ Add information about a node describing a critical point. :param idx: unique index :param unique_idx: index of unique CriticalPoint, used to look up more information of point (field etc.) :param frac_coord: fractional co-ordinates of point :return: """ self.nodes[idx] = {'unique_idx': unique_idx, 'frac_coords': frac_coords} def _add_edge(self, idx, from_idx, from_lvec, to_idx, to_lvec): """ Add information about an edge linking two critical points. This actually describes two edges: from_idx ------ idx ------ to_idx However, in practice, from_idx and to_idx will typically be atom nuclei, with the center node (idx) referring to a bond critical point. Thus, it will be more convenient to model this as a single edge linking nuclei with the properties of the bond critical point stored as an edge attribute. :param idx: index of node :param from_idx: from index of node :param from_lvec: vector of lattice image the from node is in as tuple of ints :param to_idx: to index of node :param to_lvec: vector of lattice image the to node is in as tuple of ints :return: """ self.edges[idx] = {'from_idx': from_idx, 'from_lvec': from_lvec, 'to_idx': to_idx, 'to_lvec': to_lvec}
mit
TinyOS-Camp/DDEA-DEV
Archive/[14_09_12] DDEA_example_code/df_data_analysis_gsbc.py
1
17508
# coding: utf-8 """ ====================================================================== Learning and Visualizing the BMS sensor-time-weather data structure ====================================================================== This example employs several unsupervised learning techniques to extract the energy data structure from variations in Building Automation System (BAS) and historial weather data. The fundermental timelet for analysis are 15 min, referred to as Q. ** currently use H (Hour) as a fundermental timelet, need to change later ** The following analysis steps are designed and to be executed. Data Pre-processing -------------------------- - Data Retrieval and Standardization - Outlier Detection - Interpolation Data Summarization -------------------------- - Data Transformation - Sensor Clustering Model Discovery Bayesian Network -------------------------- - Automatic State Classification - Structure Discovery and Analysis """ #print(__doc__) # Author: Deokwooo Jung [email protected] ################################################################## # General Moduels from __future__ import division # To forace float point division import os import sys import numpy as np from numpy.linalg import inv from numpy.linalg import norm import uuid import pylab as pl from scipy import signal from scipy import stats from scipy.interpolate import interp1d import matplotlib.pyplot as plt from multiprocessing import Pool #from datetime import datetime import datetime as dt from dateutil import tz import shlex, subprocess import mytool as mt import time import retrieve_weather as rw import itertools import calendar import random from matplotlib.collections import LineCollection #from stackedBarGraph import StackedBarGrapher import pprint #import radar_chart # Custom library from data_tools import * from data_retrieval import * from pack_cluster import * from data_preprocess import * from shared_constants import * from pre_bn_state_processing import * from data_summerization import * ################################################################## # Interactive mode for plotting plt.ion() ################################################################## # Processing Configuraiton Settings ################################################################## # Analysis buildings set # Main building x where x is 1-16 # Conference bldg # Machine Room # All Power Measurements IS_USING_SAVED_DICT=-1 print 'Extract a common time range...' ################################################################## # List buildings and substation names gsbc_bgid_dict=mt.loadObjectBinaryFast('gsbc_bgid_dict.bin') PRE_BN_STAGE=0 if PRE_BN_STAGE==0: bldg_key_set=[] print 'skip PRE_BN_STAGE....' else: bldg_key_set=gsbc_bgid_dict.keys() ######################################### # 1. Electricity Room and Machine Room - 'elec_machine_room_bldg' ######################################### ######################################### # 2. Conference Building - 'conference_bldg' ######################################### ######################################### # 3. Main Building - 'main_bldg_x' ######################################### for bldg_key in bldg_key_set: print '###############################################################################' print '###############################################################################' print 'Processing '+ bldg_key+'.....' print '###############################################################################' print '###############################################################################' bldg_id=[key_val[1] for key_val in gsbc_bgid_dict.items() if key_val[0]==bldg_key][0] temp='' for bldg_id_temp in bldg_id: temp=temp+subprocess.check_output('ls '+DATA_DIR+'*'+bldg_id_temp+'*.bin', shell=True) input_files_temp =shlex.split(temp) # Get rid of duplicated files input_files_temp=list(set(input_files_temp)) input_files=input_files_temp #input_files=['../gvalley/Binfiles/'+temp for temp in input_files_temp] IS_USING_SAVED_DICT=0 print 'Extract a common time range...' # Analysis period ANS_START_T=dt.datetime(2013,6,1,0) ANS_END_T=dt.datetime(2013,11,15,0) # Interval of timelet, currently set to 1 Hour TIMELET_INV=dt.timedelta(minutes=30) print TIMELET_INV, 'time slot interval is set for this data set !!' print '-------------------------------------------------------------------' PROC_AVG=True PROC_DIFF=False ############################################################################### # This directly searches files from bin file name print '###############################################################################' print '# Data Pre-Processing' print '###############################################################################' # define input_files to be read if IS_USING_SAVED_DICT==0: ANS_START_T,ANS_END_T,input_file_to_be_included=\ time_range_check(input_files,ANS_START_T,ANS_END_T,TIMELET_INV) print 'time range readjusted to (' ,ANS_START_T, ', ', ANS_END_T,')' start__dictproc_t=time.time() if IS_SAVING_INDIVIDUAL==True: data_dict=construct_data_dict_2\ (input_files,ANS_START_T,ANS_END_T,TIMELET_INV,binfilename='data_dict', \ IS_USING_PARALLEL=IS_USING_PARALLEL_OPT) else: data_dict,purge_list=\ construct_data_dict(input_file_to_be_included,ANS_START_T,ANS_END_T,TIMELET_INV,\ binfilename='data_dict',IS_USING_PARALLEL=IS_USING_PARALLEL_OPT) end__dictproc_t=time.time() print 'the time of construct data dict.bin is ', end__dictproc_t-start__dictproc_t, ' sec' print '--------------------------------------' elif IS_USING_SAVED_DICT==1: print 'Loading data dictionary......' start__dictproc_t=time.time() data_dict = mt.loadObjectBinaryFast('data_dict.bin') end__dictproc_t=time.time() print 'the time of loading data dict.bin is ', end__dictproc_t-start__dictproc_t, ' sec' print '--------------------------------------' else: print 'Skip data dict' CHECK_DATA_FORMAT=0 if CHECK_DATA_FORMAT==1: if IS_SAVING_INDIVIDUAL==True: list_of_wrong_data_format=verify_data_format_2(data_used,data_dict,time_slots) else: list_of_wrong_data_format=verify_data_format(data_used,data_dict,time_slots) if len(list_of_wrong_data_format)>0: print 'Measurement list below' print '----------------------------------------' print list_of_wrong_data_format raise NameError('Errors in data format') Data_Summarization=1 if Data_Summarization==1: bldg_out=data_summerization(bldg_key,data_dict,PROC_AVG=True,PROC_DIFF=False) print '###############################################################################' print '# Model_Discovery' print '###############################################################################' gsbc_key_dict=mt.loadObjectBinaryFast('./gsbc_key_dict_all.bin') # Analysis of BN network result def convert_gsbc_name(id_labels): if isinstance(id_labels,list)==False: id_labels=[id_labels] out_name=[gsbc_key_dict[key_label_[2:]] if key_label_[2:] \ in gsbc_key_dict else key_label_ for key_label_ in id_labels ] return out_name Model_Discovery=1 if Model_Discovery==1: pwr_key='30......$';dict_dir='./GSBC/' LOAD_BLDG_OBJ=1 if LOAD_BLDG_OBJ==1: print 'not yet ready' bldg_=mt.loadObjectBinaryFast(PROC_OUT_DIR+'gsbc_bldg_obj.bin') else: bldg_dict={} for bldg_load_key in gsbc_bgid_dict.keys(): print 'Building for ',bldg_load_key, '....' try: bldg_tag='gsbc_'+bldg_load_key bldg_load_out=mt.loadObjectBinaryFast(dict_dir+bldg_load_key+'_out.bin') except: print 'not found, skip....' pass mt.saveObjectBinaryFast(bldg_load_out['data_dict'],dict_dir+'data_dict.bin') if 'avgdata_dict' in bldg_load_out.keys(): mt.saveObjectBinaryFast(bldg_load_out['avgdata_dict'],dict_dir+'avgdata_dict.bin') if 'diffdata_dict' in bldg_load_out.keys(): mt.saveObjectBinaryFast(bldg_load_out['avgdata_dict'],dict_dir+'diffdata_dict.bin') pname_key= pwr_key bldg_dict.update({bldg_tag:create_bldg_obj(dict_dir,bldg_tag,pname_key)}) bldg_=obj(bldg_dict) #cmd_str='bldg_.'+bldg_tag+'.data_out=obj(bldg_load_out)' #exec(cmd_str) cmd_str='bldg_obj=bldg_.'+bldg_tag exec(cmd_str) anal_out={} if 'avgdata_dict' in bldg_load_out.keys(): anal_out.update({'avg':bn_prob_analysis(bldg_obj,sig_tag_='avg')}) if 'diffdata_dict' in bldg_load_out.keys(): anal_out.update({'diff':bn_prob_analysis(bldg_obj,sig_tag_='diff')}) cmd_str='bldg_.'+bldg_tag+'.anal_out=obj(anal_out)' exec(cmd_str) cmd_str='bldg_.'+'convert_name=convert_gsbc_name' exec(cmd_str) mt.saveObjectBinaryFast(bldg_ ,PROC_OUT_DIR+'gsbc_bldg_obj.bin') mt.saveObjectBinaryFast('LOAD_BLDG_OBJ' ,PROC_OUT_DIR+'gsbc_bldg_obj_is_done.txt') ####################################################################################### # Analysis For GSBC ####################################################################################### # Analysis of BN network result BN_ANAL=1 if BN_ANAL==1: # Plotting individual LHs PLOTTING_LH=0 if PLOTTING_LH==1: plotting_bldg_lh(bldg_,attr_class='sensor',num_picks=30) plotting_bldg_lh(bldg_,attr_class='time',num_picks=30) plotting_bldg_lh(bldg_,attr_class='weather',num_picks=30) PLOTTING_BN=1 if PLOTTING_BN==1: plotting_bldg_bn(bldg_) More_BN_ANAL=0 if More_BN_ANAL==1: ####################################################################################### # Analysis For GSBC ####################################################################################### #bldg_obj=bldg_.GSBC_main_bldg_power_machine_room bldg_obj=bldg_.GSBC_main_bldg_power_machine_room bldg_.GSBC_main_bldg_power_machine_room.anal_out=bn_prob_analysis(bldg_obj,sig_tag_='avg') bldg_obj=bldg_.GSBC_main_bldg_1 bldg_.GSBC_main_bldg_1.anal_out=bn_prob_analysis(bldg_obj,sig_tag_='avg') import pdb;pdb.set_trace() #-------------------------------------------------------------------------- # Analysis Display #-------------------------------------------------------------------------- # Data set 1 - GSBC_main_bldg_power_machine_room p_name_sets_1=bldg_.GSBC_main_bldg_power_machine_room.anal_out.__dict__.keys() bn_out_sets_1=bldg_.GSBC_main_bldg_power_machine_room.anal_out.__dict__ # Data set 2 - GSBC_main_bldg_1 p_name_sets_2=bldg_.GSBC_main_bldg_1.anal_out.__dict__.keys() bn_out_sets_2=bldg_.GSBC_main_bldg_1.anal_out.__dict__ # Data set 2 Analysis print 'List power meters for analysis' print '------------------------------------' pprint.pprint(np.array([p_name_sets_1,convert_gsbc_name(p_name_sets_1)]).T) print '------------------------------------' p_name=p_name_sets_1[3] bn_out=bn_out_sets_1[p_name] fig_name='BN for Sensors '+convert_gsbc_name(p_name)[0] fig=figure(fig_name,figsize=(30.0,30.0)) col_name=[str(np.array([[lab1],[remove_dot(lab2)]])) \ for lab1,lab2 in zip(bn_out.s_labels, convert_gsbc_name(bn_out.s_labels))] rbn.nx_plot(bn_out.s_hc,col_name,graph_layout='spring',node_text_size=15) png_name=fig_name+'_'+str(uuid.uuid4().get_hex().upper()[0:2]) fig.savefig(fig_dir+png_name+'.png', bbox_inches='tight') fig_name='BN for Time '+convert_gsbc_name(p_name)[0] fig=figure(fig_name,figsize=(30.0,30.0)) rbn.nx_plot(bn_out.t_hc,convert_gsbc_name(bn_out.t_labels),graph_layout='spring',node_text_size=12) png_name=fig_name+'_'+str(uuid.uuid4().get_hex().upper()[0:2]) fig.savefig(fig_dir+png_name+'.png', bbox_inches='tight') fig_name='BN for Weather '+convert_gsbc_name(p_name)[0] fig=figure(fig_name,figsize=(30.0,30.0)) rbn.nx_plot(bn_out.w_hc,convert_gsbc_name(bn_out.w_labels),graph_layout='spring',node_text_size=12) png_name=fig_name+str(uuid.uuid4().get_hex().upper()[0:2]) fig.savefig(fig_dir+png_name+'.png', bbox_inches='tight') fig_name='BN for Sensor-Time-Weather '+convert_gsbc_name(p_name)[0] fig=figure(fig_name,figsize=(30.0,30.0)) rbn.nx_plot(bn_out.all_hc,convert_gsbc_name(bn_out.all_labels),graph_layout='spring',node_text_size=20) png_name=fig_name+'_'+str(uuid.uuid4().get_hex().upper()[0:2]) fig.savefig(fig_dir+png_name+'.png', bbox_inches='tight') fig_name='BN PEAK LH Analysis for Sensor-Time-Weather '+convert_gsbc_name(p_name)[0] fig=figure(fig_name, figsize=(30.0,30.0)) subplot(2,1,1) plot(bn_out.all_cause_symbol_xtick,bn_out.high_peak_prob,'-^') plot(bn_out.all_cause_symbol_xtick,bn_out.low_peak_prob,'-v') plt.ylabel('Likelihood',fontsize='large') plt.xticks(bn_out.all_cause_symbol_xtick,bn_out.all_cause_symbol_xlabel,rotation=270, fontsize=10) plt.tick_params(labelsize='large') plt.legend(('High Peak', 'Low Peak'),loc='center right') plt.tick_params(labelsize='large') plt.grid();plt.ylim([-0.05,1.05]) plt.title('Likelihood of '+ str(remove_dot(convert_gsbc_name(p_name)))+\ ' given '+'\n'+str(remove_dot(convert_gsbc_name(bn_out.all_cause_label)))) png_name=fig_name+'_'+str(uuid.uuid4().get_hex().upper()[0:2]) fig.savefig(fig_dir+png_name+'.png', bbox_inches='tight') # Compare with the raw data #------------------------------------------- start_t=datetime.datetime(2013, 8, 9, 0, 0, 0) end_t=datetime.datetime(2013, 8, 13, 0, 0, 0) data_x=get_data_set([label_[2:] for label_ in bn_out.all_cause_label]+[p_name[2:]],start_t,end_t) png_namex=plot_data_x(data_x,stype='raw',smark='-^') png_namex=plot_data_x(data_x,stype='diff',smark='-^') name_list_out=[[p_name]+bn_out.all_cause_label,convert_gsbc_name([p_name]+bn_out.all_cause_label)] pprint.pprint(np.array(name_list_out).T) pprint.pprint(name_list_out) start_t=datetime.datetime(2013, 7, 1, 0, 0, 0) end_t=datetime.datetime(2013, 12, 31, 0, 0, 0) data_x=get_data_set([label_[2:] for label_ in bn_out.s_labels],start_t,end_t) png_namex=plot_data_x(data_x,stype='raw',smark='-^',fontsize='small',xpos=0.00) png_namex=plot_data_x(data_x,stype='diff',smark='-^') """ png_name=str(uuid.uuid4().get_hex().upper()[0:6]) fig.savefig(fig_dir+png_name+'.png', bbox_inches='tight') print '----------------------------------------' print 'Likelihoods ' print '----------------------------------------' print cause_label+['Low Peak','High Peak'] print '----------------------------------------' print np.vstack((np.int0(peak_state).T,np.int0(100*lowpeak_prob).T,np.int0(100*peak_prob).T)).T print '----------------------------------------' s_val_set=set(peak_state[:,0]) m_val_set=set(peak_state[:,1]) Z_peak=np.ones((len(s_val_set),len(m_val_set)))*np.inf for i,s_val in enumerate(s_val_set): for j,m_val in enumerate(m_val_set): idx=np.nonzero((peak_state[:,0]==s_val)&(peak_state[:,1]==m_val))[0][0] Z_peak[i,j]=peak_prob[idx] s_val_set=set(lowpeak_state[:,0]) m_val_set=set(lowpeak_state[:,1]) Z_lowpeak=np.ones((len(s_val_set),len(m_val_set)))*np.inf for i,s_val in enumerate(s_val_set): for j,m_val in enumerate(m_val_set): idx=np.nonzero((lowpeak_state[:,0]==s_val)&(lowpeak_state[:,1]==m_val))[0][0] Z_lowpeak[i,j]=lowpeak_prob[idx] Z_lowpeak=lowpeak_prob.reshape((len(s_val_set),len(m_val_set))) Z_peak=peak_prob.reshape((len(s_val_set),len(m_val_set))) fig1=figure() im = plt.imshow(Z_peak, cmap='hot',vmin=0, vmax=1,aspect='auto') plt.colorbar(im, orientation='horizontal') plt.xticks(monthDict.keys(),monthDict.values(),fontsize='large') plt.yticks(range(len(s_val_set)),list(s_val_set),fontsize='large') plt.xlabel(cause_label[1],fontsize='large') plt.ylabel(cause_label[0],fontsize='large') plt.title('Likelihood of High-Peak') png_name=str(uuid.uuid4().get_hex().upper()[0:6]) fig1.savefig(fig_dir+png_name+'.png', bbox_inches='tight') fig2=figure() im = plt.imshow(Z_lowpeak, cmap='hot',vmin=0, vmax=1,aspect='auto') plt.colorbar(im, orientation='horizontal') plt.xticks(monthDict.keys(),monthDict.values(),fontsize='large') plt.yticks(range(len(s_val_set)),list(s_val_set),fontsize='large') plt.xlabel(cause_label[1],fontsize='large') plt.ylabel(cause_label[0],fontsize='large') plt.title('Likelihood of Low-Peak') png_name=str(uuid.uuid4().get_hex().upper()[0:6]) fig2.savefig(fig_dir+png_name+'.png', bbox_inches='tight') """ print '**************************** End of Program ****************************'
gpl-2.0
gdiminin/HaSAPPy
HaSAPPy/IIDefinition.py
1
6622
# -*- coding: utf-8 -*- """ Created on Tue Mar 15 08:33:32 2016 @author: GDM """ ##### Importing modules ##### import HTSeq import cPickle as pickle import pandas as pd from collections import Counter import os from HaSAPPy.HaSAPPY_time import * import itertools ############################################################ #1) Defining the Class Library class Library(): """...defintion...""" def __init__(self,exp,input_): self.name = exp self.input = input_ self.informations = {'Total':'nd','Aligned':'nd','Unique_reads':'nd','Insertions':'nd','I.I.':'nd'} self.raw = pd.Series() #2) Function library_gneration def library_generation (exp, Info): #Generation of the Class Library specific for "exp" library = Library(exp,Info.IIDefinition.input_files[Info.IIDefinition.lib_names.index(exp)]) print library.name string ='\n\n***\tInedependent Insertions (I.I.) definition\t***\n\n- Input file: %s\n- Pair ends: %s\n- Alignment cutoff: %s\n- Remove duplicates: %s\n- Insertion cutoff: %i' %(library.input, Info.General.pair_ends,Info.IIDefinition.fidelity_limit,Info.IIDefinition.reads_duplicate,Info.IIDefinition.ins_iv) Info.print_save(exp,string) startTime = getCurrTime() string = '\tSelection of Insertions (I.): %s' %startTime Info.print_save(exp,string) aligned_file = HTSeq.SAM_Reader(library.input) #aligned_file = [seq for seq in itertools.islice(aligned_file,100000)] insertions_counts = Counter() count_aligned = 0 count_GoodQualityAlignment = 0 count_total = 0 for algnt in aligned_file: if algnt.aligned: if algnt.iv.chrom.startswith('chr'): chromosome_style = '' else: chromosome_style = 'chr' break if Info.General.pair_ends: #Pair ends library for bundle in HTSeq.pair_SAM_alignments(aligned_file, bundle=True): if len(bundle) != 1: continue # Skip multiple alignments first_almnt, second_almnt = bundle[0] # extract pair if first_almnt.aligned and second_almnt.aligned: if first_almnt.aQual >= Info.IIDefinition.fidelity_limit: ins = HTSeq.GenomicPosition('%s%s' %(chromosome_style,str(first_almnt.iv.chrom)),first_almnt.iv.start_d,first_almnt.iv.strand) insertions_counts[ins] +=1 count_GoodQualityAlignment +=1 count_aligned +=1 count_total +=1 else: #Single ends library for algnt in aligned_file: if algnt.aligned: if algnt.aQual >= Info.IIDefinition.fidelity_limit: ins = HTSeq.GenomicPosition('%s%s' %(chromosome_style,str(algnt.iv.chrom)),algnt.iv.start_d,algnt.iv.strand) insertions_counts[ins] +=1 count_GoodQualityAlignment +=1 count_aligned +=1 count_total +=1 del aligned_file string = '\t-Total reads: %i\n\t-Aligned reads: %i\n\t-Aligned Reads trusted: %i\n\t-Insertions identified: %i' %(count_total,count_aligned,count_GoodQualityAlignment, len(insertions_counts.keys())) Info.print_save(exp,string) string = '\tRunTime: %s' % computeRunTime(startTime, getCurrTime()) Info.print_save(exp,string) ### To collapse insertions in insertion array that are in the same interval (4bps) startTime = getCurrTime() string = 'Define Independent Insertions\n\tStarted: %s' %startTime Info.print_save(exp,string) insertions_series = pd.Series(insertions_counts, index = insertions_counts.keys()) del insertions_counts insertions_order = insertions_series.copy() insertions_order.sort_values(ascending = False) insertions_genomicarray = HTSeq.GenomicArray("auto",stranded = True) count_indipendent_insertions = 0 count_indipendent_insertions_aborted = 0 insertions_tuple = zip(insertions_order.index,insertions_order.values) del insertions_order del insertions_series for ins in insertions_tuple: insertions_genomicarray[ins[0]] = ins[1] insertions_collapsed = {} for n in insertions_tuple: i = n[0] if insertions_genomicarray[i]>0: counted = 0 iv_i = HTSeq.GenomicInterval(i.chrom,i.start-2,i.start+2,i.strand) for i_2 in iv_i.xrange(step=1): try: counted += insertions_genomicarray[i_2] insertions_genomicarray[i_2] = 0 except IndexError: string = "\t!!!Skipped from analysis: %s" % i_2 Info.print_save(exp,string) continue if counted >= Info.IIDefinition.ins_iv: if insertions_collapsed.has_key(i): insertions_collapsed[i] += counted else: insertions_collapsed[i] = counted count_indipendent_insertions +=1 else: count_indipendent_insertions_aborted +=1 string = '\t-Total insertions: %i\n\t-Independent Insertions (I.I.): %i' % ((count_indipendent_insertions + count_indipendent_insertions_aborted), count_indipendent_insertions) Info.print_save(exp,string) string = '\tRunTime: %s' % computeRunTime(startTime, getCurrTime()) Info.print_save(exp,string) ###Storing data in library class that will be returned modifed as result of the function library.informations['Total'] = count_total library.informations['Aligned'] = count_aligned library.informations['Insertions'] = count_indipendent_insertions library.informations['II'] = count_indipendent_insertions if Info.IIDefinition.reads_duplicate: library.informations['Unique_reads'] = count_reads library.raw = pd.Series(insertions_collapsed, index = insertions_collapsed.keys()) #####Store the class!!!!!##### location = os.path.join(Info.General.storing_loc,exp + '_' +Info.General.date,'raw',exp + '_IIRawdata.pkl') with open (location,'wb') as saving: pickle.dump(library,saving) #####END the program##### string = 'Informations stored in %s\n***\tEND of Inedependent Insertions (I.I.) definition\t***' % location Info.print_save(exp,string) return library def load(Info): for exp in Info.IIDefinition.lib_names: library_generation(exp,Info)
mit
clemkoa/scikit-learn
sklearn/metrics/cluster/unsupervised.py
30
10322
"""Unsupervised evaluation metrics.""" # Authors: Robert Layton <[email protected]> # Arnaud Fouchet <[email protected]> # Thierry Guillemot <[email protected]> # License: BSD 3 clause import numpy as np from ...utils import check_random_state from ...utils import check_X_y from ..pairwise import pairwise_distances from ...preprocessing import LabelEncoder def check_number_of_labels(n_labels, n_samples): if not 1 < n_labels < n_samples: raise ValueError("Number of labels is %d. Valid values are 2 " "to n_samples - 1 (inclusive)" % n_labels) def silhouette_score(X, labels, metric='euclidean', sample_size=None, random_state=None, **kwds): """Compute the mean Silhouette Coefficient of all samples. The Silhouette Coefficient is calculated using the mean intra-cluster distance (``a``) and the mean nearest-cluster distance (``b``) for each sample. The Silhouette Coefficient for a sample is ``(b - a) / max(a, b)``. To clarify, ``b`` is the distance between a sample and the nearest cluster that the sample is not a part of. Note that Silhouette Coefficient is only defined if number of labels is 2 <= n_labels <= n_samples - 1. This function returns the mean Silhouette Coefficient over all samples. To obtain the values for each sample, use :func:`silhouette_samples`. The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters. Negative values generally indicate that a sample has been assigned to the wrong cluster, as a different cluster is more similar. Read more in the :ref:`User Guide <silhouette_coefficient>`. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise distances between samples, or a feature array. labels : array, shape = [n_samples] Predicted labels for each sample. metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by :func:`metrics.pairwise.pairwise_distances <sklearn.metrics.pairwise.pairwise_distances>`. If X is the distance array itself, use ``metric="precomputed"``. sample_size : int or None The size of the sample to use when computing the Silhouette Coefficient on a random subset of the data. If ``sample_size is None``, no sampling is used. random_state : int, RandomState instance or None, optional (default=None) The generator used to randomly select a subset of samples. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Used when ``sample_size is not None``. **kwds : optional keyword parameters Any further parameters are passed directly to the distance function. If using a scipy.spatial.distance metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- silhouette : float Mean Silhouette Coefficient for all samples. References ---------- .. [1] `Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis". Computational and Applied Mathematics 20: 53-65. <http://www.sciencedirect.com/science/article/pii/0377042787901257>`_ .. [2] `Wikipedia entry on the Silhouette Coefficient <https://en.wikipedia.org/wiki/Silhouette_(clustering)>`_ """ if sample_size is not None: X, labels = check_X_y(X, labels, accept_sparse=['csc', 'csr']) random_state = check_random_state(random_state) indices = random_state.permutation(X.shape[0])[:sample_size] if metric == "precomputed": X, labels = X[indices].T[indices].T, labels[indices] else: X, labels = X[indices], labels[indices] return np.mean(silhouette_samples(X, labels, metric=metric, **kwds)) def silhouette_samples(X, labels, metric='euclidean', **kwds): """Compute the Silhouette Coefficient for each sample. The Silhouette Coefficient is a measure of how well samples are clustered with samples that are similar to themselves. Clustering models with a high Silhouette Coefficient are said to be dense, where samples in the same cluster are similar to each other, and well separated, where samples in different clusters are not very similar to each other. The Silhouette Coefficient is calculated using the mean intra-cluster distance (``a``) and the mean nearest-cluster distance (``b``) for each sample. The Silhouette Coefficient for a sample is ``(b - a) / max(a, b)``. Note that Silhouette Coefficient is only defined if number of labels is 2 <= n_labels <= n_samples - 1. This function returns the Silhouette Coefficient for each sample. The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters. Read more in the :ref:`User Guide <silhouette_coefficient>`. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise distances between samples, or a feature array. labels : array, shape = [n_samples] label values for each sample metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by :func:`sklearn.metrics.pairwise.pairwise_distances`. If X is the distance array itself, use "precomputed" as the metric. **kwds : optional keyword parameters Any further parameters are passed directly to the distance function. If using a ``scipy.spatial.distance`` metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- silhouette : array, shape = [n_samples] Silhouette Coefficient for each samples. References ---------- .. [1] `Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis". Computational and Applied Mathematics 20: 53-65. <http://www.sciencedirect.com/science/article/pii/0377042787901257>`_ .. [2] `Wikipedia entry on the Silhouette Coefficient <https://en.wikipedia.org/wiki/Silhouette_(clustering)>`_ """ X, labels = check_X_y(X, labels, accept_sparse=['csc', 'csr']) le = LabelEncoder() labels = le.fit_transform(labels) check_number_of_labels(len(le.classes_), X.shape[0]) distances = pairwise_distances(X, metric=metric, **kwds) unique_labels = le.classes_ n_samples_per_label = np.bincount(labels, minlength=len(unique_labels)) # For sample i, store the mean distance of the cluster to which # it belongs in intra_clust_dists[i] intra_clust_dists = np.zeros(distances.shape[0], dtype=distances.dtype) # For sample i, store the mean distance of the second closest # cluster in inter_clust_dists[i] inter_clust_dists = np.inf + intra_clust_dists for curr_label in range(len(unique_labels)): # Find inter_clust_dist for all samples belonging to the same # label. mask = labels == curr_label current_distances = distances[mask] # Leave out current sample. n_samples_curr_lab = n_samples_per_label[curr_label] - 1 if n_samples_curr_lab != 0: intra_clust_dists[mask] = np.sum( current_distances[:, mask], axis=1) / n_samples_curr_lab # Now iterate over all other labels, finding the mean # cluster distance that is closest to every sample. for other_label in range(len(unique_labels)): if other_label != curr_label: other_mask = labels == other_label other_distances = np.mean( current_distances[:, other_mask], axis=1) inter_clust_dists[mask] = np.minimum( inter_clust_dists[mask], other_distances) sil_samples = inter_clust_dists - intra_clust_dists sil_samples /= np.maximum(intra_clust_dists, inter_clust_dists) # score 0 for clusters of size 1, according to the paper sil_samples[n_samples_per_label.take(labels) == 1] = 0 return sil_samples def calinski_harabaz_score(X, labels): """Compute the Calinski and Harabaz score. The score is defined as ratio between the within-cluster dispersion and the between-cluster dispersion. Read more in the :ref:`User Guide <calinski_harabaz_index>`. Parameters ---------- X : array-like, shape (``n_samples``, ``n_features``) List of ``n_features``-dimensional data points. Each row corresponds to a single data point. labels : array-like, shape (``n_samples``,) Predicted labels for each sample. Returns ------- score : float The resulting Calinski-Harabaz score. References ---------- .. [1] `T. Calinski and J. Harabasz, 1974. "A dendrite method for cluster analysis". Communications in Statistics <http://www.tandfonline.com/doi/abs/10.1080/03610927408827101>`_ """ X, labels = check_X_y(X, labels) le = LabelEncoder() labels = le.fit_transform(labels) n_samples, _ = X.shape n_labels = len(le.classes_) check_number_of_labels(n_labels, n_samples) extra_disp, intra_disp = 0., 0. mean = np.mean(X, axis=0) for k in range(n_labels): cluster_k = X[labels == k] mean_k = np.mean(cluster_k, axis=0) extra_disp += len(cluster_k) * np.sum((mean_k - mean) ** 2) intra_disp += np.sum((cluster_k - mean_k) ** 2) return (1. if intra_disp == 0. else extra_disp * (n_samples - n_labels) / (intra_disp * (n_labels - 1.)))
bsd-3-clause
sunny94/temp
sympy/physics/quantum/tests/test_circuitplot.py
24
2071
from sympy.physics.quantum.circuitplot import labeller, render_label, Mz, CreateOneQubitGate,\ CreateCGate from sympy.physics.quantum.gate import CNOT, H, X, Z, SWAP, CGate, S, T from sympy.external import import_module from sympy.utilities.pytest import skip mpl = import_module('matplotlib') def test_render_label(): assert render_label('q0') == r'$|q0\rangle$' assert render_label('q0', {'q0': '0'}) == r'$|q0\rangle=|0\rangle$' def test_Mz(): assert str(Mz(0)) == 'Mz(0)' def test_create1(): Qgate = CreateOneQubitGate('Q') assert str(Qgate(0)) == 'Q(0)' def test_createc(): Qgate = CreateCGate('Q') assert str(Qgate([1],0)) == 'C((1),Q(0))' def test_labeller(): """Test the labeller utility""" assert labeller(2) == ['q_1', 'q_0'] assert labeller(3,'j') == ['j_2', 'j_1', 'j_0'] def test_cnot(): """Test a simple cnot circuit. Right now this only makes sure the code doesn't raise an exception, and some simple properties """ if not mpl: skip("matplotlib not installed") else: from sympy.physics.quantum.circuitplot import CircuitPlot c = CircuitPlot(CNOT(1,0),2,labels=labeller(2)) assert c.ngates == 2 assert c.nqubits == 2 assert c.labels == ['q_1', 'q_0'] c = CircuitPlot(CNOT(1,0),2) assert c.ngates == 2 assert c.nqubits == 2 assert c.labels == [] def test_ex1(): if not mpl: skip("matplotlib not installed") else: from sympy.physics.quantum.circuitplot import CircuitPlot c = CircuitPlot(CNOT(1,0)*H(1),2,labels=labeller(2)) assert c.ngates == 2 assert c.nqubits == 2 assert c.labels == ['q_1', 'q_0'] def test_ex4(): if not mpl: skip("matplotlib not installed") else: from sympy.physics.quantum.circuitplot import CircuitPlot c = CircuitPlot(SWAP(0,2)*H(0)* CGate((0,),S(1)) *H(1)*CGate((0,),T(2))\ *CGate((1,),S(2))*H(2),3,labels=labeller(3,'j')) assert c.ngates == 7 assert c.nqubits == 3 assert c.labels == ['j_2', 'j_1', 'j_0']
bsd-3-clause
0asa/scikit-learn
examples/ensemble/plot_forest_iris.py
335
6271
""" ==================================================================== Plot the decision surfaces of ensembles of trees on the iris dataset ==================================================================== Plot the decision surfaces of forests of randomized trees trained on pairs of features of the iris dataset. This plot compares the decision surfaces learned by a decision tree classifier (first column), by a random forest classifier (second column), by an extra- trees classifier (third column) and by an AdaBoost classifier (fourth column). In the first row, the classifiers are built using the sepal width and the sepal length features only, on the second row using the petal length and sepal length only, and on the third row using the petal width and the petal length only. In descending order of quality, when trained (outside of this example) on all 4 features using 30 estimators and scored using 10 fold cross validation, we see:: ExtraTreesClassifier() # 0.95 score RandomForestClassifier() # 0.94 score AdaBoost(DecisionTree(max_depth=3)) # 0.94 score DecisionTree(max_depth=None) # 0.94 score Increasing `max_depth` for AdaBoost lowers the standard deviation of the scores (but the average score does not improve). See the console's output for further details about each model. In this example you might try to: 1) vary the ``max_depth`` for the ``DecisionTreeClassifier`` and ``AdaBoostClassifier``, perhaps try ``max_depth=3`` for the ``DecisionTreeClassifier`` or ``max_depth=None`` for ``AdaBoostClassifier`` 2) vary ``n_estimators`` It is worth noting that RandomForests and ExtraTrees can be fitted in parallel on many cores as each tree is built independently of the others. AdaBoost's samples are built sequentially and so do not use multiple cores. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import clone from sklearn.datasets import load_iris from sklearn.ensemble import (RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier) from sklearn.externals.six.moves import xrange from sklearn.tree import DecisionTreeClassifier # Parameters n_classes = 3 n_estimators = 30 plot_colors = "ryb" cmap = plt.cm.RdYlBu plot_step = 0.02 # fine step width for decision surface contours plot_step_coarser = 0.5 # step widths for coarse classifier guesses RANDOM_SEED = 13 # fix the seed on each iteration # Load data iris = load_iris() plot_idx = 1 models = [DecisionTreeClassifier(max_depth=None), RandomForestClassifier(n_estimators=n_estimators), ExtraTreesClassifier(n_estimators=n_estimators), AdaBoostClassifier(DecisionTreeClassifier(max_depth=3), n_estimators=n_estimators)] for pair in ([0, 1], [0, 2], [2, 3]): for model in models: # We only take the two corresponding features X = iris.data[:, pair] y = iris.target # Shuffle idx = np.arange(X.shape[0]) np.random.seed(RANDOM_SEED) np.random.shuffle(idx) X = X[idx] y = y[idx] # Standardize mean = X.mean(axis=0) std = X.std(axis=0) X = (X - mean) / std # Train clf = clone(model) clf = model.fit(X, y) scores = clf.score(X, y) # Create a title for each column and the console by using str() and # slicing away useless parts of the string model_title = str(type(model)).split(".")[-1][:-2][:-len("Classifier")] model_details = model_title if hasattr(model, "estimators_"): model_details += " with {} estimators".format(len(model.estimators_)) print( model_details + " with features", pair, "has a score of", scores ) plt.subplot(3, 4, plot_idx) if plot_idx <= len(models): # Add a title at the top of each column plt.title(model_title) # Now plot the decision boundary using a fine mesh as input to a # filled contour plot x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)) # Plot either a single DecisionTreeClassifier or alpha blend the # decision surfaces of the ensemble of classifiers if isinstance(model, DecisionTreeClassifier): Z = model.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=cmap) else: # Choose alpha blend level with respect to the number of estimators # that are in use (noting that AdaBoost can use fewer estimators # than its maximum if it achieves a good enough fit early on) estimator_alpha = 1.0 / len(model.estimators_) for tree in model.estimators_: Z = tree.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, alpha=estimator_alpha, cmap=cmap) # Build a coarser grid to plot a set of ensemble classifications # to show how these are different to what we see in the decision # surfaces. These points are regularly space and do not have a black outline xx_coarser, yy_coarser = np.meshgrid(np.arange(x_min, x_max, plot_step_coarser), np.arange(y_min, y_max, plot_step_coarser)) Z_points_coarser = model.predict(np.c_[xx_coarser.ravel(), yy_coarser.ravel()]).reshape(xx_coarser.shape) cs_points = plt.scatter(xx_coarser, yy_coarser, s=15, c=Z_points_coarser, cmap=cmap, edgecolors="none") # Plot the training points, these are clustered together and have a # black outline for i, c in zip(xrange(n_classes), plot_colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=c, label=iris.target_names[i], cmap=cmap) plot_idx += 1 # move on to the next plot in sequence plt.suptitle("Classifiers on feature subsets of the Iris dataset") plt.axis("tight") plt.show()
bsd-3-clause
aetilley/scikit-learn
sklearn/kernel_approximation.py
258
17973
""" The :mod:`sklearn.kernel_approximation` module implements several approximate kernel feature maps base on Fourier transforms. """ # Author: Andreas Mueller <[email protected]> # # License: BSD 3 clause import warnings import numpy as np import scipy.sparse as sp from scipy.linalg import svd from .base import BaseEstimator from .base import TransformerMixin from .utils import check_array, check_random_state, as_float_array from .utils.extmath import safe_sparse_dot from .utils.validation import check_is_fitted from .metrics.pairwise import pairwise_kernels class RBFSampler(BaseEstimator, TransformerMixin): """Approximates feature map of an RBF kernel by Monte Carlo approximation of its Fourier transform. It implements a variant of Random Kitchen Sinks.[1] Read more in the :ref:`User Guide <rbf_kernel_approx>`. Parameters ---------- gamma : float Parameter of RBF kernel: exp(-gamma * x^2) n_components : int Number of Monte Carlo samples per original feature. Equals the dimensionality of the computed feature space. random_state : {int, RandomState}, optional If int, random_state is the seed used by the random number generator; if RandomState instance, random_state is the random number generator. Notes ----- See "Random Features for Large-Scale Kernel Machines" by A. Rahimi and Benjamin Recht. [1] "Weighted Sums of Random Kitchen Sinks: Replacing minimization with randomization in learning" by A. Rahimi and Benjamin Recht. (http://www.eecs.berkeley.edu/~brecht/papers/08.rah.rec.nips.pdf) """ def __init__(self, gamma=1., n_components=100, random_state=None): self.gamma = gamma self.n_components = n_components self.random_state = random_state def fit(self, X, y=None): """Fit the model with X. Samples random projection according to n_features. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the transformer. """ X = check_array(X, accept_sparse='csr') random_state = check_random_state(self.random_state) n_features = X.shape[1] self.random_weights_ = (np.sqrt(2 * self.gamma) * random_state.normal( size=(n_features, self.n_components))) self.random_offset_ = random_state.uniform(0, 2 * np.pi, size=self.n_components) return self def transform(self, X, y=None): """Apply the approximate feature map to X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) New data, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ check_is_fitted(self, 'random_weights_') X = check_array(X, accept_sparse='csr') projection = safe_sparse_dot(X, self.random_weights_) projection += self.random_offset_ np.cos(projection, projection) projection *= np.sqrt(2.) / np.sqrt(self.n_components) return projection class SkewedChi2Sampler(BaseEstimator, TransformerMixin): """Approximates feature map of the "skewed chi-squared" kernel by Monte Carlo approximation of its Fourier transform. Read more in the :ref:`User Guide <skewed_chi_kernel_approx>`. Parameters ---------- skewedness : float "skewedness" parameter of the kernel. Needs to be cross-validated. n_components : int number of Monte Carlo samples per original feature. Equals the dimensionality of the computed feature space. random_state : {int, RandomState}, optional If int, random_state is the seed used by the random number generator; if RandomState instance, random_state is the random number generator. References ---------- See "Random Fourier Approximations for Skewed Multiplicative Histogram Kernels" by Fuxin Li, Catalin Ionescu and Cristian Sminchisescu. See also -------- AdditiveChi2Sampler : A different approach for approximating an additive variant of the chi squared kernel. sklearn.metrics.pairwise.chi2_kernel : The exact chi squared kernel. """ def __init__(self, skewedness=1., n_components=100, random_state=None): self.skewedness = skewedness self.n_components = n_components self.random_state = random_state def fit(self, X, y=None): """Fit the model with X. Samples random projection according to n_features. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the transformer. """ X = check_array(X) random_state = check_random_state(self.random_state) n_features = X.shape[1] uniform = random_state.uniform(size=(n_features, self.n_components)) # transform by inverse CDF of sech self.random_weights_ = (1. / np.pi * np.log(np.tan(np.pi / 2. * uniform))) self.random_offset_ = random_state.uniform(0, 2 * np.pi, size=self.n_components) return self def transform(self, X, y=None): """Apply the approximate feature map to X. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ check_is_fitted(self, 'random_weights_') X = as_float_array(X, copy=True) X = check_array(X, copy=False) if (X < 0).any(): raise ValueError("X may not contain entries smaller than zero.") X += self.skewedness np.log(X, X) projection = safe_sparse_dot(X, self.random_weights_) projection += self.random_offset_ np.cos(projection, projection) projection *= np.sqrt(2.) / np.sqrt(self.n_components) return projection class AdditiveChi2Sampler(BaseEstimator, TransformerMixin): """Approximate feature map for additive chi2 kernel. Uses sampling the fourier transform of the kernel characteristic at regular intervals. Since the kernel that is to be approximated is additive, the components of the input vectors can be treated separately. Each entry in the original space is transformed into 2*sample_steps+1 features, where sample_steps is a parameter of the method. Typical values of sample_steps include 1, 2 and 3. Optimal choices for the sampling interval for certain data ranges can be computed (see the reference). The default values should be reasonable. Read more in the :ref:`User Guide <additive_chi_kernel_approx>`. Parameters ---------- sample_steps : int, optional Gives the number of (complex) sampling points. sample_interval : float, optional Sampling interval. Must be specified when sample_steps not in {1,2,3}. Notes ----- This estimator approximates a slightly different version of the additive chi squared kernel then ``metric.additive_chi2`` computes. See also -------- SkewedChi2Sampler : A Fourier-approximation to a non-additive variant of the chi squared kernel. sklearn.metrics.pairwise.chi2_kernel : The exact chi squared kernel. sklearn.metrics.pairwise.additive_chi2_kernel : The exact additive chi squared kernel. References ---------- See `"Efficient additive kernels via explicit feature maps" <http://www.robots.ox.ac.uk/~vedaldi/assets/pubs/vedaldi11efficient.pdf>`_ A. Vedaldi and A. Zisserman, Pattern Analysis and Machine Intelligence, 2011 """ def __init__(self, sample_steps=2, sample_interval=None): self.sample_steps = sample_steps self.sample_interval = sample_interval def fit(self, X, y=None): """Set parameters.""" X = check_array(X, accept_sparse='csr') if self.sample_interval is None: # See reference, figure 2 c) if self.sample_steps == 1: self.sample_interval_ = 0.8 elif self.sample_steps == 2: self.sample_interval_ = 0.5 elif self.sample_steps == 3: self.sample_interval_ = 0.4 else: raise ValueError("If sample_steps is not in [1, 2, 3]," " you need to provide sample_interval") else: self.sample_interval_ = self.sample_interval return self def transform(self, X, y=None): """Apply approximate feature map to X. Parameters ---------- X : {array-like, sparse matrix}, shape = (n_samples, n_features) Returns ------- X_new : {array, sparse matrix}, \ shape = (n_samples, n_features * (2*sample_steps + 1)) Whether the return value is an array of sparse matrix depends on the type of the input X. """ msg = ("%(name)s is not fitted. Call fit to set the parameters before" " calling transform") check_is_fitted(self, "sample_interval_", msg=msg) X = check_array(X, accept_sparse='csr') sparse = sp.issparse(X) # check if X has negative values. Doesn't play well with np.log. if ((X.data if sparse else X) < 0).any(): raise ValueError("Entries of X must be non-negative.") # zeroth component # 1/cosh = sech # cosh(0) = 1.0 transf = self._transform_sparse if sparse else self._transform_dense return transf(X) def _transform_dense(self, X): non_zero = (X != 0.0) X_nz = X[non_zero] X_step = np.zeros_like(X) X_step[non_zero] = np.sqrt(X_nz * self.sample_interval_) X_new = [X_step] log_step_nz = self.sample_interval_ * np.log(X_nz) step_nz = 2 * X_nz * self.sample_interval_ for j in range(1, self.sample_steps): factor_nz = np.sqrt(step_nz / np.cosh(np.pi * j * self.sample_interval_)) X_step = np.zeros_like(X) X_step[non_zero] = factor_nz * np.cos(j * log_step_nz) X_new.append(X_step) X_step = np.zeros_like(X) X_step[non_zero] = factor_nz * np.sin(j * log_step_nz) X_new.append(X_step) return np.hstack(X_new) def _transform_sparse(self, X): indices = X.indices.copy() indptr = X.indptr.copy() data_step = np.sqrt(X.data * self.sample_interval_) X_step = sp.csr_matrix((data_step, indices, indptr), shape=X.shape, dtype=X.dtype, copy=False) X_new = [X_step] log_step_nz = self.sample_interval_ * np.log(X.data) step_nz = 2 * X.data * self.sample_interval_ for j in range(1, self.sample_steps): factor_nz = np.sqrt(step_nz / np.cosh(np.pi * j * self.sample_interval_)) data_step = factor_nz * np.cos(j * log_step_nz) X_step = sp.csr_matrix((data_step, indices, indptr), shape=X.shape, dtype=X.dtype, copy=False) X_new.append(X_step) data_step = factor_nz * np.sin(j * log_step_nz) X_step = sp.csr_matrix((data_step, indices, indptr), shape=X.shape, dtype=X.dtype, copy=False) X_new.append(X_step) return sp.hstack(X_new) class Nystroem(BaseEstimator, TransformerMixin): """Approximate a kernel map using a subset of the training data. Constructs an approximate feature map for an arbitrary kernel using a subset of the data as basis. Read more in the :ref:`User Guide <nystroem_kernel_approx>`. Parameters ---------- kernel : string or callable, default="rbf" Kernel map to be approximated. A callable should accept two arguments and the keyword arguments passed to this object as kernel_params, and should return a floating point number. n_components : int Number of features to construct. How many data points will be used to construct the mapping. gamma : float, default=None Gamma parameter for the RBF, polynomial, exponential chi2 and sigmoid kernels. Interpretation of the default value is left to the kernel; see the documentation for sklearn.metrics.pairwise. Ignored by other kernels. degree : float, default=3 Degree of the polynomial kernel. Ignored by other kernels. coef0 : float, default=1 Zero coefficient for polynomial and sigmoid kernels. Ignored by other kernels. kernel_params : mapping of string to any, optional Additional parameters (keyword arguments) for kernel function passed as callable object. random_state : {int, RandomState}, optional If int, random_state is the seed used by the random number generator; if RandomState instance, random_state is the random number generator. Attributes ---------- components_ : array, shape (n_components, n_features) Subset of training points used to construct the feature map. component_indices_ : array, shape (n_components) Indices of ``components_`` in the training set. normalization_ : array, shape (n_components, n_components) Normalization matrix needed for embedding. Square root of the kernel matrix on ``components_``. References ---------- * Williams, C.K.I. and Seeger, M. "Using the Nystroem method to speed up kernel machines", Advances in neural information processing systems 2001 * T. Yang, Y. Li, M. Mahdavi, R. Jin and Z. Zhou "Nystroem Method vs Random Fourier Features: A Theoretical and Empirical Comparison", Advances in Neural Information Processing Systems 2012 See also -------- RBFSampler : An approximation to the RBF kernel using random Fourier features. sklearn.metrics.pairwise.kernel_metrics : List of built-in kernels. """ def __init__(self, kernel="rbf", gamma=None, coef0=1, degree=3, kernel_params=None, n_components=100, random_state=None): self.kernel = kernel self.gamma = gamma self.coef0 = coef0 self.degree = degree self.kernel_params = kernel_params self.n_components = n_components self.random_state = random_state def fit(self, X, y=None): """Fit estimator to data. Samples a subset of training points, computes kernel on these and computes normalization matrix. Parameters ---------- X : array-like, shape=(n_samples, n_feature) Training data. """ X = check_array(X, accept_sparse='csr') rnd = check_random_state(self.random_state) n_samples = X.shape[0] # get basis vectors if self.n_components > n_samples: # XXX should we just bail? n_components = n_samples warnings.warn("n_components > n_samples. This is not possible.\n" "n_components was set to n_samples, which results" " in inefficient evaluation of the full kernel.") else: n_components = self.n_components n_components = min(n_samples, n_components) inds = rnd.permutation(n_samples) basis_inds = inds[:n_components] basis = X[basis_inds] basis_kernel = pairwise_kernels(basis, metric=self.kernel, filter_params=True, **self._get_kernel_params()) # sqrt of kernel matrix on basis vectors U, S, V = svd(basis_kernel) S = np.maximum(S, 1e-12) self.normalization_ = np.dot(U * 1. / np.sqrt(S), V) self.components_ = basis self.component_indices_ = inds return self def transform(self, X): """Apply feature map to X. Computes an approximate feature map using the kernel between some training points and X. Parameters ---------- X : array-like, shape=(n_samples, n_features) Data to transform. Returns ------- X_transformed : array, shape=(n_samples, n_components) Transformed data. """ check_is_fitted(self, 'components_') X = check_array(X, accept_sparse='csr') kernel_params = self._get_kernel_params() embedded = pairwise_kernels(X, self.components_, metric=self.kernel, filter_params=True, **kernel_params) return np.dot(embedded, self.normalization_.T) def _get_kernel_params(self): params = self.kernel_params if params is None: params = {} if not callable(self.kernel): params['gamma'] = self.gamma params['degree'] = self.degree params['coef0'] = self.coef0 return params
bsd-3-clause
Unofficial-Extend-Project-Mirror/openfoam-extend-Breeder-other-scripting-PyFoam
PyFoam/Applications/ConvertToCSV.py
1
13416
""" Application-class that implements pyFoamConvertToCSV.py """ from optparse import OptionGroup from .PyFoamApplication import PyFoamApplication from .CommonReadWriteCSV import CommonReadWriteCSV from PyFoam.Basics.SpreadsheetData import SpreadsheetData from PyFoam.ThirdParty.six import print_ from os import path,listdir from copy import deepcopy from glob import glob hasXlsxWriter=False try: import xlsxwriter hasXlsxWriter=True except ImportError: pass class ConvertToCSV(PyFoamApplication, CommonReadWriteCSV): def __init__(self, args=None, **kwargs): description="""\ Takes a plain file with column-oriented data and converts it to a csv-file. If more than one file are specified, they are joined according to the first column. Note: the first file determines the resolution of the time-axis """ if not hasXlsxWriter: description+=""" Warning: The module 'xlsxwriter' is not installed. Therefor no addition of formulas to excel files is possible""" CommonReadWriteCSV.__init__(self) PyFoamApplication.__init__(self, args=args, description=description, usage="%prog <source> ... <dest.csv>", interspersed=True, changeVersion=False, nr=2, exactNr=False, **kwargs) def addOptions(self): CommonReadWriteCSV.addOptions(self) inp=OptionGroup(self.parser, "Input", "Manipulating the input data") self.parser.add_option_group(inp) inp.add_option("--strip-characters", action="store", dest="stripCharacters", default=None, help="A string with the characters that should be stripped from the input file before it is processed. For instance '()'") inp.add_option("--replace-first-line", action="store", dest="replaceFirstLine", default=None, help="Replace the first line of the input with this string") how=OptionGroup(self.parser, "How", "How the data should be joined") self.parser.add_option_group(how) how.add_option("--force", action="store_true", dest="force", default=False, help="Overwrite the destination csv if it already exists") how.add_option("--extend-data", action="store_true", dest="extendData", default=False, help="Extend the time range if other files exceed the range of the first file") how.add_option("--names-from-filename", action="store_true", dest="namesFromFilename", default=False, help="Read the value names from the file-name (assuming that names are split by _ and the names are in the tail - front is the general filename)") how.add_option("--add-times", action="store_true", dest="addTimes", default=False, help="Actually add the times from the second file instead of interpolating") how.add_option("--interpolate-new-times", action="store_true", dest="interpolateNewTime", default=False, help="Interpolate data if new times are added") how.add_option("--new-data-no-interpolate", action="store_false", dest="newDataInterpolate", default=True, help="Don't interpolate new data fields to the existing times") excel=OptionGroup(self.parser, "Excel", "Stuff for excel file output") self.parser.add_option_group(excel) excel.add_option("--add-sheets", action="store_true", dest="addSheets", default=False, help="Add the input data in unmodified form as additional sheets to the excel file") if hasXlsxWriter: excel.add_option("--add-formula-to-sheet", action="append", dest="addFormulas", default=[], help="Add columns with formulas calculated from other data. This only works when writing XLSX-files. The formula is 'nane:::ExcelFormula'. In the ExcelFormula the written column names can be used. These have to be enclosed in '' (this is necessary to allow names with spaces and digits). Can be used more than once") def run(self): dest=self.parser.getArgs()[-1] if path.exists(dest) and not self.opts.force: self.error("CSV-file",dest,"exists already. Use --force to overwrite") sources=[] for s in self.parser.getArgs()[0:-1]: if s.find("/*lastTime*/")>=0: front,back=s.split("/*lastTime*/",1) for d in glob(front): lastTime=None for f in listdir(d): if path.exists(path.join(d,f,back)): try: t=float(f) if lastTime: if t>float(lastTime): lastTime=f else: lastTime=f except ValueError: pass if lastTime: sources.append(path.join(d,lastTime,back)) else: sources.append(s) diffs=[None] if len(sources)>1: # find differing parts commonStart=1e4 commonEnd=1e4 for s in sources[1:]: a=path.abspath(sources[0]) b=path.abspath(s) start=0 end=0 for i in range(min(len(a),len(b))): start=i if a[i]!=b[i]: break commonStart=min(commonStart,start) for i in range(min(len(a),len(b))): end=i if a[-(i+1)]!=b[-(i+1)]: break commonEnd=min(commonEnd,end) diffs=[] for s in sources: b=path.abspath(s) if commonEnd>0: diffs.append(b[commonStart:-(commonEnd)]) else: diffs.append(b[commonStart:]) names=self.names title=path.splitext(path.basename(sources[0]))[0] if self.opts.namesFromFilename: if not names is None: self.error("Names already specified as",names,". Can't calc from filename") names=path.splitext(path.basename(sources[0]))[0].split("_") title=None data=SpreadsheetData(names=names, timeName=self.opts.time, validData=self.opts.columns, skip_header=self.opts.skipHeaderLines, stripCharacters=self.opts.stripCharacters, replaceFirstLine=self.opts.replaceFirstLine, validMatchRegexp=self.opts.columnsRegexp, title=title, **self.dataFormatOptions(sources[0])) rawData=[deepcopy(data)] self.printColumns(sources[0],data) self.recalcColumns(data) self.rawAddColumns(data) if self.opts.time==None: self.opts.time=data.timeName() if not diffs[0] is None: data.rename(lambda c:diffs[0]+" "+c) for i,s in enumerate(sources[1:]): names=None title=path.splitext(path.basename(s))[0] if self.opts.namesFromFilename: names=title.split("_") title=None sData=SpreadsheetData(names=names, skip_header=self.opts.skipHeaderLines, stripCharacters=self.opts.stripCharacters, replaceFirstLine=self.opts.replaceFirstLine, timeName=self.opts.time, validData=self.opts.columns, validMatchRegexp=self.opts.columnsRegexp, title=title, **self.dataFormatOptions(s)) rawData.append(sData) self.printColumns(s,sData) self.recalcColumns(sData) self.rawAddColumns(sData) if self.opts.addTimes: data.addTimes(time=self.opts.time, times=sData.data[self.opts.time], interpolate=self.opts.interpolateNewTime) for n in sData.names(): if n!=self.opts.time and (self.opts.columns==[] or data.validName(n,self.opts.columns,True)): d=data.resample(sData, n, time=self.opts.time, extendData=self.opts.extendData, noInterpolation=not self.opts.newDataInterpolate) data.append(diffs[i+1]+" "+n,d) self.joinedAddColumns(data) data.rename(self.processName,renameTime=True) data.rename(lambda c:c.strip()) data.eliminatedNames=None if len(sources)>1: self.printColumns("written data",data) if self.opts.automaticFormat: if self.getDataFormat(dest)=="excel": self.opts.writeExcel=True if self.opts.writeExcel: from pandas import ExcelWriter with ExcelWriter(dest) as writer: data.getData().to_excel(writer,sheet_name="Data") if self.opts.addSheets: for n,d in enumerate(rawData): d.getData().to_excel(writer, sheet_name="Original file %d" % n) if hasXlsxWriter: if len(self.opts.addFormulas)>0: from xlsxwriter.utility import xl_rowcol_to_cell as rowCol2Cell rows=len(data.getData()) sheet=writer.sheets["Data"] cols={} for i,n in enumerate(data.names()): cols[n]=i newC=i for f in self.opts.addFormulas: newC+=1 name,formula=f.split(":::") sheet.write(0,newC,name) cols[name]=newC splitted=[] ind=0 while ind>=0: if ind>=len(formula): break nInd=formula.find("'",ind) if nInd<0: splitted.append(formula[ind:]) ind=nInd elif nInd!=ind: splitted.append(formula[ind:nInd]) ind=nInd else: nInd=formula.find("'",ind+1) if nInd<0: self.error("No closing ' in formula",formula) name=formula[ind+1:nInd] if name not in cols: self.error("Name",name,"not in column names",cols.keys()) splitted.append(cols[name]) ind=nInd+1 for row in range(rows): cellFormula="=" for s in splitted: if type(s)==int: cellFormula+=rowCol2Cell(row+1,s) else: cellFormula+=s sheet.write(row+1,newC,cellFormula) print_("Formulas written. In LibreOffice recalculate with Ctrl+Shift+F9") else: data.writeCSV(dest, delimiter=self.opts.delimiter) # Should work with Python3 and Python2
gpl-2.0
boomsbloom/dtm-fmri
DTM/for_gensim/lib/python2.7/site-packages/matplotlib/spines.py
8
19263
from __future__ import (absolute_import, division, print_function, unicode_literals) from matplotlib.externals import six import matplotlib import matplotlib.artist as martist from matplotlib.artist import allow_rasterization from matplotlib import docstring import matplotlib.transforms as mtransforms import matplotlib.lines as mlines import matplotlib.patches as mpatches import matplotlib.path as mpath import matplotlib.cbook as cbook import numpy as np import warnings rcParams = matplotlib.rcParams class Spine(mpatches.Patch): """an axis spine -- the line noting the data area boundaries Spines are the lines connecting the axis tick marks and noting the boundaries of the data area. They can be placed at arbitrary positions. See function:`~matplotlib.spines.Spine.set_position` for more information. The default position is ``('outward',0)``. Spines are subclasses of class:`~matplotlib.patches.Patch`, and inherit much of their behavior. Spines draw a line or a circle, depending if function:`~matplotlib.spines.Spine.set_patch_line` or function:`~matplotlib.spines.Spine.set_patch_circle` has been called. Line-like is the default. """ def __str__(self): return "Spine" @docstring.dedent_interpd def __init__(self, axes, spine_type, path, **kwargs): """ - *axes* : the Axes instance containing the spine - *spine_type* : a string specifying the spine type - *path* : the path instance used to draw the spine Valid kwargs are: %(Patch)s """ super(Spine, self).__init__(**kwargs) self.axes = axes self.set_figure(self.axes.figure) self.spine_type = spine_type self.set_facecolor('none') self.set_edgecolor(rcParams['axes.edgecolor']) self.set_linewidth(rcParams['axes.linewidth']) self.set_capstyle('projecting') self.axis = None self.set_zorder(2.5) self.set_transform(self.axes.transData) # default transform self._bounds = None # default bounds self._smart_bounds = False # Defer initial position determination. (Not much support for # non-rectangular axes is currently implemented, and this lets # them pass through the spines machinery without errors.) self._position = None if not isinstance(path, matplotlib.path.Path): msg = "'path' must be an instance of 'matplotlib.path.Path'" raise ValueError(msg) self._path = path # To support drawing both linear and circular spines, this # class implements Patch behavior two ways. If # self._patch_type == 'line', behave like a mpatches.PathPatch # instance. If self._patch_type == 'circle', behave like a # mpatches.Ellipse instance. self._patch_type = 'line' # Behavior copied from mpatches.Ellipse: # Note: This cannot be calculated until this is added to an Axes self._patch_transform = mtransforms.IdentityTransform() def set_smart_bounds(self, value): """set the spine and associated axis to have smart bounds""" self._smart_bounds = value # also set the axis if possible if self.spine_type in ('left', 'right'): self.axes.yaxis.set_smart_bounds(value) elif self.spine_type in ('top', 'bottom'): self.axes.xaxis.set_smart_bounds(value) self.stale = True def get_smart_bounds(self): """get whether the spine has smart bounds""" return self._smart_bounds def set_patch_circle(self, center, radius): """set the spine to be circular""" self._patch_type = 'circle' self._center = center self._width = radius * 2 self._height = radius * 2 self._angle = 0 # circle drawn on axes transform self.set_transform(self.axes.transAxes) self.stale = True def set_patch_line(self): """set the spine to be linear""" self._patch_type = 'line' self.stale = True # Behavior copied from mpatches.Ellipse: def _recompute_transform(self): """NOTE: This cannot be called until after this has been added to an Axes, otherwise unit conversion will fail. This maxes it very important to call the accessor method and not directly access the transformation member variable. """ assert self._patch_type == 'circle' center = (self.convert_xunits(self._center[0]), self.convert_yunits(self._center[1])) width = self.convert_xunits(self._width) height = self.convert_yunits(self._height) self._patch_transform = mtransforms.Affine2D() \ .scale(width * 0.5, height * 0.5) \ .rotate_deg(self._angle) \ .translate(*center) def get_patch_transform(self): if self._patch_type == 'circle': self._recompute_transform() return self._patch_transform else: return super(Spine, self).get_patch_transform() def get_path(self): return self._path def _ensure_position_is_set(self): if self._position is None: # default position self._position = ('outward', 0.0) # in points self.set_position(self._position) def register_axis(self, axis): """register an axis An axis should be registered with its corresponding spine from the Axes instance. This allows the spine to clear any axis properties when needed. """ self.axis = axis if self.axis is not None: self.axis.cla() self.stale = True def cla(self): """Clear the current spine""" self._position = None # clear position if self.axis is not None: self.axis.cla() def is_frame_like(self): """return True if directly on axes frame This is useful for determining if a spine is the edge of an old style MPL plot. If so, this function will return True. """ self._ensure_position_is_set() position = self._position if cbook.is_string_like(position): if position == 'center': position = ('axes', 0.5) elif position == 'zero': position = ('data', 0) if len(position) != 2: raise ValueError("position should be 2-tuple") position_type, amount = position if position_type == 'outward' and amount == 0: return True else: return False def _adjust_location(self): """automatically set spine bounds to the view interval""" if self.spine_type == 'circle': return if self._bounds is None: if self.spine_type in ('left', 'right'): low, high = self.axes.viewLim.intervaly elif self.spine_type in ('top', 'bottom'): low, high = self.axes.viewLim.intervalx else: raise ValueError('unknown spine spine_type: %s' % self.spine_type) if self._smart_bounds: # attempt to set bounds in sophisticated way if low > high: # handle inverted limits low, high = high, low viewlim_low = low viewlim_high = high del low, high if self.spine_type in ('left', 'right'): datalim_low, datalim_high = self.axes.dataLim.intervaly ticks = self.axes.get_yticks() elif self.spine_type in ('top', 'bottom'): datalim_low, datalim_high = self.axes.dataLim.intervalx ticks = self.axes.get_xticks() # handle inverted limits ticks = list(ticks) ticks.sort() ticks = np.array(ticks) if datalim_low > datalim_high: datalim_low, datalim_high = datalim_high, datalim_low if datalim_low < viewlim_low: # Data extends past view. Clip line to view. low = viewlim_low else: # Data ends before view ends. cond = (ticks <= datalim_low) & (ticks >= viewlim_low) tickvals = ticks[cond] if len(tickvals): # A tick is less than or equal to lowest data point. low = tickvals[-1] else: # No tick is available low = datalim_low low = max(low, viewlim_low) if datalim_high > viewlim_high: # Data extends past view. Clip line to view. high = viewlim_high else: # Data ends before view ends. cond = (ticks >= datalim_high) & (ticks <= viewlim_high) tickvals = ticks[cond] if len(tickvals): # A tick is greater than or equal to highest data # point. high = tickvals[0] else: # No tick is available high = datalim_high high = min(high, viewlim_high) else: low, high = self._bounds v1 = self._path.vertices assert v1.shape == (2, 2), 'unexpected vertices shape' if self.spine_type in ['left', 'right']: v1[0, 1] = low v1[1, 1] = high elif self.spine_type in ['bottom', 'top']: v1[0, 0] = low v1[1, 0] = high else: raise ValueError('unable to set bounds for spine "%s"' % self.spine_type) @allow_rasterization def draw(self, renderer): self._adjust_location() ret = super(Spine, self).draw(renderer) self.stale = False return ret def _calc_offset_transform(self): """calculate the offset transform performed by the spine""" self._ensure_position_is_set() position = self._position if cbook.is_string_like(position): if position == 'center': position = ('axes', 0.5) elif position == 'zero': position = ('data', 0) assert len(position) == 2, "position should be 2-tuple" position_type, amount = position assert position_type in ('axes', 'outward', 'data') if position_type == 'outward': if amount == 0: # short circuit commonest case self._spine_transform = ('identity', mtransforms.IdentityTransform()) elif self.spine_type in ['left', 'right', 'top', 'bottom']: offset_vec = {'left': (-1, 0), 'right': (1, 0), 'bottom': (0, -1), 'top': (0, 1), }[self.spine_type] # calculate x and y offset in dots offset_x = amount * offset_vec[0] / 72.0 offset_y = amount * offset_vec[1] / 72.0 self._spine_transform = ('post', mtransforms.ScaledTranslation( offset_x, offset_y, self.figure.dpi_scale_trans)) else: warnings.warn('unknown spine type "%s": no spine ' 'offset performed' % self.spine_type) self._spine_transform = ('identity', mtransforms.IdentityTransform()) elif position_type == 'axes': if self.spine_type in ('left', 'right'): self._spine_transform = ('pre', mtransforms.Affine2D.from_values( # keep y unchanged, fix x at # amount 0, 0, 0, 1, amount, 0)) elif self.spine_type in ('bottom', 'top'): self._spine_transform = ('pre', mtransforms.Affine2D.from_values( # keep x unchanged, fix y at # amount 1, 0, 0, 0, 0, amount)) else: warnings.warn('unknown spine type "%s": no spine ' 'offset performed' % self.spine_type) self._spine_transform = ('identity', mtransforms.IdentityTransform()) elif position_type == 'data': if self.spine_type in ('right', 'top'): # The right and top spines have a default position of 1 in # axes coordinates. When specifying the position in data # coordinates, we need to calculate the position relative to 0. amount -= 1 if self.spine_type in ('left', 'right'): self._spine_transform = ('data', mtransforms.Affine2D().translate( amount, 0)) elif self.spine_type in ('bottom', 'top'): self._spine_transform = ('data', mtransforms.Affine2D().translate( 0, amount)) else: warnings.warn('unknown spine type "%s": no spine ' 'offset performed' % self.spine_type) self._spine_transform = ('identity', mtransforms.IdentityTransform()) def set_position(self, position): """set the position of the spine Spine position is specified by a 2 tuple of (position type, amount). The position types are: * 'outward' : place the spine out from the data area by the specified number of points. (Negative values specify placing the spine inward.) * 'axes' : place the spine at the specified Axes coordinate (from 0.0-1.0). * 'data' : place the spine at the specified data coordinate. Additionally, shorthand notations define a special positions: * 'center' -> ('axes',0.5) * 'zero' -> ('data', 0.0) """ if position in ('center', 'zero'): # special positions pass else: if len(position) != 2: raise ValueError("position should be 'center' or 2-tuple") if position[0] not in ['outward', 'axes', 'data']: msg = ("position[0] should be in [ 'outward' | 'axes' |" " 'data' ]") raise ValueError(msg) self._position = position self._calc_offset_transform() self.set_transform(self.get_spine_transform()) if self.axis is not None: self.axis.reset_ticks() self.stale = True def get_position(self): """get the spine position""" self._ensure_position_is_set() return self._position def get_spine_transform(self): """get the spine transform""" self._ensure_position_is_set() what, how = self._spine_transform if what == 'data': # special case data based spine locations data_xform = self.axes.transScale + \ (how + self.axes.transLimits + self.axes.transAxes) if self.spine_type in ['left', 'right']: result = mtransforms.blended_transform_factory( data_xform, self.axes.transData) elif self.spine_type in ['top', 'bottom']: result = mtransforms.blended_transform_factory( self.axes.transData, data_xform) else: raise ValueError('unknown spine spine_type: %s' % self.spine_type) return result if self.spine_type in ['left', 'right']: base_transform = self.axes.get_yaxis_transform(which='grid') elif self.spine_type in ['top', 'bottom']: base_transform = self.axes.get_xaxis_transform(which='grid') else: raise ValueError('unknown spine spine_type: %s' % self.spine_type) if what == 'identity': return base_transform elif what == 'post': return base_transform + how elif what == 'pre': return how + base_transform else: raise ValueError("unknown spine_transform type: %s" % what) def set_bounds(self, low, high): """Set the bounds of the spine.""" if self.spine_type == 'circle': raise ValueError( 'set_bounds() method incompatible with circular spines') self._bounds = (low, high) self.stale = True def get_bounds(self): """Get the bounds of the spine.""" return self._bounds @classmethod def linear_spine(cls, axes, spine_type, **kwargs): """ (staticmethod) Returns a linear :class:`Spine`. """ # all values of 13 get replaced upon call to set_bounds() if spine_type == 'left': path = mpath.Path([(0.0, 13), (0.0, 13)]) elif spine_type == 'right': path = mpath.Path([(1.0, 13), (1.0, 13)]) elif spine_type == 'bottom': path = mpath.Path([(13, 0.0), (13, 0.0)]) elif spine_type == 'top': path = mpath.Path([(13, 1.0), (13, 1.0)]) else: raise ValueError('unable to make path for spine "%s"' % spine_type) result = cls(axes, spine_type, path, **kwargs) result.set_visible(rcParams['axes.spines.{0}'.format(spine_type)]) return result @classmethod def circular_spine(cls, axes, center, radius, **kwargs): """ (staticmethod) Returns a circular :class:`Spine`. """ path = mpath.Path.unit_circle() spine_type = 'circle' result = cls(axes, spine_type, path, **kwargs) result.set_patch_circle(center, radius) return result def set_color(self, c): """ Set the edgecolor. ACCEPTS: matplotlib color arg or sequence of rgba tuples .. seealso:: :meth:`set_facecolor`, :meth:`set_edgecolor` For setting the edge or face color individually. """ # The facecolor of a spine is always 'none' by default -- let # the user change it manually if desired. self.set_edgecolor(c) self.stale = True
mit
juliusbierk/scikit-image
doc/examples/plot_glcm.py
26
3307
""" ===================== GLCM Texture Features ===================== This example illustrates texture classification using texture classification using grey level co-occurrence matrices (GLCMs). A GLCM is a histogram of co-occurring greyscale values at a given offset over an image. In this example, samples of two different textures are extracted from an image: grassy areas and sky areas. For each patch, a GLCM with a horizontal offset of 5 is computed. Next, two features of the GLCM matrices are computed: dissimilarity and correlation. These are plotted to illustrate that the classes form clusters in feature space. In a typical classification problem, the final step (not included in this example) would be to train a classifier, such as logistic regression, to label image patches from new images. """ import matplotlib.pyplot as plt from skimage.feature import greycomatrix, greycoprops from skimage import data PATCH_SIZE = 21 # open the camera image image = data.camera() # select some patches from grassy areas of the image grass_locations = [(474, 291), (440, 433), (466, 18), (462, 236)] grass_patches = [] for loc in grass_locations: grass_patches.append(image[loc[0]:loc[0] + PATCH_SIZE, loc[1]:loc[1] + PATCH_SIZE]) # select some patches from sky areas of the image sky_locations = [(54, 48), (21, 233), (90, 380), (195, 330)] sky_patches = [] for loc in sky_locations: sky_patches.append(image[loc[0]:loc[0] + PATCH_SIZE, loc[1]:loc[1] + PATCH_SIZE]) # compute some GLCM properties each patch xs = [] ys = [] for patch in (grass_patches + sky_patches): glcm = greycomatrix(patch, [5], [0], 256, symmetric=True, normed=True) xs.append(greycoprops(glcm, 'dissimilarity')[0, 0]) ys.append(greycoprops(glcm, 'correlation')[0, 0]) # create the figure fig = plt.figure(figsize=(8, 8)) # display original image with locations of patches ax = fig.add_subplot(3, 2, 1) ax.imshow(image, cmap=plt.cm.gray, interpolation='nearest', vmin=0, vmax=255) for (y, x) in grass_locations: ax.plot(x + PATCH_SIZE / 2, y + PATCH_SIZE / 2, 'gs') for (y, x) in sky_locations: ax.plot(x + PATCH_SIZE / 2, y + PATCH_SIZE / 2, 'bs') ax.set_xlabel('Original Image') ax.set_xticks([]) ax.set_yticks([]) ax.axis('image') # for each patch, plot (dissimilarity, correlation) ax = fig.add_subplot(3, 2, 2) ax.plot(xs[:len(grass_patches)], ys[:len(grass_patches)], 'go', label='Grass') ax.plot(xs[len(grass_patches):], ys[len(grass_patches):], 'bo', label='Sky') ax.set_xlabel('GLCM Dissimilarity') ax.set_ylabel('GLVM Correlation') ax.legend() # display the image patches for i, patch in enumerate(grass_patches): ax = fig.add_subplot(3, len(grass_patches), len(grass_patches)*1 + i + 1) ax.imshow(patch, cmap=plt.cm.gray, interpolation='nearest', vmin=0, vmax=255) ax.set_xlabel('Grass %d' % (i + 1)) for i, patch in enumerate(sky_patches): ax = fig.add_subplot(3, len(sky_patches), len(sky_patches)*2 + i + 1) ax.imshow(patch, cmap=plt.cm.gray, interpolation='nearest', vmin=0, vmax=255) ax.set_xlabel('Sky %d' % (i + 1)) # display the patches and plot fig.suptitle('Grey level co-occurrence matrix features', fontsize=14) plt.show()
bsd-3-clause
devlinmr/contrib
mungegithub/issue-labeler/simple_app.py
20
4662
#!/usr/bin/env python # Copyright 2016 The Kubernetes Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import simplejson import logging from logging.handlers import RotatingFileHandler import numpy as np from flask import Flask, request from sklearn.feature_extraction import FeatureHasher from sklearn.externals import joblib from sklearn.linear_model import SGDClassifier from nltk.tokenize import RegexpTokenizer from nltk.stem.porter import PorterStemmer app = Flask(__name__) #Parameters team_fn= "./models/trained_teams_model.pkl" component_fn= "./models/trained_components_model.pkl" logFile = "/tmp/issue-labeler.log" logSize = 1024*1024*100 numFeatures = 262144 myLoss = 'hinge' myAlpha = .1 myPenalty = 'l2' myHasher = FeatureHasher(input_type="string", n_features= numFeatures, non_negative=True) myStemmer = PorterStemmer() tokenizer = RegexpTokenizer(r'\w+') try: if not stopwords: stop_fn = "./stopwords.txt" with open(stop_fn, 'r') as f: stopwords = set([word.strip() for word in f]) except: #don't remove any stopwords stopwords = [] @app.errorhandler(500) def internal_error(exception): return str(exception), 500 @app.route("/", methods = ["POST"]) def get_labels(): """ The request should contain 2 form-urlencoded parameters 1) title : title of the issue 2) body: body of the issue It returns a team/<label> and a component/<label> """ title = request.form.get('title', "") body = request.form.get('body', "") tokens = tokenize_stem_stop(" ".join([title, body])) team_mod = joblib.load(team_fn) comp_mod = joblib.load(component_fn) vec = myHasher.transform([tokens]) tlabel = team_mod.predict(vec)[0] clabel = comp_mod.predict(vec)[0] return ",".join([tlabel, clabel]) def tokenize_stem_stop(inputString): inputString = inputString.encode('utf-8') curTitleBody = tokenizer.tokenize(inputString.decode('utf-8').lower()) return map(myStemmer.stem, filter(lambda x: x not in stopwords, curTitleBody)) @app.route("/update_models", methods = ["PUT"]) def update_model(): """ data should contain three fields titles: list of titles bodies: list of bodies labels: list of list of labels """ data = request.json titles = data.get('titles') bodies = data.get('bodies') labels = data.get('labels') tTokens = [] cTokens = [] team_labels = [] component_labels = [] for (title, body, label_list) in zip(titles, bodies, labels): tLabel = filter(lambda x: x.startswith('team'), label_list) cLabel = filter(lambda x: x.startswith('component'), label_list) tokens = tokenize_stem_stop(" ".join([title, body])) if tLabel: team_labels += tLabel tTokens += [tokens] if cLabel: component_labels += cLabel cTokens += [tokens] tVec = myHasher.transform(tTokens) cVec = myHasher.transform(cTokens) if team_labels: if os.path.isfile(team_fn): team_model = joblib.load(team_fn) team_model.partial_fit(tVec, np.array(team_labels)) else: #no team model stored so build a new one team_model = SGDClassifier(loss=myLoss, penalty=myPenalty, alpha=myAlpha) team_model.fit(tVec, np.array(team_labels)) if component_labels: if os.path.isfile(component_fn): component_model = joblib.load(component_fn) component_model.partial_fit(cVec, np.array(component_labels)) else: #no comp model stored so build a new one component_model = SGDClassifier(loss=myLoss, penalty=myPenalty, alpha=myAlpha) component_model.fit(cVec, np.array(component_labels)) joblib.dump(team_model, team_fn) joblib.dump(component_model, component_fn) return "" def configure_logger(): FORMAT = '%(asctime)-20s %(levelname)-10s %(message)s' file_handler = RotatingFileHandler(logFile, maxBytes=logSize, backupCount=3) formatter = logging.Formatter(FORMAT) file_handler.setFormatter(formatter) app.logger.addHandler(file_handler) if __name__ == "__main__": configure_logger() app.run(host="0.0.0.0")
apache-2.0
philipan/paparazzi
sw/airborne/test/math/compare_utm_enu.py
77
2714
#!/usr/bin/env python from __future__ import division, print_function, absolute_import import sys import os PPRZ_SRC = os.getenv("PAPARAZZI_SRC", "../../../..") sys.path.append(PPRZ_SRC + "/sw/lib/python") from pprz_math.geodetic import * from pprz_math.algebra import DoubleRMat, DoubleEulers, DoubleVect3 from math import radians, degrees, tan import matplotlib.pyplot as plt import numpy as np # Origin at ENAC UTM_EAST0 = 377349 # in m UTM_NORTH0 = 4824583 # in m UTM_ZONE0 = 31 ALT0 = 147.000 # in m utm_origin = UtmCoor_d(north=UTM_NORTH0, east=UTM_EAST0, alt=ALT0, zone=UTM_ZONE0) print("origin %s" % utm_origin) lla_origin = utm_origin.to_lla() ecef_origin = lla_origin.to_ecef() ltp_origin = ecef_origin.to_ltp_def() print(ltp_origin) # convergence angle to "true north" is approx 1 deg here earth_radius = 6378137.0 n = 0.9996 * earth_radius UTM_DELTA_EAST = 500000. dist_to_meridian = utm_origin.east - UTM_DELTA_EAST conv = dist_to_meridian / n * tan(lla_origin.lat) # or (middle meridian of UTM zone 31 is at 3deg) #conv = atan(tan(lla_origin.lon - radians(3))*sin(lla_origin.lat)) print("approx. convergence angle (north error compared to meridian): %f deg" % degrees(conv)) # Rotation matrix to correct for "true north" R = DoubleEulers(psi=-conv).to_rmat() # calculate ENU coordinates for 100 points in 100m distance nb_points = 100 dist_points = 100 enu_res = np.zeros((nb_points, 2)) enu_res_c = np.zeros((nb_points, 2)) utm_res = np.zeros((nb_points, 2)) for i in range(0, nb_points): utm = UtmCoor_d() utm.north = i * dist_points + utm_origin.north utm.east = i * dist_points+ utm_origin.east utm.alt = utm_origin.alt utm.zone = utm_origin.zone #print(utm) utm_res[i, 0] = utm.east - utm_origin.east utm_res[i, 1] = utm.north - utm_origin.north lla = utm.to_lla() #print(lla) ecef = lla.to_ecef() enu = ecef.to_enu(ltp_origin) enu_res[i, 0] = enu.x enu_res[i, 1] = enu.y enu_c = R * DoubleVect3(enu.x, enu.y, enu.z) enu_res_c[i, 0] = enu_c.x enu_res_c[i, 1] = enu_c.y #print(enu) dist = np.linalg.norm(utm_res, axis=1) error = np.linalg.norm(utm_res - enu_res, axis=1) error_c = np.linalg.norm(utm_res - enu_res_c, axis=1) plt.figure(1) plt.subplot(311) plt.title("utm vs. enu") plt.plot(enu_res[:, 0], enu_res[:, 1], 'g', label="ENU") plt.plot(utm_res[:, 0], utm_res[:, 1], 'r', label="UTM") plt.ylabel("y/north [m]") plt.xlabel("x/east [m]") plt.legend(loc='upper left') plt.subplot(312) plt.plot(dist, error, 'r') plt.xlabel("dist from origin [m]") plt.ylabel("error [m]") plt.subplot(313) plt.plot(dist, error_c, 'r') plt.xlabel("dist from origin [m]") plt.ylabel("error with north fix [m]") plt.show()
gpl-2.0
akshaybabloo/Car-ND
Term_1/advanced_lane_finding_10/direction_gradient_10_6.py
1
1218
import numpy as np import cv2 import matplotlib.pyplot as plt import matplotlib.image as mpimg # Read in an image image = mpimg.imread('curved-lane.jpg') def dir_threshold(img, sobel_kernel=3, thresh=(0, np.pi/2)): # Grayscale gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # Calculate the x and y gradients sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel) sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel) # Take the absolute value of the gradient direction, # apply a threshold, and create a binary image result absgraddir = np.arctan2(np.absolute(sobely), np.absolute(sobelx)) binary_output = np.zeros_like(absgraddir) binary_output[(absgraddir >= thresh[0]) & (absgraddir <= thresh[1])] = 1 # Return the binary image return binary_output # Run the function dir_binary = dir_threshold(image, sobel_kernel=15, thresh=(0.7, 1.3)) # Plot the result f, (ax1, ax2) = plt.subplots(1, 2, figsize=(24, 9)) f.tight_layout() ax1.imshow(image) ax1.set_title('Original Image', fontsize=50) ax2.imshow(dir_binary, cmap='gray') ax2.set_title('Thresholded Grad. Dir.', fontsize=50) plt.subplots_adjust(left=0., right=1, top=0.9, bottom=0.) plt.show()
mit
Djabbz/scikit-learn
examples/applications/plot_out_of_core_classification.py
255
13919
""" ====================================================== Out-of-core classification of text documents ====================================================== This is an example showing how scikit-learn can be used for classification using an out-of-core approach: learning from data that doesn't fit into main memory. We make use of an online classifier, i.e., one that supports the partial_fit method, that will be fed with batches of examples. To guarantee that the features space remains the same over time we leverage a HashingVectorizer that will project each example into the same feature space. This is especially useful in the case of text classification where new features (words) may appear in each batch. The dataset used in this example is Reuters-21578 as provided by the UCI ML repository. It will be automatically downloaded and uncompressed on first run. The plot represents the learning curve of the classifier: the evolution of classification accuracy over the course of the mini-batches. Accuracy is measured on the first 1000 samples, held out as a validation set. To limit the memory consumption, we queue examples up to a fixed amount before feeding them to the learner. """ # Authors: Eustache Diemert <[email protected]> # @FedericoV <https://github.com/FedericoV/> # License: BSD 3 clause from __future__ import print_function from glob import glob import itertools import os.path import re import tarfile import time import numpy as np import matplotlib.pyplot as plt from matplotlib import rcParams from sklearn.externals.six.moves import html_parser from sklearn.externals.six.moves import urllib from sklearn.datasets import get_data_home from sklearn.feature_extraction.text import HashingVectorizer from sklearn.linear_model import SGDClassifier from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.linear_model import Perceptron from sklearn.naive_bayes import MultinomialNB def _not_in_sphinx(): # Hack to detect whether we are running by the sphinx builder return '__file__' in globals() ############################################################################### # Reuters Dataset related routines ############################################################################### class ReutersParser(html_parser.HTMLParser): """Utility class to parse a SGML file and yield documents one at a time.""" def __init__(self, encoding='latin-1'): html_parser.HTMLParser.__init__(self) self._reset() self.encoding = encoding def handle_starttag(self, tag, attrs): method = 'start_' + tag getattr(self, method, lambda x: None)(attrs) def handle_endtag(self, tag): method = 'end_' + tag getattr(self, method, lambda: None)() def _reset(self): self.in_title = 0 self.in_body = 0 self.in_topics = 0 self.in_topic_d = 0 self.title = "" self.body = "" self.topics = [] self.topic_d = "" def parse(self, fd): self.docs = [] for chunk in fd: self.feed(chunk.decode(self.encoding)) for doc in self.docs: yield doc self.docs = [] self.close() def handle_data(self, data): if self.in_body: self.body += data elif self.in_title: self.title += data elif self.in_topic_d: self.topic_d += data def start_reuters(self, attributes): pass def end_reuters(self): self.body = re.sub(r'\s+', r' ', self.body) self.docs.append({'title': self.title, 'body': self.body, 'topics': self.topics}) self._reset() def start_title(self, attributes): self.in_title = 1 def end_title(self): self.in_title = 0 def start_body(self, attributes): self.in_body = 1 def end_body(self): self.in_body = 0 def start_topics(self, attributes): self.in_topics = 1 def end_topics(self): self.in_topics = 0 def start_d(self, attributes): self.in_topic_d = 1 def end_d(self): self.in_topic_d = 0 self.topics.append(self.topic_d) self.topic_d = "" def stream_reuters_documents(data_path=None): """Iterate over documents of the Reuters dataset. The Reuters archive will automatically be downloaded and uncompressed if the `data_path` directory does not exist. Documents are represented as dictionaries with 'body' (str), 'title' (str), 'topics' (list(str)) keys. """ DOWNLOAD_URL = ('http://archive.ics.uci.edu/ml/machine-learning-databases/' 'reuters21578-mld/reuters21578.tar.gz') ARCHIVE_FILENAME = 'reuters21578.tar.gz' if data_path is None: data_path = os.path.join(get_data_home(), "reuters") if not os.path.exists(data_path): """Download the dataset.""" print("downloading dataset (once and for all) into %s" % data_path) os.mkdir(data_path) def progress(blocknum, bs, size): total_sz_mb = '%.2f MB' % (size / 1e6) current_sz_mb = '%.2f MB' % ((blocknum * bs) / 1e6) if _not_in_sphinx(): print('\rdownloaded %s / %s' % (current_sz_mb, total_sz_mb), end='') archive_path = os.path.join(data_path, ARCHIVE_FILENAME) urllib.request.urlretrieve(DOWNLOAD_URL, filename=archive_path, reporthook=progress) if _not_in_sphinx(): print('\r', end='') print("untarring Reuters dataset...") tarfile.open(archive_path, 'r:gz').extractall(data_path) print("done.") parser = ReutersParser() for filename in glob(os.path.join(data_path, "*.sgm")): for doc in parser.parse(open(filename, 'rb')): yield doc ############################################################################### # Main ############################################################################### # Create the vectorizer and limit the number of features to a reasonable # maximum vectorizer = HashingVectorizer(decode_error='ignore', n_features=2 ** 18, non_negative=True) # Iterator over parsed Reuters SGML files. data_stream = stream_reuters_documents() # We learn a binary classification between the "acq" class and all the others. # "acq" was chosen as it is more or less evenly distributed in the Reuters # files. For other datasets, one should take care of creating a test set with # a realistic portion of positive instances. all_classes = np.array([0, 1]) positive_class = 'acq' # Here are some classifiers that support the `partial_fit` method partial_fit_classifiers = { 'SGD': SGDClassifier(), 'Perceptron': Perceptron(), 'NB Multinomial': MultinomialNB(alpha=0.01), 'Passive-Aggressive': PassiveAggressiveClassifier(), } def get_minibatch(doc_iter, size, pos_class=positive_class): """Extract a minibatch of examples, return a tuple X_text, y. Note: size is before excluding invalid docs with no topics assigned. """ data = [(u'{title}\n\n{body}'.format(**doc), pos_class in doc['topics']) for doc in itertools.islice(doc_iter, size) if doc['topics']] if not len(data): return np.asarray([], dtype=int), np.asarray([], dtype=int) X_text, y = zip(*data) return X_text, np.asarray(y, dtype=int) def iter_minibatches(doc_iter, minibatch_size): """Generator of minibatches.""" X_text, y = get_minibatch(doc_iter, minibatch_size) while len(X_text): yield X_text, y X_text, y = get_minibatch(doc_iter, minibatch_size) # test data statistics test_stats = {'n_test': 0, 'n_test_pos': 0} # First we hold out a number of examples to estimate accuracy n_test_documents = 1000 tick = time.time() X_test_text, y_test = get_minibatch(data_stream, 1000) parsing_time = time.time() - tick tick = time.time() X_test = vectorizer.transform(X_test_text) vectorizing_time = time.time() - tick test_stats['n_test'] += len(y_test) test_stats['n_test_pos'] += sum(y_test) print("Test set is %d documents (%d positive)" % (len(y_test), sum(y_test))) def progress(cls_name, stats): """Report progress information, return a string.""" duration = time.time() - stats['t0'] s = "%20s classifier : \t" % cls_name s += "%(n_train)6d train docs (%(n_train_pos)6d positive) " % stats s += "%(n_test)6d test docs (%(n_test_pos)6d positive) " % test_stats s += "accuracy: %(accuracy).3f " % stats s += "in %.2fs (%5d docs/s)" % (duration, stats['n_train'] / duration) return s cls_stats = {} for cls_name in partial_fit_classifiers: stats = {'n_train': 0, 'n_train_pos': 0, 'accuracy': 0.0, 'accuracy_history': [(0, 0)], 't0': time.time(), 'runtime_history': [(0, 0)], 'total_fit_time': 0.0} cls_stats[cls_name] = stats get_minibatch(data_stream, n_test_documents) # Discard test set # We will feed the classifier with mini-batches of 1000 documents; this means # we have at most 1000 docs in memory at any time. The smaller the document # batch, the bigger the relative overhead of the partial fit methods. minibatch_size = 1000 # Create the data_stream that parses Reuters SGML files and iterates on # documents as a stream. minibatch_iterators = iter_minibatches(data_stream, minibatch_size) total_vect_time = 0.0 # Main loop : iterate on mini-batchs of examples for i, (X_train_text, y_train) in enumerate(minibatch_iterators): tick = time.time() X_train = vectorizer.transform(X_train_text) total_vect_time += time.time() - tick for cls_name, cls in partial_fit_classifiers.items(): tick = time.time() # update estimator with examples in the current mini-batch cls.partial_fit(X_train, y_train, classes=all_classes) # accumulate test accuracy stats cls_stats[cls_name]['total_fit_time'] += time.time() - tick cls_stats[cls_name]['n_train'] += X_train.shape[0] cls_stats[cls_name]['n_train_pos'] += sum(y_train) tick = time.time() cls_stats[cls_name]['accuracy'] = cls.score(X_test, y_test) cls_stats[cls_name]['prediction_time'] = time.time() - tick acc_history = (cls_stats[cls_name]['accuracy'], cls_stats[cls_name]['n_train']) cls_stats[cls_name]['accuracy_history'].append(acc_history) run_history = (cls_stats[cls_name]['accuracy'], total_vect_time + cls_stats[cls_name]['total_fit_time']) cls_stats[cls_name]['runtime_history'].append(run_history) if i % 3 == 0: print(progress(cls_name, cls_stats[cls_name])) if i % 3 == 0: print('\n') ############################################################################### # Plot results ############################################################################### def plot_accuracy(x, y, x_legend): """Plot accuracy as a function of x.""" x = np.array(x) y = np.array(y) plt.title('Classification accuracy as a function of %s' % x_legend) plt.xlabel('%s' % x_legend) plt.ylabel('Accuracy') plt.grid(True) plt.plot(x, y) rcParams['legend.fontsize'] = 10 cls_names = list(sorted(cls_stats.keys())) # Plot accuracy evolution plt.figure() for _, stats in sorted(cls_stats.items()): # Plot accuracy evolution with #examples accuracy, n_examples = zip(*stats['accuracy_history']) plot_accuracy(n_examples, accuracy, "training examples (#)") ax = plt.gca() ax.set_ylim((0.8, 1)) plt.legend(cls_names, loc='best') plt.figure() for _, stats in sorted(cls_stats.items()): # Plot accuracy evolution with runtime accuracy, runtime = zip(*stats['runtime_history']) plot_accuracy(runtime, accuracy, 'runtime (s)') ax = plt.gca() ax.set_ylim((0.8, 1)) plt.legend(cls_names, loc='best') # Plot fitting times plt.figure() fig = plt.gcf() cls_runtime = [] for cls_name, stats in sorted(cls_stats.items()): cls_runtime.append(stats['total_fit_time']) cls_runtime.append(total_vect_time) cls_names.append('Vectorization') bar_colors = rcParams['axes.color_cycle'][:len(cls_names)] ax = plt.subplot(111) rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5, color=bar_colors) ax.set_xticks(np.linspace(0.25, len(cls_names) - 0.75, len(cls_names))) ax.set_xticklabels(cls_names, fontsize=10) ymax = max(cls_runtime) * 1.2 ax.set_ylim((0, ymax)) ax.set_ylabel('runtime (s)') ax.set_title('Training Times') def autolabel(rectangles): """attach some text vi autolabel on rectangles.""" for rect in rectangles: height = rect.get_height() ax.text(rect.get_x() + rect.get_width() / 2., 1.05 * height, '%.4f' % height, ha='center', va='bottom') autolabel(rectangles) plt.show() # Plot prediction times plt.figure() #fig = plt.gcf() cls_runtime = [] cls_names = list(sorted(cls_stats.keys())) for cls_name, stats in sorted(cls_stats.items()): cls_runtime.append(stats['prediction_time']) cls_runtime.append(parsing_time) cls_names.append('Read/Parse\n+Feat.Extr.') cls_runtime.append(vectorizing_time) cls_names.append('Hashing\n+Vect.') bar_colors = rcParams['axes.color_cycle'][:len(cls_names)] ax = plt.subplot(111) rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5, color=bar_colors) ax.set_xticks(np.linspace(0.25, len(cls_names) - 0.75, len(cls_names))) ax.set_xticklabels(cls_names, fontsize=8) plt.setp(plt.xticks()[1], rotation=30) ymax = max(cls_runtime) * 1.2 ax.set_ylim((0, ymax)) ax.set_ylabel('runtime (s)') ax.set_title('Prediction Times (%d instances)' % n_test_documents) autolabel(rectangles) plt.show()
bsd-3-clause
phobson/bokeh
bokeh/core/compat/mplexporter/exporter.py
8
12413
""" Matplotlib Exporter =================== This submodule contains tools for crawling a matplotlib figure and exporting relevant pieces to a renderer. """ import warnings import io from . import utils import matplotlib from matplotlib import transforms from matplotlib.backends.backend_agg import FigureCanvasAgg class Exporter(object): """Matplotlib Exporter Parameters ---------- renderer : Renderer object The renderer object called by the exporter to create a figure visualization. See mplexporter.Renderer for information on the methods which should be defined within the renderer. close_mpl : bool If True (default), close the matplotlib figure as it is rendered. This is useful for when the exporter is used within the notebook, or with an interactive matplotlib backend. """ def __init__(self, renderer, close_mpl=True): self.close_mpl = close_mpl self.renderer = renderer def run(self, fig): """ Run the exporter on the given figure Parameters --------- fig : matplotlib.Figure instance The figure to export """ # Calling savefig executes the draw() command, putting elements # in the correct place. if fig.canvas is None: fig.canvas = FigureCanvasAgg(fig) fig.savefig(io.BytesIO(), format='png', dpi=fig.dpi) if self.close_mpl: import matplotlib.pyplot as plt plt.close(fig) self.crawl_fig(fig) @staticmethod def process_transform(transform, ax=None, data=None, return_trans=False, force_trans=None): """Process the transform and convert data to figure or data coordinates Parameters ---------- transform : matplotlib Transform object The transform applied to the data ax : matplotlib Axes object (optional) The axes the data is associated with data : ndarray (optional) The array of data to be transformed. return_trans : bool (optional) If true, return the final transform of the data force_trans : matplotlib.transform instance (optional) If supplied, first force the data to this transform Returns ------- code : string Code is either "data", "axes", "figure", or "display", indicating the type of coordinates output. transform : matplotlib transform the transform used to map input data to output data. Returned only if return_trans is True new_data : ndarray Data transformed to match the given coordinate code. Returned only if data is specified """ if isinstance(transform, transforms.BlendedGenericTransform): warnings.warn("Blended transforms not yet supported. " "Zoom behavior may not work as expected.") if force_trans is not None: if data is not None: data = (transform - force_trans).transform(data) transform = force_trans code = "display" if ax is not None: for (c, trans) in [("data", ax.transData), ("axes", ax.transAxes), ("figure", ax.figure.transFigure), ("display", transforms.IdentityTransform())]: if transform.contains_branch(trans): code, transform = (c, transform - trans) break if data is not None: if return_trans: return code, transform.transform(data), transform else: return code, transform.transform(data) else: if return_trans: return code, transform else: return code def crawl_fig(self, fig): """Crawl the figure and process all axes""" with self.renderer.draw_figure(fig=fig, props=utils.get_figure_properties(fig)): for ax in fig.axes: self.crawl_ax(ax) def crawl_ax(self, ax): """Crawl the axes and process all elements within""" with self.renderer.draw_axes(ax=ax, props=utils.get_axes_properties(ax)): for line in ax.lines: self.draw_line(ax, line) for text in ax.texts: self.draw_text(ax, text) for (text, ttp) in zip([ax.xaxis.label, ax.yaxis.label, ax.title], ["xlabel", "ylabel", "title"]): if(hasattr(text, 'get_text') and text.get_text()): self.draw_text(ax, text, force_trans=ax.transAxes, text_type=ttp) for artist in ax.artists: # TODO: process other artists if isinstance(artist, matplotlib.text.Text): self.draw_text(ax, artist) for patch in ax.patches: self.draw_patch(ax, patch) for collection in ax.collections: self.draw_collection(ax, collection) for image in ax.images: self.draw_image(ax, image) legend = ax.get_legend() if legend is not None: props = utils.get_legend_properties(ax, legend) with self.renderer.draw_legend(legend=legend, props=props): if props['visible']: self.crawl_legend(ax, legend) def crawl_legend(self, ax, legend): """ Recursively look through objects in legend children """ legendElements = list(utils.iter_all_children(legend._legend_box, skipContainers=True)) legendElements.append(legend.legendPatch) for child in legendElements: # force a large zorder so it appears on top child.set_zorder(1E6 + child.get_zorder()) try: # What kind of object... if isinstance(child, matplotlib.patches.Patch): self.draw_patch(ax, child, force_trans=ax.transAxes) elif isinstance(child, matplotlib.text.Text): if not (child is legend.get_children()[-1] and child.get_text() == 'None'): self.draw_text(ax, child, force_trans=ax.transAxes) elif isinstance(child, matplotlib.lines.Line2D): warnings.warn("Legend element %s not implemented" % child) elif isinstance(child, matplotlib.collections.Collection): self.draw_collection(ax, child, force_pathtrans=ax.transAxes) else: warnings.warn("Legend element %s not implemented" % child) except NotImplementedError: warnings.warn("Legend element %s not implemented" % child) def draw_line(self, ax, line, force_trans=None): """Process a matplotlib line and call renderer.draw_line""" coordinates, data = self.process_transform(line.get_transform(), ax, line.get_xydata(), force_trans=force_trans) linestyle = utils.get_line_style(line) if linestyle['dasharray'] is None: linestyle = None markerstyle = utils.get_marker_style(line) if (markerstyle['marker'] in ['None', 'none', None] or markerstyle['markerpath'][0].size == 0): markerstyle = None label = line.get_label() if markerstyle or linestyle: self.renderer.draw_marked_line(data=data, coordinates=coordinates, linestyle=linestyle, markerstyle=markerstyle, label=label, mplobj=line) def draw_text(self, ax, text, force_trans=None, text_type=None): """Process a matplotlib text object and call renderer.draw_text""" content = text.get_text() if content: transform = text.get_transform() position = text.get_position() coords, position = self.process_transform(transform, ax, position, force_trans=force_trans) style = utils.get_text_style(text) self.renderer.draw_text(text=content, position=position, coordinates=coords, text_type=text_type, style=style, mplobj=text) def draw_patch(self, ax, patch, force_trans=None): """Process a matplotlib patch object and call renderer.draw_path""" vertices, pathcodes = utils.SVG_path(patch.get_path()) transform = patch.get_transform() coordinates, vertices = self.process_transform(transform, ax, vertices, force_trans=force_trans) linestyle = utils.get_path_style(patch, fill=patch.get_fill()) self.renderer.draw_path(data=vertices, coordinates=coordinates, pathcodes=pathcodes, style=linestyle, mplobj=patch) def draw_collection(self, ax, collection, force_pathtrans=None, force_offsettrans=None): """Process a matplotlib collection and call renderer.draw_collection""" (transform, transOffset, offsets, paths) = collection._prepare_points() offset_coords, offsets = self.process_transform( transOffset, ax, offsets, force_trans=force_offsettrans) path_coords = self.process_transform( transform, ax, force_trans=force_pathtrans) processed_paths = [utils.SVG_path(path) for path in paths] processed_paths = [(self.process_transform( transform, ax, path[0], force_trans=force_pathtrans)[1], path[1]) for path in processed_paths] path_transforms = collection.get_transforms() try: # matplotlib 1.3: path_transforms are transform objects. # Convert them to numpy arrays. path_transforms = [t.get_matrix() for t in path_transforms] except AttributeError: # matplotlib 1.4: path transforms are already numpy arrays. pass styles = {'linewidth': collection.get_linewidths(), 'facecolor': collection.get_facecolors(), 'edgecolor': collection.get_edgecolors(), 'alpha': collection._alpha, 'zorder': collection.get_zorder()} offset_dict = {"data": "before", "screen": "after"} offset_order = offset_dict[collection.get_offset_position()] self.renderer.draw_path_collection(paths=processed_paths, path_coordinates=path_coords, path_transforms=path_transforms, offsets=offsets, offset_coordinates=offset_coords, offset_order=offset_order, styles=styles, mplobj=collection) def draw_image(self, ax, image): """Process a matplotlib image object and call renderer.draw_image""" self.renderer.draw_image(imdata=utils.image_to_base64(image), extent=image.get_extent(), coordinates="data", style={"alpha": image.get_alpha(), "zorder": image.get_zorder()}, mplobj=image)
bsd-3-clause
PKU-Dragon-Team/Datalab-Utilities
mobile_cluster/Hierachical.py
1
5485
import numpy as np import typing as tg import sklearn.cluster as sklc import scipy.spatial.distance as spsd import scipy.signal as spsn import heapq as hq import matplotlib.pyplot as plt def SimpleHierachicalCluster(X: np.ndarray, weight: tg.Optional[np.ndarray]=None) -> np.ndarray: """My version of Hierachical Clustering, processing small amount of samples and give easily judgement of the hierachical tree Running time: O(N^2*D), N is n_samples, D is n_features """ n_samples, n_features = X.shape if weight is None: weights = np.ones(n_samples, dtype=int) else: weights = weight.copy() hierachical = np.zeros((n_samples - 1, 3), dtype=int) # each row: (index1: int, index2:int, index_new:int) distances = np.zeros(n_samples - 1) output_index = 0 nodes = X.copy() remaining_indexes = set(range(n_samples)) distance_heap = [] calculated = set() for i in remaining_indexes: calculated.add(i) for j in remaining_indexes - calculated: hq.heappush(distance_heap, (spsd.euclidean(nodes[i], nodes[j]), i, j)) # now go with clustering while len(remaining_indexes) > 1: # drop merged ones min_d, index1, index2 = hq.heappop(distance_heap) while not (index1 in remaining_indexes and index2 in remaining_indexes): min_d, index1, index2 = hq.heappop(distance_heap) centroid = (weights[index1] * nodes[index1] + weights[index2] * nodes[index2]) / (weights[index1] + weights[index2]) # now new centroid comes, drop i and j, and calculate new distances remaining_indexes.remove(index1) remaining_indexes.remove(index2) index_new = nodes.shape[0] for i in remaining_indexes: hq.heappush(distance_heap, (spsd.euclidean(nodes[i], centroid), i, index_new)) remaining_indexes.add(index_new) weights = np.hstack((weights, weights[index1] + weights[index2])) nodes = np.vstack((nodes, centroid)) # forming output hierachical[output_index] = (index1, index2, index_new) distances[output_index] = min_d output_index += 1 return hierachical, distances, nodes, weights def LastLocalMinimumCluster(X: np.ndarray, weight: tg.Optional[np.ndarray]=None) -> tg.Tuple[np.ndarray, np.ndarray]: """Hierachical Cluster that pick the last local minimum of distance and cut the cluster tree into several clusters """ n_samples, n_features = X.shape hierachical, distances, nodes, weights = SimpleHierachicalCluster(X, weight) # find local minimums extrema = spsn.argrelmin(distances) # type: np.ndarray try: last_local_minimum = extrema[0][len(extrema[0]) - 1] except IndexError: # no local_minimum, return all clustered nodes return nodes[n_samples:], weights[n_samples] merged_nodes = set(hierachical[:last_local_minimum + 1, 0:2].flat) post_cluster_nodes = set(hierachical[last_local_minimum + 1:, 2].flat) total_nodes = set(range(len(nodes))) cluster_centers = total_nodes - post_cluster_nodes - merged_nodes # nodes that is not merged will be cluster_centers return nodes[list(cluster_centers)], weights[list(cluster_centers)] def PercentageCluster(X: np.ndarray, weight: tg.Optional[np.ndarray]=None, percentage: float=0.5) -> tg.Tuple[np.ndarray, np.ndarray]: """Hierachical Cluster that cut the cluster tree into several clusters when distance is higher than the require percentage """ n_samples, n_features = X.shape hierachical, distances, nodes, weights = SimpleHierachicalCluster(X, weight) # find cutting point max_d = np.max(distances) extrema = distances < percentage * max_d for i, x in enumerate(np.flipud(extrema)): if x: break last_less = len(extrema) - 1 - i merged_nodes = set(hierachical[:last_less + 1, 0:2].flat) post_cluster_nodes = set(hierachical[last_less + 1:, 2].flat) total_nodes = set(range(len(nodes))) cluster_centers = total_nodes - post_cluster_nodes - merged_nodes # nodes that is not merged will be cluster_centers return nodes[list(cluster_centers)], weights[list(cluster_centers)] def MeanLogWardTree(X: np.ndarray, weight: tg.Optional[np.ndarray]=None) -> np.ndarray: """Hierachical Cluster that pick the mean of log of ward_tree distance and cut the cluster tree into several clusters """ if weight is None: connect = None else: connect = np.outer(weight, weight) n_samples, n_features = X.shape children, n_components, n_leaves, parents, distances = sklc.ward_tree(X, connectivity=connect, return_distance=True) c = children.shape[0] hierachical = np.hstack([children, np.arange(n_samples, n_samples + c).reshape(c, 1)]) log_distance = np.log(np.sqrt(distances**2 / n_features)) mean_log_distance = np.mean(log_distance) distance_mask = log_distance < mean_log_distance post_distance_mask = log_distance >= mean_log_distance merged_nodes = set(hierachical[distance_mask, 0:2].flat) post_cluster_nodes = set(hierachical[post_distance_mask, 2].flat) total_nodes = set(range(n_samples, c + n_samples)) cluster_centers = total_nodes - post_cluster_nodes - merged_nodes # nodes that is not merged will be cluster_centers print(merged_nodes) print(post_cluster_nodes) print(total_nodes) return hierachical[np.asarray(list(cluster_centers)) - n_samples]
mit
hdmetor/scikit-learn
examples/manifold/plot_manifold_sphere.py
258
5101
#!/usr/bin/python # -*- coding: utf-8 -*- """ ============================================= Manifold Learning methods on a severed sphere ============================================= An application of the different :ref:`manifold` techniques on a spherical data-set. Here one can see the use of dimensionality reduction in order to gain some intuition regarding the manifold learning methods. Regarding the dataset, the poles are cut from the sphere, as well as a thin slice down its side. This enables the manifold learning techniques to 'spread it open' whilst projecting it onto two dimensions. For a similar example, where the methods are applied to the S-curve dataset, see :ref:`example_manifold_plot_compare_methods.py` Note that the purpose of the :ref:`MDS <multidimensional_scaling>` is to find a low-dimensional representation of the data (here 2D) in which the distances respect well the distances in the original high-dimensional space, unlike other manifold-learning algorithms, it does not seeks an isotropic representation of the data in the low-dimensional space. Here the manifold problem matches fairly that of representing a flat map of the Earth, as with `map projection <http://en.wikipedia.org/wiki/Map_projection>`_ """ # Author: Jaques Grobler <[email protected]> # License: BSD 3 clause print(__doc__) from time import time import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.ticker import NullFormatter from sklearn import manifold from sklearn.utils import check_random_state # Next line to silence pyflakes. Axes3D # Variables for manifold learning. n_neighbors = 10 n_samples = 1000 # Create our sphere. random_state = check_random_state(0) p = random_state.rand(n_samples) * (2 * np.pi - 0.55) t = random_state.rand(n_samples) * np.pi # Sever the poles from the sphere. indices = ((t < (np.pi - (np.pi / 8))) & (t > ((np.pi / 8)))) colors = p[indices] x, y, z = np.sin(t[indices]) * np.cos(p[indices]), \ np.sin(t[indices]) * np.sin(p[indices]), \ np.cos(t[indices]) # Plot our dataset. fig = plt.figure(figsize=(15, 8)) plt.suptitle("Manifold Learning with %i points, %i neighbors" % (1000, n_neighbors), fontsize=14) ax = fig.add_subplot(251, projection='3d') ax.scatter(x, y, z, c=p[indices], cmap=plt.cm.rainbow) try: # compatibility matplotlib < 1.0 ax.view_init(40, -10) except: pass sphere_data = np.array([x, y, z]).T # Perform Locally Linear Embedding Manifold learning methods = ['standard', 'ltsa', 'hessian', 'modified'] labels = ['LLE', 'LTSA', 'Hessian LLE', 'Modified LLE'] for i, method in enumerate(methods): t0 = time() trans_data = manifold\ .LocallyLinearEmbedding(n_neighbors, 2, method=method).fit_transform(sphere_data).T t1 = time() print("%s: %.2g sec" % (methods[i], t1 - t0)) ax = fig.add_subplot(252 + i) plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow) plt.title("%s (%.2g sec)" % (labels[i], t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') # Perform Isomap Manifold learning. t0 = time() trans_data = manifold.Isomap(n_neighbors, n_components=2)\ .fit_transform(sphere_data).T t1 = time() print("%s: %.2g sec" % ('ISO', t1 - t0)) ax = fig.add_subplot(257) plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow) plt.title("%s (%.2g sec)" % ('Isomap', t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') # Perform Multi-dimensional scaling. t0 = time() mds = manifold.MDS(2, max_iter=100, n_init=1) trans_data = mds.fit_transform(sphere_data).T t1 = time() print("MDS: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(258) plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow) plt.title("MDS (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') # Perform Spectral Embedding. t0 = time() se = manifold.SpectralEmbedding(n_components=2, n_neighbors=n_neighbors) trans_data = se.fit_transform(sphere_data).T t1 = time() print("Spectral Embedding: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(259) plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow) plt.title("Spectral Embedding (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') # Perform t-distributed stochastic neighbor embedding. t0 = time() tsne = manifold.TSNE(n_components=2, init='pca', random_state=0) trans_data = tsne.fit_transform(sphere_data).T t1 = time() print("t-SNE: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(250) plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow) plt.title("t-SNE (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') plt.show()
bsd-3-clause
jwyang/JULE-Caffe
python/detect.py
23
5743
#!/usr/bin/env python """ detector.py is an out-of-the-box windowed detector callable from the command line. By default it configures and runs the Caffe reference ImageNet model. Note that this model was trained for image classification and not detection, and finetuning for detection can be expected to improve results. The selective_search_ijcv_with_python code required for the selective search proposal mode is available at https://github.com/sergeyk/selective_search_ijcv_with_python TODO: - batch up image filenames as well: don't want to load all of them into memory - come up with a batching scheme that preserved order / keeps a unique ID """ import numpy as np import pandas as pd import os import argparse import time import caffe CROP_MODES = ['list', 'selective_search'] COORD_COLS = ['ymin', 'xmin', 'ymax', 'xmax'] def main(argv): pycaffe_dir = os.path.dirname(__file__) parser = argparse.ArgumentParser() # Required arguments: input and output. parser.add_argument( "input_file", help="Input txt/csv filename. If .txt, must be list of filenames.\ If .csv, must be comma-separated file with header\ 'filename, xmin, ymin, xmax, ymax'" ) parser.add_argument( "output_file", help="Output h5/csv filename. Format depends on extension." ) # Optional arguments. parser.add_argument( "--model_def", default=os.path.join(pycaffe_dir, "../models/bvlc_reference_caffenet/deploy.prototxt.prototxt"), help="Model definition file." ) parser.add_argument( "--pretrained_model", default=os.path.join(pycaffe_dir, "../models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel"), help="Trained model weights file." ) parser.add_argument( "--crop_mode", default="selective_search", choices=CROP_MODES, help="How to generate windows for detection." ) parser.add_argument( "--gpu", action='store_true', help="Switch for gpu computation." ) parser.add_argument( "--mean_file", default=os.path.join(pycaffe_dir, 'caffe/imagenet/ilsvrc_2012_mean.npy'), help="Data set image mean of H x W x K dimensions (numpy array). " + "Set to '' for no mean subtraction." ) parser.add_argument( "--input_scale", type=float, help="Multiply input features by this scale to finish preprocessing." ) parser.add_argument( "--raw_scale", type=float, default=255.0, help="Multiply raw input by this scale before preprocessing." ) parser.add_argument( "--channel_swap", default='2,1,0', help="Order to permute input channels. The default converts " + "RGB -> BGR since BGR is the Caffe default by way of OpenCV." ) parser.add_argument( "--context_pad", type=int, default='16', help="Amount of surrounding context to collect in input window." ) args = parser.parse_args() mean, channel_swap = None, None if args.mean_file: mean = np.load(args.mean_file) if mean.shape[1:] != (1, 1): mean = mean.mean(1).mean(1) if args.channel_swap: channel_swap = [int(s) for s in args.channel_swap.split(',')] if args.gpu: caffe.set_mode_gpu() print("GPU mode") else: caffe.set_mode_cpu() print("CPU mode") # Make detector. detector = caffe.Detector(args.model_def, args.pretrained_model, mean=mean, input_scale=args.input_scale, raw_scale=args.raw_scale, channel_swap=channel_swap, context_pad=args.context_pad) # Load input. t = time.time() print("Loading input...") if args.input_file.lower().endswith('txt'): with open(args.input_file) as f: inputs = [_.strip() for _ in f.readlines()] elif args.input_file.lower().endswith('csv'): inputs = pd.read_csv(args.input_file, sep=',', dtype={'filename': str}) inputs.set_index('filename', inplace=True) else: raise Exception("Unknown input file type: not in txt or csv.") # Detect. if args.crop_mode == 'list': # Unpack sequence of (image filename, windows). images_windows = [ (ix, inputs.iloc[np.where(inputs.index == ix)][COORD_COLS].values) for ix in inputs.index.unique() ] detections = detector.detect_windows(images_windows) else: detections = detector.detect_selective_search(inputs) print("Processed {} windows in {:.3f} s.".format(len(detections), time.time() - t)) # Collect into dataframe with labeled fields. df = pd.DataFrame(detections) df.set_index('filename', inplace=True) df[COORD_COLS] = pd.DataFrame( data=np.vstack(df['window']), index=df.index, columns=COORD_COLS) del(df['window']) # Save results. t = time.time() if args.output_file.lower().endswith('csv'): # csv # Enumerate the class probabilities. class_cols = ['class{}'.format(x) for x in range(NUM_OUTPUT)] df[class_cols] = pd.DataFrame( data=np.vstack(df['feat']), index=df.index, columns=class_cols) df.to_csv(args.output_file, cols=COORD_COLS + class_cols) else: # h5 df.to_hdf(args.output_file, 'df', mode='w') print("Saved to {} in {:.3f} s.".format(args.output_file, time.time() - t)) if __name__ == "__main__": import sys main(sys.argv)
mit
eickenberg/scikit-learn
examples/linear_model/plot_lasso_lars.py
363
1080
#!/usr/bin/env python """ ===================== Lasso path using LARS ===================== Computes Lasso Path along the regularization parameter using the LARS algorithm on the diabetes dataset. Each color represents a different feature of the coefficient vector, and this is displayed as a function of the regularization parameter. """ print(__doc__) # Author: Fabian Pedregosa <[email protected]> # Alexandre Gramfort <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model from sklearn import datasets diabetes = datasets.load_diabetes() X = diabetes.data y = diabetes.target print("Computing regularization path using the LARS ...") alphas, _, coefs = linear_model.lars_path(X, y, method='lasso', verbose=True) xx = np.sum(np.abs(coefs.T), axis=1) xx /= xx[-1] plt.plot(xx, coefs.T) ymin, ymax = plt.ylim() plt.vlines(xx, ymin, ymax, linestyle='dashed') plt.xlabel('|coef| / max|coef|') plt.ylabel('Coefficients') plt.title('LASSO Path') plt.axis('tight') plt.show()
bsd-3-clause
ioshchepkov/SHTOOLS
examples/python/GravMag/TestGrav.py
1
5451
#!/usr/bin/env python """ This script tests the gravity and magnetics routines. """ from __future__ import absolute_import, division, print_function import os import sys import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt sys.path.append(os.path.join(os.path.dirname(__file__), "../../..")) from pyshtools import gravmag from pyshtools import spectralanalysis from pyshtools import shio from pyshtools import constant sys.path.append(os.path.join(os.path.dirname(__file__), "../Common")) from FigStyle import style_shtools # set shtools plot style: mpl.rcParams.update(style_shtools) # ==== MAIN FUNCTION ==== def main(): TestMakeGravGrid() TestNormalGravity() TestGravGrad() TestFilter() TestMakeMagGrid() # ==== TEST FUNCTIONS ==== def TestMakeGravGrid(): infile = '../../ExampleDataFiles/jgmro_110b_sha.tab' clm, lmax, header = shio.shread(infile, header=True) r0 = float(header[0]) * 1.e3 gm = float(header[1]) * 1.e9 clm[0, 0, 0] = 1.0 print(gm, r0) geoid = gravmag.MakeGeoidGridDH(clm, r0, gm, constant.w0_mars, a=constant.a_mars, f=constant.f_mars, omega=constant.omega_mars) geoid = geoid / 1.e3 # convert to meters fig_map = plt.figure() plt.imshow(geoid) fig_map.savefig('MarsGeoid.png') rad, theta, phi, total, pot = gravmag.MakeGravGridDH( clm, gm, r0, lmax=719, a=constant.a_mars, f=constant.f_mars, lmax_calc=85, omega=constant.omega_mars, normal_gravity=1) fig, axes = plt.subplots(2, 2) for num, vv, s in ((0, rad, "$g_{r}$"), (1, theta, "$g_{\\theta}$"), (2, phi, "$g_{\phi}$"), (3, total, "Gravity disturbance")): if (num == 3): axes.flat[num].imshow(vv * 1.e5, vmin=-400, vmax=550) # Convert to mGals else: axes.flat[num].imshow(vv) axes.flat[num].set_title(s) axes.flat[num].set_xticks(()) axes.flat[num].set_yticks(()) fig.savefig('Mars_Grav.png') def TestNormalGravity(): gm = constant.gm_mars omega = constant.omega_mars a = constant.a_mars b = constant.b_mars lat = np.arange(-90., 90., 1.) ng = np.array([gravmag.NormalGravity(x, gm, omega, a, b) for x in lat]) fig = plt.figure() plt.plot(lat, ng, '-') plt.xlim(-90, 90) plt.xlabel('latitude') plt.ylabel('$g, m s^{-2}$') fig.savefig('Mars_normalgravity.png') def TestGravGrad(): # ---- input parameters ---- lmax = 100 clm = np.zeros((2, lmax + 1, lmax + 1), dtype=float) clm[0, 2, 2] = 1.0 gm = 1.0 r0 = 1.0 a = 1.0 f = 0.0 vxx, vyy, vzz, vxy, vxz, vyz = gravmag.MakeGravGradGridDH(clm, gm, r0, a=a, f=f) print("Maximum Trace(Vxx+Vyy+Vzz) = ", np.max(vxx + vyy + vzz)) print("Minimum Trace(Vxx+Vyy+Vzz) = ", np.min(vxx + vyy + vzz)) fig, axes = plt.subplots(2, 3) fig.suptitle("Gravity gradient tensor", fontsize=10) for num, vv, s in ((0, vxx, "$V_{xx}$"), (1, vyy, "$V_{yy}$"), (2, vzz, "$V_{zz}$"), (3, vxy, "$V_{xy}$"), (4, vxz, "$V_{xz}$"), (5, vyz, "$V_{yz}$")): axes.flat[num].imshow(vv, vmin=-5, vmax=5) axes.flat[num].set_title(s) axes.flat[num].set_xticks(()) axes.flat[num].set_yticks(()) fig.savefig('GravGrad_C22.png') def TestFilter(): half = 80 r = constant.r_moon d = r - 40.e3 deglist = np.arange(1, 200, 1) wl = np.zeros(len(deglist) + 1) wlcurv = np.zeros(len(deglist) + 1) for l in deglist: wl[l] = gravmag.DownContFilterMA(l, half, r, d) wlcurv[l] = gravmag.DownContFilterMC(l, half, r, d) fig = plt.figure() plt.plot(deglist, wl[1:], 'b-', label='Minimum amplitude') plt.plot(deglist, wlcurv[1:], 'r-', label='Minimum curvature') plt.xlabel('degree, l') plt.ylabel('W') plt.legend() fig.savefig('Filter.png') def TestMakeMagGrid(): infile = '../../ExampleDataFiles/FSU_mars90.sh' clm, lmax, header = shio.shread(infile, header=True, skip=1) r0 = float(header[0]) * 1.e3 a = constant.r_mars + 145.0e3 # radius to evaluate the field rad, theta, phi, total = gravmag.MakeMagGridDH(clm, r0, lmax=719, a=a, f=constant.f_mars, lmax_calc=90) fig, axes = plt.subplots(2, 2) for num, vv, s in ((0, rad, "$B_{r}$"), (1, theta, "$B_{\\theta}$"), (2, phi, "$B_{\phi}$"), (3, total, "$|B|$")): if (num == 3): axes.flat[num].imshow(vv, vmin=0, vmax=700) else: axes.flat[num].imshow(vv) axes.flat[num].set_title(s) axes.flat[num].set_xticks(()) axes.flat[num].set_yticks(()) fig.savefig('Mars_Mag.png') ls = np.arange(lmax + 1) pspectrum = gravmag.mag_spectrum(clm, r0, r0) fig_spectrum, ax = plt.subplots(1, 1) ax.set_xscale('linear') ax.set_yscale('log') ax.set_xlabel('degree, l') ax.set_ylabel('Power') ax.grid(True, which='both') ax.plot(ls[1:], pspectrum[1:], label='Magnetic power spectrum') ax.legend() fig_spectrum.savefig('Mars_MagPowerSpectrum.png') # ==== EXECUTE SCRIPT ==== if __name__ == "__main__": main()
bsd-3-clause
cdeboever3/cdpybio
cdpybio/analysis.py
1
43419
import pandas as pd chrom_sizes = pd.Series( {1: 249250621, 10: 135534747, 11: 135006516, 12: 133851895, 13: 115169878, 14: 107349540, 15: 102531392, 16: 90354753, 17: 81195210, 18: 78077248, 19: 59128983, 2: 243199373, 20: 63025520, 21: 48129895, 22: 51304566, 3: 198022430, 4: 191154276, 5: 180915260, 6: 171115067, 7: 159138663, 8: 146364022, 9: 141213431, } ) chrom_sizes_norm = chrom_sizes / chrom_sizes.max() def _make_tableau20(): # tableau20 from # http://www.randalolson.com/2014/06/28/how-to-make-beautiful-data-visualizations-in-python-with-matplotlib/ tableau20 = [(31, 119, 180), (174, 199, 232), (255, 127, 14), (255, 187, 120), (44, 160, 44), (152, 223, 138), (214, 39, 40), (255, 152, 150), (148, 103, 189), (197, 176, 213), (140, 86, 75), (196, 156, 148), (227, 119, 194), (247, 182, 210), (127, 127, 127), (199, 199, 199), (188, 189, 34), (219, 219, 141), (23, 190, 207), (158, 218, 229)] # Scale the RGB values to the [0, 1] range, which is the format matplotlib # accepts. for i in range(len(tableau20)): r, g, b = tableau20[i] tableau20[i] = (r / 255., g / 255., b / 255.) return tableau20 tableau20 = _make_tableau20() def generate_null_snvs(df, snvs, num_null_sets=5): """ Generate a set of null SNVs based on an input list of SNVs and categorical annotations. Parameters ---------- df : pandas.DataFrame Pandas dataframe where each column is a categorization of SNPs. The index should be SNPs of the form chrom:pos. snvs : list List of input SNVs in the format chrom:pos. Entries that aren't in the index of df will be dropped. num_null_sets : int Number of sets of null SNVs to generate. Returns ------- null_sets : pandas.Dataframe Pandas dataframe with input SNVs as first column and null SNVs as following columns. """ import numpy as np import random random.seed(20151007) input_snvs = list(set(df.index) & set(snvs)) sig = df.ix[input_snvs] not_sig = df.ix[set(df.index) - set(snvs)] sig['group'] = sig.apply(lambda x: '::'.join(x), axis=1) not_sig['group'] = not_sig.apply(lambda x: '::'.join(x), axis=1) null_sets = [] vc = sig.group.value_counts() bins = {c:sorted(list(df[c].value_counts().index)) for c in df.columns} ordered_inputs = [] for i in vc.index: ordered_inputs += list(sig[sig.group == i].index) tdf = not_sig[not_sig.group == i] count = vc[i] for n in xrange(num_null_sets): if tdf.shape[0] == 0: groups = [i] while tdf.shape[0] == 0: # If there are no potential null SNVs in this group, we'll # expand the group randomly. g = groups[-1] # Choose random bin. cols = list(not_sig.columns) cols.remove('group') b = random.choice(cols) # Get possibilities for that bin. t = bins[b] # Get last set of bin values and the value for the bin we # want to change. d = dict(zip(not_sig.columns, g.split('::'))) cat = d[b] # Randomly walk away from bin value. ind = t.index(cat) if ind == 0: ind += 1 elif ind == len(t) - 1: ind -= 1 else: ind += random.choice([-1, 1]) d[b] = t[ind] groups.append('::'.join(pd.Series(d)[not_sig.columns].astype(str))) tdf = not_sig[not_sig.group.apply(lambda x: x in groups)] if count <= tdf.shape[0]: ind = random.sample(tdf.index, count) else: ind = list(np.random.choice(tdf.index, size=count, replace=True)) if i == vc.index[0]: null_sets.append(ind) else: null_sets[n] += ind null_sets = pd.DataFrame(null_sets).T null_sets.columns = ['null_{}'.format(x) for x in null_sets.columns] cs = list(null_sets.columns) null_sets['input'] = ordered_inputs null_sets = null_sets[['input'] + cs] return null_sets def make_grasp_phenotype_file(fn, pheno, out): """ Subset the GRASP database on a specific phenotype. Parameters ---------- fn : str Path to GRASP database file. pheno : str Phenotype to extract from database. out : sttr Path to output file for subset of GRASP database. """ import subprocess c = 'awk -F "\\t" \'NR == 1 || $12 == "{}" \' {} > {}'.format( pheno.replace("'", '\\x27'), fn, out) subprocess.check_call(c, shell=True) def parse_grasp_gwas(fn): """ Read GRASP database and filter for unique hits. Parameters ---------- fn : str Path to (subset of) GRASP database. Returns ------- df : pandas.DataFrame Pandas dataframe with de-duplicated, significant SNPs. The index is of the form chrom:pos where pos is the one-based position of the SNP. The columns are chrom, start, end, rsid, and pvalue. rsid may be empty or not actually an RSID. chrom, start, end make a zero-based bed file with the SNP coordinates. """ df = pd.read_table(fn, low_memory=False) df = df[df.Pvalue < 1e-5] df = df.sort(columns=['chr(hg19)', 'pos(hg19)', 'Pvalue']) df = df.drop_duplicates(subset=['chr(hg19)', 'pos(hg19)']) df = df[df.Pvalue < 1e-5] df['chrom'] = 'chr' + df['chr(hg19)'].astype(str) df['end'] = df['pos(hg19)'] df['start'] = df.end - 1 df['rsid'] = df['SNPid(in paper)'] df['pvalue'] = df['Pvalue'] df = df[['chrom', 'start', 'end', 'rsid', 'pvalue']] df.index = df['chrom'].astype(str) + ':' + df['end'].astype(str) return df def parse_roadmap_gwas(fn): """ Read Roadmap GWAS file and filter for unique, significant (p < 1e-5) SNPs. Parameters ---------- fn : str Path to (subset of) GRASP database. Returns ------- df : pandas.DataFrame Pandas dataframe with de-duplicated, significant SNPs. The index is of the form chrom:pos where pos is the one-based position of the SNP. The columns are chrom, start, end, rsid, and pvalue. rsid may be empty or not actually an RSID. chrom, start, end make a zero-based bed file with the SNP coordinates. """ df = pd.read_table(fn, low_memory=False, names=['chrom', 'start', 'end', 'rsid', 'pvalue']) df = df[df.pvalue < 1e-5] df = df.sort(columns=['chrom', 'start', 'pvalue']) df = df.drop_duplicates(subset=['chrom', 'start']) df = df[df['chrom'] != 'chrY'] df.index = df['chrom'].astype(str) + ':' + df['end'].astype(str) return df def ld_prune(df, ld_beds, snvs=None): """ Prune set of GWAS based on LD and significance. A graph of all SNVs is constructed with edges for LD >= 0.8 and the most significant SNV per connected component is kept. Parameters ---------- df : pandas.DataFrame Pandas dataframe with unique SNVs. The index is of the form chrom:pos where pos is the one-based position of the SNV. The columns must include chrom, start, end, and pvalue. chrom, start, end make a zero-based bed file with the SNV coordinates. ld_beds : dict Dict whose keys are chromosomes and whose values are filenames of tabixed LD bed files. An LD bed file looks like "chr1 11007 11008 11008:11012:1" where the first three columns are the zero-based half-open coordinate of the SNV and the fourth column has the one-based coordinate followed of the SNV followed by the one-based coordinate of a different SNV and the LD between them. In this example, the variants are in perfect LD. The bed file should also contain the reciprocal line for this LD relationship: "chr1 11011 11012 11012:11008:1". snvs : list List of SNVs to filter against. If a SNV is not in this list, it will not be included. If you are working with GWAS SNPs, this is useful for filtering out SNVs that aren't in the SNPsnap database for instance. Returns ------- out : pandas.DataFrame Pandas dataframe in the same format as the input dataframe but with only independent SNVs. """ import networkx as nx import tabix if snvs: df = df.ix[set(df.index) & set(snvs)] keep = set() for chrom in ld_beds.keys(): tdf = df[df['chrom'].astype(str) == chrom] if tdf.shape[0] > 0: f = tabix.open(ld_beds[chrom]) # Make a dict where each key is a SNP and the values are all of the # other SNPs in LD with the key. ld_d = {} for j in tdf.index: p = tdf.ix[j, 'end'] ld_d[p] = [] try: r = f.query(chrom, p - 1, p) while True: try: n = r.next() p1, p2, r2 = n[-1].split(':') if float(r2) >= 0.8: ld_d[p].append(int(p2)) except StopIteration: break except TabixError: continue # Make adjacency matrix for LD. cols = sorted(list(set( [item for sublist in ld_d.values() for item in sublist]))) t = pd.DataFrame(0, index=ld_d.keys(), columns=cols) for k in ld_d.keys(): t.ix[k, ld_d[k]] = 1 t.index = ['{}:{}'.format(chrom, x) for x in t.index] t.columns = ['{}:{}'.format(chrom, x) for x in t.columns] # Keep all SNPs not in LD with any others. These will be in the index # but not in the columns. keep |= set(t.index) - set(t.columns) # Filter so we only have SNPs that are in LD with at least one other # SNP. ind = list(set(t.columns) & set(t.index)) # Keep one most sig. SNP per connected subgraph. t = t.ix[ind, ind] g = nx.Graph(t.values) c = nx.connected_components(g) while True: try: sg = c.next() s = tdf.ix[t.index[list(sg)]] keep.add(s[s.pvalue == s.pvalue.min()].index[0]) except StopIteration: break out = df.ix[keep] return out def ld_expand(df, ld_beds): """ Expand a set of SNVs into all SNVs with LD >= 0.8 and return a BedTool of the expanded SNPs. Parameters ---------- df : pandas.DataFrame Pandas dataframe with SNVs. The index is of the form chrom:pos where pos is the one-based position of the SNV. The columns are chrom, start, end. chrom, start, end make a zero-based bed file with the SNV coordinates. ld_beds : dict Dict whose keys are chromosomes and whose values are filenames of tabixed LD bed files. The LD bed files should be formatted like this: chr1 14463 14464 14464:51479:0.254183 where the the first three columns indicate the zero-based coordinates of a SNV and the the fourth column has the one-based coordinate of that SNV, the one-based coordinate of another SNV on the same chromosome, and the LD between these SNVs (all separated by colons). Returns ------- bt : pybedtools.BedTool BedTool with input SNVs and SNVs they are in LD with. indepdent SNVs. """ import pybedtools as pbt import tabix out_snps = [] for chrom in ld_beds.keys(): t = tabix.open(ld_beds[chrom]) tdf = df[df['chrom'].astype(str) == chrom] for ind in tdf.index: p = tdf.ix[ind, 'end'] out_snps.append('{}\t{}\t{}\t{}\n'.format(chrom, p - 1, p, ind)) try: r = t.query('{}'.format(chrom), p - 1, p) while True: try: n = r.next() p1, p2, r2 = n[-1].split(':') if float(r2) >= 0.8: out_snps.append('{}\t{}\t{}\t{}\n'.format( n[0], int(p2) - 1, int(p2), ind)) except StopIteration: break except tabix.TabixError: continue bt = pbt.BedTool(''.join(out_snps), from_string=True) bt = bt.sort() return bt def liftover_bed( bed, chain, mapped=None, unmapped=None, liftOver_path='liftOver', ): """ Lift over a bed file using a given chain file. Parameters ---------- bed : str or pybedtools.BedTool Coordinates to lift over. chain : str Path to chain file to use for lift over. mapped : str Path for bed file with coordinates that are lifted over correctly. unmapped : str Path for text file to store coordinates that did not lift over correctly. If this is not provided, these are discarded. liftOver_path : str Path to liftOver executable if not in path. Returns ------- new_coords : pandas.DataFrame Pandas data frame with lift over results. Index is old coordinates in the form chrom:start-end and columns are chrom, start, end and loc (chrom:start-end) in new coordinate system. """ import subprocess import pybedtools as pbt if mapped == None: import tempfile mapped = tempfile.NamedTemporaryFile() mname = mapped.name else: mname = mapped if unmapped == None: import tempfile unmapped = tempfile.NamedTemporaryFile() uname = unmapped.name else: uname = unmapped if type(bed) == str: bt = pbt.BedTool(bed) elif type(bed) == pbt.bedtool.BedTool: bt = bed else: sys.exit(1) bt = bt.sort() c = '{} {} {} {} {}'.format(liftOver_path, bt.fn, chain, mname, uname) subprocess.check_call(c, shell=True) with open(uname) as f: missing = pbt.BedTool(''.join([x for x in f.readlines()[1::2]]), from_string=True) bt = bt.subtract(missing) bt_mapped = pbt.BedTool(mname) old_loc = [] for r in bt: old_loc.append('{}:{}-{}'.format(r.chrom, r.start, r.end)) new_loc = [] new_chrom = [] new_start = [] new_end = [] for r in bt_mapped: new_loc.append('{}:{}-{}'.format(r.chrom, r.start, r.end)) new_chrom.append(r.chrom) new_start.append(r.start) new_end.append(r.end) new_coords = pd.DataFrame({'loc':new_loc, 'chrom': new_chrom, 'start': new_start, 'end': new_end}, index=old_loc) for f in [mapped, unmapped]: try: f.close() except AttributeError: continue return new_coords def deseq2_size_factors(counts, meta, design): """ Get size factors for counts using DESeq2. Parameters ---------- counts : pandas.DataFrame Counts to pass to DESeq2. meta : pandas.DataFrame Pandas dataframe whose index matches the columns of counts. This is passed to DESeq2's colData. design : str Design like ~subject_id that will be passed to DESeq2. The design variables should match columns in meta. Returns ------- sf : pandas.Series Series whose index matches the columns of counts and whose values are the size factors from DESeq2. Divide each column by its size factor to obtain normalized counts. """ import rpy2.robjects as r from rpy2.robjects import pandas2ri pandas2ri.activate() r.r('suppressMessages(library(DESeq2))') r.globalenv['counts'] = counts r.globalenv['meta'] = meta r.r('dds = DESeqDataSetFromMatrix(countData=counts, colData=meta, ' 'design={})'.format(design)) r.r('dds = estimateSizeFactors(dds)') r.r('sf = sizeFactors(dds)') sf = r.globalenv['sf'] return pd.Series(sf, index=counts.columns) def goseq_gene_enrichment(genes, sig, plot_fn=None, length_correct=True): """ Perform goseq enrichment for an Ensembl gene set. Parameters ---------- genes : list List of all genes as Ensembl IDs. sig : list List of boolean values indicating whether each gene is significant or not. plot_fn : str Path to save length bias plot to. If not provided, the plot is deleted. length_correct : bool Correct for length bias. Returns ------- go_results : pandas.DataFrame Dataframe with goseq results as well as Benjamini-Hochberg correct p-values. """ import os import readline import statsmodels.stats.multitest as smm import rpy2.robjects as r genes = list(genes) sig = [bool(x) for x in sig] r.r('suppressMessages(library(goseq))') r.globalenv['genes'] = list(genes) r.globalenv['group'] = list(sig) r.r('group = as.logical(group)') r.r('names(group) = genes') r.r('pwf = nullp(group, "hg19", "ensGene")') if length_correct: r.r('wall = goseq(pwf, "hg19", "ensGene")') else: r.r('wall = goseq(pwf, "hg19", "ensGene", method="Hypergeometric")') r.r('t = as.data.frame(wall)') t = r.globalenv['t'] go_results = pd.DataFrame(columns=list(t.colnames)) for i, c in enumerate(go_results.columns): go_results[c] = list(t[i]) r, c, ask, abf = smm.multipletests( go_results.over_represented_pvalue, alpha=0.05, method='fdr_i') go_results['over_represented_pvalue_bh'] = c r, c, ask, abf = smm.multipletests( go_results.under_represented_pvalue, alpha=0.05, method='fdr_i') go_results['under_represented_pvalue_bh'] = c go_results.index = go_results.category go_results = go_results.drop('category', axis=1) if plot_fn and os.path.exists('Rplots.pdf'): from os import rename rename('Rplots.pdf', plot_fn) elif os.path.exists('Rplots.pdf'): from os import remove remove('Rplots.pdf') return go_results def categories_to_colors(cats, colormap=None): """ Map categorical data to colors. Parameters ---------- cats : pandas.Series or list Categorical data as a list or in a Series. colormap : list List of RGB triples. If not provided, the tableau20 colormap defined in this module will be used. Returns ------- legend : pd.Series Series whose values are colors and whose index are the original categories that correspond to those colors. """ if colormap is None: colormap = tableau20 if type(cats) != pd.Series: cats = pd.Series(cats) legend = pd.Series(dict(zip(set(cats), colormap))) # colors = pd.Series([legend[x] for x in cats.values], index=cats.index) # I've removed this output: # colors : pd.Series # Series whose values are the colors for each category. If cats was a # Series, then out will have the same index as cats. return(legend) def plot_color_legend(legend, horizontal=False, ax=None): """ Plot a pandas Series with labels and colors. Parameters ---------- legend : pandas.Series Pandas Series whose values are RGB triples and whose index contains categorical labels. horizontal : bool If True, plot horizontally. ax : matplotlib.axis Axis to plot on. Returns ------- ax : matplotlib.axis Plot axis. """ import matplotlib.pyplot as plt import numpy as np t = np.array([np.array([x for x in legend])]) if ax is None: fig, ax = plt.subplots(1, 1) if horizontal: ax.imshow(t, interpolation='none') ax.set_yticks([]) ax.set_xticks(np.arange(0, legend.shape[0])) t = ax.set_xticklabels(legend.index) else: t = t.reshape([legend.shape[0], 1, 3]) ax.imshow(t, interpolation='none') ax.set_xticks([]) ax.set_yticks(np.arange(0, legend.shape[0])) t = ax.set_yticklabels(legend.index) return ax def make_color_legend_rects(colors, labels=None): """ Make list of rectangles and labels for making legends. Parameters ---------- colors : pandas.Series or list Pandas series whose values are colors and index is labels. Alternatively, you can provide a list with colors and provide the labels as a list. labels : list If colors is a list, this should be the list of corresponding labels. Returns ------- out : pd.Series Pandas series whose values are matplotlib rectangles and whose index are the legend labels for those rectangles. You can add each of these rectangles to your axis using ax.add_patch(r) for r in out then create a legend whose labels are out.values and whose labels are legend_rects.index: for r in legend_rects: ax.add_patch(r) lgd = ax.legend(legend_rects.values, labels=legend_rects.index) """ from matplotlib.pyplot import Rectangle if labels: d = dict(zip(labels, colors)) se = pd.Series(d) else: se = colors rects = [] for i in se.index: r = Rectangle((0, 0), 0, 0, fc=se[i]) rects.append(r) out = pd.Series(rects, index=se.index) return out class SVD: def __init__(self, df, mean_center=True, scale_variance=False, full_matrices=False): """ Perform SVD for data matrix using scipy.linalg.svd. Note that this is currently inefficient for large matrices due to some of the pandas operations. Parameters ---------- df : pandas.DataFrame Pandas data frame with data. mean_center : bool If True, mean center the rows. This should be done if not already done. scale_variance : bool If True, scale the variance of each row to be one. Combined with mean centering, this will transform your data into z-scores. full_matrices : bool Passed to scipy.linalg.svd. If True, U and Vh are of shape (M, M), (N, N). If False, the shapes are (M, K) and (K, N), where K = min(M, N). """ import copy self.data_orig = copy.deepcopy(df) self.data = copy.deepcopy(df) if mean_center: self.data = (self.data.T - self.data.mean(axis=1)).T if scale_variance: self.data = (self.data.T / self.data.std(axis=1)).T self._perform_svd(full_matrices) def _perform_svd(self, full_matrices): from scipy.linalg import svd u, s, vh = svd(self.data, full_matrices=full_matrices) self.u_orig = u self.s_orig = s self.vh_orig = vh self.u = pd.DataFrame( u, index=self.data.index, columns=['PC{}'.format(x) for x in range(1, u.shape[1] + 1)], ) self.v = pd.DataFrame( vh.T, index=self.data.columns, columns=['PC{}'.format(x) for x in range(1, vh.shape[0] + 1)], ) index = ['PC{}'.format(x) for x in range(1, len(s) + 1)] self.s_norm = pd.Series(s / s.sum(), index=index) def plot_variance_explained(self, cumulative=False, xtick_start=1, xtick_spacing=1, num_pc=None): """ Plot amount of variance explained by each principal component. Parameters ---------- num_pc : int Number of principal components to plot. If None, plot all. cumulative : bool If True, include cumulative variance. xtick_start : int The first principal component to label on the x-axis. xtick_spacing : int The spacing between labels on the x-axis. """ import matplotlib.pyplot as plt from numpy import arange if num_pc: s_norm = self.s_norm[0:num_pc] else: s_norm = self.s_norm if cumulative: s_cumsum = s_norm.cumsum() plt.bar(range(s_cumsum.shape[0]), s_cumsum.values, label='Cumulative', color=(0.17254901960784313, 0.6274509803921569, 0.17254901960784313)) plt.bar(range(s_norm.shape[0]), s_norm.values, label='Per PC', color=(0.12156862745098039, 0.4666666666666667, 0.7058823529411765)) plt.legend(loc='center left', bbox_to_anchor=(1, 0.5)) plt.ylabel('Variance') else: plt.bar(range(s_norm.shape[0]), s_norm.values, color=(0.12156862745098039, 0.4666666666666667, 0.7058823529411765)) plt.ylabel('Proportion variance explained') plt.xlabel('PC') plt.xlim(0, s_norm.shape[0]) tick_locs = arange(xtick_start - 1, s_norm.shape[0], step=xtick_spacing) # 0.8 is the width of the bars. tick_locs = tick_locs + 0.4 plt.xticks(tick_locs, arange(xtick_start, s_norm.shape[0] + 1, xtick_spacing)) def plot_pc_scatter(self, pc1, pc2, v=True, subset=None, ax=None, color=None, s=None, marker=None, color_name=None, s_name=None, marker_name=None): """ Make a scatter plot of two principal components. You can create differently colored, sized, or marked scatter points. Parameters ---------- pc1 : str String of form PCX where X is the number of the principal component you want to plot on the x-axis. pc2 : str String of form PCX where X is the number of the principal component you want to plot on the y-axis. v : bool If True, use the v matrix for plotting the principal components (typical if input data was genes as rows and samples as columns). If False, use the u matrix. subset : list Make the scatter plot using only a subset of the rows of u or v. ax : matplotlib.axes Plot the scatter plot on this axis. color : pandas.Series Pandas series containing a categorical variable to color the scatter points. s : pandas.Series Pandas series containing a categorical variable to size the scatter points. Currently limited to 7 distinct values (sizes). marker : pandas.Series Pandas series containing a categorical variable to choose the marker type for the scatter points. Currently limited to 21 distinct values (marker styles). color_name : str Name for the color legend if a categorical variable for color is provided. s_name : str Name for the size legend if a categorical variable for size is provided. marker_name : str Name for the marker legend if a categorical variable for marker type is provided. Returns ------- ax : matplotlib.axes._subplots.AxesSubplot Scatter plot axis. TODO: Add ability to label points. """ import matplotlib.pyplot as plt import seaborn as sns assert s <= 7, 'Error: too many values for "s"' if v: df = self.v else: df = self.u if color is not None: if color.unique().shape[0] <= 10: colormap = pd.Series(dict(zip(set(color.values), tableau20[0:2 * len(set(color)):2]))) else: colormap = pd.Series(dict(zip(set(color.values), sns.color_palette('husl', len(set(color)))))) color = pd.Series([colormap[x] for x in color.values], index=color.index) color_legend = True if not color_name: color_name = color.index.name else: color = pd.Series([tableau20[0]] * df.shape[0], index=df.index) color_legend = False if s is not None: smap = pd.Series(dict(zip( set(s.values), range(30, 351)[0::50][0:len(set(s)) + 1]))) s = pd.Series([smap[x] for x in s.values], index=s.index) s_legend = True if not s_name: s_name = s.index.name else: s = pd.Series(30, index=df.index) s_legend = False markers = ['o', '*', 's', 'v', '+', 'x', 'd', 'p', '2', '<', '|', '>', '_', 'h', '1', '2', '3', '4', '8', '^', 'D'] if marker is not None: markermap = pd.Series(dict(zip(set(marker.values), markers))) marker = pd.Series([markermap[x] for x in marker.values], index=marker.index) marker_legend = True if not marker_name: marker_name = marker.index.name else: marker = pd.Series('o', index=df.index) marker_legend = False if ax is None: fig, ax = plt.subplots(1, 1) for m in set(marker.values): mse = marker[marker == m] cse = color[mse.index] sse = s[mse.index] ax.scatter(df.ix[mse.index, pc1], df.ix[mse.index, pc2], s=sse.values, color=list(cse.values), marker=m, alpha=0.8) ax.set_title('{} vs. {}'.format(pc1, pc2)) ax.set_xlabel(pc1) ax.set_ylabel(pc2) if color_legend: legend_rects = make_color_legend_rects(colormap) for r in legend_rects: ax.add_patch(r) lgd = ax.legend(legend_rects.values, labels=legend_rects.index, title=color_name, loc='upper left', bbox_to_anchor=(1, 1)) if s_legend: if lgd: lgd = ax.add_artist(lgd) xa, xb = ax.get_xlim() ya, yb = ax.get_ylim() for i in smap.index: ax.scatter([xb + 1], [yb + 1], marker='o', s=smap[i], color='black', label=i) lgd = ax.legend(title=s_name, loc='center left', bbox_to_anchor=(1, 0.5)) ax.set_xlim(xa, xb) ax.set_ylim(ya, yb) if marker_legend: if lgd: lgd = ax.add_artist(lgd) xa, xb = ax.get_xlim() ya, yb = ax.get_ylim() for i in markermap.index: t = ax.scatter([xb + 1], [yb + 1], marker=markermap[i], s=sse.min(), color='black', label=i) handles, labels = ax.get_legend_handles_labels() if s_legend: handles = handles[len(smap):] labels = labels[len(smap):] lgd = ax.legend(handles, labels, title=marker_name, loc='lower left', bbox_to_anchor=(1, 0)) ax.set_xlim(xa, xb) ax.set_ylim(ya, yb) # fig.tight_layout() return fig, ax def pc_correlation(self, covariates, num_pc=5): """ Calculate the correlation between the first num_pc prinicipal components and known covariates. The size and index of covariates determines whether u or v is used. Parameters ---------- covariates : pandas.DataFrame Dataframe of covariates whose index corresponds to the index of either u or v. num_pc : int Number of principal components to correlate with. Returns ------- corr : pandas.Panel Panel with correlation values and p-values. """ from scipy.stats import spearmanr if (covariates.shape[0] == self.u.shape[0] and len(set(covariates.index) & set(self.u.index)) == self.u.shape[0]): mat = self.u elif (covariates.shape[0] == self.v.shape[0] and len(set(covariates.index) & set(self.v.index)) == self.v.shape[0]): mat = self.v else: import sys sys.stderr.write('Covariates differ in size from input data.\n') sys.exit(1) corr = pd.Panel(items=['rho', 'pvalue'], major_axis=covariates.columns, minor_axis=mat.columns[0:num_pc]) for i in corr.major_axis: for j in corr.minor_axis: rho, p = spearmanr(covariates[i], mat[j]) corr.ix['rho', i, j] = rho corr.ix['pvalue', i, j] = p return corr def pc_anova(self, covariates, num_pc=5): """ Calculate one-way ANOVA between the first num_pc prinicipal components and known covariates. The size and index of covariates determines whether u or v is used. Parameters ---------- covariates : pandas.DataFrame Dataframe of covariates whose index corresponds to the index of either u or v. num_pc : int Number of principal components to correlate with. Returns ------- anova : pandas.Panel Panel with F-values and p-values. """ from scipy.stats import f_oneway if (covariates.shape[0] == self.u.shape[0] and len(set(covariates.index) & set(self.u.index)) == self.u.shape[0]): mat = self.u elif (covariates.shape[0] == self.v.shape[0] and len(set(covariates.index) & set(self.v.index)) == self.v.shape[0]): mat = self.v anova = pd.Panel(items=['fvalue', 'pvalue'], major_axis=covariates.columns, minor_axis=mat.columns[0:num_pc]) for i in anova.major_axis: for j in anova.minor_axis: t = [mat[j][covariates[i] == x] for x in set(covariates[i])] f, p = f_oneway(*t) anova.ix['fvalue', i, j] = f anova.ix['pvalue', i, j] = p return anova def manhattan_plot( res, ax, p_filter=1, p_cutoff=None, marker_size=10, font_size=8, chrom_labels=range(1, 23)[0::2], label_column=None, category_order=None, legend=True, ): """ Make Manhattan plot for GWAS results. Currently only support autosomes. Parameters ---------- res : pandas.DataFrame GWAS results. The following columns are required - chrom (chromsome, int), pos (genomic position, int), P (GWAS p-value, float). ax : matplotlib.axis Matplotlib axis to make Manhattan plot on. p_filter : float Only plot p-values smaller than this cutoff. This is useful for testing because filtering on p-values speeds up the plotting. p_cutoff : float Plot horizontal line at this p-value. marker_size : int Size of Manhattan markers. font_size : int Font size for plots. chrom_labels : list List of ints indicating which chromsomes to label. You may want to modulate this based on the size of the plot. Currently only integers 1-22 are supported. label_column : str String with column name from res. This column should contain a categorical annotation for each variant. These will be indicated by colors. category_order : list If label_column is not None, you can provide a list of the categories that are contained in the label_column. This will be used to assign the color palette and will specify the z-order of the categories. legend : boolean If True and label_column is not None, plot a legend. Returns ------- res : pandas.Dataframe GWAS results. The results will have additional columns that were used for plotting. ax : matplotlib.axis Axis with the Manhattan plot. colors : pd.Series or None If label_column is None, this will be None. Otherwise, if a label_column is specified, this will be a series with a mapping between the labels and the colors for each label. """ # TODO: It might make sense to allow a variable that specifies the z-order # of labels in label_column. If there are many labels and points in the same # place, certain annotations will be preferentially shown. import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import seaborn as sns # Filter results based on p-value. if p_filter < 1: res = res[res['P'] < p_filter] # Assign x coordinates for each association. res['xpos'] = np.nan chrom_vc = res['chrom'].value_counts() # total_length is arbitrary, but it's a little easier than working with the # normalized chromosome sizes to avoid small numbers. total_length = 1000 right = chrom_sizes_norm.cumsum() right = right / right[22] * total_length left = chrom_sizes_norm.cumsum() - chrom_sizes_norm[1] left = pd.Series(0, range(1, 23)) left[1:23] = right[0:21].values for chrom in range(1, 23): if chrom in res['chrom'].values: res.loc[res['chrom'] == chrom, 'xpos'] = np.linspace( left[chrom], right[chrom], chrom_vc[chrom]) # Assign colors. grey = mpl.colors.to_rgb('grey') light_grey = (0.9, 0.9, 0.9) middle_grey = (0.8, 0.8, 0.8) # I first set everything to black, but in the end everything should be # changed to one of the greys (or other colors if there is an annotation # column). If there are black points on the plot, that indicates a problem. res['color'] = 'black' for chrom in range(1, 23)[0::2]: if chrom in res['chrom'].values: ind = res[res.chrom == chrom].index res.loc[ind, 'color'] = pd.Series([grey for x in ind], index=ind) for chrom in range(1, 23)[1::2]: if chrom in res['chrom'].values: ind = res[res.chrom == chrom].index res.loc[ind, 'color'] = pd.Series([middle_grey for x in ind], index=ind) if label_column is not None: if category_order is not None: assert set(category_order) == set(res[label_column].dropna()) categories = category_order else: categories = list(set(res[label_column].dropna())) colors = categories_to_colors( categories, colormap=sns.color_palette('colorblind'), ) for cat in categories: ind = res[res[label_column] == cat].index res.loc[ind, 'color'] = pd.Series([colors[cat] for x in ind], index=ind) # Plot if label_column is not None: ind = res[res[label_column].isnull()].index ax.scatter( res.loc[ind, 'xpos'], -np.log10(res.loc[ind, 'P']), color=res.loc[ind, 'color'], s=marker_size, alpha=0.75, rasterized=True, label=None, ) for cat in reversed(categories): ind = res[res[label_column] == cat].index ax.scatter( res.loc[ind, 'xpos'], -np.log10(res.loc[ind, 'P']), color=res.loc[ind, 'color'], s=marker_size, alpha=0.75, rasterized=True, label=None, ) else: ax.scatter( res['xpos'], -np.log10(res['P']), color=res['color'], s=marker_size, alpha=0.75, rasterized=True, label=None, ) xmin, xmax = ax.get_xlim() ymin, ymax = ax.get_ylim() ax.grid(axis='x') ax.grid(axis='y') ax.grid(axis='y', alpha=0.5, ls='-', lw=0.6) if p_cutoff is not None: ax.hlines( -np.log10(p_cutoff), -5, total_length + 5, color='red', linestyles='--', lw=0.8, alpha=0.5, ) # These next two lines add background shading. I may add back in as option. # for chrom in range(1, 23)[0::2]: # ax.axvspan(left[chrom], right[chrom], facecolor=(0.4, 0.4, 0.4), alpha=0.2, lw=0) ax.set_xlim(-5, total_length + 5) ax.set_ylim(0, ymax) # Set chromosome labels # ind = range(1, 23)[0::2] # if skip19: # ind = [x for x in ind if x != 19] ind = [x for x in chrom_labels if x in range(1, 23)] ax.set_xticks(left[ind] + (right[ind] - left[ind]) / 2) ax.set_xticklabels(ind, fontsize=font_size) ax.set_ylabel('$-\log_{10} p$ value', fontsize=font_size) for t in ax.get_xticklabels() + ax.get_yticklabels(): t.set_fontsize(font_size) if label_column is not None and legend: for cat in categories: ax.scatter( -100, -100, s=marker_size, color=colors[cat], label=cat, ) if legend: ax.legend( fontsize=font_size- 1, framealpha=0.5, frameon=True, facecolor='white', ) # TODO: eventually, it would be better to be smarter about the x-axis # limits. Depending on the size of the markers and plot, some of the markers # might be cut off. ax.set_xlim(-5, total_length + 5) # TODO: eventually, it would be better to be smarter about the y-axis # limits. Depending on the size of the markers and plot, some of the markers # might be cut off. Matplotlib doesn't know anything about the size of the # markers, so it might set the y-limit too low. ax.set_ylim(-1 * np.log10(p_filter), ymax) if label_column is None: colors = None return(res, ax, colors)
mit
zingale/pyro2
swe/problems/logo.py
2
2049
from __future__ import print_function import sys import mesh.patch as patch import numpy as np from util import msg import matplotlib.pyplot as plt def init_data(my_data, rp): """ initialize the sedov problem """ msg.bold("initializing the logo problem...") # make sure that we are passed a valid patch object if not isinstance(my_data, patch.CellCenterData2d): print("ERROR: patch invalid in sedov.py") print(my_data.__class__) sys.exit() # create the logo myg = my_data.grid fig = plt.figure(2, (0.64, 0.64), dpi=100*myg.nx/64) fig.add_subplot(111) fig.text(0.5, 0.5, "pyro", transform=fig.transFigure, fontsize="16", horizontalalignment="center", verticalalignment="center") plt.axis("off") fig.canvas.draw() data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) logo = np.rot90(np.rot90(np.rot90((256-data[:, :, 1])/255.0))) # get the height, momenta as separate variables h = my_data.get_var("height") xmom = my_data.get_var("x-momentum") ymom = my_data.get_var("y-momentum") X = my_data.get_var("fuel") myg = my_data.grid # initialize the components h[:, :] = 1.0 xmom[:, :] = 0.0 ymom[:, :] = 0.0 # set the height in the logo zones to be really large logo_h = 2 h.v()[:, :] = logo[:, :] * logo_h X.v()[:, :] = logo[:, :] corner_height = 2 # explosion h[myg.ilo, myg.jlo] = corner_height h[myg.ilo, myg.jhi] = corner_height h[myg.ihi, myg.jlo] = corner_height h[myg.ihi, myg.jhi] = corner_height v = 1 xmom[myg.ilo, myg.jlo] = v xmom[myg.ilo, myg.jhi] = v xmom[myg.ihi, myg.jlo] = -v xmom[myg.ihi, myg.jhi] = -v ymom[myg.ilo, myg.jlo] = v ymom[myg.ilo, myg.jhi] = -v ymom[myg.ihi, myg.jlo] = v ymom[myg.ihi, myg.jhi] = -v X[:, :] *= h def finalize(): """ print out any information to the user at the end of the run """
bsd-3-clause
kubeflow/code-intelligence
py/code_intelligence/github_bigquery.py
1
2756
"""This module contains code to get issue data from BigQuery.""" import dateutil import json from pandas.io import gbq import re def get_issues(login, project, max_age_days=None): """Get issue data from bigquery. Args: login: Which GitHub organization to query for project: GCP project to charge BigQuery to max_age_days: (Optional) If present only fetch issues which were created less then max age_days ago """ query = f"""SELECT JSON_EXTRACT(payload, '$.issue.html_url') as html_url, JSON_EXTRACT(payload, '$.issue.title') as title, JSON_EXTRACT(payload, '$.issue.body') as body, JSON_EXTRACT(payload, "$.issue.labels") as labels, JSON_EXTRACT(payload, "$.issue.created_at") as created_at, JSON_EXTRACT(payload, "$.issue.updated_at") as updated_at, org.login, type, FROM `githubarchive.month.20*` WHERE (type="IssuesEvent" or type="IssueCommentEvent") and org.login = '{login}' and _TABLE_SUFFIX >= '1800' """ if max_age_days: # We need to convert the created_at field to a timestamp. # JSON_EXTRACT returns a json string meaning it is quoted and we need # to remove the quotes query += f""" and DATETIME_DIFF(CURRENT_DATETIME(), PARSE_DATETIME( "\\"%Y-%m-%dT%TZ\\"", JSON_EXTRACT(payload, "$.issue.created_at")), DAY) <= {max_age_days} """ issues_and_pulls=gbq.read_gbq(query, dialect='standard', project_id=project) # pull request comments also get included so we need to filter those out pattern = re.compile(".*issues/[\d]+") issues_index = issues_and_pulls["html_url"].apply(lambda x: pattern.match(x) is not None) issues = issues_and_pulls[issues_index] # We need to group the events by issue and then select the most recent event for each # issue as that should have the most up to date labels for each issue. # TODO(jlewi): Should we be converting updated_at to a datetime before doing the sort? latest_issues = issues.groupby("html_url", as_index=False).apply(lambda x: x.sort_values(["updated_at"]).iloc[-1]) # we need to deserialize the json strings to remove escaping for f in ["html_url", "title", "body", "created_at", "updated_at"]: latest_issues[f] = latest_issues[f].apply(lambda x : json.loads(x)) # Parse timestamps for f in ["created_at", "updated_at"]: latest_issues[f] = latest_issues[f].apply(lambda x : dateutil.parser.parse(x)) # Parse labels def get_labels(x): d = json.loads(x) return [i["name"] for i in d] latest_issues["parsed_labels"] = latest_issues["labels"].apply(get_labels) return latest_issues
mit
poolio/thunder
thunder/viz/colorize.py
6
17783
from numpy import arctan2, sqrt, pi, abs, dstack, clip, transpose, inf, \ random, zeros, ones, asarray, corrcoef, allclose, maximum, add, multiply, \ nan_to_num, copy, ndarray, around, ceil, rollaxis class Colorize(object): """ Class for turning numerical data into colors. Supports a set of custom conversions (rgb, hsv, polar, and indexed) as well as conversions to standard matplotlib colormaps through either a passed colormap or a string specification. If vmax and vmin are not specified, numerical data will be automatically scaled by its maximum and minimum values. Supports two-dimensional and three-dimensional data. Attributes ---------- cmap : string, optional, default = rainbow The colormap to convert to, can be one of a special set of conversions (rgb, hsv, hv, polar, angle, indexed), a matplotlib colormap object, or a string specification of a matplotlib colormap scale : float, optional, default = 1 How to scale amplitude during color conversion, controls brighthness colors : list, optional, default = None List of colors for 'indexed' option vmin : scalar, optional, default = None Numerical value to set to 0 during normalization, values below will be clipped vmax : scalar, optional, default = None Numerical value to set to 1 during normalization, values above will be clipped. """ def __init__(self, cmap='rainbow', scale=1, colors=None, vmin=None, vmax=None): self.cmap = cmap self.scale = scale self.colors = colors if self.cmap == 'index' and self.colors is None: raise Exception("Must specify colors for indexed conversion") self.vmin = vmin self.vmax = vmax @staticmethod def tile(imgs, cmap='gray', bar=False, nans=True, clim=None, grid=None, size=9, axis=0): """ Display a collection of images as a grid of tiles Parameters ---------- img : list or ndarray (2D or 3D) The images to display. Can be a list of either 2D, 3D, or a mix of 2D and 3D numpy arrays. Can also be a single numpy array, in which case the axis parameter will be assumed to index the image list, e.g. a (10, 512, 512) array with axis=0 will be treated as 10 different (512,512) images, and the same array with axis=1 would be treated as 512 (10,512) images. cmap : str or Colormap or list, optional, default = 'gray' A colormap to use, for non RGB images, a list can be used to specify a different colormap for each image bar : boolean, optional, default = False Whether to append a colorbar to each image nans : boolean, optional, deafult = True Whether to replace NaNs, if True, will replace with 0s clim : tuple or list of tuples, optional, default = None Limits for scaling image, a list can be used to specify different limits for each image grid : tuple, optional, default = None Dimensions of image tile grid, if None, will use a square grid large enough to include all images size : scalar, optional, deafult = 11 Size of the figure """ from matplotlib.pyplot import figure, colorbar from mpl_toolkits.axes_grid1 import ImageGrid if not isinstance(imgs, list): if isinstance(imgs, ndarray): if (axis < 0) | (axis >= imgs.ndim): raise ValueError("Must specify a valid axis to index the images") imgs = list(rollaxis(imgs, axis, 0)) else: raise ValueError("Must provide a list of images, or an ndarray") imgs = [asarray(im) for im in imgs] if (nans is True) and (imgs[0].dtype != bool): imgs = [nan_to_num(im) for im in imgs] fig = figure(figsize=(size, size)) if bar is True: axes_pad = 0.4 if sum([im.ndim == 3 for im in imgs]): raise ValueError("Cannot show meaningful colorbar for RGB image") cbar_mode = "each" else: axes_pad = 0.2 cbar_mode = None nimgs = len(imgs) if not isinstance(cmap, list): cmap = [cmap for _ in range(nimgs)] if not isinstance(clim, list): clim = [clim for _ in range(nimgs)] if len(clim) < nimgs: raise ValueError("Number of clim specifications %g too small for number of images %g" % (len(clim), nimgs)) if len(cmap) < nimgs: raise ValueError("Number of cmap specifications %g too small for number of images %g" % (len(cmap), nimgs)) if grid is None: c = int(ceil(sqrt(nimgs))) grid = (c, c) ngrid = grid[0] * grid[1] if ngrid < nimgs: raise ValueError("Total grid count %g too small for number of images %g" % (ngrid, nimgs)) g = ImageGrid(fig, 111, nrows_ncols=grid, axes_pad=axes_pad, cbar_mode=cbar_mode, cbar_size="5%", cbar_pad="5%") for i, im in enumerate(imgs): ax = g[i].imshow(im, cmap=cmap[i], interpolation='none', clim=clim[i]) g[i].axis('off') if bar: cb = colorbar(ax, g[i].cax) rng = abs(cb.vmax - cb.vmin) * 0.05 cb.set_ticks([around(cb.vmin + rng, 1), around(cb.vmax - rng, 1)]) cb.outline.set_visible(False) if nimgs < ngrid: for i in range(nimgs, ngrid): g[i].axis('off') g[i].cax.axis('off') @staticmethod def image(img, cmap='gray', bar=False, nans=True, clim=None, size=7, ax=None): """ Streamlined display of images using matplotlib. Parameters ---------- img : ndarray, 2D or 3D The image to display cmap : str or Colormap, optional, default = 'gray' A colormap to use, for non RGB images bar : boolean, optional, default = False Whether to append a colorbar nans : boolean, optional, deafult = True Whether to replace NaNs, if True, will replace with 0s clim : tuple, optional, default = None Limits for scaling image size : scalar, optional, deafult = 9 Size of the figure ax : matplotlib axis, optional, default = None An existing axis to plot into """ from matplotlib.pyplot import axis, colorbar, figure, gca img = asarray(img) if (nans is True) and (img.dtype != bool): img = nan_to_num(img) if ax is None: f = figure(figsize=(size, size)) ax = gca() if img.ndim == 3: if bar: raise ValueError("Cannot show meaningful colorbar for RGB images") if img.shape[2] != 3: raise ValueError("Size of third dimension must be 3 for RGB images, got %g" % img.shape[2]) mn = img.min() mx = img.max() if mn < 0.0 or mx > 1.0: raise ValueError("Values must be between 0.0 and 1.0 for RGB images, got range (%g, %g)" % (mn, mx)) im = ax.imshow(img, interpolation='none', clim=clim) else: im = ax.imshow(img, cmap=cmap, interpolation='none', clim=clim) if bar is True: cb = colorbar(im, fraction=0.046, pad=0.04) rng = abs(cb.vmax - cb.vmin) * 0.05 cb.set_ticks([around(cb.vmin + rng, 1), around(cb.vmax - rng, 1)]) cb.outline.set_visible(False) axis('off') def transform(self, img, mask=None, background=None, mixing=1.0): """ Colorize numerical image data. Input can either be a single array or a list of arrays. Depending on the colorization option, each array must either be 2 or 3 dimensional, see parameters for details. Parameters ---------- img : array The image(s) to colorize. For rgb, hsv, polar, and indexed conversions, must be of shape (c, x, y, z) or (c, x, y), where c is the dimension containing the information for colorizing. For colormap conversions, must be of shape (x, y, z) or (x, y). mask : array An additional image to mask the luminance channel of the first one. Must be of shape (x, y, z) or (x, y), and must match dimensions of images. Must be strictly positive (and will be clipped below at 0). background : array An additional image to display as a grayscale background. Must be of shape (x, y, z) or (x, y), and must match dimensions of images. mixing : scalar If adding a background image, mixing controls the relative scale. Values larger than 1.0 will emphasize the background more. Returns ------- Arrays with RGB values, with shape (x, y, z, 3) or (x, y, 3) """ from matplotlib.cm import get_cmap from matplotlib.colors import ListedColormap, LinearSegmentedColormap, hsv_to_rgb, Normalize img = asarray(img) dims = img.shape self._checkDims(dims) if self.cmap not in ['polar', 'angle']: if self.cmap in ['rgb', 'hv', 'hsv', 'indexed']: img = copy(img) for i, im in enumerate(img): norm = Normalize(vmin=self.vmin, vmax=self.vmax, clip=True) img[i] = norm(im) if isinstance(self.cmap, ListedColormap) or isinstance(self.cmap, str): norm = Normalize(vmin=self.vmin, vmax=self.vmax, clip=True) img = norm(copy(img)) if mask is not None: mask = self._prepareMask(mask) self._checkMixedDims(mask.shape, dims) if background is not None: background = self._prepareBackground(background, mixing) self._checkMixedDims(background.shape, dims) if self.cmap == 'rgb': if img.ndim == 4: out = transpose(img, [1, 2, 3, 0]) if img.ndim == 3: out = transpose(img, [1, 2, 0]) elif self.cmap == 'hv': saturation = ones((dims[1], dims[2])) * 0.8 if img.ndim == 4: out = zeros((dims[1], dims[2], dims[3], 3)) for i in range(0, dims[3]): out[:, :, i, :] = hsv_to_rgb(dstack((img[0][:, :, i], saturation, img[1][:, :, i]))) if img.ndim == 3: out = hsv_to_rgb(dstack((img[0], saturation, img[1]))) elif self.cmap == 'hsv': if img.ndim == 4: out = zeros((dims[1], dims[2], dims[3], 3)) for i in range(0, dims[3]): out[:, :, i, :] = hsv_to_rgb(dstack((img[0][:, :, i], img[1][:, :, i], img[2][:, :, i]))) if img.ndim == 3: out = hsv_to_rgb(dstack((img[0], img[1], img[2]))) elif self.cmap == 'angle': theta = ((arctan2(-img[0], -img[1]) + pi/2) % (pi*2)) / (2 * pi) saturation = ones((dims[1], dims[2])) * 0.8 rho = ones((dims[1], dims[2])) if img.ndim == 4: out = zeros((dims[1], dims[2], dims[3], 3)) for i in range(0, dims[3]): out[:, :, i, :] = hsv_to_rgb(dstack((theta[:, :, i], saturation, rho))) if img.ndim == 3: out = hsv_to_rgb(dstack((theta, saturation, rho))) elif self.cmap == 'polar': theta = ((arctan2(-img[0], -img[1]) + pi/2) % (pi*2)) / (2 * pi) rho = sqrt(img[0]**2 + img[1]**2) saturation = ones((dims[1], dims[2])) if img.ndim == 4: out = zeros((dims[1], dims[2], dims[3], 3)) for i in range(0, dims[3]): out[:, :, i, :] = hsv_to_rgb(dstack((theta[:, :, i], saturation, self.scale * rho[:, :, i]))) if img.ndim == 3: out = hsv_to_rgb(dstack((theta, saturation, self.scale * rho))) elif self.cmap == 'indexed': if img.ndim == 4: out = zeros((dims[1], dims[2], dims[3], 3)) if img.ndim == 3: out = zeros((dims[1], dims[2], 3)) for ix, clr in enumerate(self.colors): cmap = LinearSegmentedColormap.from_list('blend', [[0, 0, 0], clr]) tmp = cmap(img[ix]) if img.ndim == 4: tmp = tmp[:, :, :, 0:3] if img.ndim == 3: tmp = tmp[:, :, 0:3] out = maximum(out, clip(tmp, 0, 1)) elif isinstance(self.cmap, ListedColormap): if img.ndim == 3: out = self.cmap(img) out = out[:, :, :, 0:3] if img.ndim == 2: out = self.cmap(img) out = out[:, :, 0:3] elif isinstance(self.cmap, str): func = lambda x: get_cmap(self.cmap, 256)(x) out = func(img) if img.ndim == 3: out = out[:, :, :, 0:3] if img.ndim == 2: out = out[:, :, 0:3] else: raise Exception('Colorization method not understood') out = clip(out * self.scale, 0, 1) if mask is not None: out = self.blend(out, mask, multiply) if background is not None: out = self.blend(out, background, add) return clip(out, 0, 1) @staticmethod def blend(img, mask, op=add): """ Blend two images together using the specified operator. Parameters ---------- img : array-like First image to blend mask : array-like Second image to blend op : func, optional, default = add Operator to use for combining images """ if mask.ndim == 3: for i in range(0, 3): img[:, :, :, i] = op(img[:, :, :, i], mask) else: for i in range(0, 3): img[:, :, i] = op(img[:, :, i], mask) return img def _checkDims(self, dims): from matplotlib.colors import ListedColormap if self.cmap in ['rgb', 'hsv', 'hv', 'polar', 'angle', 'indexed']: if self.cmap in ['rgb', 'hsv']: if dims[0] != 3: raise Exception('First dimension must be 3 for %s conversion' % self.cmap) if self.cmap in ['polar', 'angle', 'hv']: if dims[0] != 2: raise Exception('First dimension must be 2 for %s conversion' % self.cmap) if self.cmap in ['indexed']: if dims[0] != len(self.colors): raise Exception('First dimension must be %g for %s conversion with list %s' % (len(self.colors), self.cmap, self.colors)) elif isinstance(self.cmap, ListedColormap) or isinstance(self.cmap, str): if len(dims) not in [2, 3]: raise Exception('Number of dimensions must be 2 or 3 for %s conversion' % self.cmap) def _checkMixedDims(self, dims1, dims2): from matplotlib.colors import ListedColormap if self.cmap in ['rgb', 'hsv', 'hv', 'polar', 'angle', 'indexed']: if not allclose(dims1, dims2[1:]): raise Exception elif isinstance(self.cmap, ListedColormap) or isinstance(self.cmap, str): if not allclose(dims1, dims2): raise Exception @staticmethod def _prepareMask(mask): mask = asarray(mask) mask = clip(mask, 0, inf) return mask / mask.max() @staticmethod def _prepareBackground(background, mixing): from matplotlib.colors import Normalize background = asarray(background) background = Normalize()(background) return background * mixing @classmethod def optimize(cls, mat, asCmap=False): """ Optimal colors based on array data similarity. Given an (n, m) data array with n m-dimensional data points, tries to find an optimal set of n colors such that the similarity between colors in 3-dimensional space is well-matched to the similarity between the data points in m-dimensional space. Parameters ---------- mat : array-like Array of data points to use for estimating similarity. asCmap : boolean, optional, default = False Whether to return a matplotlib colormap, if False will return a list of colors. """ mat = asarray(mat) if mat.ndim < 2: raise Exception('Input array must be two-dimensional') nclrs = mat.shape[0] from scipy.spatial.distance import pdist, squareform from scipy.optimize import minimize distMat = squareform(pdist(mat, metric='cosine')).flatten() optFunc = lambda x: 1 - corrcoef(distMat, squareform(pdist(x.reshape(nclrs, 3), 'cosine')).flatten())[0, 1] init = random.rand(nclrs*3) bounds = [(0, 1) for _ in range(0, nclrs * 3)] res = minimize(optFunc, init, bounds=bounds, method='L-BFGS-B') newClrs = res.x.reshape(nclrs, 3).tolist() from matplotlib.colors import ListedColormap if asCmap: newClrs = ListedColormap(newClrs, name='from_list') return newClrs
apache-2.0
NelisVerhoef/scikit-learn
benchmarks/bench_sample_without_replacement.py
397
8008
""" Benchmarks for sampling without replacement of integer. """ from __future__ import division from __future__ import print_function import gc import sys import optparse from datetime import datetime import operator import matplotlib.pyplot as plt import numpy as np import random from sklearn.externals.six.moves import xrange from sklearn.utils.random import sample_without_replacement def compute_time(t_start, delta): mu_second = 0.0 + 10 ** 6 # number of microseconds in a second return delta.seconds + delta.microseconds / mu_second def bench_sample(sampling, n_population, n_samples): gc.collect() # start time t_start = datetime.now() sampling(n_population, n_samples) delta = (datetime.now() - t_start) # stop time time = compute_time(t_start, delta) return time if __name__ == "__main__": ########################################################################### # Option parser ########################################################################### op = optparse.OptionParser() op.add_option("--n-times", dest="n_times", default=5, type=int, help="Benchmark results are average over n_times experiments") op.add_option("--n-population", dest="n_population", default=100000, type=int, help="Size of the population to sample from.") op.add_option("--n-step", dest="n_steps", default=5, type=int, help="Number of step interval between 0 and n_population.") default_algorithms = "custom-tracking-selection,custom-auto," \ "custom-reservoir-sampling,custom-pool,"\ "python-core-sample,numpy-permutation" op.add_option("--algorithm", dest="selected_algorithm", default=default_algorithms, type=str, help="Comma-separated list of transformer to benchmark. " "Default: %default. \nAvailable: %default") # op.add_option("--random-seed", # dest="random_seed", default=13, type=int, # help="Seed used by the random number generators.") (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) selected_algorithm = opts.selected_algorithm.split(',') for key in selected_algorithm: if key not in default_algorithms.split(','): raise ValueError("Unknown sampling algorithm \"%s\" not in (%s)." % (key, default_algorithms)) ########################################################################### # List sampling algorithm ########################################################################### # We assume that sampling algorithm has the following signature: # sample(n_population, n_sample) # sampling_algorithm = {} ########################################################################### # Set Python core input sampling_algorithm["python-core-sample"] = \ lambda n_population, n_sample: \ random.sample(xrange(n_population), n_sample) ########################################################################### # Set custom automatic method selection sampling_algorithm["custom-auto"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="auto", random_state=random_state) ########################################################################### # Set custom tracking based method sampling_algorithm["custom-tracking-selection"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="tracking_selection", random_state=random_state) ########################################################################### # Set custom reservoir based method sampling_algorithm["custom-reservoir-sampling"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="reservoir_sampling", random_state=random_state) ########################################################################### # Set custom reservoir based method sampling_algorithm["custom-pool"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="pool", random_state=random_state) ########################################################################### # Numpy permutation based sampling_algorithm["numpy-permutation"] = \ lambda n_population, n_sample: \ np.random.permutation(n_population)[:n_sample] ########################################################################### # Remove unspecified algorithm sampling_algorithm = dict((key, value) for key, value in sampling_algorithm.items() if key in selected_algorithm) ########################################################################### # Perform benchmark ########################################################################### time = {} n_samples = np.linspace(start=0, stop=opts.n_population, num=opts.n_steps).astype(np.int) ratio = n_samples / opts.n_population print('Benchmarks') print("===========================") for name in sorted(sampling_algorithm): print("Perform benchmarks for %s..." % name, end="") time[name] = np.zeros(shape=(opts.n_steps, opts.n_times)) for step in xrange(opts.n_steps): for it in xrange(opts.n_times): time[name][step, it] = bench_sample(sampling_algorithm[name], opts.n_population, n_samples[step]) print("done") print("Averaging results...", end="") for name in sampling_algorithm: time[name] = np.mean(time[name], axis=1) print("done\n") # Print results ########################################################################### print("Script arguments") print("===========================") arguments = vars(opts) print("%s \t | %s " % ("Arguments".ljust(16), "Value".center(12),)) print(25 * "-" + ("|" + "-" * 14) * 1) for key, value in arguments.items(): print("%s \t | %s " % (str(key).ljust(16), str(value).strip().center(12))) print("") print("Sampling algorithm performance:") print("===============================") print("Results are averaged over %s repetition(s)." % opts.n_times) print("") fig = plt.figure('scikit-learn sample w/o replacement benchmark results') plt.title("n_population = %s, n_times = %s" % (opts.n_population, opts.n_times)) ax = fig.add_subplot(111) for name in sampling_algorithm: ax.plot(ratio, time[name], label=name) ax.set_xlabel('ratio of n_sample / n_population') ax.set_ylabel('Time (s)') ax.legend() # Sort legend labels handles, labels = ax.get_legend_handles_labels() hl = sorted(zip(handles, labels), key=operator.itemgetter(1)) handles2, labels2 = zip(*hl) ax.legend(handles2, labels2, loc=0) plt.show()
bsd-3-clause
trachelr/mne-python
tutorials/plot_cluster_methods_tutorial.py
15
8431
# doc:slow-example """ .. _tut_stats_cluster_methods: ====================================================== Permutation t-test on toy data with spatial clustering ====================================================== Following the illustrative example of Ridgway et al. 2012, this demonstrates some basic ideas behind both the "hat" variance adjustment method, as well as threshold-free cluster enhancement (TFCE) methods in mne-python. This toy dataset consists of a 40 x 40 square with a "signal" present in the center (at pixel [20, 20]) with white noise added and a 5-pixel-SD normal smoothing kernel applied. For more information, see: Ridgway et al. 2012, "The problem of low variance voxels in statistical parametric mapping; a new hat avoids a 'haircut'", NeuroImage. 2012 Feb 1;59(3):2131-41. Smith and Nichols 2009, "Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence, and localisation in cluster inference", NeuroImage 44 (2009) 83-98. In the top row plot the T statistic over space, peaking toward the center. Note that it has peaky edges. Second, with the "hat" variance correction/regularization, the peak becomes correctly centered. Third, the TFCE approach also corrects for these edge artifacts. Fourth, the the two methods combined provide a tighter estimate, for better or worse. Now considering multiple-comparisons corrected statistics on these variables, note that a non-cluster test (e.g., FDR or Bonferroni) would mis-localize the peak due to sharpness in the T statistic driven by low-variance pixels toward the edge of the plateau. Standard clustering (first plot in the second row) identifies the correct region, but the whole area must be declared significant, so no peak analysis can be done. Also, the peak is broad. In this method, all significances are family-wise error rate (FWER) corrected, and the method is non-parametric so assumptions of Gaussian data distributions (which do actually hold for this example) don't need to be satisfied. Adding the "hat" technique tightens the estimate of significant activity (second plot). The TFCE approach (third plot) allows analyzing each significant point independently, but still has a broadened estimate. Note that this is also FWER corrected. Finally, combining the TFCE and "hat" methods tightens the area declared significant (again FWER corrected), and allows for evaluation of each point independently instead of as a single, broad cluster. Note that this example does quite a bit of processing, so even on a fast machine it can take a few minutes to complete. """ # Authors: Eric Larson <[email protected]> # License: BSD (3-clause) import numpy as np from scipy import stats from functools import partial import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # noqa; this changes hidden mpl vars from mne.stats import (spatio_temporal_cluster_1samp_test, bonferroni_correction, ttest_1samp_no_p) try: from sklearn.feature_extraction.image import grid_to_graph except ImportError: from scikits.learn.feature_extraction.image import grid_to_graph print(__doc__) ############################################################################### # Set parameters width = 40 n_subjects = 10 signal_mean = 100 signal_sd = 100 noise_sd = 0.01 gaussian_sd = 5 sigma = 1e-3 # sigma for the "hat" method threshold = -stats.distributions.t.ppf(0.05, n_subjects - 1) threshold_tfce = dict(start=0, step=0.2) n_permutations = 1024 # number of clustering permutations (1024 for exact) ############################################################################### # Construct simulated data # Make the connectivity matrix just next-neighbor spatially n_src = width * width connectivity = grid_to_graph(width, width) # For each "subject", make a smoothed noisy signal with a centered peak rng = np.random.RandomState(42) X = noise_sd * rng.randn(n_subjects, width, width) # Add a signal at the dead center X[:, width // 2, width // 2] = signal_mean + rng.randn(n_subjects) * signal_sd # Spatially smooth with a 2D Gaussian kernel size = width // 2 - 1 gaussian = np.exp(-(np.arange(-size, size + 1) ** 2 / float(gaussian_sd ** 2))) for si in range(X.shape[0]): for ri in range(X.shape[1]): X[si, ri, :] = np.convolve(X[si, ri, :], gaussian, 'same') for ci in range(X.shape[2]): X[si, :, ci] = np.convolve(X[si, :, ci], gaussian, 'same') ############################################################################### # Do some statistics # Note that X needs to be a multi-dimensional array of shape # samples (subjects) x time x space, so we permute dimensions X = X.reshape((n_subjects, 1, n_src)) # Now let's do some clustering using the standard method. Note that not # specifying a connectivity matrix implies grid-like connectivity, which # we want here: T_obs, clusters, p_values, H0 = \ spatio_temporal_cluster_1samp_test(X, n_jobs=2, threshold=threshold, connectivity=connectivity, tail=1, n_permutations=n_permutations) # Let's put the cluster data in a readable format ps = np.zeros(width * width) for cl, p in zip(clusters, p_values): ps[cl[1]] = -np.log10(p) ps = ps.reshape((width, width)) T_obs = T_obs.reshape((width, width)) # To do a Bonferroni correction on these data is simple: p = stats.distributions.t.sf(T_obs, n_subjects - 1) p_bon = -np.log10(bonferroni_correction(p)[1]) # Now let's do some clustering using the standard method with "hat": stat_fun = partial(ttest_1samp_no_p, sigma=sigma) T_obs_hat, clusters, p_values, H0 = \ spatio_temporal_cluster_1samp_test(X, n_jobs=2, threshold=threshold, connectivity=connectivity, tail=1, n_permutations=n_permutations, stat_fun=stat_fun) # Let's put the cluster data in a readable format ps_hat = np.zeros(width * width) for cl, p in zip(clusters, p_values): ps_hat[cl[1]] = -np.log10(p) ps_hat = ps_hat.reshape((width, width)) T_obs_hat = T_obs_hat.reshape((width, width)) # Now the threshold-free cluster enhancement method (TFCE): T_obs_tfce, clusters, p_values, H0 = \ spatio_temporal_cluster_1samp_test(X, n_jobs=2, threshold=threshold_tfce, connectivity=connectivity, tail=1, n_permutations=n_permutations) T_obs_tfce = T_obs_tfce.reshape((width, width)) ps_tfce = -np.log10(p_values.reshape((width, width))) # Now the TFCE with "hat" variance correction: T_obs_tfce_hat, clusters, p_values, H0 = \ spatio_temporal_cluster_1samp_test(X, n_jobs=2, threshold=threshold_tfce, connectivity=connectivity, tail=1, n_permutations=n_permutations, stat_fun=stat_fun) T_obs_tfce_hat = T_obs_tfce_hat.reshape((width, width)) ps_tfce_hat = -np.log10(p_values.reshape((width, width))) ############################################################################### # Visualize results plt.ion() fig = plt.figure(facecolor='w') x, y = np.mgrid[0:width, 0:width] kwargs = dict(rstride=1, cstride=1, linewidth=0, cmap='Greens') Ts = [T_obs, T_obs_hat, T_obs_tfce, T_obs_tfce_hat] titles = ['T statistic', 'T with "hat"', 'TFCE statistic', 'TFCE w/"hat" stat'] for ii, (t, title) in enumerate(zip(Ts, titles)): ax = fig.add_subplot(2, 4, ii + 1, projection='3d') ax.plot_surface(x, y, t, **kwargs) ax.set_xticks([]) ax.set_yticks([]) ax.set_title(title) p_lims = [1.3, -np.log10(1.0 / n_permutations)] pvals = [ps, ps_hat, ps_tfce, ps_tfce_hat] titles = ['Standard clustering', 'Clust. w/"hat"', 'Clust. w/TFCE', 'Clust. w/TFCE+"hat"'] axs = [] for ii, (p, title) in enumerate(zip(pvals, titles)): ax = fig.add_subplot(2, 4, 5 + ii) plt.imshow(p, cmap='Purples', vmin=p_lims[0], vmax=p_lims[1]) ax.set_xticks([]) ax.set_yticks([]) ax.set_title(title) axs.append(ax) plt.tight_layout() for ax in axs: cbar = plt.colorbar(ax=ax, shrink=0.75, orientation='horizontal', fraction=0.1, pad=0.025) cbar.set_label('-log10(p)') cbar.set_ticks(p_lims) cbar.set_ticklabels(['%0.1f' % p for p in p_lims])
bsd-3-clause
cpcloud/odo
odo/backends/sas.py
10
1321
from __future__ import absolute_import, division, print_function import sas7bdat from sas7bdat import SAS7BDAT import datashape from datashape import discover, dshape, var, Record, date_, datetime_ from collections import Iterator import pandas as pd from .pandas import coerce_datetimes from ..append import append from ..convert import convert from ..resource import resource @resource.register('.+\.(sas7bdat)') def resource_sas(uri, **kwargs): return SAS7BDAT(uri, **kwargs) @discover.register(SAS7BDAT) def discover_sas(f, **kwargs): lines = f.readlines() next(lines) # burn header ln = next(lines) types = map(discover, ln) names = [col.name.decode("utf-8") for col in f.header.parent.columns] return var * Record(list(zip(names, types))) @convert.register(pd.DataFrame, SAS7BDAT, cost=4.0) def sas_to_DataFrame(s, dshape=None, **kwargs): df = s.to_data_frame() if any(typ in (date_, datetime_) for typ in dshape.measure.types): df = coerce_datetimes(df) names = [col.decode('utf-8') for col in s.column_names] df = df[names] # Reorder names to match sasfile return df @convert.register(Iterator, SAS7BDAT, cost=1.0) def sas_to_iterator(s, **kwargs): lines = s.readlines() if not s.skip_header: next(lines) # burn return lines
bsd-3-clause
ThQ/luigi
examples/pyspark_wc.py
56
3361
# -*- coding: utf-8 -*- # # Copyright 2012-2015 Spotify AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import luigi from luigi.s3 import S3Target from luigi.contrib.spark import SparkSubmitTask, PySparkTask class InlinePySparkWordCount(PySparkTask): """ This task runs a :py:class:`luigi.contrib.spark.PySparkTask` task over the target data in :py:meth:`wordcount.input` (a file in S3) and writes the result into its :py:meth:`wordcount.output` target (a file in S3). This class uses :py:meth:`luigi.contrib.spark.PySparkTask.main`. Example luigi configuration:: [spark] spark-submit: /usr/local/spark/bin/spark-submit master: spark://spark.example.org:7077 # py-packages: numpy, pandas """ driver_memory = '2g' executor_memory = '3g' def input(self): return S3Target("s3n://bucket.example.org/wordcount.input") def output(self): return S3Target('s3n://bucket.example.org/wordcount.output') def main(self, sc, *args): sc.textFile(self.input().path) \ .flatMap(lambda line: line.split()) \ .map(lambda word: (word, 1)) \ .reduceByKey(lambda a, b: a + b) \ .saveAsTextFile(self.output().path) class PySparkWordCount(SparkSubmitTask): """ This task is the same as :py:class:`InlinePySparkWordCount` above but uses an external python driver file specified in :py:meth:`app` It runs a :py:class:`luigi.contrib.spark.SparkSubmitTask` task over the target data in :py:meth:`wordcount.input` (a file in S3) and writes the result into its :py:meth:`wordcount.output` target (a file in S3). This class uses :py:meth:`luigi.contrib.spark.SparkSubmitTask.run`. Example luigi configuration:: [spark] spark-submit: /usr/local/spark/bin/spark-submit master: spark://spark.example.org:7077 deploy-mode: client """ driver_memory = '2g' executor_memory = '3g' total_executor_cores = luigi.IntParameter(default=100) name = "PySpark Word Count" app = 'wordcount.py' def app_options(self): # These are passed to the Spark main args in the defined order. return [self.input().path, self.output().path] def input(self): return S3Target("s3n://bucket.example.org/wordcount.input") def output(self): return S3Target('s3n://bucket.example.org/wordcount.output') ''' // Corresponding example Spark Job, running Word count with Spark's Python API // This file would have to be saved into wordcount.py import sys from pyspark import SparkContext if __name__ == "__main__": sc = SparkContext() sc.textFile(sys.argv[1]) \ .flatMap(lambda line: line.split()) \ .map(lambda word: (word, 1)) \ .reduceByKey(lambda a, b: a + b) \ .saveAsTextFile(sys.argv[2]) '''
apache-2.0
sonnyhu/scikit-learn
sklearn/svm/tests/test_svm.py
9
35008
""" Testing for Support Vector Machine module (sklearn.svm) TODO: remove hard coded numerical results when possible """ import numpy as np import itertools from numpy.testing import assert_array_equal, assert_array_almost_equal from numpy.testing import assert_almost_equal from numpy.testing import assert_allclose from scipy import sparse from nose.tools import assert_raises, assert_true, assert_equal, assert_false from sklearn import svm, linear_model, datasets, metrics, base from sklearn.model_selection import train_test_split from sklearn.datasets import make_classification, make_blobs from sklearn.metrics import f1_score from sklearn.metrics.pairwise import rbf_kernel from sklearn.utils import check_random_state from sklearn.utils.testing import assert_greater, assert_in, assert_less from sklearn.utils.testing import assert_raises_regexp, assert_warns from sklearn.utils.testing import assert_warns_message, assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn.exceptions import ChangedBehaviorWarning from sklearn.exceptions import ConvergenceWarning from sklearn.exceptions import NotFittedError from sklearn.multiclass import OneVsRestClassifier from sklearn.externals import six # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] Y = [1, 1, 1, 2, 2, 2] T = [[-1, -1], [2, 2], [3, 2]] true_result = [1, 2, 2] # also load the iris dataset iris = datasets.load_iris() rng = check_random_state(42) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] def test_libsvm_parameters(): # Test parameters on classes that make use of libsvm. clf = svm.SVC(kernel='linear').fit(X, Y) assert_array_equal(clf.dual_coef_, [[-0.25, .25]]) assert_array_equal(clf.support_, [1, 3]) assert_array_equal(clf.support_vectors_, (X[1], X[3])) assert_array_equal(clf.intercept_, [0.]) assert_array_equal(clf.predict(X), Y) def test_libsvm_iris(): # Check consistency on dataset iris. # shuffle the dataset so that labels are not ordered for k in ('linear', 'rbf'): clf = svm.SVC(kernel=k).fit(iris.data, iris.target) assert_greater(np.mean(clf.predict(iris.data) == iris.target), 0.9) assert_array_equal(clf.classes_, np.sort(clf.classes_)) # check also the low-level API model = svm.libsvm.fit(iris.data, iris.target.astype(np.float64)) pred = svm.libsvm.predict(iris.data, *model) assert_greater(np.mean(pred == iris.target), .95) model = svm.libsvm.fit(iris.data, iris.target.astype(np.float64), kernel='linear') pred = svm.libsvm.predict(iris.data, *model, kernel='linear') assert_greater(np.mean(pred == iris.target), .95) pred = svm.libsvm.cross_validation(iris.data, iris.target.astype(np.float64), 5, kernel='linear', random_seed=0) assert_greater(np.mean(pred == iris.target), .95) # If random_seed >= 0, the libsvm rng is seeded (by calling `srand`), hence # we should get deterministic results (assuming that there is no other # thread calling this wrapper calling `srand` concurrently). pred2 = svm.libsvm.cross_validation(iris.data, iris.target.astype(np.float64), 5, kernel='linear', random_seed=0) assert_array_equal(pred, pred2) @ignore_warnings def test_single_sample_1d(): # Test whether SVCs work on a single sample given as a 1-d array clf = svm.SVC().fit(X, Y) clf.predict(X[0]) clf = svm.LinearSVC(random_state=0).fit(X, Y) clf.predict(X[0]) def test_precomputed(): # SVC with a precomputed kernel. # We test it with a toy dataset and with iris. clf = svm.SVC(kernel='precomputed') # Gram matrix for train data (square matrix) # (we use just a linear kernel) K = np.dot(X, np.array(X).T) clf.fit(K, Y) # Gram matrix for test data (rectangular matrix) KT = np.dot(T, np.array(X).T) pred = clf.predict(KT) assert_raises(ValueError, clf.predict, KT.T) assert_array_equal(clf.dual_coef_, [[-0.25, .25]]) assert_array_equal(clf.support_, [1, 3]) assert_array_equal(clf.intercept_, [0]) assert_array_almost_equal(clf.support_, [1, 3]) assert_array_equal(pred, true_result) # Gram matrix for test data but compute KT[i,j] # for support vectors j only. KT = np.zeros_like(KT) for i in range(len(T)): for j in clf.support_: KT[i, j] = np.dot(T[i], X[j]) pred = clf.predict(KT) assert_array_equal(pred, true_result) # same as before, but using a callable function instead of the kernel # matrix. kernel is just a linear kernel kfunc = lambda x, y: np.dot(x, y.T) clf = svm.SVC(kernel=kfunc) clf.fit(X, Y) pred = clf.predict(T) assert_array_equal(clf.dual_coef_, [[-0.25, .25]]) assert_array_equal(clf.intercept_, [0]) assert_array_almost_equal(clf.support_, [1, 3]) assert_array_equal(pred, true_result) # test a precomputed kernel with the iris dataset # and check parameters against a linear SVC clf = svm.SVC(kernel='precomputed') clf2 = svm.SVC(kernel='linear') K = np.dot(iris.data, iris.data.T) clf.fit(K, iris.target) clf2.fit(iris.data, iris.target) pred = clf.predict(K) assert_array_almost_equal(clf.support_, clf2.support_) assert_array_almost_equal(clf.dual_coef_, clf2.dual_coef_) assert_array_almost_equal(clf.intercept_, clf2.intercept_) assert_almost_equal(np.mean(pred == iris.target), .99, decimal=2) # Gram matrix for test data but compute KT[i,j] # for support vectors j only. K = np.zeros_like(K) for i in range(len(iris.data)): for j in clf.support_: K[i, j] = np.dot(iris.data[i], iris.data[j]) pred = clf.predict(K) assert_almost_equal(np.mean(pred == iris.target), .99, decimal=2) clf = svm.SVC(kernel=kfunc) clf.fit(iris.data, iris.target) assert_almost_equal(np.mean(pred == iris.target), .99, decimal=2) def test_svr(): # Test Support Vector Regression diabetes = datasets.load_diabetes() for clf in (svm.NuSVR(kernel='linear', nu=.4, C=1.0), svm.NuSVR(kernel='linear', nu=.4, C=10.), svm.SVR(kernel='linear', C=10.), svm.LinearSVR(C=10.), svm.LinearSVR(C=10.), ): clf.fit(diabetes.data, diabetes.target) assert_greater(clf.score(diabetes.data, diabetes.target), 0.02) # non-regression test; previously, BaseLibSVM would check that # len(np.unique(y)) < 2, which must only be done for SVC svm.SVR().fit(diabetes.data, np.ones(len(diabetes.data))) svm.LinearSVR().fit(diabetes.data, np.ones(len(diabetes.data))) def test_linearsvr(): # check that SVR(kernel='linear') and LinearSVC() give # comparable results diabetes = datasets.load_diabetes() lsvr = svm.LinearSVR(C=1e3).fit(diabetes.data, diabetes.target) score1 = lsvr.score(diabetes.data, diabetes.target) svr = svm.SVR(kernel='linear', C=1e3).fit(diabetes.data, diabetes.target) score2 = svr.score(diabetes.data, diabetes.target) assert_allclose(np.linalg.norm(lsvr.coef_), np.linalg.norm(svr.coef_), 1, 0.0001) assert_almost_equal(score1, score2, 2) def test_linearsvr_fit_sampleweight(): # check correct result when sample_weight is 1 # check that SVR(kernel='linear') and LinearSVC() give # comparable results diabetes = datasets.load_diabetes() n_samples = len(diabetes.target) unit_weight = np.ones(n_samples) lsvr = svm.LinearSVR(C=1e3).fit(diabetes.data, diabetes.target, sample_weight=unit_weight) score1 = lsvr.score(diabetes.data, diabetes.target) lsvr_no_weight = svm.LinearSVR(C=1e3).fit(diabetes.data, diabetes.target) score2 = lsvr_no_weight.score(diabetes.data, diabetes.target) assert_allclose(np.linalg.norm(lsvr.coef_), np.linalg.norm(lsvr_no_weight.coef_), 1, 0.0001) assert_almost_equal(score1, score2, 2) # check that fit(X) = fit([X1, X2, X3],sample_weight = [n1, n2, n3]) where # X = X1 repeated n1 times, X2 repeated n2 times and so forth random_state = check_random_state(0) random_weight = random_state.randint(0, 10, n_samples) lsvr_unflat = svm.LinearSVR(C=1e3).fit(diabetes.data, diabetes.target, sample_weight=random_weight) score3 = lsvr_unflat.score(diabetes.data, diabetes.target, sample_weight=random_weight) X_flat = np.repeat(diabetes.data, random_weight, axis=0) y_flat = np.repeat(diabetes.target, random_weight, axis=0) lsvr_flat = svm.LinearSVR(C=1e3).fit(X_flat, y_flat) score4 = lsvr_flat.score(X_flat, y_flat) assert_almost_equal(score3, score4, 2) def test_svr_errors(): X = [[0.0], [1.0]] y = [0.0, 0.5] # Bad kernel clf = svm.SVR(kernel=lambda x, y: np.array([[1.0]])) clf.fit(X, y) assert_raises(ValueError, clf.predict, X) def test_oneclass(): # Test OneClassSVM clf = svm.OneClassSVM() clf.fit(X) pred = clf.predict(T) assert_array_almost_equal(pred, [-1, -1, -1]) assert_array_almost_equal(clf.intercept_, [-1.008], decimal=3) assert_array_almost_equal(clf.dual_coef_, [[0.632, 0.233, 0.633, 0.234, 0.632, 0.633]], decimal=3) assert_raises(ValueError, lambda: clf.coef_) def test_oneclass_decision_function(): # Test OneClassSVM decision function clf = svm.OneClassSVM() rnd = check_random_state(2) # Generate train data X = 0.3 * rnd.randn(100, 2) X_train = np.r_[X + 2, X - 2] # Generate some regular novel observations X = 0.3 * rnd.randn(20, 2) X_test = np.r_[X + 2, X - 2] # Generate some abnormal novel observations X_outliers = rnd.uniform(low=-4, high=4, size=(20, 2)) # fit the model clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1) clf.fit(X_train) # predict things y_pred_test = clf.predict(X_test) assert_greater(np.mean(y_pred_test == 1), .9) y_pred_outliers = clf.predict(X_outliers) assert_greater(np.mean(y_pred_outliers == -1), .9) dec_func_test = clf.decision_function(X_test) assert_array_equal((dec_func_test > 0).ravel(), y_pred_test == 1) dec_func_outliers = clf.decision_function(X_outliers) assert_array_equal((dec_func_outliers > 0).ravel(), y_pred_outliers == 1) def test_tweak_params(): # Make sure some tweaking of parameters works. # We change clf.dual_coef_ at run time and expect .predict() to change # accordingly. Notice that this is not trivial since it involves a lot # of C/Python copying in the libsvm bindings. # The success of this test ensures that the mapping between libsvm and # the python classifier is complete. clf = svm.SVC(kernel='linear', C=1.0) clf.fit(X, Y) assert_array_equal(clf.dual_coef_, [[-.25, .25]]) assert_array_equal(clf.predict([[-.1, -.1]]), [1]) clf._dual_coef_ = np.array([[.0, 1.]]) assert_array_equal(clf.predict([[-.1, -.1]]), [2]) def test_probability(): # Predict probabilities using SVC # This uses cross validation, so we use a slightly bigger testing set. for clf in (svm.SVC(probability=True, random_state=0, C=1.0), svm.NuSVC(probability=True, random_state=0)): clf.fit(iris.data, iris.target) prob_predict = clf.predict_proba(iris.data) assert_array_almost_equal( np.sum(prob_predict, 1), np.ones(iris.data.shape[0])) assert_true(np.mean(np.argmax(prob_predict, 1) == clf.predict(iris.data)) > 0.9) assert_almost_equal(clf.predict_proba(iris.data), np.exp(clf.predict_log_proba(iris.data)), 8) def test_decision_function(): # Test decision_function # Sanity check, test that decision_function implemented in python # returns the same as the one in libsvm # multi class: clf = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovo').fit(iris.data, iris.target) dec = np.dot(iris.data, clf.coef_.T) + clf.intercept_ assert_array_almost_equal(dec, clf.decision_function(iris.data)) # binary: clf.fit(X, Y) dec = np.dot(X, clf.coef_.T) + clf.intercept_ prediction = clf.predict(X) assert_array_almost_equal(dec.ravel(), clf.decision_function(X)) assert_array_almost_equal( prediction, clf.classes_[(clf.decision_function(X) > 0).astype(np.int)]) expected = np.array([-1., -0.66, -1., 0.66, 1., 1.]) assert_array_almost_equal(clf.decision_function(X), expected, 2) # kernel binary: clf = svm.SVC(kernel='rbf', gamma=1, decision_function_shape='ovo') clf.fit(X, Y) rbfs = rbf_kernel(X, clf.support_vectors_, gamma=clf.gamma) dec = np.dot(rbfs, clf.dual_coef_.T) + clf.intercept_ assert_array_almost_equal(dec.ravel(), clf.decision_function(X)) def test_decision_function_shape(): # check that decision_function_shape='ovr' gives # correct shape and is consistent with predict clf = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovr').fit(iris.data, iris.target) dec = clf.decision_function(iris.data) assert_equal(dec.shape, (len(iris.data), 3)) assert_array_equal(clf.predict(iris.data), np.argmax(dec, axis=1)) # with five classes: X, y = make_blobs(n_samples=80, centers=5, random_state=0) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovr').fit(X_train, y_train) dec = clf.decision_function(X_test) assert_equal(dec.shape, (len(X_test), 5)) assert_array_equal(clf.predict(X_test), np.argmax(dec, axis=1)) # check shape of ovo_decition_function=True clf = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovo').fit(X_train, y_train) dec = clf.decision_function(X_train) assert_equal(dec.shape, (len(X_train), 10)) # check deprecation warning clf = svm.SVC(kernel='linear', C=0.1).fit(X_train, y_train) msg = "change the shape of the decision function" dec = assert_warns_message(ChangedBehaviorWarning, msg, clf.decision_function, X_train) assert_equal(dec.shape, (len(X_train), 10)) def test_svr_predict(): # Test SVR's decision_function # Sanity check, test that predict implemented in python # returns the same as the one in libsvm X = iris.data y = iris.target # linear kernel reg = svm.SVR(kernel='linear', C=0.1).fit(X, y) dec = np.dot(X, reg.coef_.T) + reg.intercept_ assert_array_almost_equal(dec.ravel(), reg.predict(X).ravel()) # rbf kernel reg = svm.SVR(kernel='rbf', gamma=1).fit(X, y) rbfs = rbf_kernel(X, reg.support_vectors_, gamma=reg.gamma) dec = np.dot(rbfs, reg.dual_coef_.T) + reg.intercept_ assert_array_almost_equal(dec.ravel(), reg.predict(X).ravel()) def test_weight(): # Test class weights clf = svm.SVC(class_weight={1: 0.1}) # we give a small weights to class 1 clf.fit(X, Y) # so all predicted values belong to class 2 assert_array_almost_equal(clf.predict(X), [2] * 6) X_, y_ = make_classification(n_samples=200, n_features=10, weights=[0.833, 0.167], random_state=2) for clf in (linear_model.LogisticRegression(), svm.LinearSVC(random_state=0), svm.SVC()): clf.set_params(class_weight={0: .1, 1: 10}) clf.fit(X_[:100], y_[:100]) y_pred = clf.predict(X_[100:]) assert_true(f1_score(y_[100:], y_pred) > .3) def test_sample_weights(): # Test weights on individual samples # TODO: check on NuSVR, OneClass, etc. clf = svm.SVC() clf.fit(X, Y) assert_array_equal(clf.predict([X[2]]), [1.]) sample_weight = [.1] * 3 + [10] * 3 clf.fit(X, Y, sample_weight=sample_weight) assert_array_equal(clf.predict([X[2]]), [2.]) # test that rescaling all samples is the same as changing C clf = svm.SVC() clf.fit(X, Y) dual_coef_no_weight = clf.dual_coef_ clf.set_params(C=100) clf.fit(X, Y, sample_weight=np.repeat(0.01, len(X))) assert_array_almost_equal(dual_coef_no_weight, clf.dual_coef_) def test_auto_weight(): # Test class weights for imbalanced data from sklearn.linear_model import LogisticRegression # We take as dataset the two-dimensional projection of iris so # that it is not separable and remove half of predictors from # class 1. # We add one to the targets as a non-regression test: class_weight="balanced" # used to work only when the labels where a range [0..K). from sklearn.utils import compute_class_weight X, y = iris.data[:, :2], iris.target + 1 unbalanced = np.delete(np.arange(y.size), np.where(y > 2)[0][::2]) classes = np.unique(y[unbalanced]) class_weights = compute_class_weight('balanced', classes, y[unbalanced]) assert_true(np.argmax(class_weights) == 2) for clf in (svm.SVC(kernel='linear'), svm.LinearSVC(random_state=0), LogisticRegression()): # check that score is better when class='balanced' is set. y_pred = clf.fit(X[unbalanced], y[unbalanced]).predict(X) clf.set_params(class_weight='balanced') y_pred_balanced = clf.fit(X[unbalanced], y[unbalanced],).predict(X) assert_true(metrics.f1_score(y, y_pred, average='macro') <= metrics.f1_score(y, y_pred_balanced, average='macro')) def test_bad_input(): # Test that it gives proper exception on deficient input # impossible value of C assert_raises(ValueError, svm.SVC(C=-1).fit, X, Y) # impossible value of nu clf = svm.NuSVC(nu=0.0) assert_raises(ValueError, clf.fit, X, Y) Y2 = Y[:-1] # wrong dimensions for labels assert_raises(ValueError, clf.fit, X, Y2) # Test with arrays that are non-contiguous. for clf in (svm.SVC(), svm.LinearSVC(random_state=0)): Xf = np.asfortranarray(X) assert_false(Xf.flags['C_CONTIGUOUS']) yf = np.ascontiguousarray(np.tile(Y, (2, 1)).T) yf = yf[:, -1] assert_false(yf.flags['F_CONTIGUOUS']) assert_false(yf.flags['C_CONTIGUOUS']) clf.fit(Xf, yf) assert_array_equal(clf.predict(T), true_result) # error for precomputed kernelsx clf = svm.SVC(kernel='precomputed') assert_raises(ValueError, clf.fit, X, Y) # sample_weight bad dimensions clf = svm.SVC() assert_raises(ValueError, clf.fit, X, Y, sample_weight=range(len(X) - 1)) # predict with sparse input when trained with dense clf = svm.SVC().fit(X, Y) assert_raises(ValueError, clf.predict, sparse.lil_matrix(X)) Xt = np.array(X).T clf.fit(np.dot(X, Xt), Y) assert_raises(ValueError, clf.predict, X) clf = svm.SVC() clf.fit(X, Y) assert_raises(ValueError, clf.predict, Xt) def test_unicode_kernel(): # Test that a unicode kernel name does not cause a TypeError on clf.fit if six.PY2: # Test unicode (same as str on python3) clf = svm.SVC(kernel=unicode('linear')) clf.fit(X, Y) # Test ascii bytes (str is bytes in python2) clf = svm.SVC(kernel=str('linear')) clf.fit(X, Y) else: # Test unicode (str is unicode in python3) clf = svm.SVC(kernel=str('linear')) clf.fit(X, Y) # Test ascii bytes (same as str on python2) clf = svm.SVC(kernel=bytes('linear', 'ascii')) clf.fit(X, Y) # Test default behavior on both versions clf = svm.SVC(kernel='linear') clf.fit(X, Y) def test_sparse_precomputed(): clf = svm.SVC(kernel='precomputed') sparse_gram = sparse.csr_matrix([[1, 0], [0, 1]]) try: clf.fit(sparse_gram, [0, 1]) assert not "reached" except TypeError as e: assert_in("Sparse precomputed", str(e)) def test_linearsvc_parameters(): # Test possible parameter combinations in LinearSVC # Generate list of possible parameter combinations losses = ['hinge', 'squared_hinge', 'logistic_regression', 'foo'] penalties, duals = ['l1', 'l2', 'bar'], [True, False] X, y = make_classification(n_samples=5, n_features=5) for loss, penalty, dual in itertools.product(losses, penalties, duals): clf = svm.LinearSVC(penalty=penalty, loss=loss, dual=dual) if ((loss, penalty) == ('hinge', 'l1') or (loss, penalty, dual) == ('hinge', 'l2', False) or (penalty, dual) == ('l1', True) or loss == 'foo' or penalty == 'bar'): assert_raises_regexp(ValueError, "Unsupported set of arguments.*penalty='%s.*" "loss='%s.*dual=%s" % (penalty, loss, dual), clf.fit, X, y) else: clf.fit(X, y) # Incorrect loss value - test if explicit error message is raised assert_raises_regexp(ValueError, ".*loss='l3' is not supported.*", svm.LinearSVC(loss="l3").fit, X, y) # FIXME remove in 1.0 def test_linearsvx_loss_penalty_deprecations(): X, y = [[0.0], [1.0]], [0, 1] msg = ("loss='%s' has been deprecated in favor of " "loss='%s' as of 0.16. Backward compatibility" " for the %s will be removed in %s") # LinearSVC # loss l1 --> hinge assert_warns_message(DeprecationWarning, msg % ("l1", "hinge", "loss='l1'", "1.0"), svm.LinearSVC(loss="l1").fit, X, y) # loss l2 --> squared_hinge assert_warns_message(DeprecationWarning, msg % ("l2", "squared_hinge", "loss='l2'", "1.0"), svm.LinearSVC(loss="l2").fit, X, y) # LinearSVR # loss l1 --> epsilon_insensitive assert_warns_message(DeprecationWarning, msg % ("l1", "epsilon_insensitive", "loss='l1'", "1.0"), svm.LinearSVR(loss="l1").fit, X, y) # loss l2 --> squared_epsilon_insensitive assert_warns_message(DeprecationWarning, msg % ("l2", "squared_epsilon_insensitive", "loss='l2'", "1.0"), svm.LinearSVR(loss="l2").fit, X, y) def test_linear_svx_uppercase_loss_penality_raises_error(): # Check if Upper case notation raises error at _fit_liblinear # which is called by fit X, y = [[0.0], [1.0]], [0, 1] assert_raise_message(ValueError, "loss='SQuared_hinge' is not supported", svm.LinearSVC(loss="SQuared_hinge").fit, X, y) assert_raise_message(ValueError, ("The combination of penalty='L2'" " and loss='squared_hinge' is not supported"), svm.LinearSVC(penalty="L2").fit, X, y) def test_linearsvc(): # Test basic routines using LinearSVC clf = svm.LinearSVC(random_state=0).fit(X, Y) # by default should have intercept assert_true(clf.fit_intercept) assert_array_equal(clf.predict(T), true_result) assert_array_almost_equal(clf.intercept_, [0], decimal=3) # the same with l1 penalty clf = svm.LinearSVC(penalty='l1', loss='squared_hinge', dual=False, random_state=0).fit(X, Y) assert_array_equal(clf.predict(T), true_result) # l2 penalty with dual formulation clf = svm.LinearSVC(penalty='l2', dual=True, random_state=0).fit(X, Y) assert_array_equal(clf.predict(T), true_result) # l2 penalty, l1 loss clf = svm.LinearSVC(penalty='l2', loss='hinge', dual=True, random_state=0) clf.fit(X, Y) assert_array_equal(clf.predict(T), true_result) # test also decision function dec = clf.decision_function(T) res = (dec > 0).astype(np.int) + 1 assert_array_equal(res, true_result) def test_linearsvc_crammer_singer(): # Test LinearSVC with crammer_singer multi-class svm ovr_clf = svm.LinearSVC(random_state=0).fit(iris.data, iris.target) cs_clf = svm.LinearSVC(multi_class='crammer_singer', random_state=0) cs_clf.fit(iris.data, iris.target) # similar prediction for ovr and crammer-singer: assert_true((ovr_clf.predict(iris.data) == cs_clf.predict(iris.data)).mean() > .9) # classifiers shouldn't be the same assert_true((ovr_clf.coef_ != cs_clf.coef_).all()) # test decision function assert_array_equal(cs_clf.predict(iris.data), np.argmax(cs_clf.decision_function(iris.data), axis=1)) dec_func = np.dot(iris.data, cs_clf.coef_.T) + cs_clf.intercept_ assert_array_almost_equal(dec_func, cs_clf.decision_function(iris.data)) def test_linearsvc_fit_sampleweight(): # check correct result when sample_weight is 1 n_samples = len(X) unit_weight = np.ones(n_samples) clf = svm.LinearSVC(random_state=0).fit(X, Y) clf_unitweight = svm.LinearSVC(random_state=0).\ fit(X, Y, sample_weight=unit_weight) # check if same as sample_weight=None assert_array_equal(clf_unitweight.predict(T), clf.predict(T)) assert_allclose(clf.coef_, clf_unitweight.coef_, 1, 0.0001) # check that fit(X) = fit([X1, X2, X3],sample_weight = [n1, n2, n3]) where # X = X1 repeated n1 times, X2 repeated n2 times and so forth random_state = check_random_state(0) random_weight = random_state.randint(0, 10, n_samples) lsvc_unflat = svm.LinearSVC(random_state=0).\ fit(X, Y, sample_weight=random_weight) pred1 = lsvc_unflat.predict(T) X_flat = np.repeat(X, random_weight, axis=0) y_flat = np.repeat(Y, random_weight, axis=0) lsvc_flat = svm.LinearSVC(random_state=0).fit(X_flat, y_flat) pred2 = lsvc_flat.predict(T) assert_array_equal(pred1, pred2) assert_allclose(lsvc_unflat.coef_, lsvc_flat.coef_, 1, 0.0001) def test_crammer_singer_binary(): # Test Crammer-Singer formulation in the binary case X, y = make_classification(n_classes=2, random_state=0) for fit_intercept in (True, False): acc = svm.LinearSVC(fit_intercept=fit_intercept, multi_class="crammer_singer", random_state=0).fit(X, y).score(X, y) assert_greater(acc, 0.9) def test_linearsvc_iris(): # Test that LinearSVC gives plausible predictions on the iris dataset # Also, test symbolic class names (classes_). target = iris.target_names[iris.target] clf = svm.LinearSVC(random_state=0).fit(iris.data, target) assert_equal(set(clf.classes_), set(iris.target_names)) assert_greater(np.mean(clf.predict(iris.data) == target), 0.8) dec = clf.decision_function(iris.data) pred = iris.target_names[np.argmax(dec, 1)] assert_array_equal(pred, clf.predict(iris.data)) def test_dense_liblinear_intercept_handling(classifier=svm.LinearSVC): # Test that dense liblinear honours intercept_scaling param X = [[2, 1], [3, 1], [1, 3], [2, 3]] y = [0, 0, 1, 1] clf = classifier(fit_intercept=True, penalty='l1', loss='squared_hinge', dual=False, C=4, tol=1e-7, random_state=0) assert_true(clf.intercept_scaling == 1, clf.intercept_scaling) assert_true(clf.fit_intercept) # when intercept_scaling is low the intercept value is highly "penalized" # by regularization clf.intercept_scaling = 1 clf.fit(X, y) assert_almost_equal(clf.intercept_, 0, decimal=5) # when intercept_scaling is sufficiently high, the intercept value # is not affected by regularization clf.intercept_scaling = 100 clf.fit(X, y) intercept1 = clf.intercept_ assert_less(intercept1, -1) # when intercept_scaling is sufficiently high, the intercept value # doesn't depend on intercept_scaling value clf.intercept_scaling = 1000 clf.fit(X, y) intercept2 = clf.intercept_ assert_array_almost_equal(intercept1, intercept2, decimal=2) def test_liblinear_set_coef(): # multi-class case clf = svm.LinearSVC().fit(iris.data, iris.target) values = clf.decision_function(iris.data) clf.coef_ = clf.coef_.copy() clf.intercept_ = clf.intercept_.copy() values2 = clf.decision_function(iris.data) assert_array_almost_equal(values, values2) # binary-class case X = [[2, 1], [3, 1], [1, 3], [2, 3]] y = [0, 0, 1, 1] clf = svm.LinearSVC().fit(X, y) values = clf.decision_function(X) clf.coef_ = clf.coef_.copy() clf.intercept_ = clf.intercept_.copy() values2 = clf.decision_function(X) assert_array_equal(values, values2) def test_immutable_coef_property(): # Check that primal coef modification are not silently ignored svms = [ svm.SVC(kernel='linear').fit(iris.data, iris.target), svm.NuSVC(kernel='linear').fit(iris.data, iris.target), svm.SVR(kernel='linear').fit(iris.data, iris.target), svm.NuSVR(kernel='linear').fit(iris.data, iris.target), svm.OneClassSVM(kernel='linear').fit(iris.data), ] for clf in svms: assert_raises(AttributeError, clf.__setattr__, 'coef_', np.arange(3)) assert_raises((RuntimeError, ValueError), clf.coef_.__setitem__, (0, 0), 0) def test_linearsvc_verbose(): # stdout: redirect import os stdout = os.dup(1) # save original stdout os.dup2(os.pipe()[1], 1) # replace it # actual call clf = svm.LinearSVC(verbose=1) clf.fit(X, Y) # stdout: restore os.dup2(stdout, 1) # restore original stdout def test_svc_clone_with_callable_kernel(): # create SVM with callable linear kernel, check that results are the same # as with built-in linear kernel svm_callable = svm.SVC(kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0, decision_function_shape='ovr') # clone for checking clonability with lambda functions.. svm_cloned = base.clone(svm_callable) svm_cloned.fit(iris.data, iris.target) svm_builtin = svm.SVC(kernel='linear', probability=True, random_state=0, decision_function_shape='ovr') svm_builtin.fit(iris.data, iris.target) assert_array_almost_equal(svm_cloned.dual_coef_, svm_builtin.dual_coef_) assert_array_almost_equal(svm_cloned.intercept_, svm_builtin.intercept_) assert_array_equal(svm_cloned.predict(iris.data), svm_builtin.predict(iris.data)) assert_array_almost_equal(svm_cloned.predict_proba(iris.data), svm_builtin.predict_proba(iris.data), decimal=4) assert_array_almost_equal(svm_cloned.decision_function(iris.data), svm_builtin.decision_function(iris.data)) def test_svc_bad_kernel(): svc = svm.SVC(kernel=lambda x, y: x) assert_raises(ValueError, svc.fit, X, Y) def test_timeout(): a = svm.SVC(kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0, max_iter=1) assert_warns(ConvergenceWarning, a.fit, X, Y) def test_unfitted(): X = "foo!" # input validation not required when SVM not fitted clf = svm.SVC() assert_raises_regexp(Exception, r".*\bSVC\b.*\bnot\b.*\bfitted\b", clf.predict, X) clf = svm.NuSVR() assert_raises_regexp(Exception, r".*\bNuSVR\b.*\bnot\b.*\bfitted\b", clf.predict, X) # ignore convergence warnings from max_iter=1 @ignore_warnings def test_consistent_proba(): a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_1 = a.fit(X, Y).predict_proba(X) a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_2 = a.fit(X, Y).predict_proba(X) assert_array_almost_equal(proba_1, proba_2) def test_linear_svc_convergence_warnings(): # Test that warnings are raised if model does not converge lsvc = svm.LinearSVC(max_iter=2, verbose=1) assert_warns(ConvergenceWarning, lsvc.fit, X, Y) assert_equal(lsvc.n_iter_, 2) def test_svr_coef_sign(): # Test that SVR(kernel="linear") has coef_ with the right sign. # Non-regression test for #2933. X = np.random.RandomState(21).randn(10, 3) y = np.random.RandomState(12).randn(10) for svr in [svm.SVR(kernel='linear'), svm.NuSVR(kernel='linear'), svm.LinearSVR()]: svr.fit(X, y) assert_array_almost_equal(svr.predict(X), np.dot(X, svr.coef_.ravel()) + svr.intercept_) def test_linear_svc_intercept_scaling(): # Test that the right error message is thrown when intercept_scaling <= 0 for i in [-1, 0]: lsvc = svm.LinearSVC(intercept_scaling=i) msg = ('Intercept scaling is %r but needs to be greater than 0.' ' To disable fitting an intercept,' ' set fit_intercept=False.' % lsvc.intercept_scaling) assert_raise_message(ValueError, msg, lsvc.fit, X, Y) def test_lsvc_intercept_scaling_zero(): # Test that intercept_scaling is ignored when fit_intercept is False lsvc = svm.LinearSVC(fit_intercept=False) lsvc.fit(X, Y) assert_equal(lsvc.intercept_, 0.) def test_hasattr_predict_proba(): # Method must be (un)available before or after fit, switched by # `probability` param G = svm.SVC(probability=True) assert_true(hasattr(G, 'predict_proba')) G.fit(iris.data, iris.target) assert_true(hasattr(G, 'predict_proba')) G = svm.SVC(probability=False) assert_false(hasattr(G, 'predict_proba')) G.fit(iris.data, iris.target) assert_false(hasattr(G, 'predict_proba')) # Switching to `probability=True` after fitting should make # predict_proba available, but calling it must not work: G.probability = True assert_true(hasattr(G, 'predict_proba')) msg = "predict_proba is not available when fitted with probability=False" assert_raise_message(NotFittedError, msg, G.predict_proba, iris.data) def test_decision_function_shape_two_class(): for n_classes in [2, 3]: X, y = make_blobs(centers=n_classes, random_state=0) for estimator in [svm.SVC, svm.NuSVC]: clf = OneVsRestClassifier(estimator( decision_function_shape="ovr")).fit(X, y) assert_equal(len(clf.predict(X)), len(y))
bsd-3-clause
tjduigna/exatomic
exatomic/core/molecule.py
3
6451
# -*- coding: utf-8 -*- # Copyright (c) 2015-2016, Exa Analytics Development Team # Distributed under the terms of the Apache License 2.0 """ Molecule Table ################### """ import numpy as np import pandas as pd import networkx as nx import warnings from networkx.algorithms.components import connected_components from exa import DataFrame from exatomic.base import sym2mass from exatomic.formula import string_to_dict, dict_to_string class Molecule(DataFrame): """ Description of molecules in the atomic universe. """ _index = 'molecule' _categories = {'frame': np.int64, 'formula': str, 'classification': object} #@property #def _constructor(self): # return Molecule def classify(self, *classifiers): """ Classify molecules into arbitrary categories. .. code-block:: Python u.molecule.classify(('solute', 'Na'), ('solvent', 'H(2)O(1)')) Args: classifiers: Any number of tuples of the form ('label', 'identifier', exact) (see below) Note: A classifier has 3 parts, "label", e.g. "solvent", "identifier", e.g. "H(2)O(1)", and exact (true or false). If exact is false (default), classification is greedy and (in this example) molecules with formulas "H(1)O(1)", "H(3)O(1)", etc. would get classified as "solvent". If, instead, exact were set to true, those molecules would remain unclassified. Warning: Classifiers are applied in the order passed; where identifiers overlap, the latter classification is used. See Also: :func:`~exatomic.algorithms.nearest.compute_nearest_molecules` """ for c in classifiers: n = len(c) if n != 3 and n != 2: raise ClassificationError() self['classification'] = None for classifier in classifiers: identifier = string_to_dict(classifier[0]) classification = classifier[1] exact = classifier[2] if len(classifier) == 3 else False this = self for symbol, count in identifier.items(): this = this[this[symbol] == count] if exact else this[this[symbol] >= 1] if len(this) > 0: self.ix[self.index.isin(this.index), 'classification'] = classification else: raise KeyError('No records found for {}, with identifier {}.'.format(classification, identifier)) self['classification'] = self['classification'].astype('category') if len(self[self['classification'].isnull()]) > 0: warnings.warn("Unclassified molecules remaining...") def get_atom_count(self): """ Compute the number of atoms per molecule. """ symbols = self._get_symbols() return self[symbols].sum(axis=1) def get_formula(self, as_map=False): """ Compute the string representation of the molecule. """ symbols = self._get_symbols() mcules = self[symbols].to_dict(orient='index') ret = map(dict_to_string, mcules.values()) if as_map: return ret return list(ret) def _get_symbols(self): """ Helper method to get atom symbols. """ return [col for col in self if len(col) < 3 and col[0].istitle()] def compute_molecule(universe): """ Cluster atoms into molecules and create the :class:`~exatomic.molecule.Molecule` table. Args: universe: Atomic universe Returns: molecule: Molecule table Warning: This function modifies the universe's atom (:class:`~exatomic.atom.Atom`) table in place! """ nodes = universe.atom.index.values bonded = universe.atom_two.ix[universe.atom_two['bond'] == True, ['atom0', 'atom1']] edges = zip(bonded['atom0'].astype(np.int64), bonded['atom1'].astype(np.int64)) g = nx.Graph() g.add_nodes_from(nodes) g.add_edges_from(edges) # generate molecule indices for the atom table mapper = {} i = 0 for k, v in g.degree(): # First handle single atom "molecules" if v == 0: mapper[k] = i i += 1 for seht in connected_components(g): # Second handle multi atom molecules for adx in seht: mapper[adx] = i i += 1 universe.atom['molecule'] = universe.atom.index.map(lambda x: mapper[x]) universe.atom['mass'] = universe.atom['symbol'].map(sym2mass) grps = universe.atom.groupby('molecule') molecule = grps['symbol'].value_counts().unstack().fillna(0).astype(np.int64) molecule.columns.name = None molecule['mass'] = grps['mass'].sum() universe.atom['molecule'] = universe.atom['molecule'].astype('category') del universe.atom['mass'] return molecule def compute_molecule_count(universe): """ """ if 'molecule' not in universe.atom.columns: universe.compute_molecule() universe.atom._revert_categories() mapper = universe.atom.drop_duplicates('molecule').set_index('molecule')['frame'] universe.atom._set_categories() universe.molecule['frame'] = universe.molecule.index.map(lambda x: mapper[x]) molecule_count = universe.molecule.groupby('frame').size() del universe.molecule['frame'] return molecule_count def compute_molecule_com(universe): """ Compute molecules' centers of mass. """ if 'molecule' not in universe.atom.columns: universe.compute_molecule() mass = universe.atom.get_element_masses() if universe.frame.is_periodic(): xyz = universe.atom[['x', 'y', 'z']].copy() xyz.update(universe.visual_atom) else: xyz = universe.atom[['x', 'y', 'z']] xm = xyz['x'].mul(mass) ym = xyz['y'].mul(mass) zm = xyz['z'].mul(mass) #rm = xm.add(ym).add(zm) df = pd.DataFrame.from_dict({'xm': xm, 'ym': ym, 'zm': zm, 'mass': mass, 'molecule': universe.atom['molecule']}) groups = df.groupby('molecule') sums = groups.sum() cx = sums['xm'].div(sums['mass']) cy = sums['ym'].div(sums['mass']) cz = sums['zm'].div(sums['mass']) return cx, cy, cz
apache-2.0
compops/newton-sysid2015
samplingApproximation/para/ml_helpers.py
1
2733
############################################################################## ############################################################################## # Example code for Newton type maximum likelihood parameter inference # in ninlinear state space models using particle methods. # # Please cite: # # M. Kok, J. Dahlin, T. B. Sch\"{o}n and A. Wills, # "Newton-based maximum likelihood estimation in nonlinear state space models. # Proceedings of the 17th IFAC Symposium on System Identification, # Beijing, China, October 2015. # # (c) 2015 Johan Dahlin # johan.dahlin (at) liu.se # # Distributed under the MIT license. # ############################################################################## ############################################################################## import numpy as np import pandas import os ########################################################################## # Helper: compile the results and write to file ########################################################################## def writeToFile_helper(ml,sm=None,fileOutName=None,noLLests=False): # Construct the columns labels if ( noLLests ): columnlabels = [None]*(ml.nPars+1); else: columnlabels = [None]*(ml.nPars+3); for ii in range(0,ml.nPars): columnlabels[ii] = "th" + str(ii); columnlabels[ml.nPars] = "step"; if ( noLLests == False ): columnlabels[ml.nPars+1] = "diffLogLikelihood"; columnlabels[ml.nPars+2] = "logLikelihood"; # Compile the results for output if ( noLLests ): out = np.hstack((ml.th,ml.step)); else: out = np.hstack((ml.th,ml.step,ml.llDiff,ml.ll)); # Write out the results to file fileOut = pandas.DataFrame(out,columns=columnlabels); fileOutName = 'results/' + str(ml.filePrefix) + '/' + str(ml.optMethod) + '_' + sm.filterType + '_' + sm.smootherType + '_N' + str(sm.nPart) + '/' + str(ml.dataset) + '.csv'; ensure_dir(fileOutName); fileOut.to_csv(fileOutName); print("writeToFile_helper: wrote results to file: " + fileOutName) ############################################################################## # Check if dirs for outputs exists, otherwise create them ############################################################################## def ensure_dir(f): d = os.path.dirname(f) if not os.path.exists(d): os.makedirs(d) ############################################################################## ############################################################################## # End of file ############################################################################## ##############################################################################
gpl-3.0
cgre-aachen/gempy
gempy/plot/visualization_2d.py
1
35966
""" This file is part of gempy. gempy is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. gempy is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with gempy. If not, see <http://www.gnu.org/licenses/>. Module with classes and methods to visualized structural geology data and potential fields of the regional modelling based on the potential field method. Created on 23/09/2019 @author: Miguel de la Varga, Elisa Heim """ import warnings import os import copy import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as mcolors from matplotlib.ticker import FixedFormatter, FixedLocator import matplotlib.gridspec as gridspect import matplotlib as mpl import scipy.spatial.distance as dd import seaborn as sns sns.set_context('talk') plt.style.use(['seaborn-white', 'seaborn-talk']) warnings.filterwarnings("ignore", message="No contour levels were found") class Plot2D: """ Class with functionality to plot 2D gempy sections Args: model: gempy.Model object cmap: Color map to pass to matplotlib """ def __init__(self, model, cmap=None, norm=None, **kwargs): self.model = model self._color_lot = dict(zip(self.model._surfaces.df['surface'], self.model._surfaces.df['color'])) self.axes = list() if cmap is None: self.cmap = mcolors.ListedColormap(list(self.model._surfaces.df['color'])) self._custom_colormap = False else: self.cmap = cmap self._custom_colormap = True if norm is None: self.norm = mcolors.Normalize(vmin=0.5, vmax=len(self.cmap.colors) + 0.5) else: self.norm = norm def update_colot_lot(self, color_dir=None): if color_dir is None: color_dir = dict(zip(self.model._surfaces.df['surface'], self.model._surfaces.df['color'])) self._color_lot = color_dir if self._custom_colormap is False: self.cmap = mcolors.ListedColormap(list(self.model._surfaces.df['color'])) self.norm = mcolors.Normalize(vmin=0.5, vmax=len(self.cmap.colors) + 0.5) @staticmethod def remove(ax): while len(ax.collections) != 0: list(map(lambda x: x.remove(), ax.collections)) def _make_section_xylabels(self, section_name, n=5): """ @elisa heim Setting the axis labels to any combination of vertical crossections Args: section_name: name of a defined gempy crossection. See gempy.Model().grid.section n: Returns: """ if n > 5: n = 3 # todo I don't know why but sometimes it wants to make a lot of xticks elif n < 0: n = 3 j = np.where(self.model._grid.sections.names == section_name)[0][0] startend = list(self.model._grid.sections.section_dict.values())[j] p1, p2 = startend[0], startend[1] xy = self.model._grid.sections.calculate_line_coordinates_2points(p1, p2, n) if len(np.unique(xy[:, 0])) == 1: labels = xy[:, 1].astype(int) axname = 'Y' elif len(np.unique(xy[:, 1])) == 1: labels = xy[:, 0].astype(int) axname = 'X' else: labels = [str(xy[:, 0].astype(int)[i]) + ',\n' + str(xy[:, 1].astype(int)[i]) for i in range(xy[:, 0].shape[0])] axname = 'X,Y' return labels, axname def _slice(self, direction, cell_number=25): """ Slice the 3D array (blocks or scalar field) in the specific direction selected in the plot functions """ _a, _b, _c = (slice(0, self.model._grid.regular_grid.resolution[0]), slice(0, self.model._grid.regular_grid.resolution[1]), slice(0, self.model._grid.regular_grid.resolution[2])) if direction == "x": cell_number = int(self.model._grid.regular_grid.resolution[0] / 2) if cell_number == 'mid' else cell_number _a, x, y, Gx, Gy = cell_number, "Y", "Z", "G_y", "G_z" extent_val = self.model._grid.regular_grid.extent[[2, 3, 4, 5]] elif direction == "y": cell_number = int(self.model._grid.regular_grid.resolution[1] / 2) if cell_number == 'mid' else cell_number _b, x, y, Gx, Gy = cell_number, "X", "Z", "G_x", "G_z" extent_val = self.model._grid.regular_grid.extent[[0, 1, 4, 5]] elif direction == "z": cell_number = int(self.model._grid.regular_grid.resolution[2] / 2) if cell_number == 'mid' else cell_number _c, x, y, Gx, Gy = cell_number, "X", "Y", "G_x", "G_y" extent_val = self.model._grid.regular_grid.extent[[0, 1, 2, 3]] else: raise AttributeError(str(direction) + "must be a cartesian direction, i.e. xyz") return _a, _b, _c, extent_val, x, y, Gx, Gy def create_figure(self, figsize=None, textsize=None, **kwargs): """ Create the figure. Args: figsize: textsize: Returns: figure, list axes, subgrid values """ cols = kwargs.get('cols', 1) rows = kwargs.get('rows', 1) figsize, self.ax_labelsize, _, self.xt_labelsize, self.linewidth, _ = _scale_fig_size( figsize, textsize, rows, cols) self.fig = plt.figure( figsize=figsize, constrained_layout=False) self.fig.is_legend = False # TODO make grid variable # self.gs_0 = gridspect.GridSpec(2, 2, figure=self.fig, hspace=.9) return self.fig, self.axes # , self.gs_0 def add_section(self, section_name=None, cell_number=None, direction='y', ax=None, ax_pos=111, ve=1., **kwargs): extent_val = kwargs.get('extent', None) self.update_colot_lot() if ax is None: ax = self.fig.add_subplot(ax_pos) if section_name is not None: if section_name == 'topography': ax.set_title('Geological map') ax.set_xlabel('X') ax.set_ylabel('Y') extent_val = self.model._grid.topography.extent else: dist = self.model._grid.sections.df.loc[section_name, 'dist'] extent_val = [0, dist, self.model._grid.regular_grid.extent[4], self.model._grid.regular_grid.extent[5]] labels, axname = self._make_section_xylabels(section_name, len(ax.get_xticklabels()) - 2) pos_list = np.linspace(0, dist, len(labels)) ax.xaxis.set_major_locator(FixedLocator(nbins=len(labels), locs=pos_list)) ax.xaxis.set_major_formatter(FixedFormatter((labels))) ax.set(title=section_name, xlabel=axname, ylabel='Z') elif cell_number is not None: _a, _b, _c, extent_val, x, y = self._slice(direction, cell_number)[:-2] ax.set_xlabel(x) ax.set_ylabel(y) ax.set(title='Cell Number: ' + str(cell_number) + ' Direction: ' + str(direction)) if extent_val is not None: if extent_val[3] < extent_val[2]: # correct vertical orientation of plot ax.invert_yaxis() self._aspect = (extent_val[3] - extent_val[2]) / (extent_val[1] - extent_val[0]) / ve ax.set_xlim(extent_val[0], extent_val[1]) ax.set_ylim(extent_val[2], extent_val[3]) ax.set_aspect('equal') # Adding some properties to the axes to make easier to plot ax.section_name = section_name ax.cell_number = cell_number ax.direction = direction ax.tick_params(axis='x', labelrotation=30) self.axes = np.append(self.axes, ax) self.fig.tight_layout() return ax @staticmethod def _check_default_section(ax, section_name, cell_number, direction): if section_name is None: try: section_name = ax.section_name except AttributeError: pass if cell_number is None: try: cell_number = ax.cell_number direction = ax.direction except AttributeError: pass return section_name, cell_number, direction def plot_regular_grid(self, ax, section_name=None, cell_number=None, direction='y', block: np.ndarray = None, resolution=None, **kwargs): """Generic function to plot all regular data Args: block: section_name: cell_number: direction: ax: **kwargs: imshow kwargs Returns: """ self.update_colot_lot() extent_val = [*ax.get_xlim(), *ax.get_ylim()] if 'cmap' in kwargs: cmap = kwargs['cmap'] else: cmap = self.cmap if 'norm' in kwargs: norm = kwargs['norm'] else: norm = self.norm section_name, cell_number, direction = self._check_default_section(ax, section_name, cell_number, direction) if section_name is not None: if section_name == 'topography': try: image = self.model.solutions.geological_map[0].reshape( self.model._grid.topography.values_2d[:, :, 2].shape) except AttributeError: raise AttributeError('Geological map not computed. Activate the topography grid.') else: assert type(section_name) == str or type( section_name) == np.str_, 'section name must be a string of the name of the section' assert self.model.solutions.sections is not None, 'no sections for plotting defined' l0, l1 = self.model._grid.sections.get_section_args(section_name) shape = self.model._grid.sections.df.loc[section_name, 'resolution'] image = self.model.solutions.sections[0][0][l0:l1].reshape(shape[0], shape[1]).T elif cell_number is not None or block is not None: _a, _b, _c, _, x, y = self._slice(direction, cell_number)[:-2] if resolution is None: resolution = self.model._grid.regular_grid.resolution plot_block = block.reshape(self.model._grid.regular_grid.resolution) image = plot_block[_a, _b, _c].T else: raise AttributeError ax.imshow(image, origin='lower', zorder=-100, cmap=cmap, norm=norm, extent=extent_val) return ax def plot_lith(self, ax, section_name=None, cell_number=None, direction='y', **kwargs): block = self.model.solutions.lith_block self.plot_regular_grid(ax, section_name, cell_number, direction, block=block) def plot_values(self, ax, series_n=0, section_name=None, cell_number=None, direction='y', **kwargs): block = self.model.solutions.values_matrix[series_n] self.plot_regular_grid(ax, section_name, cell_number, direction, block=block, **kwargs) def plot_block(self, ax, series_n=0, section_name=None, cell_number=None, direction='y', **kwargs): block = self.model.solutions.block_matrix[series_n] self.plot_regular_grid(ax, section_name, cell_number, direction, block=block) def plot_scalar_field(self, ax, section_name=None, cell_number=None, series_n=0, direction='y', block=None, **kwargs): """ Plot the scalar field of a section. Args: ax: section_name: cell_number: series_n: direction: block: **kwargs: Returns: """ extent_val = [*ax.get_xlim(), *ax.get_ylim()] section_name, cell_number, direction = self._check_default_section(ax, section_name, cell_number, direction) if section_name is not None: if section_name == 'topography': try: image = self.model.solutions.geological_map[1][series_n].reshape( self.model._grid.topography.values_3D[:, :, 2].shape) except AttributeError: raise AttributeError('Geological map not computed. Activate the topography grid.') else: l0, l1 = self.model._grid.sections.get_section_args(section_name) shape = self.model._grid.sections.df.loc[section_name, 'resolution'] image = self.model.solutions.sections[1][series_n][l0:l1].reshape(shape).T elif cell_number is not None or block is not None: _a, _b, _c, _, x, y = self._slice(direction, cell_number)[:-2] if block is None: _block = self.model.solutions.scalar_field_matrix[series_n] else: _block = block plot_block = _block.reshape(self.model._grid.regular_grid.resolution) image = plot_block[_a, _b, _c].T else: raise AttributeError ax.contour(image, cmap='autumn', extent=extent_val, zorder=8, **kwargs) if 'N' in kwargs: kwargs.pop('N') ax.contourf(image, cmap='autumn', extent=extent_val, zorder=7, alpha=.8, **kwargs) def plot_data(self, ax, section_name=None, cell_number=None, direction='y', legend=True, projection_distance=None, **kwargs): """ Plot data--i.e. surface_points and orientations--of a section. Args: ax: section_name: cell_number: direction: legend: bool or 'force' projection_distance: **kwargs: Returns: """ if projection_distance is None: projection_distance = 0.2 * self.model._rescaling.df['rescaling factor'].values[0] self.update_colot_lot() points = self.model._surface_points.df.copy() orientations = self.model._orientations.df.copy() section_name, cell_number, direction = self._check_default_section(ax, section_name, cell_number, direction) if section_name is not None: if section_name == 'topography': topo_comp = kwargs.get('topo_comp', 5000) decimation_aux = int(self.model._grid.topography.values.shape[0] / topo_comp) tpp = self.model._grid.topography.values[::decimation_aux + 1, :] cartesian_point_dist = (dd.cdist(tpp, self.model._surface_points.df[['X', 'Y', 'Z']]) < projection_distance).sum(axis=0).astype(bool) cartesian_ori_dist = (dd.cdist(tpp, self.model._orientations.df[['X', 'Y', 'Z']]) < projection_distance).sum(axis=0).astype(bool) x, y, Gx, Gy = 'X', 'Y', 'G_x', 'G_y' else: # Project points: shift = np.asarray(self.model._grid.sections.df.loc[section_name, 'start']) end_point = np.atleast_2d(np.asarray(self.model._grid.sections.df.loc[section_name, 'stop']) - shift) A_rotate = np.dot(end_point.T, end_point) / self.model._grid.sections.df.loc[section_name, 'dist'] ** 2 cartesian_point_dist = np.sqrt(((np.dot( A_rotate, (points[['X', 'Y']]).T).T - points[['X', 'Y']]) ** 2).sum(axis=1)) cartesian_ori_dist = np.sqrt(((np.dot( A_rotate, (orientations[['X', 'Y']]).T).T - orientations[['X', 'Y']]) ** 2).sum(axis=1)) # This are the coordinates of the data projected on the section cartesian_point = np.dot(A_rotate, (points[['X', 'Y']] - shift).T).T cartesian_ori = np.dot(A_rotate, (orientations[['X', 'Y']] - shift).T).T # Since we plot only the section we want the norm of those coordinates points[['X']] = np.linalg.norm(cartesian_point, axis=1) orientations[['X']] = np.linalg.norm(cartesian_ori, axis=1) x, y, Gx, Gy = 'X', 'Z', 'G_x', 'G_z' else: if cell_number is None: cell_number = int(self.model._grid.regular_grid.resolution[0] / 2) elif cell_number == 'mid': cell_number = int(self.model._grid.regular_grid.resolution[0] / 2) if direction == 'x' or direction == 'X': arg_ = 0 dx = self.model._grid.regular_grid.dx dir = 'X' elif direction == 'y' or direction == 'Y': arg_ = 2 dx = self.model._grid.regular_grid.dy dir = 'Y' elif direction == 'z' or direction == 'Z': arg_ = 4 dx = self.model._grid.regular_grid.dz dir = 'Z' else: raise AttributeError('Direction must be x, y, z') _loc = self.model._grid.regular_grid.extent[arg_] + dx * cell_number cartesian_point_dist = points[dir] - _loc cartesian_ori_dist = orientations[dir] - _loc x, y, Gx, Gy = self._slice(direction)[4:] select_projected_p = cartesian_point_dist < projection_distance select_projected_o = cartesian_ori_dist < projection_distance # Hack to keep the right X label: temp_label = copy.copy(ax.xaxis.label) points_df = points[select_projected_p] points_df['colors'] = points_df['surface'].map(self._color_lot) points_df.plot.scatter(x=x, y=y, ax=ax, c='colors', s=70, zorder=102, edgecolors='white', colorbar=False) # points_df.plot.scatter(x=x, y=y, ax=ax, c='white', s=80, zorder=101, # colorbar=False) if self.fig.is_legend is False and legend is True or legend == 'force': markers = [plt.Line2D([0, 0], [0, 0], color=color, marker='o', linestyle='') for color in self._color_lot.values()] ax.legend(markers, self._color_lot.keys(), numpoints=1) self.fig.is_legend = True ax.xaxis.label = temp_label sel_ori = orientations[select_projected_o] aspect = np.subtract(*ax.get_ylim()) / np.subtract(*ax.get_xlim()) min_axis = 'width' if aspect < 1 else 'height' # Eli options ax.quiver(sel_ori[x], sel_ori[y], sel_ori[Gx], sel_ori[Gy], pivot="tail", scale_units=min_axis, scale=30, color=sel_ori['surface'].map(self._color_lot), edgecolor='k', headwidth=8, linewidths=1, zorder=102) try: ax.legend_.set_frame_on(True) ax.legend_.set_zorder(10000) except AttributeError: pass def calculate_p1p2(self, direction, cell_number): if direction == 'y': cell_number = int(self.model._grid.regular_grid.resolution[1] / 2) if cell_number == 'mid' else cell_number y = self.model._grid.regular_grid.extent[2] + self.model._grid.regular_grid.dy * cell_number p1 = [self.model._grid.regular_grid.extent[0], y] p2 = [self.model._grid.regular_grid.extent[1], y] elif direction == 'x': cell_number = int(self.model._grid.regular_grid.resolution[0] / 2) if cell_number == 'mid' else cell_number x = self.model._grid.regular_grid.extent[0] + self.model._grid.regular_grid.dx * cell_number p1 = [x, self.model._grid.regular_grid.extent[2]] p2 = [x, self.model._grid.regular_grid.extent[3]] else: raise NotImplementedError return p1, p2 def _slice_topo_4_sections(self, p1, p2, resx, method='interp2d'): """ Slices topography along a set linear section Args: :param p1: starting point (x,y) of the section :param p2: end point (x,y) of the section :param resx: resolution of the defined section :param method: interpolation method, 'interp2d' for cubic scipy.interpolate.interp2d 'spline' for scipy.interpolate.RectBivariateSpline Returns: :return: returns x,y,z values of the topography along the section """ xy = self.model._grid.sections.calculate_line_coordinates_2points(p1, p2, resx) z = self.model._grid.sections.interpolate_zvals_at_xy(xy, self.model._grid.topography, method) return xy[:, 0], xy[:, 1], z def plot_topography(self, ax, fill_contour=False, contour=True, section_name=None, cell_number=None, direction='y', block=None, **kwargs): hillshade = kwargs.get('hillshade', True) azdeg = kwargs.get('azdeg', 0) altdeg = kwargs.get('altdeg', 0) cmap = kwargs.get('cmap', 'terrain') self.update_colot_lot() section_name, cell_number, direction = self._check_default_section(ax, section_name, cell_number, direction) if section_name is not None and section_name != 'topography': p1 = self.model._grid.sections.df.loc[section_name, 'start'] p2 = self.model._grid.sections.df.loc[section_name, 'stop'] x, y, z = self._slice_topo_4_sections(p1, p2, self.model._grid.topography.resolution[0]) pseudo_x = np.linspace(0, self.model._grid.sections.df.loc[section_name, 'dist'], z.shape[0]) a = np.vstack((pseudo_x, z)).T xy = np.append(a, ([self.model._grid.sections.df.loc[section_name, 'dist'], a[:, 1][-1]], [self.model._grid.sections.df.loc[section_name, 'dist'], self.model._grid.regular_grid.extent[5]], [0, self.model._grid.regular_grid.extent[5]], [0, a[:, 1][0]])).reshape(-1, 2) ax.fill(xy[:, 0], xy[:, 1], 'k', zorder=10) elif section_name == 'topography': import skimage from gempy.plot.helpers import add_colorbar topo = self.model._grid.topography topo_super_res = skimage.transform.resize( topo.values_2d, (1600, 1600), order=3, mode='edge', anti_aliasing=True, preserve_range=False) values = topo_super_res[:, :, 2].T if contour is True: CS = ax.contour(values, extent=(topo.extent[:4]), colors='k', linestyles='solid', origin='lower') ax.clabel(CS, inline=1, fontsize=10, fmt='%d') if fill_contour is True: CS2 = ax.contourf(values, extent=(topo.extent[:4]), cmap=cmap) add_colorbar(axes=ax, label='elevation [m]', cs=CS2) if hillshade is True: from matplotlib.colors import LightSource ls = LightSource(azdeg=azdeg, altdeg=altdeg) hillshade_topography = ls.hillshade(values) ax.imshow(hillshade_topography, origin='lower', extent=topo.extent[:4], alpha=0.5, zorder=11, cmap='gray') elif cell_number is not None or block is not None: p1, p2 = self.calculate_p1p2(direction, cell_number) resx = self.model._grid.regular_grid.resolution[0] resy = self.model._grid.regular_grid.resolution[1] try: x, y, z = self._slice_topo_4_sections(p1, p2, resx) if direction == 'x': a = np.vstack((y, z)).T ext = self.model._grid.regular_grid.extent[[2, 3]] elif direction == 'y': a = np.vstack((x, z)).T ext = self.model._grid.regular_grid.extent[[0, 1]] else: raise NotImplementedError a = np.append(a, ([ext[1], a[:, 1][-1]], [ext[1], self.model._grid.regular_grid.extent[5]], [ext[0], self.model._grid.regular_grid.extent[5]], [ext[0], a[:, 1][0]])) line = a.reshape(-1, 2) ax.fill(line[:, 0], line[:, 1], color='k') except IndexError: warnings.warn('Topography needs to be a raster to be able to plot it' 'in 2D sections') return ax def plot_contacts(self, ax, section_name=None, cell_number=None, direction='y', block=None, only_faults=False, **kwargs): self.update_colot_lot() section_name, cell_number, direction = self._check_default_section(ax, section_name, cell_number, direction) if only_faults: contour_idx = list(self.model._faults.df[self.model._faults.df['isFault'] == True].index) else: contour_idx = list(self.model._surfaces.df.index) extent_val = [*ax.get_xlim(), *ax.get_ylim()] zorder = kwargs.get('zorder', 100) if section_name is not None: if section_name == 'topography': shape = self.model._grid.topography.resolution scalar_fields = self.model.solutions.geological_map[1] c_id = 0 # color id startpoint for e, block in enumerate(scalar_fields): level = self.model.solutions.scalar_field_at_surface_points[e][np.where( self.model.solutions.scalar_field_at_surface_points[e] != 0)] c_id2 = c_id + len(level) # color id endpoint ax.contour(block.reshape(shape), 0, levels=np.sort(level), colors=self.cmap.colors[c_id:c_id2][::-1], linestyles='solid', origin='lower', extent=extent_val, zorder=zorder - (e + len(level)) ) c_id = c_id2 else: l0, l1 = self.model._grid.sections.get_section_args(section_name) shape = self.model._grid.sections.df.loc[section_name, 'resolution'] scalar_fields = self.model.solutions.sections[1][:, l0:l1] c_id = 0 # color id startpoint for e, block in enumerate(scalar_fields): level = self.model.solutions.scalar_field_at_surface_points[e][np.where( self.model.solutions.scalar_field_at_surface_points[e] != 0)] # Ignore warning about some scalars not being on the plot since it is very common # that an interface does not exit for a given section c_id2 = c_id + len(level) # color id endpoint color_list = self.model._surfaces.df.groupby('isActive').get_group(True)['color'][c_id:c_id2][::-1] ax.contour(block.reshape(shape).T, 0, levels=np.sort(level), # colors=self.cmap.colors[self.model.surfaces.df['isActive']][c_id:c_id2], colors=color_list, linestyles='solid', origin='lower', extent=extent_val, zorder=zorder - (e + len(level)) ) c_id = c_id2 elif cell_number is not None or block is not None: _slice = self._slice(direction, cell_number)[:3] shape = self.model._grid.regular_grid.resolution c_id = 0 # color id startpoint for e, block in enumerate(self.model.solutions.scalar_field_matrix): level = self.model.solutions.scalar_field_at_surface_points[e][np.where( self.model.solutions.scalar_field_at_surface_points[e] != 0)] # c_id = e c_id2 = c_id + len(level) # print(c_id, c_id2) color_list = self.model._surfaces.df.groupby('isActive').get_group(True)['color'][c_id:c_id2][::-1] # print(color_list) ax.contour(block.reshape(shape)[_slice].T, 0, levels=np.sort(level), colors=color_list, linestyles='solid', origin='lower', extent=extent_val, zorder=zorder - (e + len(level)) ) c_id = c_id2 def plot_section_traces(self, ax, section_names=None, show_data=True, **kwargs): if section_names is None: section_names = list(self.model._grid.sections.names) if show_data: self.plot_data(ax, section_name='topography', **kwargs) for section in section_names: j = np.where(self.model._grid.sections.names == section)[0][0] x1, y1 = np.asarray(self.model._grid.sections.df.loc[section, 'start']) x2, y2 = np.asarray(self.model._grid.sections.df.loc[section, 'stop']) ax.plot([x1, x2], [y1, y2], label=section, linestyle='--') ax.legend(frameon=True) def plot_topo_g(self, ax, G, centroids, direction="y", label_kwargs=None, node_kwargs=None, edge_kwargs=None): res = self.model._grid.regular_grid.resolution if direction == "y": c1, c2 = (0, 2) e1 = self.model._grid.regular_grid.extent[1] - self.model._grid.regular_grid.extent[0] e2 = self.model._grid.regular_grid.extent[5] - self.model._grid.regular_grid.extent[4] d1 = self.model._grid.regular_grid.extent[0] d2 = self.model._grid.regular_grid.extent[4] if len(list(centroids.items())[0][1]) == 2: c1, c2 = (0, 1) r1 = res[0] r2 = res[2] elif direction == "x": c1, c2 = (1, 2) e1 = self.model._grid.regular_grid.extent[3] - self.model._grid.regular_grid.extent[2] e2 = self.model._grid.regular_grid.extent[5] - self.model._grid.regular_grid.extent[4] d1 = self.model._grid.regular_grid.extent[2] d2 = self.model._grid.regular_grid.extent[4] if len(list(centroids.items())[0][1]) == 2: c1, c2 = (0, 1) r1 = res[1] r2 = res[2] elif direction == "z": c1, c2 = (0, 1) e1 = self.model._grid.regular_grid.extent[1] - self.model._grid.regular_grid.extent[0] e2 = self.model._grid.regular_grid.extent[3] - self.model._grid.regular_grid.extent[2] d1 = self.model._grid.regular_grid.extent[0] d2 = self.model._grid.regular_grid.extent[2] if len(list(centroids.items())[0][1]) == 2: c1, c2 = (0, 1) r1 = res[0] r2 = res[1] nkw = { "marker": "o", "color": "black", "markersize": 20, "alpha": 0.75 } if node_kwargs is not None: nkw.update(node_kwargs) tkw = { "color": "white", "size": 10, "ha": "center", "va": "center", "weight": "ultralight", "family": "monospace" } if label_kwargs is not None: tkw.update(label_kwargs) lkw = { "linewidth": 0.75, "color": "black" } if edge_kwargs is not None: lkw.update(edge_kwargs) for edge in G.edges(): a, b = edge # plot edges ax.plot(np.array([centroids[a][c1], centroids[b][c1]]) * e1 / r1 + d1, np.array([centroids[a][c2], centroids[b][c2]]) * e2 / r2 + d2, **lkw) for node in G.nodes(): ax.plot(centroids[node][c1] * e1 / r1 + d1, centroids[node][c2] * e2 / r2 + d2, marker="o", color="black", markersize=10, alpha=0.75) ax.text(centroids[node][c1] * e1 / r1 + d1, centroids[node][c2] * e2 / r2 + d2, str(node), **tkw) def plot_gradient(self, scalar_field, gx, gy, gz, cell_number, quiver_stepsize=5, # maybe call r sth. like "stepsize"? direction="y", plot_scalar=True, *args, **kwargs): # include plot data? """ Plot the gradient of the scalar field in a given direction. Args: geo_data (gempy.DataManagement.InputData): Input data of the model scalar_field(numpy.array): scalar field to plot with the gradient gx(numpy.array): gradient in x-direction gy(numpy.array): gradient in y-direction gz(numpy.array): gradient in z-direction cell_number(int): position of the array to plot quiver_stepsize(int): step size between arrows to indicate gradient direction(str): xyz. Caartesian direction to be plotted plot_scalar(bool): boolean to plot scalar field **kwargs: plt.contour kwargs Returns: None """ raise NotImplementedError def _scale_fig_size(figsize, textsize, rows=1, cols=1): """Scale figure properties according to rows and cols. Parameters ---------- figsize : float or None Size of figure in inches textsize : float or None fontsize rows : int Number of rows cols : int Number of columns Returns ------- figsize : float or None Size of figure in inches ax_labelsize : int fontsize for axes label titlesize : int fontsize for title xt_labelsize : int fontsize for axes ticks linewidth : int linewidth markersize : int markersize """ params = mpl.rcParams rc_width, rc_height = tuple(params["figure.figsize"]) rc_ax_labelsize = params["axes.labelsize"] rc_titlesize = params["axes.titlesize"] rc_xt_labelsize = params["xtick.labelsize"] rc_linewidth = params["lines.linewidth"] rc_markersize = params["lines.markersize"] if isinstance(rc_ax_labelsize, str): rc_ax_labelsize = 15 if isinstance(rc_titlesize, str): rc_titlesize = 16 if isinstance(rc_xt_labelsize, str): rc_xt_labelsize = 14 if figsize is None: width, height = rc_width, rc_height sff = 1 if (rows == cols == 1) else 1.2 width = width * cols * sff height = height * rows * sff else: width, height = figsize if textsize is not None: scale_factor = textsize / rc_xt_labelsize elif rows == cols == 1: scale_factor = ((width * height) / (rc_width * rc_height)) ** 0.5 else: scale_factor = 1 ax_labelsize = rc_ax_labelsize * scale_factor titlesize = rc_titlesize * scale_factor xt_labelsize = rc_xt_labelsize * scale_factor linewidth = rc_linewidth * scale_factor markersize = rc_markersize * scale_factor return (width, height), ax_labelsize, titlesize, xt_labelsize, linewidth, markersize
lgpl-3.0
vortex-ape/scikit-learn
sklearn/decomposition/tests/test_kernel_pca.py
4
8739
import numpy as np import scipy.sparse as sp import pytest from sklearn.utils.testing import (assert_array_almost_equal, assert_less, assert_equal, assert_not_equal, assert_raises, ignore_warnings) from sklearn.decomposition import PCA, KernelPCA from sklearn.datasets import make_circles from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV from sklearn.metrics.pairwise import rbf_kernel def test_kernel_pca(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) def histogram(x, y, **kwargs): # Histogram kernel implemented as a callable. assert_equal(kwargs, {}) # no kernel_params that we didn't ask for return np.minimum(x, y).sum() for eigen_solver in ("auto", "dense", "arpack"): for kernel in ("linear", "rbf", "poly", histogram): # histogram kernel produces singular matrix inside linalg.solve # XXX use a least-squares approximation? inv = not callable(kernel) # transform fit data kpca = KernelPCA(4, kernel=kernel, eigen_solver=eigen_solver, fit_inverse_transform=inv) X_fit_transformed = kpca.fit_transform(X_fit) X_fit_transformed2 = kpca.fit(X_fit).transform(X_fit) assert_array_almost_equal(np.abs(X_fit_transformed), np.abs(X_fit_transformed2)) # non-regression test: previously, gamma would be 0 by default, # forcing all eigenvalues to 0 under the poly kernel assert_not_equal(X_fit_transformed.size, 0) # transform new data X_pred_transformed = kpca.transform(X_pred) assert_equal(X_pred_transformed.shape[1], X_fit_transformed.shape[1]) # inverse transform if inv: X_pred2 = kpca.inverse_transform(X_pred_transformed) assert_equal(X_pred2.shape, X_pred.shape) def test_kernel_pca_invalid_parameters(): assert_raises(ValueError, KernelPCA, 10, fit_inverse_transform=True, kernel='precomputed') def test_kernel_pca_consistent_transform(): # X_fit_ needs to retain the old, unmodified copy of X state = np.random.RandomState(0) X = state.rand(10, 10) kpca = KernelPCA(random_state=state).fit(X) transformed1 = kpca.transform(X) X_copy = X.copy() X[:, 0] = 666 transformed2 = kpca.transform(X_copy) assert_array_almost_equal(transformed1, transformed2) def test_kernel_pca_sparse(): rng = np.random.RandomState(0) X_fit = sp.csr_matrix(rng.random_sample((5, 4))) X_pred = sp.csr_matrix(rng.random_sample((2, 4))) for eigen_solver in ("auto", "arpack"): for kernel in ("linear", "rbf", "poly"): # transform fit data kpca = KernelPCA(4, kernel=kernel, eigen_solver=eigen_solver, fit_inverse_transform=False) X_fit_transformed = kpca.fit_transform(X_fit) X_fit_transformed2 = kpca.fit(X_fit).transform(X_fit) assert_array_almost_equal(np.abs(X_fit_transformed), np.abs(X_fit_transformed2)) # transform new data X_pred_transformed = kpca.transform(X_pred) assert_equal(X_pred_transformed.shape[1], X_fit_transformed.shape[1]) # inverse transform # X_pred2 = kpca.inverse_transform(X_pred_transformed) # assert_equal(X_pred2.shape, X_pred.shape) def test_kernel_pca_linear_kernel(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) # for a linear kernel, kernel PCA should find the same projection as PCA # modulo the sign (direction) # fit only the first four components: fifth is near zero eigenvalue, so # can be trimmed due to roundoff error assert_array_almost_equal( np.abs(KernelPCA(4).fit(X_fit).transform(X_pred)), np.abs(PCA(4).fit(X_fit).transform(X_pred))) def test_kernel_pca_n_components(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) for eigen_solver in ("dense", "arpack"): for c in [1, 2, 4]: kpca = KernelPCA(n_components=c, eigen_solver=eigen_solver) shape = kpca.fit(X_fit).transform(X_pred).shape assert_equal(shape, (2, c)) def test_remove_zero_eig(): X = np.array([[1 - 1e-30, 1], [1, 1], [1, 1 - 1e-20]]) # n_components=None (default) => remove_zero_eig is True kpca = KernelPCA() Xt = kpca.fit_transform(X) assert_equal(Xt.shape, (3, 0)) kpca = KernelPCA(n_components=2) Xt = kpca.fit_transform(X) assert_equal(Xt.shape, (3, 2)) kpca = KernelPCA(n_components=2, remove_zero_eig=True) Xt = kpca.fit_transform(X) assert_equal(Xt.shape, (3, 0)) def test_kernel_pca_precomputed(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) for eigen_solver in ("dense", "arpack"): X_kpca = KernelPCA(4, eigen_solver=eigen_solver).\ fit(X_fit).transform(X_pred) X_kpca2 = KernelPCA( 4, eigen_solver=eigen_solver, kernel='precomputed').fit( np.dot(X_fit, X_fit.T)).transform(np.dot(X_pred, X_fit.T)) X_kpca_train = KernelPCA( 4, eigen_solver=eigen_solver, kernel='precomputed').fit_transform(np.dot(X_fit, X_fit.T)) X_kpca_train2 = KernelPCA( 4, eigen_solver=eigen_solver, kernel='precomputed').fit( np.dot(X_fit, X_fit.T)).transform(np.dot(X_fit, X_fit.T)) assert_array_almost_equal(np.abs(X_kpca), np.abs(X_kpca2)) assert_array_almost_equal(np.abs(X_kpca_train), np.abs(X_kpca_train2)) def test_kernel_pca_invalid_kernel(): rng = np.random.RandomState(0) X_fit = rng.random_sample((2, 4)) kpca = KernelPCA(kernel="tototiti") assert_raises(ValueError, kpca.fit, X_fit) @pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22 def test_gridsearch_pipeline(): # Test if we can do a grid-search to find parameters to separate # circles with a perceptron model. X, y = make_circles(n_samples=400, factor=.3, noise=.05, random_state=0) kpca = KernelPCA(kernel="rbf", n_components=2) pipeline = Pipeline([("kernel_pca", kpca), ("Perceptron", Perceptron(max_iter=5))]) param_grid = dict(kernel_pca__gamma=2. ** np.arange(-2, 2)) grid_search = GridSearchCV(pipeline, cv=3, param_grid=param_grid) grid_search.fit(X, y) assert_equal(grid_search.best_score_, 1) @pytest.mark.filterwarnings('ignore: The default of the `iid`') # 0.22 def test_gridsearch_pipeline_precomputed(): # Test if we can do a grid-search to find parameters to separate # circles with a perceptron model using a precomputed kernel. X, y = make_circles(n_samples=400, factor=.3, noise=.05, random_state=0) kpca = KernelPCA(kernel="precomputed", n_components=2) pipeline = Pipeline([("kernel_pca", kpca), ("Perceptron", Perceptron(max_iter=5))]) param_grid = dict(Perceptron__max_iter=np.arange(1, 5)) grid_search = GridSearchCV(pipeline, cv=3, param_grid=param_grid) X_kernel = rbf_kernel(X, gamma=2.) grid_search.fit(X_kernel, y) assert_equal(grid_search.best_score_, 1) def test_nested_circles(): # Test the linear separability of the first 2D KPCA transform X, y = make_circles(n_samples=400, factor=.3, noise=.05, random_state=0) # 2D nested circles are not linearly separable train_score = Perceptron(max_iter=5).fit(X, y).score(X, y) assert_less(train_score, 0.8) # Project the circles data into the first 2 components of a RBF Kernel # PCA model. # Note that the gamma value is data dependent. If this test breaks # and the gamma value has to be updated, the Kernel PCA example will # have to be updated too. kpca = KernelPCA(kernel="rbf", n_components=2, fit_inverse_transform=True, gamma=2.) X_kpca = kpca.fit_transform(X) # The data is perfectly linearly separable in that space train_score = Perceptron(max_iter=5).fit(X_kpca, y).score(X_kpca, y) assert_equal(train_score, 1.0)
bsd-3-clause
rishikksh20/scikit-learn
sklearn/model_selection/_split.py
7
68700
""" The :mod:`sklearn.model_selection._split` module includes classes and functions to split the data based on a preset strategy. """ # Author: Alexandre Gramfort <[email protected]>, # Gael Varoquaux <[email protected]>, # Olivier Grisel <[email protected]> # Raghav RV <[email protected]> # License: BSD 3 clause from __future__ import print_function from __future__ import division import warnings from itertools import chain, combinations from collections import Iterable from math import ceil, floor import numbers from abc import ABCMeta, abstractmethod import numpy as np from scipy.misc import comb from ..utils import indexable, check_random_state, safe_indexing from ..utils.validation import _num_samples, column_or_1d from ..utils.validation import check_array from ..utils.multiclass import type_of_target from ..externals.six import with_metaclass from ..externals.six.moves import zip from ..utils.fixes import bincount from ..utils.fixes import signature from ..utils.random import choice from ..base import _pprint __all__ = ['BaseCrossValidator', 'KFold', 'GroupKFold', 'LeaveOneGroupOut', 'LeaveOneOut', 'LeavePGroupsOut', 'LeavePOut', 'RepeatedStratifiedKFold', 'RepeatedKFold', 'ShuffleSplit', 'GroupShuffleSplit', 'StratifiedKFold', 'StratifiedShuffleSplit', 'PredefinedSplit', 'train_test_split', 'check_cv'] class BaseCrossValidator(with_metaclass(ABCMeta)): """Base class for all cross-validators Implementations must define `_iter_test_masks` or `_iter_test_indices`. """ def __init__(self): # We need this for the build_repr to work properly in py2.7 # see #6304 pass def split(self, X, y=None, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : array-like, of length n_samples The target variable for supervised learning problems. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ X, y, groups = indexable(X, y, groups) indices = np.arange(_num_samples(X)) for test_index in self._iter_test_masks(X, y, groups): train_index = indices[np.logical_not(test_index)] test_index = indices[test_index] yield train_index, test_index # Since subclasses must implement either _iter_test_masks or # _iter_test_indices, neither can be abstract. def _iter_test_masks(self, X=None, y=None, groups=None): """Generates boolean masks corresponding to test sets. By default, delegates to _iter_test_indices(X, y, groups) """ for test_index in self._iter_test_indices(X, y, groups): test_mask = np.zeros(_num_samples(X), dtype=np.bool) test_mask[test_index] = True yield test_mask def _iter_test_indices(self, X=None, y=None, groups=None): """Generates integer indices corresponding to test sets.""" raise NotImplementedError @abstractmethod def get_n_splits(self, X=None, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator""" def __repr__(self): return _build_repr(self) class LeaveOneOut(BaseCrossValidator): """Leave-One-Out cross-validator Provides train/test indices to split data in train/test sets. Each sample is used once as a test set (singleton) while the remaining samples form the training set. Note: ``LeaveOneOut()`` is equivalent to ``KFold(n_splits=n)`` and ``LeavePOut(p=1)`` where ``n`` is the number of samples. Due to the high number of test sets (which is the same as the number of samples) this cross-validation method can be very costly. For large datasets one should favor :class:`KFold`, :class:`ShuffleSplit` or :class:`StratifiedKFold`. Read more in the :ref:`User Guide <cross_validation>`. Examples -------- >>> from sklearn.model_selection import LeaveOneOut >>> X = np.array([[1, 2], [3, 4]]) >>> y = np.array([1, 2]) >>> loo = LeaveOneOut() >>> loo.get_n_splits(X) 2 >>> print(loo) LeaveOneOut() >>> for train_index, test_index in loo.split(X): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [1] TEST: [0] [[3 4]] [[1 2]] [2] [1] TRAIN: [0] TEST: [1] [[1 2]] [[3 4]] [1] [2] See also -------- LeaveOneGroupOut For splitting the data according to explicit, domain-specific stratification of the dataset. GroupKFold: K-fold iterator variant with non-overlapping groups. """ def _iter_test_indices(self, X, y=None, groups=None): return range(_num_samples(X)) def get_n_splits(self, X, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ if X is None: raise ValueError("The X parameter should not be None") return _num_samples(X) class LeavePOut(BaseCrossValidator): """Leave-P-Out cross-validator Provides train/test indices to split data in train/test sets. This results in testing on all distinct samples of size p, while the remaining n - p samples form the training set in each iteration. Note: ``LeavePOut(p)`` is NOT equivalent to ``KFold(n_splits=n_samples // p)`` which creates non-overlapping test sets. Due to the high number of iterations which grows combinatorically with the number of samples this cross-validation method can be very costly. For large datasets one should favor :class:`KFold`, :class:`StratifiedKFold` or :class:`ShuffleSplit`. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- p : int Size of the test sets. Examples -------- >>> from sklearn.model_selection import LeavePOut >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 3, 4]) >>> lpo = LeavePOut(2) >>> lpo.get_n_splits(X) 6 >>> print(lpo) LeavePOut(p=2) >>> for train_index, test_index in lpo.split(X): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [2 3] TEST: [0 1] TRAIN: [1 3] TEST: [0 2] TRAIN: [1 2] TEST: [0 3] TRAIN: [0 3] TEST: [1 2] TRAIN: [0 2] TEST: [1 3] TRAIN: [0 1] TEST: [2 3] """ def __init__(self, p): self.p = p def _iter_test_indices(self, X, y=None, groups=None): for combination in combinations(range(_num_samples(X)), self.p): yield np.array(combination) def get_n_splits(self, X, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. """ if X is None: raise ValueError("The X parameter should not be None") return int(comb(_num_samples(X), self.p, exact=True)) class _BaseKFold(with_metaclass(ABCMeta, BaseCrossValidator)): """Base class for KFold, GroupKFold, and StratifiedKFold""" @abstractmethod def __init__(self, n_splits, shuffle, random_state): if not isinstance(n_splits, numbers.Integral): raise ValueError('The number of folds must be of Integral type. ' '%s of type %s was passed.' % (n_splits, type(n_splits))) n_splits = int(n_splits) if n_splits <= 1: raise ValueError( "k-fold cross-validation requires at least one" " train/test split by setting n_splits=2 or more," " got n_splits={0}.".format(n_splits)) if not isinstance(shuffle, bool): raise TypeError("shuffle must be True or False;" " got {0}".format(shuffle)) self.n_splits = n_splits self.shuffle = shuffle self.random_state = random_state def split(self, X, y=None, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) The target variable for supervised learning problems. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ X, y, groups = indexable(X, y, groups) n_samples = _num_samples(X) if self.n_splits > n_samples: raise ValueError( ("Cannot have number of splits n_splits={0} greater" " than the number of samples: {1}.").format(self.n_splits, n_samples)) for train, test in super(_BaseKFold, self).split(X, y, groups): yield train, test def get_n_splits(self, X=None, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ return self.n_splits class KFold(_BaseKFold): """K-Folds cross-validator Provides train/test indices to split data in train/test sets. Split dataset into k consecutive folds (without shuffling by default). Each fold is then used once as a validation while the k - 1 remaining folds form the training set. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_splits : int, default=3 Number of folds. Must be at least 2. shuffle : boolean, optional Whether to shuffle the data before splitting into batches. random_state : None, int or RandomState When shuffle=True, pseudo-random number generator state used for shuffling. If None, use default numpy RNG for shuffling. Examples -------- >>> from sklearn.model_selection import KFold >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([1, 2, 3, 4]) >>> kf = KFold(n_splits=2) >>> kf.get_n_splits(X) 2 >>> print(kf) # doctest: +NORMALIZE_WHITESPACE KFold(n_splits=2, random_state=None, shuffle=False) >>> for train_index, test_index in kf.split(X): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [2 3] TEST: [0 1] TRAIN: [0 1] TEST: [2 3] Notes ----- The first ``n_samples % n_splits`` folds have size ``n_samples // n_splits + 1``, other folds have size ``n_samples // n_splits``, where ``n_samples`` is the number of samples. See also -------- StratifiedKFold Takes group information into account to avoid building folds with imbalanced class distributions (for binary or multiclass classification tasks). GroupKFold: K-fold iterator variant with non-overlapping groups. RepeatedKFold: Repeats K-Fold n times. """ def __init__(self, n_splits=3, shuffle=False, random_state=None): super(KFold, self).__init__(n_splits, shuffle, random_state) def _iter_test_indices(self, X, y=None, groups=None): n_samples = _num_samples(X) indices = np.arange(n_samples) if self.shuffle: check_random_state(self.random_state).shuffle(indices) n_splits = self.n_splits fold_sizes = (n_samples // n_splits) * np.ones(n_splits, dtype=np.int) fold_sizes[:n_samples % n_splits] += 1 current = 0 for fold_size in fold_sizes: start, stop = current, current + fold_size yield indices[start:stop] current = stop class GroupKFold(_BaseKFold): """K-fold iterator variant with non-overlapping groups. The same group will not appear in two different folds (the number of distinct groups has to be at least equal to the number of folds). The folds are approximately balanced in the sense that the number of distinct groups is approximately the same in each fold. Parameters ---------- n_splits : int, default=3 Number of folds. Must be at least 2. Examples -------- >>> from sklearn.model_selection import GroupKFold >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 3, 4]) >>> groups = np.array([0, 0, 2, 2]) >>> group_kfold = GroupKFold(n_splits=2) >>> group_kfold.get_n_splits(X, y, groups) 2 >>> print(group_kfold) GroupKFold(n_splits=2) >>> for train_index, test_index in group_kfold.split(X, y, groups): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) ... TRAIN: [0 1] TEST: [2 3] [[1 2] [3 4]] [[5 6] [7 8]] [1 2] [3 4] TRAIN: [2 3] TEST: [0 1] [[5 6] [7 8]] [[1 2] [3 4]] [3 4] [1 2] See also -------- LeaveOneGroupOut For splitting the data according to explicit domain-specific stratification of the dataset. """ def __init__(self, n_splits=3): super(GroupKFold, self).__init__(n_splits, shuffle=False, random_state=None) def _iter_test_indices(self, X, y, groups): if groups is None: raise ValueError("The groups parameter should not be None") groups = check_array(groups, ensure_2d=False, dtype=None) unique_groups, groups = np.unique(groups, return_inverse=True) n_groups = len(unique_groups) if self.n_splits > n_groups: raise ValueError("Cannot have number of splits n_splits=%d greater" " than the number of groups: %d." % (self.n_splits, n_groups)) # Weight groups by their number of occurrences n_samples_per_group = np.bincount(groups) # Distribute the most frequent groups first indices = np.argsort(n_samples_per_group)[::-1] n_samples_per_group = n_samples_per_group[indices] # Total weight of each fold n_samples_per_fold = np.zeros(self.n_splits) # Mapping from group index to fold index group_to_fold = np.zeros(len(unique_groups)) # Distribute samples by adding the largest weight to the lightest fold for group_index, weight in enumerate(n_samples_per_group): lightest_fold = np.argmin(n_samples_per_fold) n_samples_per_fold[lightest_fold] += weight group_to_fold[indices[group_index]] = lightest_fold indices = group_to_fold[groups] for f in range(self.n_splits): yield np.where(indices == f)[0] class StratifiedKFold(_BaseKFold): """Stratified K-Folds cross-validator Provides train/test indices to split data in train/test sets. This cross-validation object is a variation of KFold that returns stratified folds. The folds are made by preserving the percentage of samples for each class. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_splits : int, default=3 Number of folds. Must be at least 2. shuffle : boolean, optional Whether to shuffle each stratification of the data before splitting into batches. random_state : None, int or RandomState When shuffle=True, pseudo-random number generator state used for shuffling. If None, use default numpy RNG for shuffling. Examples -------- >>> from sklearn.model_selection import StratifiedKFold >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> skf = StratifiedKFold(n_splits=2) >>> skf.get_n_splits(X, y) 2 >>> print(skf) # doctest: +NORMALIZE_WHITESPACE StratifiedKFold(n_splits=2, random_state=None, shuffle=False) >>> for train_index, test_index in skf.split(X, y): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 3] TEST: [0 2] TRAIN: [0 2] TEST: [1 3] Notes ----- All the folds have size ``trunc(n_samples / n_splits)``, the last one has the complementary. See also -------- RepeatedStratifiedKFold: Repeats Stratified K-Fold n times. """ def __init__(self, n_splits=3, shuffle=False, random_state=None): super(StratifiedKFold, self).__init__(n_splits, shuffle, random_state) def _make_test_folds(self, X, y=None, groups=None): if self.shuffle: rng = check_random_state(self.random_state) else: rng = self.random_state y = np.asarray(y) n_samples = y.shape[0] unique_y, y_inversed = np.unique(y, return_inverse=True) y_counts = bincount(y_inversed) min_groups = np.min(y_counts) if np.all(self.n_splits > y_counts): raise ValueError("All the n_groups for individual classes" " are less than n_splits=%d." % (self.n_splits)) if self.n_splits > min_groups: warnings.warn(("The least populated class in y has only %d" " members, which is too few. The minimum" " number of groups for any class cannot" " be less than n_splits=%d." % (min_groups, self.n_splits)), Warning) # pre-assign each sample to a test fold index using individual KFold # splitting strategies for each class so as to respect the balance of # classes # NOTE: Passing the data corresponding to ith class say X[y==class_i] # will break when the data is not 100% stratifiable for all classes. # So we pass np.zeroes(max(c, n_splits)) as data to the KFold per_cls_cvs = [ KFold(self.n_splits, shuffle=self.shuffle, random_state=rng).split(np.zeros(max(count, self.n_splits))) for count in y_counts] test_folds = np.zeros(n_samples, dtype=np.int) for test_fold_indices, per_cls_splits in enumerate(zip(*per_cls_cvs)): for cls, (_, test_split) in zip(unique_y, per_cls_splits): cls_test_folds = test_folds[y == cls] # the test split can be too big because we used # KFold(...).split(X[:max(c, n_splits)]) when data is not 100% # stratifiable for all the classes # (we use a warning instead of raising an exception) # If this is the case, let's trim it: test_split = test_split[test_split < len(cls_test_folds)] cls_test_folds[test_split] = test_fold_indices test_folds[y == cls] = cls_test_folds return test_folds def _iter_test_masks(self, X, y=None, groups=None): test_folds = self._make_test_folds(X, y) for i in range(self.n_splits): yield test_folds == i def split(self, X, y, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Note that providing ``y`` is sufficient to generate the splits and hence ``np.zeros(n_samples)`` may be used as a placeholder for ``X`` instead of actual training data. y : array-like, shape (n_samples,) The target variable for supervised learning problems. Stratification is done based on the y labels. groups : object Always ignored, exists for compatibility. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ y = check_array(y, ensure_2d=False, dtype=None) return super(StratifiedKFold, self).split(X, y, groups) class TimeSeriesSplit(_BaseKFold): """Time Series cross-validator Provides train/test indices to split time series data samples that are observed at fixed time intervals, in train/test sets. In each split, test indices must be higher than before, and thus shuffling in cross validator is inappropriate. This cross-validation object is a variation of :class:`KFold`. In the kth split, it returns first k folds as train set and the (k+1)th fold as test set. Note that unlike standard cross-validation methods, successive training sets are supersets of those that come before them. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_splits : int, default=3 Number of splits. Must be at least 1. Examples -------- >>> from sklearn.model_selection import TimeSeriesSplit >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([1, 2, 3, 4]) >>> tscv = TimeSeriesSplit(n_splits=3) >>> print(tscv) # doctest: +NORMALIZE_WHITESPACE TimeSeriesSplit(n_splits=3) >>> for train_index, test_index in tscv.split(X): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [0] TEST: [1] TRAIN: [0 1] TEST: [2] TRAIN: [0 1 2] TEST: [3] Notes ----- The training set has size ``i * n_samples // (n_splits + 1) + n_samples % (n_splits + 1)`` in the ``i``th split, with a test set of size ``n_samples//(n_splits + 1)``, where ``n_samples`` is the number of samples. """ def __init__(self, n_splits=3): super(TimeSeriesSplit, self).__init__(n_splits, shuffle=False, random_state=None) def split(self, X, y=None, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Always ignored, exists for compatibility. groups : array-like, with shape (n_samples,), optional Always ignored, exists for compatibility. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ X, y, groups = indexable(X, y, groups) n_samples = _num_samples(X) n_splits = self.n_splits n_folds = n_splits + 1 if n_folds > n_samples: raise ValueError( ("Cannot have number of folds ={0} greater" " than the number of samples: {1}.").format(n_folds, n_samples)) indices = np.arange(n_samples) test_size = (n_samples // n_folds) test_starts = range(test_size + n_samples % n_folds, n_samples, test_size) for test_start in test_starts: yield (indices[:test_start], indices[test_start:test_start + test_size]) class LeaveOneGroupOut(BaseCrossValidator): """Leave One Group Out cross-validator Provides train/test indices to split data according to a third-party provided group. This group information can be used to encode arbitrary domain specific stratifications of the samples as integers. For instance the groups could be the year of collection of the samples and thus allow for cross-validation against time-based splits. Read more in the :ref:`User Guide <cross_validation>`. Examples -------- >>> from sklearn.model_selection import LeaveOneGroupOut >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 1, 2]) >>> groups = np.array([1, 1, 2, 2]) >>> logo = LeaveOneGroupOut() >>> logo.get_n_splits(X, y, groups) 2 >>> print(logo) LeaveOneGroupOut() >>> for train_index, test_index in logo.split(X, y, groups): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [2 3] TEST: [0 1] [[5 6] [7 8]] [[1 2] [3 4]] [1 2] [1 2] TRAIN: [0 1] TEST: [2 3] [[1 2] [3 4]] [[5 6] [7 8]] [1 2] [1 2] """ def _iter_test_masks(self, X, y, groups): if groups is None: raise ValueError("The groups parameter should not be None") # We make a copy of groups to avoid side-effects during iteration groups = check_array(groups, copy=True, ensure_2d=False, dtype=None) unique_groups = np.unique(groups) if len(unique_groups) <= 1: raise ValueError( "The groups parameter contains fewer than 2 unique groups " "(%s). LeaveOneGroupOut expects at least 2." % unique_groups) for i in unique_groups: yield groups == i def get_n_splits(self, X, y, groups): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ if groups is None: raise ValueError("The groups parameter should not be None") return len(np.unique(groups)) class LeavePGroupsOut(BaseCrossValidator): """Leave P Group(s) Out cross-validator Provides train/test indices to split data according to a third-party provided group. This group information can be used to encode arbitrary domain specific stratifications of the samples as integers. For instance the groups could be the year of collection of the samples and thus allow for cross-validation against time-based splits. The difference between LeavePGroupsOut and LeaveOneGroupOut is that the former builds the test sets with all the samples assigned to ``p`` different values of the groups while the latter uses samples all assigned the same groups. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_groups : int Number of groups (``p``) to leave out in the test split. Examples -------- >>> from sklearn.model_selection import LeavePGroupsOut >>> X = np.array([[1, 2], [3, 4], [5, 6]]) >>> y = np.array([1, 2, 1]) >>> groups = np.array([1, 2, 3]) >>> lpgo = LeavePGroupsOut(n_groups=2) >>> lpgo.get_n_splits(X, y, groups) 3 >>> print(lpgo) LeavePGroupsOut(n_groups=2) >>> for train_index, test_index in lpgo.split(X, y, groups): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [2] TEST: [0 1] [[5 6]] [[1 2] [3 4]] [1] [1 2] TRAIN: [1] TEST: [0 2] [[3 4]] [[1 2] [5 6]] [2] [1 1] TRAIN: [0] TEST: [1 2] [[1 2]] [[3 4] [5 6]] [1] [2 1] See also -------- GroupKFold: K-fold iterator variant with non-overlapping groups. """ def __init__(self, n_groups): self.n_groups = n_groups def _iter_test_masks(self, X, y, groups): if groups is None: raise ValueError("The groups parameter should not be None") groups = check_array(groups, copy=True, ensure_2d=False, dtype=None) unique_groups = np.unique(groups) if self.n_groups >= len(unique_groups): raise ValueError( "The groups parameter contains fewer than (or equal to) " "n_groups (%d) numbers of unique groups (%s). LeavePGroupsOut " "expects that at least n_groups + 1 (%d) unique groups be " "present" % (self.n_groups, unique_groups, self.n_groups + 1)) combi = combinations(range(len(unique_groups)), self.n_groups) for indices in combi: test_index = np.zeros(_num_samples(X), dtype=np.bool) for l in unique_groups[np.array(indices)]: test_index[groups == l] = True yield test_index def get_n_splits(self, X, y, groups): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. ``np.zeros(n_samples)`` may be used as a placeholder. y : object Always ignored, exists for compatibility. ``np.zeros(n_samples)`` may be used as a placeholder. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ if groups is None: raise ValueError("The groups parameter should not be None") groups = check_array(groups, ensure_2d=False, dtype=None) X, y, groups = indexable(X, y, groups) return int(comb(len(np.unique(groups)), self.n_groups, exact=True)) class _RepeatedSplits(with_metaclass(ABCMeta)): """Repeated splits for an arbitrary randomized CV splitter. Repeats splits for cross-validators n times with different randomization in each repetition. Parameters ---------- cv : callable Cross-validator class. n_repeats : int, default=10 Number of times cross-validator needs to be repeated. random_state : None, int or RandomState, default=None Random state to be used to generate random state for each repetition. **cvargs : additional params Constructor parameters for cv. Must not contain random_state and shuffle. """ def __init__(self, cv, n_repeats=10, random_state=None, **cvargs): if not isinstance(n_repeats, (np.integer, numbers.Integral)): raise ValueError("Number of repetitions must be of Integral type.") if n_repeats <= 1: raise ValueError("Number of repetitions must be greater than 1.") if any(key in cvargs for key in ('random_state', 'shuffle')): raise ValueError( "cvargs must not contain random_state or shuffle.") self.cv = cv self.n_repeats = n_repeats self.random_state = random_state self.cvargs = cvargs def split(self, X, y=None, groups=None): """Generates indices to split data into training and test set. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : array-like, of length n_samples The target variable for supervised learning problems. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ n_repeats = self.n_repeats rng = check_random_state(self.random_state) for idx in range(n_repeats): cv = self.cv(random_state=rng, shuffle=True, **self.cvargs) for train_index, test_index in cv.split(X, y, groups): yield train_index, test_index class RepeatedKFold(_RepeatedSplits): """Repeated K-Fold cross validator. Repeats K-Fold n times with different randomization in each repetition. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_splits : int, default=5 Number of folds. Must be at least 2. n_repeats : int, default=10 Number of times cross-validator needs to be repeated. random_state : None, int or RandomState, default=None Random state to be used to generate random state for each repetition. Examples -------- >>> from sklearn.model_selection import RepeatedKFold >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> rkf = RepeatedKFold(n_splits=2, n_repeats=2, random_state=2652124) >>> for train_index, test_index in rkf.split(X): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... TRAIN: [0 1] TEST: [2 3] TRAIN: [2 3] TEST: [0 1] TRAIN: [1 2] TEST: [0 3] TRAIN: [0 3] TEST: [1 2] See also -------- RepeatedStratifiedKFold: Repeates Stratified K-Fold n times. """ def __init__(self, n_splits=5, n_repeats=10, random_state=None): super(RepeatedKFold, self).__init__( KFold, n_repeats, random_state, n_splits=n_splits) class RepeatedStratifiedKFold(_RepeatedSplits): """Repeated Stratified K-Fold cross validator. Repeats Stratified K-Fold n times with different randomization in each repetition. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_splits : int, default=5 Number of folds. Must be at least 2. n_repeats : int, default=10 Number of times cross-validator needs to be repeated. random_state : None, int or RandomState, default=None Random state to be used to generate random state for each repetition. Examples -------- >>> from sklearn.model_selection import RepeatedStratifiedKFold >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> rskf = RepeatedStratifiedKFold(n_splits=2, n_repeats=2, ... random_state=36851234) >>> for train_index, test_index in rskf.split(X, y): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... TRAIN: [1 2] TEST: [0 3] TRAIN: [0 3] TEST: [1 2] TRAIN: [1 3] TEST: [0 2] TRAIN: [0 2] TEST: [1 3] See also -------- RepeatedKFold: Repeats K-Fold n times. """ def __init__(self, n_splits=5, n_repeats=10, random_state=None): super(RepeatedStratifiedKFold, self).__init__( StratifiedKFold, n_repeats, random_state, n_splits=n_splits) class BaseShuffleSplit(with_metaclass(ABCMeta)): """Base class for ShuffleSplit and StratifiedShuffleSplit""" def __init__(self, n_splits=10, test_size=0.1, train_size=None, random_state=None): _validate_shuffle_split_init(test_size, train_size) self.n_splits = n_splits self.test_size = test_size self.train_size = train_size self.random_state = random_state def split(self, X, y=None, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) The target variable for supervised learning problems. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ X, y, groups = indexable(X, y, groups) for train, test in self._iter_indices(X, y, groups): yield train, test @abstractmethod def _iter_indices(self, X, y=None, groups=None): """Generate (train, test) indices""" def get_n_splits(self, X=None, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ return self.n_splits def __repr__(self): return _build_repr(self) class ShuffleSplit(BaseShuffleSplit): """Random permutation cross-validator Yields indices to split data into training and test sets. Note: contrary to other cross-validation strategies, random splits do not guarantee that all folds will be different, although this is still very likely for sizeable datasets. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_splits : int (default 10) Number of re-shuffling & splitting iterations. test_size : float, int, or None, default 0.1 If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. Examples -------- >>> from sklearn.model_selection import ShuffleSplit >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 1, 2]) >>> rs = ShuffleSplit(n_splits=3, test_size=.25, random_state=0) >>> rs.get_n_splits(X) 3 >>> print(rs) ShuffleSplit(n_splits=3, random_state=0, test_size=0.25, train_size=None) >>> for train_index, test_index in rs.split(X): ... print("TRAIN:", train_index, "TEST:", test_index) ... # doctest: +ELLIPSIS TRAIN: [3 1 0] TEST: [2] TRAIN: [2 1 3] TEST: [0] TRAIN: [0 2 1] TEST: [3] >>> rs = ShuffleSplit(n_splits=3, train_size=0.5, test_size=.25, ... random_state=0) >>> for train_index, test_index in rs.split(X): ... print("TRAIN:", train_index, "TEST:", test_index) ... # doctest: +ELLIPSIS TRAIN: [3 1] TEST: [2] TRAIN: [2 1] TEST: [0] TRAIN: [0 2] TEST: [3] """ def _iter_indices(self, X, y=None, groups=None): n_samples = _num_samples(X) n_train, n_test = _validate_shuffle_split(n_samples, self.test_size, self.train_size) rng = check_random_state(self.random_state) for i in range(self.n_splits): # random partition permutation = rng.permutation(n_samples) ind_test = permutation[:n_test] ind_train = permutation[n_test:(n_test + n_train)] yield ind_train, ind_test class GroupShuffleSplit(ShuffleSplit): '''Shuffle-Group(s)-Out cross-validation iterator Provides randomized train/test indices to split data according to a third-party provided group. This group information can be used to encode arbitrary domain specific stratifications of the samples as integers. For instance the groups could be the year of collection of the samples and thus allow for cross-validation against time-based splits. The difference between LeavePGroupsOut and GroupShuffleSplit is that the former generates splits using all subsets of size ``p`` unique groups, whereas GroupShuffleSplit generates a user-determined number of random test splits, each with a user-determined fraction of unique groups. For example, a less computationally intensive alternative to ``LeavePGroupsOut(p=10)`` would be ``GroupShuffleSplit(test_size=10, n_splits=100)``. Note: The parameters ``test_size`` and ``train_size`` refer to groups, and not to samples, as in ShuffleSplit. Parameters ---------- n_splits : int (default 5) Number of re-shuffling & splitting iterations. test_size : float (default 0.2), int, or None If float, should be between 0.0 and 1.0 and represent the proportion of the groups to include in the test split. If int, represents the absolute number of test groups. If None, the value is automatically set to the complement of the train size. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the groups to include in the train split. If int, represents the absolute number of train groups. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. ''' def __init__(self, n_splits=5, test_size=0.2, train_size=None, random_state=None): super(GroupShuffleSplit, self).__init__( n_splits=n_splits, test_size=test_size, train_size=train_size, random_state=random_state) def _iter_indices(self, X, y, groups): if groups is None: raise ValueError("The groups parameter should not be None") groups = check_array(groups, ensure_2d=False, dtype=None) classes, group_indices = np.unique(groups, return_inverse=True) for group_train, group_test in super( GroupShuffleSplit, self)._iter_indices(X=classes): # these are the indices of classes in the partition # invert them into data indices train = np.flatnonzero(np.in1d(group_indices, group_train)) test = np.flatnonzero(np.in1d(group_indices, group_test)) yield train, test def _approximate_mode(class_counts, n_draws, rng): """Computes approximate mode of multivariate hypergeometric. This is an approximation to the mode of the multivariate hypergeometric given by class_counts and n_draws. It shouldn't be off by more than one. It is the mostly likely outcome of drawing n_draws many samples from the population given by class_counts. Parameters ---------- class_counts : ndarray of int Population per class. n_draws : int Number of draws (samples to draw) from the overall population. rng : random state Used to break ties. Returns ------- sampled_classes : ndarray of int Number of samples drawn from each class. np.sum(sampled_classes) == n_draws Examples -------- >>> from sklearn.model_selection._split import _approximate_mode >>> _approximate_mode(class_counts=np.array([4, 2]), n_draws=3, rng=0) array([2, 1]) >>> _approximate_mode(class_counts=np.array([5, 2]), n_draws=4, rng=0) array([3, 1]) >>> _approximate_mode(class_counts=np.array([2, 2, 2, 1]), ... n_draws=2, rng=0) array([0, 1, 1, 0]) >>> _approximate_mode(class_counts=np.array([2, 2, 2, 1]), ... n_draws=2, rng=42) array([1, 1, 0, 0]) """ # this computes a bad approximation to the mode of the # multivariate hypergeometric given by class_counts and n_draws continuous = n_draws * class_counts / class_counts.sum() # floored means we don't overshoot n_samples, but probably undershoot floored = np.floor(continuous) # we add samples according to how much "left over" probability # they had, until we arrive at n_samples need_to_add = int(n_draws - floored.sum()) if need_to_add > 0: remainder = continuous - floored values = np.sort(np.unique(remainder))[::-1] # add according to remainder, but break ties # randomly to avoid biases for value in values: inds, = np.where(remainder == value) # if we need_to_add less than what's in inds # we draw randomly from them. # if we need to add more, we add them all and # go to the next value add_now = min(len(inds), need_to_add) inds = choice(inds, size=add_now, replace=False, random_state=rng) floored[inds] += 1 need_to_add -= add_now if need_to_add == 0: break return floored.astype(np.int) class StratifiedShuffleSplit(BaseShuffleSplit): """Stratified ShuffleSplit cross-validator Provides train/test indices to split data in train/test sets. This cross-validation object is a merge of StratifiedKFold and ShuffleSplit, which returns stratified randomized folds. The folds are made by preserving the percentage of samples for each class. Note: like the ShuffleSplit strategy, stratified random splits do not guarantee that all folds will be different, although this is still very likely for sizeable datasets. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_splits : int (default 10) Number of re-shuffling & splitting iterations. test_size : float (default 0.1), int, or None If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. Examples -------- >>> from sklearn.model_selection import StratifiedShuffleSplit >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> sss = StratifiedShuffleSplit(n_splits=3, test_size=0.5, random_state=0) >>> sss.get_n_splits(X, y) 3 >>> print(sss) # doctest: +ELLIPSIS StratifiedShuffleSplit(n_splits=3, random_state=0, ...) >>> for train_index, test_index in sss.split(X, y): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 2] TEST: [3 0] TRAIN: [0 2] TEST: [1 3] TRAIN: [0 2] TEST: [3 1] """ def __init__(self, n_splits=10, test_size=0.1, train_size=None, random_state=None): super(StratifiedShuffleSplit, self).__init__( n_splits, test_size, train_size, random_state) def _iter_indices(self, X, y, groups=None): n_samples = _num_samples(X) y = check_array(y, ensure_2d=False, dtype=None) n_train, n_test = _validate_shuffle_split(n_samples, self.test_size, self.train_size) classes, y_indices = np.unique(y, return_inverse=True) n_classes = classes.shape[0] class_counts = bincount(y_indices) if np.min(class_counts) < 2: raise ValueError("The least populated class in y has only 1" " member, which is too few. The minimum" " number of groups for any class cannot" " be less than 2.") if n_train < n_classes: raise ValueError('The train_size = %d should be greater or ' 'equal to the number of classes = %d' % (n_train, n_classes)) if n_test < n_classes: raise ValueError('The test_size = %d should be greater or ' 'equal to the number of classes = %d' % (n_test, n_classes)) rng = check_random_state(self.random_state) for _ in range(self.n_splits): # if there are ties in the class-counts, we want # to make sure to break them anew in each iteration n_i = _approximate_mode(class_counts, n_train, rng) class_counts_remaining = class_counts - n_i t_i = _approximate_mode(class_counts_remaining, n_test, rng) train = [] test = [] for i, class_i in enumerate(classes): permutation = rng.permutation(class_counts[i]) perm_indices_class_i = np.where((y == class_i))[0][permutation] train.extend(perm_indices_class_i[:n_i[i]]) test.extend(perm_indices_class_i[n_i[i]:n_i[i] + t_i[i]]) train = rng.permutation(train) test = rng.permutation(test) yield train, test def split(self, X, y, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Note that providing ``y`` is sufficient to generate the splits and hence ``np.zeros(n_samples)`` may be used as a placeholder for ``X`` instead of actual training data. y : array-like, shape (n_samples,) The target variable for supervised learning problems. Stratification is done based on the y labels. groups : object Always ignored, exists for compatibility. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ y = check_array(y, ensure_2d=False, dtype=None) return super(StratifiedShuffleSplit, self).split(X, y, groups) def _validate_shuffle_split_init(test_size, train_size): """Validation helper to check the test_size and train_size at init NOTE This does not take into account the number of samples which is known only at split """ if test_size is None and train_size is None: raise ValueError('test_size and train_size can not both be None') if test_size is not None: if np.asarray(test_size).dtype.kind == 'f': if test_size >= 1.: raise ValueError( 'test_size=%f should be smaller ' 'than 1.0 or be an integer' % test_size) elif np.asarray(test_size).dtype.kind != 'i': # int values are checked during split based on the input raise ValueError("Invalid value for test_size: %r" % test_size) if train_size is not None: if np.asarray(train_size).dtype.kind == 'f': if train_size >= 1.: raise ValueError("train_size=%f should be smaller " "than 1.0 or be an integer" % train_size) elif (np.asarray(test_size).dtype.kind == 'f' and (train_size + test_size) > 1.): raise ValueError('The sum of test_size and train_size = %f, ' 'should be smaller than 1.0. Reduce ' 'test_size and/or train_size.' % (train_size + test_size)) elif np.asarray(train_size).dtype.kind != 'i': # int values are checked during split based on the input raise ValueError("Invalid value for train_size: %r" % train_size) def _validate_shuffle_split(n_samples, test_size, train_size): """ Validation helper to check if the test/test sizes are meaningful wrt to the size of the data (n_samples) """ if (test_size is not None and np.asarray(test_size).dtype.kind == 'i' and test_size >= n_samples): raise ValueError('test_size=%d should be smaller than the number of ' 'samples %d' % (test_size, n_samples)) if (train_size is not None and np.asarray(train_size).dtype.kind == 'i' and train_size >= n_samples): raise ValueError("train_size=%d should be smaller than the number of" " samples %d" % (train_size, n_samples)) if np.asarray(test_size).dtype.kind == 'f': n_test = ceil(test_size * n_samples) elif np.asarray(test_size).dtype.kind == 'i': n_test = float(test_size) if train_size is None: n_train = n_samples - n_test elif np.asarray(train_size).dtype.kind == 'f': n_train = floor(train_size * n_samples) else: n_train = float(train_size) if test_size is None: n_test = n_samples - n_train if n_train + n_test > n_samples: raise ValueError('The sum of train_size and test_size = %d, ' 'should be smaller than the number of ' 'samples %d. Reduce test_size and/or ' 'train_size.' % (n_train + n_test, n_samples)) return int(n_train), int(n_test) class PredefinedSplit(BaseCrossValidator): """Predefined split cross-validator Splits the data into training/test set folds according to a predefined scheme. Each sample can be assigned to at most one test set fold, as specified by the user through the ``test_fold`` parameter. Read more in the :ref:`User Guide <cross_validation>`. Examples -------- >>> from sklearn.model_selection import PredefinedSplit >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> test_fold = [0, 1, -1, 1] >>> ps = PredefinedSplit(test_fold) >>> ps.get_n_splits() 2 >>> print(ps) # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS PredefinedSplit(test_fold=array([ 0, 1, -1, 1])) >>> for train_index, test_index in ps.split(): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 2 3] TEST: [0] TRAIN: [0 2] TEST: [1 3] """ def __init__(self, test_fold): self.test_fold = np.array(test_fold, dtype=np.int) self.test_fold = column_or_1d(self.test_fold) self.unique_folds = np.unique(self.test_fold) self.unique_folds = self.unique_folds[self.unique_folds != -1] def split(self, X=None, y=None, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ ind = np.arange(len(self.test_fold)) for test_index in self._iter_test_masks(): train_index = ind[np.logical_not(test_index)] test_index = ind[test_index] yield train_index, test_index def _iter_test_masks(self): """Generates boolean masks corresponding to test sets.""" for f in self.unique_folds: test_index = np.where(self.test_fold == f)[0] test_mask = np.zeros(len(self.test_fold), dtype=np.bool) test_mask[test_index] = True yield test_mask def get_n_splits(self, X=None, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ return len(self.unique_folds) class _CVIterableWrapper(BaseCrossValidator): """Wrapper class for old style cv objects and iterables.""" def __init__(self, cv): self.cv = list(cv) def get_n_splits(self, X=None, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ return len(self.cv) def split(self, X=None, y=None, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ for train, test in self.cv: yield train, test def check_cv(cv=3, y=None, classifier=False): """Input checker utility for building a cross-validator Parameters ---------- cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if classifier is True and ``y`` is either binary or multiclass, :class:`StratifiedKFold` is used. In all other cases, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. y : array-like, optional The target variable for supervised learning problems. classifier : boolean, optional, default False Whether the task is a classification task, in which case stratified KFold will be used. Returns ------- checked_cv : a cross-validator instance. The return value is a cross-validator which generates the train/test splits via the ``split`` method. """ if cv is None: cv = 3 if isinstance(cv, numbers.Integral): if (classifier and (y is not None) and (type_of_target(y) in ('binary', 'multiclass'))): return StratifiedKFold(cv) else: return KFold(cv) if not hasattr(cv, 'split') or isinstance(cv, str): if not isinstance(cv, Iterable) or isinstance(cv, str): raise ValueError("Expected cv as an integer, cross-validation " "object (from sklearn.model_selection) " "or an iterable. Got %s." % cv) return _CVIterableWrapper(cv) return cv # New style cv objects are passed without any modification def train_test_split(*arrays, **options): """Split arrays or matrices into random train and test subsets Quick utility that wraps input validation and ``next(ShuffleSplit().split(X, y))`` and application to input data into a single call for splitting (and optionally subsampling) data in a oneliner. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- *arrays : sequence of indexables with same length / shape[0] Allowed inputs are lists, numpy arrays, scipy-sparse matrices or pandas dataframes. test_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. If train size is also None, test size is set to 0.25. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. stratify : array-like or None (default is None) If not None, data is split in a stratified fashion, using this as the class labels. Returns ------- splitting : list, length=2 * len(arrays) List containing train-test split of inputs. .. versionadded:: 0.16 If the input is sparse, the output will be a ``scipy.sparse.csr_matrix``. Else, output type is the same as the input type. Examples -------- >>> import numpy as np >>> from sklearn.model_selection import train_test_split >>> X, y = np.arange(10).reshape((5, 2)), range(5) >>> X array([[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]]) >>> list(y) [0, 1, 2, 3, 4] >>> X_train, X_test, y_train, y_test = train_test_split( ... X, y, test_size=0.33, random_state=42) ... >>> X_train array([[4, 5], [0, 1], [6, 7]]) >>> y_train [2, 0, 3] >>> X_test array([[2, 3], [8, 9]]) >>> y_test [1, 4] """ n_arrays = len(arrays) if n_arrays == 0: raise ValueError("At least one array required as input") test_size = options.pop('test_size', None) train_size = options.pop('train_size', None) random_state = options.pop('random_state', None) stratify = options.pop('stratify', None) if options: raise TypeError("Invalid parameters passed: %s" % str(options)) if test_size is None and train_size is None: test_size = 0.25 arrays = indexable(*arrays) if stratify is not None: CVClass = StratifiedShuffleSplit else: CVClass = ShuffleSplit cv = CVClass(test_size=test_size, train_size=train_size, random_state=random_state) train, test = next(cv.split(X=arrays[0], y=stratify)) return list(chain.from_iterable((safe_indexing(a, train), safe_indexing(a, test)) for a in arrays)) train_test_split.__test__ = False # to avoid a pb with nosetests def _build_repr(self): # XXX This is copied from BaseEstimator's get_params cls = self.__class__ init = getattr(cls.__init__, 'deprecated_original', cls.__init__) # Ignore varargs, kw and default values and pop self init_signature = signature(init) # Consider the constructor parameters excluding 'self' if init is object.__init__: args = [] else: args = sorted([p.name for p in init_signature.parameters.values() if p.name != 'self' and p.kind != p.VAR_KEYWORD]) class_name = self.__class__.__name__ params = dict() for key in args: # We need deprecation warnings to always be on in order to # catch deprecated param values. # This is set in utils/__init__.py but it gets overwritten # when running under python3 somehow. warnings.simplefilter("always", DeprecationWarning) try: with warnings.catch_warnings(record=True) as w: value = getattr(self, key, None) if len(w) and w[0].category == DeprecationWarning: # if the parameter is deprecated, don't show it continue finally: warnings.filters.pop(0) params[key] = value return '%s(%s)' % (class_name, _pprint(params, offset=len(class_name)))
bsd-3-clause
paladin74/neural-network-animation
matplotlib/projections/polar.py
11
27444
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import math import warnings import numpy as np import matplotlib rcParams = matplotlib.rcParams from matplotlib.axes import Axes import matplotlib.axis as maxis from matplotlib import cbook from matplotlib import docstring from matplotlib.patches import Circle from matplotlib.path import Path from matplotlib.ticker import Formatter, Locator, FormatStrFormatter from matplotlib.transforms import Affine2D, Affine2DBase, Bbox, \ BboxTransformTo, IdentityTransform, Transform, TransformWrapper, \ ScaledTranslation, blended_transform_factory, BboxTransformToMaxOnly import matplotlib.spines as mspines class PolarTransform(Transform): """ The base polar transform. This handles projection *theta* and *r* into Cartesian coordinate space *x* and *y*, but does not perform the ultimate affine transformation into the correct position. """ input_dims = 2 output_dims = 2 is_separable = False def __init__(self, axis=None, use_rmin=True): Transform.__init__(self) self._axis = axis self._use_rmin = use_rmin def transform_non_affine(self, tr): xy = np.empty(tr.shape, np.float_) if self._axis is not None: if self._use_rmin: rmin = self._axis.viewLim.ymin else: rmin = 0 theta_offset = self._axis.get_theta_offset() theta_direction = self._axis.get_theta_direction() else: rmin = 0 theta_offset = 0 theta_direction = 1 t = tr[:, 0:1] r = tr[:, 1:2] x = xy[:, 0:1] y = xy[:, 1:2] t *= theta_direction t += theta_offset r = r - rmin mask = r < 0 x[:] = np.where(mask, np.nan, r * np.cos(t)) y[:] = np.where(mask, np.nan, r * np.sin(t)) return xy transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ def transform_path_non_affine(self, path): vertices = path.vertices if len(vertices) == 2 and vertices[0, 0] == vertices[1, 0]: return Path(self.transform(vertices), path.codes) ipath = path.interpolated(path._interpolation_steps) return Path(self.transform(ipath.vertices), ipath.codes) transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__ def inverted(self): return PolarAxes.InvertedPolarTransform(self._axis, self._use_rmin) inverted.__doc__ = Transform.inverted.__doc__ class PolarAffine(Affine2DBase): """ The affine part of the polar projection. Scales the output so that maximum radius rests on the edge of the axes circle. """ def __init__(self, scale_transform, limits): """ *limits* is the view limit of the data. The only part of its bounds that is used is ymax (for the radius maximum). The theta range is always fixed to (0, 2pi). """ Affine2DBase.__init__(self) self._scale_transform = scale_transform self._limits = limits self.set_children(scale_transform, limits) self._mtx = None def get_matrix(self): if self._invalid: limits_scaled = self._limits.transformed(self._scale_transform) yscale = limits_scaled.ymax - limits_scaled.ymin affine = Affine2D() \ .scale(0.5 / yscale) \ .translate(0.5, 0.5) self._mtx = affine.get_matrix() self._inverted = None self._invalid = 0 return self._mtx get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__ def __getstate__(self): return {} class InvertedPolarTransform(Transform): """ The inverse of the polar transform, mapping Cartesian coordinate space *x* and *y* back to *theta* and *r*. """ input_dims = 2 output_dims = 2 is_separable = False def __init__(self, axis=None, use_rmin=True): Transform.__init__(self) self._axis = axis self._use_rmin = use_rmin def transform_non_affine(self, xy): if self._axis is not None: if self._use_rmin: rmin = self._axis.viewLim.ymin else: rmin = 0 theta_offset = self._axis.get_theta_offset() theta_direction = self._axis.get_theta_direction() else: rmin = 0 theta_offset = 0 theta_direction = 1 x = xy[:, 0:1] y = xy[:, 1:] r = np.sqrt(x*x + y*y) theta = np.arccos(x / r) theta = np.where(y < 0, 2 * np.pi - theta, theta) theta -= theta_offset theta *= theta_direction theta %= 2 * np.pi r += rmin return np.concatenate((theta, r), 1) transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ def inverted(self): return PolarAxes.PolarTransform(self._axis, self._use_rmin) inverted.__doc__ = Transform.inverted.__doc__ class ThetaFormatter(Formatter): """ Used to format the *theta* tick labels. Converts the native unit of radians into degrees and adds a degree symbol. """ def __call__(self, x, pos=None): # \u00b0 : degree symbol if rcParams['text.usetex'] and not rcParams['text.latex.unicode']: return r"$%0.0f^\circ$" % ((x / np.pi) * 180.0) else: # we use unicode, rather than mathtext with \circ, so # that it will work correctly with any arbitrary font # (assuming it has a degree sign), whereas $5\circ$ # will only work correctly with one of the supported # math fonts (Computer Modern and STIX) return "%0.0f\u00b0" % ((x / np.pi) * 180.0) class RadialLocator(Locator): """ Used to locate radius ticks. Ensures that all ticks are strictly positive. For all other tasks, it delegates to the base :class:`~matplotlib.ticker.Locator` (which may be different depending on the scale of the *r*-axis. """ def __init__(self, base): self.base = base def __call__(self): ticks = self.base() return [x for x in ticks if x > 0] def autoscale(self): return self.base.autoscale() def pan(self, numsteps): return self.base.pan(numsteps) def zoom(self, direction): return self.base.zoom(direction) def refresh(self): return self.base.refresh() def view_limits(self, vmin, vmax): vmin, vmax = self.base.view_limits(vmin, vmax) return 0, vmax class PolarAxes(Axes): """ A polar graph projection, where the input dimensions are *theta*, *r*. Theta starts pointing east and goes anti-clockwise. """ name = 'polar' def __init__(self, *args, **kwargs): """ Create a new Polar Axes for a polar plot. The following optional kwargs are supported: - *resolution*: The number of points of interpolation between each pair of data points. Set to 1 to disable interpolation. """ self.resolution = kwargs.pop('resolution', 1) self._default_theta_offset = kwargs.pop('theta_offset', 0) self._default_theta_direction = kwargs.pop('theta_direction', 1) self._default_rlabel_position = kwargs.pop('rlabel_position', 22.5) if self.resolution not in (None, 1): warnings.warn( """The resolution kwarg to Polar plots is now ignored. If you need to interpolate data points, consider running cbook.simple_linear_interpolation on the data before passing to matplotlib.""") Axes.__init__(self, *args, **kwargs) self.set_aspect('equal', adjustable='box', anchor='C') self.cla() __init__.__doc__ = Axes.__init__.__doc__ def cla(self): Axes.cla(self) self.title.set_y(1.05) self.xaxis.set_major_formatter(self.ThetaFormatter()) self.xaxis.isDefault_majfmt = True angles = np.arange(0.0, 360.0, 45.0) self.set_thetagrids(angles) self.yaxis.set_major_locator(self.RadialLocator(self.yaxis.get_major_locator())) self.grid(rcParams['polaraxes.grid']) self.xaxis.set_ticks_position('none') self.yaxis.set_ticks_position('none') self.yaxis.set_tick_params(label1On=True) # Why do we need to turn on yaxis tick labels, but # xaxis tick labels are already on? self.set_theta_offset(self._default_theta_offset) self.set_theta_direction(self._default_theta_direction) def _init_axis(self): "move this out of __init__ because non-separable axes don't use it" self.xaxis = maxis.XAxis(self) self.yaxis = maxis.YAxis(self) # Calling polar_axes.xaxis.cla() or polar_axes.xaxis.cla() # results in weird artifacts. Therefore we disable this for # now. # self.spines['polar'].register_axis(self.yaxis) self._update_transScale() def _set_lim_and_transforms(self): self.transAxes = BboxTransformTo(self.bbox) # Transforms the x and y axis separately by a scale factor # It is assumed that this part will have non-linear components self.transScale = TransformWrapper(IdentityTransform()) # A (possibly non-linear) projection on the (already scaled) # data. This one is aware of rmin self.transProjection = self.PolarTransform(self) # This one is not aware of rmin self.transPureProjection = self.PolarTransform(self, use_rmin=False) # An affine transformation on the data, generally to limit the # range of the axes self.transProjectionAffine = self.PolarAffine(self.transScale, self.viewLim) # The complete data transformation stack -- from data all the # way to display coordinates self.transData = self.transScale + self.transProjection + \ (self.transProjectionAffine + self.transAxes) # This is the transform for theta-axis ticks. It is # equivalent to transData, except it always puts r == 1.0 at # the edge of the axis circle. self._xaxis_transform = ( self.transPureProjection + self.PolarAffine(IdentityTransform(), Bbox.unit()) + self.transAxes) # The theta labels are moved from radius == 0.0 to radius == 1.1 self._theta_label1_position = Affine2D().translate(0.0, 1.1) self._xaxis_text1_transform = ( self._theta_label1_position + self._xaxis_transform) self._theta_label2_position = Affine2D().translate(0.0, 1.0 / 1.1) self._xaxis_text2_transform = ( self._theta_label2_position + self._xaxis_transform) # This is the transform for r-axis ticks. It scales the theta # axis so the gridlines from 0.0 to 1.0, now go from 0.0 to # 2pi. self._yaxis_transform = ( Affine2D().scale(np.pi * 2.0, 1.0) + self.transData) # The r-axis labels are put at an angle and padded in the r-direction self._r_label_position = ScaledTranslation( self._default_rlabel_position, 0.0, Affine2D()) self._yaxis_text_transform = ( self._r_label_position + Affine2D().scale(1.0 / 360.0, 1.0) + self._yaxis_transform ) def get_xaxis_transform(self,which='grid'): assert which in ['tick1','tick2','grid'] return self._xaxis_transform def get_xaxis_text1_transform(self, pad): return self._xaxis_text1_transform, 'center', 'center' def get_xaxis_text2_transform(self, pad): return self._xaxis_text2_transform, 'center', 'center' def get_yaxis_transform(self,which='grid'): assert which in ['tick1','tick2','grid'] return self._yaxis_transform def get_yaxis_text1_transform(self, pad): angle = self.get_rlabel_position() if angle < 90.: return self._yaxis_text_transform, 'bottom', 'left' elif angle < 180.: return self._yaxis_text_transform, 'bottom', 'right' elif angle < 270.: return self._yaxis_text_transform, 'top', 'right' else: return self._yaxis_text_transform, 'top', 'left' def get_yaxis_text2_transform(self, pad): angle = self.get_rlabel_position() if angle < 90.: return self._yaxis_text_transform, 'top', 'right' elif angle < 180.: return self._yaxis_text_transform, 'top', 'left' elif angle < 270.: return self._yaxis_text_transform, 'bottom', 'left' else: return self._yaxis_text_transform, 'bottom', 'right' def _gen_axes_patch(self): return Circle((0.5, 0.5), 0.5) def _gen_axes_spines(self): return {'polar':mspines.Spine.circular_spine(self, (0.5, 0.5), 0.5)} def set_rmax(self, rmax): self.viewLim.y1 = rmax def get_rmax(self): return self.viewLim.ymax def set_rmin(self, rmin): self.viewLim.y0 = rmin def get_rmin(self): return self.viewLim.ymin def set_theta_offset(self, offset): """ Set the offset for the location of 0 in radians. """ self._theta_offset = offset def get_theta_offset(self): """ Get the offset for the location of 0 in radians. """ return self._theta_offset def set_theta_zero_location(self, loc): """ Sets the location of theta's zero. (Calls set_theta_offset with the correct value in radians under the hood.) May be one of "N", "NW", "W", "SW", "S", "SE", "E", or "NE". """ mapping = { 'N': np.pi * 0.5, 'NW': np.pi * 0.75, 'W': np.pi, 'SW': np.pi * 1.25, 'S': np.pi * 1.5, 'SE': np.pi * 1.75, 'E': 0, 'NE': np.pi * 0.25 } return self.set_theta_offset(mapping[loc]) def set_theta_direction(self, direction): """ Set the direction in which theta increases. clockwise, -1: Theta increases in the clockwise direction counterclockwise, anticlockwise, 1: Theta increases in the counterclockwise direction """ if direction in ('clockwise',): self._direction = -1 elif direction in ('counterclockwise', 'anticlockwise'): self._direction = 1 elif direction in (1, -1): self._direction = direction else: raise ValueError("direction must be 1, -1, clockwise or counterclockwise") def get_theta_direction(self): """ Get the direction in which theta increases. -1: Theta increases in the clockwise direction 1: Theta increases in the counterclockwise direction """ return self._direction def set_rlim(self, *args, **kwargs): if 'rmin' in kwargs: kwargs['ymin'] = kwargs.pop('rmin') if 'rmax' in kwargs: kwargs['ymax'] = kwargs.pop('rmax') return self.set_ylim(*args, **kwargs) def get_rlabel_position(self): """ Returns ------- float The theta position of the radius labels in degrees. """ return self._r_label_position.to_values()[4] def set_rlabel_position(self, value): """Updates the theta position of the radius labels. Parameters ---------- value : number The angular position of the radius labels in degrees. """ self._r_label_position._t = (value, 0.0) self._r_label_position.invalidate() def set_yscale(self, *args, **kwargs): Axes.set_yscale(self, *args, **kwargs) self.yaxis.set_major_locator( self.RadialLocator(self.yaxis.get_major_locator())) def set_rscale(self, *args, **kwargs): return Axes.set_yscale(self, *args, **kwargs) def set_rticks(self, *args, **kwargs): return Axes.set_yticks(self, *args, **kwargs) @docstring.dedent_interpd def set_thetagrids(self, angles, labels=None, frac=None, fmt=None, **kwargs): """ Set the angles at which to place the theta grids (these gridlines are equal along the theta dimension). *angles* is in degrees. *labels*, if not None, is a ``len(angles)`` list of strings of the labels to use at each angle. If *labels* is None, the labels will be ``fmt %% angle`` *frac* is the fraction of the polar axes radius at which to place the label (1 is the edge). e.g., 1.05 is outside the axes and 0.95 is inside the axes. Return value is a list of tuples (*line*, *label*), where *line* is :class:`~matplotlib.lines.Line2D` instances and the *label* is :class:`~matplotlib.text.Text` instances. kwargs are optional text properties for the labels: %(Text)s ACCEPTS: sequence of floats """ # Make sure we take into account unitized data angles = self.convert_yunits(angles) angles = np.asarray(angles, np.float_) self.set_xticks(angles * (np.pi / 180.0)) if labels is not None: self.set_xticklabels(labels) elif fmt is not None: self.xaxis.set_major_formatter(FormatStrFormatter(fmt)) if frac is not None: self._theta_label1_position.clear().translate(0.0, frac) self._theta_label2_position.clear().translate(0.0, 1.0 / frac) for t in self.xaxis.get_ticklabels(): t.update(kwargs) return self.xaxis.get_ticklines(), self.xaxis.get_ticklabels() @docstring.dedent_interpd def set_rgrids(self, radii, labels=None, angle=None, fmt=None, **kwargs): """ Set the radial locations and labels of the *r* grids. The labels will appear at radial distances *radii* at the given *angle* in degrees. *labels*, if not None, is a ``len(radii)`` list of strings of the labels to use at each radius. If *labels* is None, the built-in formatter will be used. Return value is a list of tuples (*line*, *label*), where *line* is :class:`~matplotlib.lines.Line2D` instances and the *label* is :class:`~matplotlib.text.Text` instances. kwargs are optional text properties for the labels: %(Text)s ACCEPTS: sequence of floats """ # Make sure we take into account unitized data radii = self.convert_xunits(radii) radii = np.asarray(radii) rmin = radii.min() if rmin <= 0: raise ValueError('radial grids must be strictly positive') self.set_yticks(radii) if labels is not None: self.set_yticklabels(labels) elif fmt is not None: self.yaxis.set_major_formatter(FormatStrFormatter(fmt)) if angle is None: angle = self.get_rlabel_position() self.set_rlabel_position(angle) for t in self.yaxis.get_ticklabels(): t.update(kwargs) return self.yaxis.get_gridlines(), self.yaxis.get_ticklabels() def set_xscale(self, scale, *args, **kwargs): if scale != 'linear': raise NotImplementedError("You can not set the xscale on a polar plot.") def set_xlim(self, *args, **kargs): # The xlim is fixed, no matter what you do self.viewLim.intervalx = (0.0, np.pi * 2.0) def format_coord(self, theta, r): """ Return a format string formatting the coordinate using Unicode characters. """ theta /= math.pi # \u03b8: lower-case theta # \u03c0: lower-case pi # \u00b0: degree symbol return '\u03b8=%0.3f\u03c0 (%0.3f\u00b0), r=%0.3f' % (theta, theta * 180.0, r) def get_data_ratio(self): ''' Return the aspect ratio of the data itself. For a polar plot, this should always be 1.0 ''' return 1.0 ### Interactive panning def can_zoom(self): """ Return *True* if this axes supports the zoom box button functionality. Polar axes do not support zoom boxes. """ return False def can_pan(self) : """ Return *True* if this axes supports the pan/zoom button functionality. For polar axes, this is slightly misleading. Both panning and zooming are performed by the same button. Panning is performed in azimuth while zooming is done along the radial. """ return True def start_pan(self, x, y, button): angle = np.deg2rad(self.get_rlabel_position()) mode = '' if button == 1: epsilon = np.pi / 45.0 t, r = self.transData.inverted().transform_point((x, y)) if t >= angle - epsilon and t <= angle + epsilon: mode = 'drag_r_labels' elif button == 3: mode = 'zoom' self._pan_start = cbook.Bunch( rmax = self.get_rmax(), trans = self.transData.frozen(), trans_inverse = self.transData.inverted().frozen(), r_label_angle = self.get_rlabel_position(), x = x, y = y, mode = mode ) def end_pan(self): del self._pan_start def drag_pan(self, button, key, x, y): p = self._pan_start if p.mode == 'drag_r_labels': startt, startr = p.trans_inverse.transform_point((p.x, p.y)) t, r = p.trans_inverse.transform_point((x, y)) # Deal with theta dt0 = t - startt dt1 = startt - t if abs(dt1) < abs(dt0): dt = abs(dt1) * sign(dt0) * -1.0 else: dt = dt0 * -1.0 dt = (dt / np.pi) * 180.0 self.set_rlabel_position(p.r_label_angle - dt) trans, vert1, horiz1 = self.get_yaxis_text1_transform(0.0) trans, vert2, horiz2 = self.get_yaxis_text2_transform(0.0) for t in self.yaxis.majorTicks + self.yaxis.minorTicks: t.label1.set_va(vert1) t.label1.set_ha(horiz1) t.label2.set_va(vert2) t.label2.set_ha(horiz2) elif p.mode == 'zoom': startt, startr = p.trans_inverse.transform_point((p.x, p.y)) t, r = p.trans_inverse.transform_point((x, y)) dr = r - startr # Deal with r scale = r / startr self.set_rmax(p.rmax / scale) # to keep things all self contained, we can put aliases to the Polar classes # defined above. This isn't strictly necessary, but it makes some of the # code more readable (and provides a backwards compatible Polar API) PolarAxes.PolarTransform = PolarTransform PolarAxes.PolarAffine = PolarAffine PolarAxes.InvertedPolarTransform = InvertedPolarTransform PolarAxes.ThetaFormatter = ThetaFormatter PolarAxes.RadialLocator = RadialLocator # These are a couple of aborted attempts to project a polar plot using # cubic bezier curves. # def transform_path(self, path): # twopi = 2.0 * np.pi # halfpi = 0.5 * np.pi # vertices = path.vertices # t0 = vertices[0:-1, 0] # t1 = vertices[1: , 0] # td = np.where(t1 > t0, t1 - t0, twopi - (t0 - t1)) # maxtd = td.max() # interpolate = np.ceil(maxtd / halfpi) # if interpolate > 1.0: # vertices = self.interpolate(vertices, interpolate) # vertices = self.transform(vertices) # result = np.zeros((len(vertices) * 3 - 2, 2), np.float_) # codes = mpath.Path.CURVE4 * np.ones((len(vertices) * 3 - 2, ), mpath.Path.code_type) # result[0] = vertices[0] # codes[0] = mpath.Path.MOVETO # kappa = 4.0 * ((np.sqrt(2.0) - 1.0) / 3.0) # kappa = 0.5 # p0 = vertices[0:-1] # p1 = vertices[1: ] # x0 = p0[:, 0:1] # y0 = p0[:, 1: ] # b0 = ((y0 - x0) - y0) / ((x0 + y0) - x0) # a0 = y0 - b0*x0 # x1 = p1[:, 0:1] # y1 = p1[:, 1: ] # b1 = ((y1 - x1) - y1) / ((x1 + y1) - x1) # a1 = y1 - b1*x1 # x = -(a0-a1) / (b0-b1) # y = a0 + b0*x # xk = (x - x0) * kappa + x0 # yk = (y - y0) * kappa + y0 # result[1::3, 0:1] = xk # result[1::3, 1: ] = yk # xk = (x - x1) * kappa + x1 # yk = (y - y1) * kappa + y1 # result[2::3, 0:1] = xk # result[2::3, 1: ] = yk # result[3::3] = p1 # print vertices[-2:] # print result[-2:] # return mpath.Path(result, codes) # twopi = 2.0 * np.pi # halfpi = 0.5 * np.pi # vertices = path.vertices # t0 = vertices[0:-1, 0] # t1 = vertices[1: , 0] # td = np.where(t1 > t0, t1 - t0, twopi - (t0 - t1)) # maxtd = td.max() # interpolate = np.ceil(maxtd / halfpi) # print "interpolate", interpolate # if interpolate > 1.0: # vertices = self.interpolate(vertices, interpolate) # result = np.zeros((len(vertices) * 3 - 2, 2), np.float_) # codes = mpath.Path.CURVE4 * np.ones((len(vertices) * 3 - 2, ), mpath.Path.code_type) # result[0] = vertices[0] # codes[0] = mpath.Path.MOVETO # kappa = 4.0 * ((np.sqrt(2.0) - 1.0) / 3.0) # tkappa = np.arctan(kappa) # hyp_kappa = np.sqrt(kappa*kappa + 1.0) # t0 = vertices[0:-1, 0] # t1 = vertices[1: , 0] # r0 = vertices[0:-1, 1] # r1 = vertices[1: , 1] # td = np.where(t1 > t0, t1 - t0, twopi - (t0 - t1)) # td_scaled = td / (np.pi * 0.5) # rd = r1 - r0 # r0kappa = r0 * kappa * td_scaled # r1kappa = r1 * kappa * td_scaled # ravg_kappa = ((r1 + r0) / 2.0) * kappa * td_scaled # result[1::3, 0] = t0 + (tkappa * td_scaled) # result[1::3, 1] = r0*hyp_kappa # # result[1::3, 1] = r0 / np.cos(tkappa * td_scaled) # np.sqrt(r0*r0 + ravg_kappa*ravg_kappa) # result[2::3, 0] = t1 - (tkappa * td_scaled) # result[2::3, 1] = r1*hyp_kappa # # result[2::3, 1] = r1 / np.cos(tkappa * td_scaled) # np.sqrt(r1*r1 + ravg_kappa*ravg_kappa) # result[3::3, 0] = t1 # result[3::3, 1] = r1 # print vertices[:6], result[:6], t0[:6], t1[:6], td[:6], td_scaled[:6], tkappa # result = self.transform(result) # return mpath.Path(result, codes) # transform_path_non_affine = transform_path
mit
marcocaccin/scikit-learn
examples/text/document_clustering.py
230
8356
""" ======================================= Clustering text documents using k-means ======================================= This is an example showing how the scikit-learn can be used to cluster documents by topics using a bag-of-words approach. This example uses a scipy.sparse matrix to store the features instead of standard numpy arrays. Two feature extraction methods can be used in this example: - TfidfVectorizer uses a in-memory vocabulary (a python dict) to map the most frequent words to features indices and hence compute a word occurrence frequency (sparse) matrix. The word frequencies are then reweighted using the Inverse Document Frequency (IDF) vector collected feature-wise over the corpus. - HashingVectorizer hashes word occurrences to a fixed dimensional space, possibly with collisions. The word count vectors are then normalized to each have l2-norm equal to one (projected to the euclidean unit-ball) which seems to be important for k-means to work in high dimensional space. HashingVectorizer does not provide IDF weighting as this is a stateless model (the fit method does nothing). When IDF weighting is needed it can be added by pipelining its output to a TfidfTransformer instance. Two algorithms are demoed: ordinary k-means and its more scalable cousin minibatch k-means. Additionally, latent sematic analysis can also be used to reduce dimensionality and discover latent patterns in the data. It can be noted that k-means (and minibatch k-means) are very sensitive to feature scaling and that in this case the IDF weighting helps improve the quality of the clustering by quite a lot as measured against the "ground truth" provided by the class label assignments of the 20 newsgroups dataset. This improvement is not visible in the Silhouette Coefficient which is small for both as this measure seem to suffer from the phenomenon called "Concentration of Measure" or "Curse of Dimensionality" for high dimensional datasets such as text data. Other measures such as V-measure and Adjusted Rand Index are information theoretic based evaluation scores: as they are only based on cluster assignments rather than distances, hence not affected by the curse of dimensionality. Note: as k-means is optimizing a non-convex objective function, it will likely end up in a local optimum. Several runs with independent random init might be necessary to get a good convergence. """ # Author: Peter Prettenhofer <[email protected]> # Lars Buitinck <[email protected]> # License: BSD 3 clause from __future__ import print_function from sklearn.datasets import fetch_20newsgroups from sklearn.decomposition import TruncatedSVD from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import HashingVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.pipeline import make_pipeline from sklearn.preprocessing import Normalizer from sklearn import metrics from sklearn.cluster import KMeans, MiniBatchKMeans import logging from optparse import OptionParser import sys from time import time import numpy as np # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') # parse commandline arguments op = OptionParser() op.add_option("--lsa", dest="n_components", type="int", help="Preprocess documents with latent semantic analysis.") op.add_option("--no-minibatch", action="store_false", dest="minibatch", default=True, help="Use ordinary k-means algorithm (in batch mode).") op.add_option("--no-idf", action="store_false", dest="use_idf", default=True, help="Disable Inverse Document Frequency feature weighting.") op.add_option("--use-hashing", action="store_true", default=False, help="Use a hashing feature vectorizer") op.add_option("--n-features", type=int, default=10000, help="Maximum number of features (dimensions)" " to extract from text.") op.add_option("--verbose", action="store_true", dest="verbose", default=False, help="Print progress reports inside k-means algorithm.") print(__doc__) op.print_help() (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) ############################################################################### # Load some categories from the training set categories = [ 'alt.atheism', 'talk.religion.misc', 'comp.graphics', 'sci.space', ] # Uncomment the following to do the analysis on all the categories #categories = None print("Loading 20 newsgroups dataset for categories:") print(categories) dataset = fetch_20newsgroups(subset='all', categories=categories, shuffle=True, random_state=42) print("%d documents" % len(dataset.data)) print("%d categories" % len(dataset.target_names)) print() labels = dataset.target true_k = np.unique(labels).shape[0] print("Extracting features from the training dataset using a sparse vectorizer") t0 = time() if opts.use_hashing: if opts.use_idf: # Perform an IDF normalization on the output of HashingVectorizer hasher = HashingVectorizer(n_features=opts.n_features, stop_words='english', non_negative=True, norm=None, binary=False) vectorizer = make_pipeline(hasher, TfidfTransformer()) else: vectorizer = HashingVectorizer(n_features=opts.n_features, stop_words='english', non_negative=False, norm='l2', binary=False) else: vectorizer = TfidfVectorizer(max_df=0.5, max_features=opts.n_features, min_df=2, stop_words='english', use_idf=opts.use_idf) X = vectorizer.fit_transform(dataset.data) print("done in %fs" % (time() - t0)) print("n_samples: %d, n_features: %d" % X.shape) print() if opts.n_components: print("Performing dimensionality reduction using LSA") t0 = time() # Vectorizer results are normalized, which makes KMeans behave as # spherical k-means for better results. Since LSA/SVD results are # not normalized, we have to redo the normalization. svd = TruncatedSVD(opts.n_components) normalizer = Normalizer(copy=False) lsa = make_pipeline(svd, normalizer) X = lsa.fit_transform(X) print("done in %fs" % (time() - t0)) explained_variance = svd.explained_variance_ratio_.sum() print("Explained variance of the SVD step: {}%".format( int(explained_variance * 100))) print() ############################################################################### # Do the actual clustering if opts.minibatch: km = MiniBatchKMeans(n_clusters=true_k, init='k-means++', n_init=1, init_size=1000, batch_size=1000, verbose=opts.verbose) else: km = KMeans(n_clusters=true_k, init='k-means++', max_iter=100, n_init=1, verbose=opts.verbose) print("Clustering sparse data with %s" % km) t0 = time() km.fit(X) print("done in %0.3fs" % (time() - t0)) print() print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels, km.labels_)) print("Completeness: %0.3f" % metrics.completeness_score(labels, km.labels_)) print("V-measure: %0.3f" % metrics.v_measure_score(labels, km.labels_)) print("Adjusted Rand-Index: %.3f" % metrics.adjusted_rand_score(labels, km.labels_)) print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, km.labels_, sample_size=1000)) print() if not opts.use_hashing: print("Top terms per cluster:") if opts.n_components: original_space_centroids = svd.inverse_transform(km.cluster_centers_) order_centroids = original_space_centroids.argsort()[:, ::-1] else: order_centroids = km.cluster_centers_.argsort()[:, ::-1] terms = vectorizer.get_feature_names() for i in range(true_k): print("Cluster %d:" % i, end='') for ind in order_centroids[i, :10]: print(' %s' % terms[ind], end='') print()
bsd-3-clause
nealbob/nealbob.github.io
code/multicore_storage_sim.py
2
2177
import numpy as np from matplotlib import pyplot as plt import time from multiprocessing import Process from multiprocessing.queues import Queue def retry_on_eintr(function, *args, **kw): while True: try: return function(*args, **kw) except IOError, e: if e.errno == errno.EINTR: continue else: raise class RetryQueue(Queue): """Queue which will retry if interrupted with EINTR.""" def get(self, block=True, timeout=None): return retry_on_eintr(Queue.get, self, block, timeout) def simulate(K, mu, sig, Sbar, T, multi=False, que=0, jobno=0): np.random.seed(jobno) S = np.zeros(T+1) W = np.zeros(T+1) I = np.zeros(T+1) S[0] = K for t in range(T): W[t] = min(S[t], Sbar) I[t+1] = max(np.random.normal(mu, sig), 0) S[t+1] = min(S[t] - W[t] + I[t+1], K) if multi: que.put(S) else: return S def multi_sim(CORES=2, T=100): results = [] ques = [Queue() for i in range(CORES)] args = [(100, 70, 70, 70, int(T/CORES), True, ques[i], i) for i in range(CORES)] jobs = [Process(target=simulate, args=(a)) for a in args] for j in jobs: j.start() for q in ques: results.append(q.get()) for j in jobs: j.join() S = np.hstack(results) return S """ ### Sample size T = 1000000 # Single core run ================================== tic = time.time() S = simulate(100, 70, 70, 70, T) toc = time.time() print 'Single core run time: ' + str(round(toc - tic,3)) plt.plot(S[0:100]) plt.show() # Multi core run ================================== tic = time.time() CORES = 2 results = [] ques = [Queue() for i in range(CORES)] args = [(100, 70, 70, 70, int(T/CORES), True, ques[i], i) for i in range(CORES)] jobs = [Process(target=simulate, args=(a)) for a in args] for j in jobs: j.start() for q in ques: results.append(q.get()) for j in jobs: j.join() S = np.hstack(results) toc = time.time() print 'Multi-core run time: ' + str(toc - tic) plt.plot(S[0:100]) plt.show() print S.shape plt.scatter(results[0], results[1]) plt.show() """
mit
nvoron23/statsmodels
statsmodels/tsa/statespace/tests/test_tools.py
19
4268
""" Tests for tools Author: Chad Fulton License: Simplified-BSD """ from __future__ import division, absolute_import, print_function import numpy as np import pandas as pd from statsmodels.tsa.statespace import tools # from .results import results_sarimax from numpy.testing import ( assert_equal, assert_array_equal, assert_almost_equal, assert_raises ) class TestCompanionMatrix(object): cases = [ (2, np.array([[0,1],[0,0]])), ([1,-1,-2], np.array([[1,1],[2,0]])), ([1,-1,-2,-3], np.array([[1,1,0],[2,0,1],[3,0,0]])) ] def test_cases(self): for polynomial, result in self.cases: assert_equal(tools.companion_matrix(polynomial), result) class TestDiff(object): x = np.arange(10) cases = [ # diff = 1 ([1,2,3], 1, None, 1, [1, 1]), # diff = 2 (x, 2, None, 1, [0]*8), # diff = 1, seasonal_diff=1, k_seasons=4 (x, 1, 1, 4, [0]*5), (x**2, 1, 1, 4, [8]*5), (x**3, 1, 1, 4, [60, 84, 108, 132, 156]), # diff = 1, seasonal_diff=2, k_seasons=2 (x, 1, 2, 2, [0]*5), (x**2, 1, 2, 2, [0]*5), (x**3, 1, 2, 2, [24]*5), (x**4, 1, 2, 2, [240, 336, 432, 528, 624]), ] def test_cases(self): # Basic cases for series, diff, seasonal_diff, k_seasons, result in self.cases: # Test numpy array x = tools.diff(series, diff, seasonal_diff, k_seasons) assert_almost_equal(x, result) # Test as Pandas Series series = pd.Series(series) # Rewrite to test as n-dimensional array series = np.c_[series, series] result = np.c_[result, result] # Test Numpy array x = tools.diff(series, diff, seasonal_diff, k_seasons) assert_almost_equal(x, result) # Test as Pandas Dataframe series = pd.DataFrame(series) x = tools.diff(series, diff, seasonal_diff, k_seasons) assert_almost_equal(x, result) class TestIsInvertible(object): cases = [ ([1, -0.5], True), ([1, 1-1e-9], True), ([1, 1], False), ([1, 0.9,0.1], True), (np.array([1,0.9,0.1]), True), (pd.Series([1,0.9,0.1]), True) ] def test_cases(self): for polynomial, invertible in self.cases: assert_equal(tools.is_invertible(polynomial), invertible) class TestConstrainStationaryUnivariate(object): cases = [ (np.array([2.]), -2./((1+2.**2)**0.5)) ] def test_cases(self): for unconstrained, constrained in self.cases: result = tools.constrain_stationary_univariate(unconstrained) assert_equal(result, constrained) class TestValidateMatrixShape(object): # name, shape, nrows, ncols, nobs valid = [ ('TEST', (5,2), 5, 2, None), ('TEST', (5,2), 5, 2, 10), ('TEST', (5,2,10), 5, 2, 10), ] invalid = [ ('TEST', (5,), 5, None, None), ('TEST', (5,1,1,1), 5, 1, None), ('TEST', (5,2), 10, 2, None), ('TEST', (5,2), 5, 1, None), ('TEST', (5,2,10), 5, 2, None), ('TEST', (5,2,10), 5, 2, 5), ] def test_valid_cases(self): for args in self.valid: # Just testing that no exception is raised tools.validate_matrix_shape(*args) def test_invalid_cases(self): for args in self.invalid: assert_raises( ValueError, tools.validate_matrix_shape, *args ) class TestValidateVectorShape(object): # name, shape, nrows, ncols, nobs valid = [ ('TEST', (5,), 5, None), ('TEST', (5,), 5, 10), ('TEST', (5,10), 5, 10), ] invalid = [ ('TEST', (5,2,10), 5, 10), ('TEST', (5,), 10, None), ('TEST', (5,10), 5, None), ('TEST', (5,10), 5, 5), ] def test_valid_cases(self): for args in self.valid: # Just testing that no exception is raised tools.validate_vector_shape(*args) def test_invalid_cases(self): for args in self.invalid: assert_raises( ValueError, tools.validate_vector_shape, *args )
bsd-3-clause
ruggiero/clustep
analysis/profiles.py
2
4544
# -*- coding: utf-8 -*- from sys import path as syspath from os import path from bisect import bisect_left from argparse import ArgumentParser as parser import numpy as np from numpy import pi, cos, sin, arctan from scipy import integrate import matplotlib matplotlib.use('Agg') # To be able to plot under an SSH session. import matplotlib.pyplot as plt from matplotlib.ticker import FuncFormatter from pygadgetreader import * import centers # These variables must be updated manually. a_halo = 200 M_halo = 100000 a_gas = 200 M_gas = 1e5*0.15/0.85 time = 0.0 def main(): input_ = init() print "reading..." npart = readheader(input_, 'npartTotal') if(npart[0] > 0): data_gas = process_data(input_, 'gas') part_gas, aux_gas = log_partition(data_gas, 1.3) density_plot(input_, data_gas, part_gas, aux_gas, 'gas') if(npart[1] > 0): data_dm = process_data(input_, 'dm') part_dm, aux_dm = log_partition(data_dm, 1.3) density_plot(input_, data_dm, part_dm, aux_dm, 'dm') def init(): global dm_core, gas_core flags = parser(description="Plots stuff.") flags.add_argument('--dm-core', help='Sets the density profile for the\ dark matter to have a core.', action='store_true') flags.add_argument('--gas-core', help='The same, but for the bulge.', action='store_true') flags.add_argument('i', help='The name of the input file.', metavar="file.dat") args = flags.parse_args() dm_core = args.dm_core gas_core = args.gas_core input_ = args.i return input_ def process_data(input_, component): coords = readsnap(input_, 'pos', component) data = np.array([np.linalg.norm(i) for i in coords]) data = sorted(data) return data def density(r, M, a, core=False): if(core): return (3*M*a) / (4*np.pi*(r+a)**4) else: if(r == 0): return 0 else: return (M*a) / (2*np.pi*r*(r+a)**3) # Given a data vector, in which each element represents a different # particle by a list of the form [radius, radial_velocity^2], ordered # according to the radii; and a multiplication factor, returns the right # indexes of a log partition of the vector. Also returns an auxiliary # vector, which will be useful in the functions that calculate the # distribution functions. def log_partition(data, factor): limits = [] auxiliary = [] left_limit = 0 right_limit = 0.01 left_index = 0 while(right_limit < 200 * a_halo): # Before right_index, everybody is smaller than right_limit. right_index = left_index + bisect_left(data[left_index:], right_limit) limits.append(right_index) auxiliary.append([right_index - left_index, (right_limit + left_limit) / 2]) left_limit = right_limit left_index = right_index right_limit *= factor return limits, auxiliary # Returns a list containing elements of the form [radius, density]. def density_distribution(data, partition, aux, M): N = len(data) distribution = [] left = 0 cte = (10**10*3*M) / (4*np.pi*N) for j in np.arange(len(partition)): right = partition[j] if(right >= len(data)): break count = aux[j][0] middle_radius = aux[j][1] if(count > 0): density = (cte * count) / (data[right]**3 - data[left]**3) distribution.append([middle_radius, density]) else: distribution.append([middle_radius, 0]) left = right return distribution def density_plot(input_, data, part, aux, name): if(name == 'gas'): M = M_gas a = a_gas core = gas_core else: M = M_dm a = a_dm core = dm_core dist = density_distribution(data, part, aux, M) x_axis = np.logspace(np.log10(dist[0][0]), np.log10(dist[-1][0]), num=500) p1, = plt.plot([i[0] for i in dist], [i[1] for i in dist], '-', color='blue') p2, = plt.plot(x_axis, [10**10 * density(i, M, a, core) for i in x_axis], color='black') plt.legend([p1, p2], [u"Data", "Model"], loc=1) plt.xlabel("Radius (kpc)") plt.ylabel("Density ( M$_{\odot}$/kpc$^3$)") plt.xscale('log') plt.yscale('log') plt.xlim([1, 3e3]) plt.ylim([1, 10**9]) plt.title(name + ", t = %1.2f Gyr" % time) plt.savefig(input_ + "-" + name + "-density.png", bbox_inches='tight') print "Done with " + name + " density for " + input_ plt.close() if __name__ == '__main__': main()
gpl-2.0
hoechenberger/psychopy
psychopy/demos/builder/practical IAT/scoreIAT.py
1
7371
#!/usr/bin/env python # -*- coding: utf-8 -*- """Scoring script for MSU-PsychoPy version of IAT task. Authors: Jeremy R. Gray & Nate Pasmanter, 2013 """ from __future__ import division from __future__ import print_function from builtins import range import pandas as pd import glob, os, sys def scoreIAT(csvfile, write_file=False): """Input = csv file; output = D score (or explanation why data are bad). Expects column headers of the form Response_#.corr, and Response_#.rt, where # is 1-7, for IAT block number. Scoring is mostly per GNB 2003: Greenwald, A. G., Nosek, B. A., & Banaji, M. R. (2003). Understanding and using the implicit association test: I. An improved scoring algorithm. Journal of Personality and Social Psychology, 85, 197-216. Following Amodio, incorrect responses do not contribute to RT; there's no RT penalty for this reason. For computing SDs, unbiased SD is used (N-1). If write_file=True, will save score to a file 'Scored_' + csvfile. A positive D value from this script indicates a bias in favor of "creative bad / practical good". I.e., if RT in blocks with creative+good is longer than RT in blocks with creative+bad, people are more conflicted or hesitant about creative+good. The way the task is set up, when side == 1, creative and bad are paired first. If side == -1, the opposite is true. This pairing is handled by the scoring script. """ # ------------ Thresholds for excluding trials or subjects: ------------ rt_FAST = 0.300 rt_FASTms = int(1000 * rt_FAST) # 300ms rt_SLOW = 10. correct = 1 incorrect = 0 # GNB 2003 thresholds for why subject should be excluded: warn = u'' threshold = {'ac_prac_blk': 0.50, 'ac_prac_all': 0.60, 'rt_prac_all': 0.35, 'ac_task_blk': 0.60, 'rt_task_blk': 0.25, 'ac_task_all': 0.70, 'rt_task_all': 0.10 } # ------------ Read dataframe (df) from .csv file and parse: ------------ df = pd.read_csv(csvfile) # accuracy; mean --> proportion correct prac_ac = [df.loc[:, 'Response_1.corr'].dropna(), df.loc[:, 'Response_2.corr'].dropna(), df.loc[:, 'Response_5.corr'].dropna()] task_ac = [df.loc[:, 'Response_3.corr'].dropna(), df.loc[:, 'Response_4.corr'].dropna(), df.loc[:, 'Response_6.corr'].dropna(), df.loc[:, 'Response_7.corr'].dropna()] # response time in seconds prac_rt = [df.loc[:, 'Response_1.rt'].dropna(), df.loc[:, 'Response_2.rt'].dropna(), df.loc[:, 'Response_5.rt'].dropna()] task_rt = [df.loc[:, 'Response_3.rt'].dropna(), df.loc[:, 'Response_4.rt'].dropna(), df.loc[:, 'Response_6.rt'].dropna(), df.loc[:, 'Response_7.rt'].dropna()] assert len(task_ac[0]) == len(task_ac[2]) == len(task_rt[0]) # block 3, 6 assert len(task_ac[1]) == len(task_ac[3]) == len(task_rt[1]) # block 4, 7 assert len(task_rt[0]) == len(task_rt[2]) > 1 # require 2+ items in 3, 6 assert len(task_rt[1]) == len(task_rt[3]) > 1 # equire 2+ items in 4, 7 assert all([all(task_ac[i].isin([correct, incorrect])) for i in range(4)]) assert all([all(task_rt[i] > 0) for i in range(4)]) # require positive RTs # counterbalanced IAT screen side: +1 or -1; used in calc of D side = df.loc[0, 'side'] assert side in [-1, 1] # ------------ Check participant exclusion thresholds ------------ # check proportion-too-fast in each task block: for i, rt in enumerate(task_rt): prop_too_fast = len(rt[(rt < rt_FAST)]) / len(rt) if prop_too_fast > threshold['rt_task_blk']: pct = 100 * prop_too_fast warn += "%.0f%% trials with RT < %dms in task block #%d\n" % ( pct, rt_FASTms, (3, 4, 6, 7)[i]) # check proportion-too-fast all task trials: rt = task_rt[0].append(task_rt[1]).append(task_rt[2]).append(task_rt[3]) prop_too_fast = len(rt[(rt < rt_FAST)]) / len(rt) if prop_too_fast > threshold['rt_task_all']: pct = 100 * prop_too_fast warn += "%.0f%% trials with RT < %dms across all task blocks\n" % ( pct, rt_FASTms) # check proportion-too-fast in each practice block: for i, rt in enumerate(prac_rt): prop_too_fast = len(rt[(rt < rt_FAST)]) / len(rt) if prop_too_fast > threshold['rt_prac_all']: pct = 100 * prop_too_fast warn += "%.0f%% trials with RT < %dms in practice block #%d\n" % ( pct, rt_FASTms, (1, 2, 5)[i]) # check proportion-error in each practice block: for i, prac_blk in enumerate(prac_ac): if prac_blk.mean() < threshold['ac_prac_blk']: pct = 100 * (1 - prac_blk.mean()) warn += "%.0f%% errors in practice block #%d\n" %(pct, (1, 2, 5)[i]) # check proportion-error in all practice trials: ac = prac_ac[0].append(prac_ac[1]).append(prac_ac[2]).mean() if ac < threshold['ac_prac_all']: pct = 100 * (1 - ac.mean()) warn += "%.0f%% errors across all practice blocks\n" % pct # check proportion-error in task blocks: for i, ac in enumerate(task_ac): if ac.mean() < threshold['ac_task_blk']: pct = 100 * (1 - ac.mean()) warn += "%.0f%% errors in task block #%d\n" % (pct, (3, 4, 6, 7)[i]) # check proportion-error across all task trials: ac = task_ac[0].append(task_ac[1]).append(task_ac[2]).append(task_ac[3]) if ac.mean() < threshold['ac_task_all']: pct = 100 * (1 - ac.mean()) warn += "%.0f%% errors across all task trials\n" % pct # ------------ Filter out bad trials: ------------ for i, block in enumerate(task_ac): # retain trials with correct responses: correct_trials = (block == correct) task_rt[i] = task_rt[i][correct_trials] #task_ac[i] = task_ac[i][correct_trials] for i, block in enumerate(task_rt): # retain trials where RT is not too fast or too slow: rt_ok_trials = (block >= rt_FAST) & (block <= rt_SLOW) task_rt[i] = task_rt[i][rt_ok_trials] #task_ac[i] = task_ac[i][rt_ok_trials] # ------------ Calculate summary stats of the filtered data: ---------- mean3, mean4, mean6, mean7 = [a.mean() for a in task_rt] stdev36 = task_rt[0].append(task_rt[2]).std() # pooled std of blocks 3 & 6 stdev47 = task_rt[1].append(task_rt[3]).std() # pooled std of blocks 4 & 7 d36 = side * (mean6 - mean3) / stdev36 # side is +1 or -1 d47 = side * (mean7 - mean4) / stdev47 D_IAT = (d36 + d47) / 2 stats = D_IAT, side, mean3, mean4, mean6, mean7, stdev36, stdev47, warn.strip() or 'None' labels = 'D_IAT', 'side', 'mean3', 'mean4', 'mean6', 'mean7', 'sd36', 'sd47', 'warnings' if write_file: df = pd.DataFrame([stats], columns=labels) df.to_csv('Scored_' + csvfile, index=False, index_label=False, encoding='utf-8') return warn.strip() or D_IAT def batchScoreIAT(path='.', write_file=False): """Call scoreIAT() on all csv files in path """ files = glob.glob(os.path.join(path, '*.csv')) for f in files: scoreIAT(f, write_file=write_file) if __name__ == '__main__': for f in sys.argv[1:]: print((f, scoreIAT(f)))
gpl-3.0
cfjhallgren/shogun
examples/undocumented/python/graphical/group_lasso.py
11
7789
#!/usr/bin/python import numpy as np import matplotlib.pyplot as plt from numpy.random import rand, randn, permutation, multivariate_normal from shogun import BinaryLabels, RealFeatures, IndexBlock, IndexBlockGroup, FeatureBlockLogisticRegression def generate_synthetic_logistic_data(n, p, L, blk_nnz, gcov, nstd): # Generates synthetic data for the logistic regression, using the example # from [Friedman10] # n : # of observations # p : # of predictors # L : # of blocks # blk_nnz : # of non-zero coefs. in each block # gcov : correlation within groups # nstd : standard deviation of the added noise # size of each block (assumed to be an integer) pl = p / L # generating the coefficients (betas) coefs = np.zeros((p, 1)) for (i, nnz) in enumerate(blk_nnz): blkcoefs = np.zeros((pl, 1)) blkcoefs[0:nnz] = np.sign(rand(nnz, 1) - 0.5) coefs[pl * i:pl * (i + 1)] = permutation(blkcoefs) # generating the predictors mu = np.zeros(p) gsigma = gcov * np.ones((pl, pl)) np.fill_diagonal(gsigma, 1.0) Sigma = np.kron(np.eye(L), gsigma) # the predictors come from a standard Gaussian multivariate distribution X = multivariate_normal(mu, Sigma, n) # linear function of the explanatory variables in X, plus noise t = np.dot(X, coefs) + randn(n, 1) * nstd # applying the logit Pr = 1 / (1 + np.exp(-t)) # The response variable y[i] is a Bernoulli random variable taking # value 1 with probability Pr[i] y = rand(n, 1) <= Pr # we want each _column_ in X to represent a feature vector # y and coefs should be also 1D arrays return X.T, y.flatten(), coefs.flatten() def misclassified_groups(est_coefs, true_coefs, L): # Compute the number of groups that are misclassified, i.e. the ones with # at least one non-zero coefficient whose estimated coefficients are all # set to zero, or viceversa, as explained in [Friedman10] # est_coefs : coefficients estimated by the FBLR # true_coefs : the original coefficients of our synthetic example # L : number of blocks p = est_coefs.shape[0] # number of predictors pl = p / L est_nz = est_coefs != 0 true_nz = true_coefs != 0 est_blk_nzcount = np.array([sum(est_nz[pl * i:pl * (i + 1)]) for i in xrange(L)]) true_blk_nzcount = np.array([sum(true_nz[pl * i:pl * (i + 1)]) for i in xrange(L)]) return np.sum(np.logical_xor(est_blk_nzcount == 0, true_blk_nzcount == 0)) def misclassified_features(est_coefs, true_coefs): # Compute the number of individual coefficients that are misclassified, # i.e. estimated to be zero when the true coefficient is nonzero or # vice-versa, as explained in [Friedman10] # est_coefs : coefficients estimated by the FBLR # true_coefs : the original coefficients of our synthetic example return np.sum(np.logical_xor(est_coefs == 0, true_coefs == 0)) def compute_misclassifications(cls, true_coefs, L, rel_z): # Try the given classifier with different values of relative regularization # parameters, store the coefficients and compute the number of groups # and features misclassified. # INPUTS: # - cls : the classifier to try # - true_coefs : the original coefficients of our synthetic example # - L : number of blocks # - rel_z : regularization values to try, they will be in [0,1] # OUTPUTS: # - est_coefs : array with the estimated coefficients, each row for a # different value of regularization # - misc_groups, misc_feats : see above num_z = rel_z.shape[0] est_coefs = np.zeros((num_z, true_coefs.shape[0])) misc_groups = np.zeros(num_z) misc_feats = np.zeros(num_z) for (i, z) in enumerate(rel_z): cls.set_z(z) cls.train() est_coefs[i, :] = cls.get_w() misc_groups[i] = misclassified_groups(est_coefs[i, :], true_coefs, L) misc_feats[i] = misclassified_features(est_coefs[i, :], true_coefs) return est_coefs, misc_groups, misc_feats if __name__ == '__main__': print('FeatureBlockLogisticRegression example') np.random.seed(956) # reproducible results # default parameters from [Friedman10] n = 200 p = 100 L = 10 blk_nnz = [10, 8, 6, 4, 2, 1] gcov = 0.2 nstd = 0.4 # range of (relative) regularization values to try min_z = 0 max_z = 1 num_z = 21 # get the data X, y, true_coefs = generate_synthetic_logistic_data(n, p, L, blk_nnz, gcov, nstd) # here each column represents a feature vector features = RealFeatures(X) # we have to convert the labels to +1/-1 labels = BinaryLabels(np.sign(y.astype(int) - 0.5)) # SETTING UP THE CLASSIFIERS # CLASSIFIER 1: group LASSO # build the feature blocks and add them to the block group pl = p / L block_group = IndexBlockGroup() for i in xrange(L): block_group.add_block(IndexBlock(pl * i, pl * (i + 1))) cls_gl = FeatureBlockLogisticRegression(0.0, features, labels, block_group) # with set_regularization(1), the parameter z will indicate the fraction of # the maximum regularization to use, and so z is in [0,1] # (reference: SLEP manual) cls_gl.set_regularization(1) cls_gl.set_q(2.0) # it is the default anyway... # CLASSIFIER 2: LASSO (illustrating group lasso with all group sizes = 1) block_group_ones = IndexBlockGroup() for i in xrange(p): block_group_ones.add_block(IndexBlock(i, i + 1)) cls_l = FeatureBlockLogisticRegression(0.0, features, labels, block_group_ones) cls_l.set_regularization(1) cls_l.set_q(2.0) # trying with different values of (relative) regularization parameters rel_z = np.linspace(min_z, max_z, num_z) coefs_gl, miscgp_gl, miscft_gl = compute_misclassifications(cls_gl, true_coefs, L, rel_z) coefs_l, miscgp_l, miscft_l = compute_misclassifications(cls_l, true_coefs, L, rel_z) # Find the best regularization for each classifier # for the group lasso: the one that gives the fewest groups misclassified best_z_gl = np.argmin(miscgp_gl) # for the lasso: the one that gives the fewest features misclassified best_z_l = np.argmin(miscft_l) # plot the true coefs. and the signs of the estimated coefs. fig = plt.figure() for (coefs, best_z, name, pos) in zip([coefs_gl, coefs_l], [best_z_gl, best_z_l], ['Group lasso', 'Lasso'], [0, 1]): ax = plt.subplot2grid((4, 2), (pos, 0), colspan=2) plt.hold(True) plt.plot(xrange(p), np.sign(coefs[best_z, :]), 'o', markeredgecolor='none', markerfacecolor='g') plt.plot(xrange(p), true_coefs, '^', markersize=7, markeredgecolor='r', markerfacecolor='none', markeredgewidth=1) plt.xticks(xrange(0, p + pl, pl)) plt.yticks([-1, 0, 1]) plt.xlim((-1, p + 1)) plt.ylim((-2, 2)) plt.grid(True) # plt.legend(('estimated', 'true'), loc='best') plt.title(name) plt.xlabel('Predictor [triangles=true coefs], best reg. value = %.2f' % rel_z[best_z]) plt.ylabel('Coefficient') ax = plt.subplot2grid((4, 2), (2, 0), rowspan=2) plt.plot(rel_z, miscgp_gl, 'ro-', rel_z, miscgp_l, 'bo-') plt.legend(('Group lasso', 'Lasso'), loc='best') plt.title('Groups misclassified') plt.xlabel('Relative regularization parameter') plt.ylabel('# of groups misclassified') ax = plt.subplot2grid((4, 2), (2, 1), rowspan=2) plt.plot(rel_z, miscft_gl, 'ro-', rel_z, miscft_l, 'bo-') plt.legend(('Group lasso', 'Lasso'), loc='best') plt.title('Features misclassified') plt.xlabel('Relative regularization parameter') plt.ylabel('# of features misclassified') plt.tight_layout(1.2, 0, 0) plt.show()
gpl-3.0
mirestrepo/voxels-at-lems
super3d/compute_mean_var.py
1
1331
import boxm_batch; import sys; import optparse; import os; import glob; #import matplotlib.pyplot as plt; boxm_batch.register_processes(); boxm_batch.register_datatypes(); class dbvalue: def __init__(self, index, type): self.id = index # unsigned integer self.type = type # string #dir = "/Users/isa/Experiments/super3d/sr2_scene_sr2_images/expectedImgs_1" #dir = "/Users/isa/Experiments/super3d/sr2_3scene_sr2_images/expectedImgs_2" #dir = "/Users/isa/Experiments/super3d/scene_sr2_images/expectedImgs_2" #dir = "/Users/isa/Experiments/super3d/scene/expectedImgs_2" #dir = "/Volumes/vision/video/isabel/super3d/scili_experiment/normal_scene/expectedImgs_0" dir = "/Users/isa/Experiments/super3d/scili_experiments_bicubic/sr2_scene_sr2_images/expectedImgs_0" boxm_batch.init_process("vilLoadImageViewProcess"); boxm_batch.set_input_string(0,dir + "/exepected_var.tiff"); boxm_batch.run_process(); (id,type) = boxm_batch.commit_output(0); var_img = dbvalue(id,type); boxm_batch.init_process("vilImageMeanProcess"); boxm_batch.set_input_from_db(0,var_img); boxm_batch.run_process(); (id,type) = boxm_batch.commit_output(0); mean = dbvalue(id,type); mean_val = boxm_batch.get_output_float(mean.id); mean_file = dir + "/mean_var.txt" f = open(mean_file, 'w'); f.write(str(mean_val)); f.close();
bsd-2-clause
thorwhalen/ut
ml/diag/multiple_two_component_manifold_learning.py
1
9229
__author__ = 'thor' """ An illustration of various embeddings, based on Pedregosa, Grisel, Blondel, and Varoguaux's code for the digits dataset. See http://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html The RandomTreesEmbedding, from the :mod:`sklearn.ensemble` module, is not technically a manifold embedding method, as it learn a high-dimensional representation on which we apply a dimensionality reduction method. However, it is often useful to cast a dataset into a representation in which the classes are linearly-separable. t-SNE will be initialized with the embedding that is generated by PCA in this example, which is not the default setting. It ensures global stability of the embedding, i.e., the embedding does not depend on random initialization. """ from time import time import numpy as np import matplotlib.pyplot as plt from matplotlib import offsetbox from sklearn import (manifold, datasets, decomposition, ensemble, lda, random_projection) def scatter_plot(X, y): plt.scatter(X[:, 0], X[:, 1], c=y) def analyze(X=None, y=None, plot_fun=scatter_plot, data_name="data"): if X is None: digits = datasets.load_digits(n_class=6) X = digits.data y = digits.target n_samples, n_features = X.shape n_neighbors = 30 def plot_embedding(X, title=None): x_min, x_max = np.min(X, 0), np.max(X, 0) X = (X - x_min) / (x_max - x_min) plot_fun(X, y) if title is not None: plt.title(title) # #---------------------------------------------------------------------- # # Scale and visualize the embedding vectors # def plot_embedding(X, title=None): # x_min, x_max = np.min(X, 0), np.max(X, 0) # X = (X - x_min) / (x_max - x_min) # # plt.figure() # ax = plt.subplot(111) # for i in range(X.shape[0]): # plt.text(X[i, 0], X[i, 1], str(digits.target[i]), # color=plt.cm.Set1(y[i] / 10.), # fontdict={'weight': 'bold', 'size': 9}) # # if hasattr(offsetbox, 'AnnotationBbox'): # # only print thumbnails with matplotlib > 1.0 # shown_images = np.array([[1., 1.]]) # just something big # for i in range(digits.data.shape[0]): # dist = np.sum((X[i] - shown_images) ** 2, 1) # if np.min(dist) < 4e-3: # # don't show points that are too close # continue # shown_images = np.r_[shown_images, [X[i]]] # imagebox = offsetbox.AnnotationBbox( # offsetbox.OffsetImage(digits.images[i], cmap=plt.cm.gray_r), # X[i]) # ax.add_artist(imagebox) # plt.xticks([]), plt.yticks([]) # if title is not None: # plt.title(title) # # # #---------------------------------------------------------------------- # # Plot images of the digits # n_img_per_row = 20 # img = np.zeros((10 * n_img_per_row, 10 * n_img_per_row)) # for i in range(n_img_per_row): # ix = 10 * i + 1 # for j in range(n_img_per_row): # iy = 10 * j + 1 # img[ix:ix + 8, iy:iy + 8] = X[i * n_img_per_row + j].reshape((8, 8)) # plt.imshow(img, cmap=plt.cm.binary) # plt.xticks([]) # plt.yticks([]) # plt.title('A selection from the 64-dimensional digits dataset') #---------------------------------------------------------------------- # Random 2D projection using a random unitary matrix print("Computing random projection") rp = random_projection.SparseRandomProjection(n_components=2, random_state=42) X_projected = rp.fit_transform(X) plot_embedding(X_projected, "Random Projection of the {}".format(data_name)) #---------------------------------------------------------------------- # Projection on to the first 2 principal components print("Computing PCA projection") t0 = time() X_pca = decomposition.TruncatedSVD(n_components=2).fit_transform(X) plot_embedding(X_pca, "Principal Components projection of the {} (time {:.2f})".format(data_name, time() - t0)) #---------------------------------------------------------------------- # Projection on to the first 2 linear discriminant components print("Computing LDA projection") X2 = X.copy() X2.flat[::X.shape[1] + 1] += 0.01 # Make X invertible t0 = time() X_lda = lda.LDA(n_components=2).fit_transform(X2, y) plot_embedding(X_lda, "Linear Discriminant projection of the {} (time {:.2f})".format(data_name, time() - t0)) #---------------------------------------------------------------------- # Isomap projection of the dataset print("Computing Isomap embedding") t0 = time() X_iso = manifold.Isomap(n_neighbors, n_components=2).fit_transform(X) print("Done.") plot_embedding(X_iso, "Isomap projection of the {} (time {:.2f})".format(data_name, time() - t0)) #---------------------------------------------------------------------- # Locally linear embedding of the dataset print("Computing LLE embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='standard') t0 = time() X_lle = clf.fit_transform(X) print(("Done. Reconstruction error: %g" % clf.reconstruction_error_)) plot_embedding(X_lle, "Locally Linear Embedding of the {} (time {:.2f})".format(data_name, time() - t0)) #---------------------------------------------------------------------- # Modified Locally linear embedding of the dataset print("Computing modified LLE embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='modified') t0 = time() X_mlle = clf.fit_transform(X) print(("Done. Reconstruction error: %g" % clf.reconstruction_error_)) plot_embedding(X_mlle, "Modified Locally Linear Embedding of the {} (time {:.2f})".format(data_name, time() - t0)) #---------------------------------------------------------------------- # HLLE embedding of the dataset print("Computing Hessian LLE embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='hessian') t0 = time() X_hlle = clf.fit_transform(X) print(("Done. Reconstruction error: %g" % clf.reconstruction_error_)) plot_embedding(X_hlle, "Hessian Locally Linear Embedding of the {} (time {:.2f})".format(data_name, time() - t0)) #---------------------------------------------------------------------- # LTSA embedding of the dataset print("Computing LTSA embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='ltsa') t0 = time() X_ltsa = clf.fit_transform(X) print(("Done. Reconstruction error: %g" % clf.reconstruction_error_)) plot_embedding(X_ltsa, "Local Tangent Space Alignment of the {} (time {:.2f})".format(data_name, time() - t0)) #---------------------------------------------------------------------- # MDS embedding of the dataset print("Computing MDS embedding") clf = manifold.MDS(n_components=2, n_init=1, max_iter=100) t0 = time() X_mds = clf.fit_transform(X) print(("Done. Stress: %f" % clf.stress_)) plot_embedding(X_mds, "MDS embedding of the {} (time {:.2f})".format(data_name, time() - t0)) #---------------------------------------------------------------------- # Random Trees embedding of the dataset print("Computing Totally Random Trees embedding") hasher = ensemble.RandomTreesEmbedding(n_estimators=200, random_state=0, max_depth=5) t0 = time() X_transformed = hasher.fit_transform(X) pca = decomposition.TruncatedSVD(n_components=2) X_reduced = pca.fit_transform(X_transformed) plot_embedding(X_reduced, "Random forest embedding of the {} (time {:.2f})".format(data_name, time() - t0)) #---------------------------------------------------------------------- # Spectral embedding of the digits dataset print("Computing Spectral embedding") embedder = manifold.SpectralEmbedding(n_components=2, random_state=0, eigen_solver="arpack") t0 = time() X_se = embedder.fit_transform(X) plot_embedding(X_se, "Spectral embedding of the {} (time {:.2f})".format(data_name, time() - t0)) #---------------------------------------------------------------------- # t-SNE embedding of the digits dataset print("Computing t-SNE embedding") tsne = manifold.TSNE(n_components=2, init='pca', random_state=0) t0 = time() X_tsne = tsne.fit_transform(X) plot_embedding(X_tsne, "t-SNE embedding of the {} (time {:.2f})".format(data_name, time() - t0)) plt.show()
mit
idrigo/castawayplot
castawayplot.py
1
1537
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Thu Sep 28 23:01:05 2017 @author: drigo """ from __future__ import division import pandas as pd import CTDplot import config import os cycle=0 filelist=os.listdir(config.directory) list_len=len(filelist) if not os.path.exists(config.out_dir):#проверяем существование выходной папки, если нет - создаем ее os.makedirs(config.out_dir) for f in filelist: #создаем список файлов в директории и делаем цикл по нему filename=config.directory+f figname=f[:-4] + '.png' df=pd.read_csv(filename, skiprows=28, usecols=[1,2,5,6]) df = df.rename(columns={list(df)[0]: 'Depth', list(df)[1]: 'Temp', list(df)[2]: 'Sal', list(df)[3]: 'Dens'}) #из конфигурационного файла #вызываем функцию построения графика из модуля CTDplot и передаем ей параметры CTDplot.plot(figname, config.Txlim, config.Sxlim, config.major_ticsT, config.major_ticsS, config.minor_ticsT, config.minor_ticsS, df, config.io) cycle+=1 pers=(cycle/list_len)*100 print ('Файл номер {0}. Выполнено {1} %'.format(cycle,pers))
mit
lail3344/sms-tools
lectures/06-Harmonic-model/plots-code/harmonicModel-analysis-synthesis.py
24
1387
import numpy as np import matplotlib.pyplot as plt from scipy.signal import hamming, triang, blackmanharris import sys, os, functools, time sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import harmonicModel as HM import sineModel as SM import utilFunctions as UF (fs, x) = UF.wavread('../../../sounds/vignesh.wav') w = np.blackman(1201) N = 2048 t = -90 nH = 100 minf0 = 130 maxf0 = 300 f0et = 7 Ns = 512 H = Ns/4 minSineDur = .1 harmDevSlope = 0.01 hfreq, hmag, hphase = HM.harmonicModelAnal(x, fs, w, N, H, t, nH, minf0, maxf0, f0et, harmDevSlope, minSineDur) y = SM.sineModelSynth(hfreq, hmag, hphase, Ns, H, fs) numFrames = int(hfreq[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) plt.figure(1, figsize=(9, 7)) plt.subplot(3,1,1) plt.plot(np.arange(x.size)/float(fs), x, 'b') plt.axis([0,x.size/float(fs),min(x),max(x)]) plt.title('x (vignesh.wav)') plt.subplot(3,1,2) yhfreq = hfreq yhfreq[hfreq==0] = np.nan plt.plot(frmTime, hfreq, lw=1.2) plt.axis([0,y.size/float(fs),0,8000]) plt.title('f_h, harmonic frequencies') plt.subplot(3,1,3) plt.plot(np.arange(y.size)/float(fs), y, 'b') plt.axis([0,y.size/float(fs),min(y),max(y)]) plt.title('yh') plt.tight_layout() UF.wavwrite(y, fs, 'vignesh-harmonic-synthesis.wav') plt.savefig('harmonicModel-analysis-synthesis.png') plt.show()
agpl-3.0
lancezlin/ml_template_py
lib/python2.7/site-packages/pandas/tests/frame/test_sorting.py
7
18805
# -*- coding: utf-8 -*- from __future__ import print_function import numpy as np from pandas.compat import lrange from pandas import (DataFrame, Series, MultiIndex, Timestamp, date_range) from pandas.util.testing import (assert_series_equal, assert_frame_equal, assertRaisesRegexp) import pandas.util.testing as tm from pandas.tests.frame.common import TestData class TestDataFrameSorting(tm.TestCase, TestData): _multiprocess_can_split_ = True def test_sort_index(self): # GH13496 frame = DataFrame(np.arange(16).reshape(4, 4), index=[1, 2, 3, 4], columns=['A', 'B', 'C', 'D']) # axis=0 : sort rows by index labels unordered = frame.ix[[3, 2, 4, 1]] result = unordered.sort_index(axis=0) expected = frame assert_frame_equal(result, expected) result = unordered.sort_index(ascending=False) expected = frame[::-1] assert_frame_equal(result, expected) # axis=1 : sort columns by column names unordered = frame.ix[:, [2, 1, 3, 0]] result = unordered.sort_index(axis=1) assert_frame_equal(result, frame) result = unordered.sort_index(axis=1, ascending=False) expected = frame.ix[:, ::-1] assert_frame_equal(result, expected) def test_sort_index_multiindex(self): # GH13496 # sort rows by specified level of multi-index mi = MultiIndex.from_tuples([[2, 1, 3], [1, 1, 1]], names=list('ABC')) df = DataFrame([[1, 2], [3, 4]], mi) result = df.sort_index(level='A', sort_remaining=False) expected = df.sortlevel('A', sort_remaining=False) assert_frame_equal(result, expected) # sort columns by specified level of multi-index df = df.T result = df.sort_index(level='A', axis=1, sort_remaining=False) expected = df.sortlevel('A', axis=1, sort_remaining=False) assert_frame_equal(result, expected) # MI sort, but no level: sort_level has no effect mi = MultiIndex.from_tuples([[1, 1, 3], [1, 1, 1]], names=list('ABC')) df = DataFrame([[1, 2], [3, 4]], mi) result = df.sort_index(sort_remaining=False) expected = df.sort_index() assert_frame_equal(result, expected) def test_sort(self): frame = DataFrame(np.arange(16).reshape(4, 4), index=[1, 2, 3, 4], columns=['A', 'B', 'C', 'D']) # 9816 deprecated with tm.assert_produces_warning(FutureWarning): frame.sort(columns='A') with tm.assert_produces_warning(FutureWarning): frame.sort() def test_sort_values(self): frame = DataFrame([[1, 1, 2], [3, 1, 0], [4, 5, 6]], index=[1, 2, 3], columns=list('ABC')) # by column (axis=0) sorted_df = frame.sort_values(by='A') indexer = frame['A'].argsort().values expected = frame.ix[frame.index[indexer]] assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by='A', ascending=False) indexer = indexer[::-1] expected = frame.ix[frame.index[indexer]] assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by='A', ascending=False) assert_frame_equal(sorted_df, expected) # GH4839 sorted_df = frame.sort_values(by=['A'], ascending=[False]) assert_frame_equal(sorted_df, expected) # multiple bys sorted_df = frame.sort_values(by=['B', 'C']) expected = frame.loc[[2, 1, 3]] assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=['B', 'C'], ascending=False) assert_frame_equal(sorted_df, expected[::-1]) sorted_df = frame.sort_values(by=['B', 'A'], ascending=[True, False]) assert_frame_equal(sorted_df, expected) self.assertRaises(ValueError, lambda: frame.sort_values( by=['A', 'B'], axis=2, inplace=True)) # by row (axis=1): GH 10806 sorted_df = frame.sort_values(by=3, axis=1) expected = frame assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=3, axis=1, ascending=False) expected = frame.reindex(columns=['C', 'B', 'A']) assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=[1, 2], axis='columns') expected = frame.reindex(columns=['B', 'A', 'C']) assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=[1, 3], axis=1, ascending=[True, False]) assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=[1, 3], axis=1, ascending=False) expected = frame.reindex(columns=['C', 'B', 'A']) assert_frame_equal(sorted_df, expected) msg = r'Length of ascending \(5\) != length of by \(2\)' with assertRaisesRegexp(ValueError, msg): frame.sort_values(by=['A', 'B'], axis=0, ascending=[True] * 5) def test_sort_values_inplace(self): frame = DataFrame(np.random.randn(4, 4), index=[1, 2, 3, 4], columns=['A', 'B', 'C', 'D']) sorted_df = frame.copy() sorted_df.sort_values(by='A', inplace=True) expected = frame.sort_values(by='A') assert_frame_equal(sorted_df, expected) sorted_df = frame.copy() sorted_df.sort_values(by=1, axis=1, inplace=True) expected = frame.sort_values(by=1, axis=1) assert_frame_equal(sorted_df, expected) sorted_df = frame.copy() sorted_df.sort_values(by='A', ascending=False, inplace=True) expected = frame.sort_values(by='A', ascending=False) assert_frame_equal(sorted_df, expected) sorted_df = frame.copy() sorted_df.sort_values(by=['A', 'B'], ascending=False, inplace=True) expected = frame.sort_values(by=['A', 'B'], ascending=False) assert_frame_equal(sorted_df, expected) def test_sort_index_categorical_index(self): df = (DataFrame({'A': np.arange(6, dtype='int64'), 'B': Series(list('aabbca')) .astype('category', categories=list('cab'))}) .set_index('B')) result = df.sort_index() expected = df.iloc[[4, 0, 1, 5, 2, 3]] assert_frame_equal(result, expected) result = df.sort_index(ascending=False) expected = df.iloc[[3, 2, 5, 1, 0, 4]] assert_frame_equal(result, expected) def test_sort_nan(self): # GH3917 nan = np.nan df = DataFrame({'A': [1, 2, nan, 1, 6, 8, 4], 'B': [9, nan, 5, 2, 5, 4, 5]}) # sort one column only expected = DataFrame( {'A': [nan, 1, 1, 2, 4, 6, 8], 'B': [5, 9, 2, nan, 5, 5, 4]}, index=[2, 0, 3, 1, 6, 4, 5]) sorted_df = df.sort_values(['A'], na_position='first') assert_frame_equal(sorted_df, expected) expected = DataFrame( {'A': [nan, 8, 6, 4, 2, 1, 1], 'B': [5, 4, 5, 5, nan, 9, 2]}, index=[2, 5, 4, 6, 1, 0, 3]) sorted_df = df.sort_values(['A'], na_position='first', ascending=False) assert_frame_equal(sorted_df, expected) expected = df.reindex(columns=['B', 'A']) sorted_df = df.sort_values(by=1, axis=1, na_position='first') assert_frame_equal(sorted_df, expected) # na_position='last', order expected = DataFrame( {'A': [1, 1, 2, 4, 6, 8, nan], 'B': [2, 9, nan, 5, 5, 4, 5]}, index=[3, 0, 1, 6, 4, 5, 2]) sorted_df = df.sort_values(['A', 'B']) assert_frame_equal(sorted_df, expected) # na_position='first', order expected = DataFrame( {'A': [nan, 1, 1, 2, 4, 6, 8], 'B': [5, 2, 9, nan, 5, 5, 4]}, index=[2, 3, 0, 1, 6, 4, 5]) sorted_df = df.sort_values(['A', 'B'], na_position='first') assert_frame_equal(sorted_df, expected) # na_position='first', not order expected = DataFrame( {'A': [nan, 1, 1, 2, 4, 6, 8], 'B': [5, 9, 2, nan, 5, 5, 4]}, index=[2, 0, 3, 1, 6, 4, 5]) sorted_df = df.sort_values(['A', 'B'], ascending=[ 1, 0], na_position='first') assert_frame_equal(sorted_df, expected) # na_position='last', not order expected = DataFrame( {'A': [8, 6, 4, 2, 1, 1, nan], 'B': [4, 5, 5, nan, 2, 9, 5]}, index=[5, 4, 6, 1, 3, 0, 2]) sorted_df = df.sort_values(['A', 'B'], ascending=[ 0, 1], na_position='last') assert_frame_equal(sorted_df, expected) # Test DataFrame with nan label df = DataFrame({'A': [1, 2, nan, 1, 6, 8, 4], 'B': [9, nan, 5, 2, 5, 4, 5]}, index=[1, 2, 3, 4, 5, 6, nan]) # NaN label, ascending=True, na_position='last' sorted_df = df.sort_index( kind='quicksort', ascending=True, na_position='last') expected = DataFrame({'A': [1, 2, nan, 1, 6, 8, 4], 'B': [9, nan, 5, 2, 5, 4, 5]}, index=[1, 2, 3, 4, 5, 6, nan]) assert_frame_equal(sorted_df, expected) # NaN label, ascending=True, na_position='first' sorted_df = df.sort_index(na_position='first') expected = DataFrame({'A': [4, 1, 2, nan, 1, 6, 8], 'B': [5, 9, nan, 5, 2, 5, 4]}, index=[nan, 1, 2, 3, 4, 5, 6]) assert_frame_equal(sorted_df, expected) # NaN label, ascending=False, na_position='last' sorted_df = df.sort_index(kind='quicksort', ascending=False) expected = DataFrame({'A': [8, 6, 1, nan, 2, 1, 4], 'B': [4, 5, 2, 5, nan, 9, 5]}, index=[6, 5, 4, 3, 2, 1, nan]) assert_frame_equal(sorted_df, expected) # NaN label, ascending=False, na_position='first' sorted_df = df.sort_index( kind='quicksort', ascending=False, na_position='first') expected = DataFrame({'A': [4, 8, 6, 1, nan, 2, 1], 'B': [5, 4, 5, 2, 5, nan, 9]}, index=[nan, 6, 5, 4, 3, 2, 1]) assert_frame_equal(sorted_df, expected) def test_stable_descending_sort(self): # GH #6399 df = DataFrame([[2, 'first'], [2, 'second'], [1, 'a'], [1, 'b']], columns=['sort_col', 'order']) sorted_df = df.sort_values(by='sort_col', kind='mergesort', ascending=False) assert_frame_equal(df, sorted_df) def test_stable_descending_multicolumn_sort(self): nan = np.nan df = DataFrame({'A': [1, 2, nan, 1, 6, 8, 4], 'B': [9, nan, 5, 2, 5, 4, 5]}) # test stable mergesort expected = DataFrame( {'A': [nan, 8, 6, 4, 2, 1, 1], 'B': [5, 4, 5, 5, nan, 2, 9]}, index=[2, 5, 4, 6, 1, 3, 0]) sorted_df = df.sort_values(['A', 'B'], ascending=[0, 1], na_position='first', kind='mergesort') assert_frame_equal(sorted_df, expected) expected = DataFrame( {'A': [nan, 8, 6, 4, 2, 1, 1], 'B': [5, 4, 5, 5, nan, 9, 2]}, index=[2, 5, 4, 6, 1, 0, 3]) sorted_df = df.sort_values(['A', 'B'], ascending=[0, 0], na_position='first', kind='mergesort') assert_frame_equal(sorted_df, expected) def test_sort_index_multicolumn(self): import random A = np.arange(5).repeat(20) B = np.tile(np.arange(5), 20) random.shuffle(A) random.shuffle(B) frame = DataFrame({'A': A, 'B': B, 'C': np.random.randn(100)}) # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): frame.sort_index(by=['A', 'B']) result = frame.sort_values(by=['A', 'B']) indexer = np.lexsort((frame['B'], frame['A'])) expected = frame.take(indexer) assert_frame_equal(result, expected) # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): frame.sort_index(by=['A', 'B'], ascending=False) result = frame.sort_values(by=['A', 'B'], ascending=False) indexer = np.lexsort((frame['B'].rank(ascending=False), frame['A'].rank(ascending=False))) expected = frame.take(indexer) assert_frame_equal(result, expected) # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): frame.sort_index(by=['B', 'A']) result = frame.sort_values(by=['B', 'A']) indexer = np.lexsort((frame['A'], frame['B'])) expected = frame.take(indexer) assert_frame_equal(result, expected) def test_sort_index_inplace(self): frame = DataFrame(np.random.randn(4, 4), index=[1, 2, 3, 4], columns=['A', 'B', 'C', 'D']) # axis=0 unordered = frame.ix[[3, 2, 4, 1]] a_id = id(unordered['A']) df = unordered.copy() df.sort_index(inplace=True) expected = frame assert_frame_equal(df, expected) self.assertNotEqual(a_id, id(df['A'])) df = unordered.copy() df.sort_index(ascending=False, inplace=True) expected = frame[::-1] assert_frame_equal(df, expected) # axis=1 unordered = frame.ix[:, ['D', 'B', 'C', 'A']] df = unordered.copy() df.sort_index(axis=1, inplace=True) expected = frame assert_frame_equal(df, expected) df = unordered.copy() df.sort_index(axis=1, ascending=False, inplace=True) expected = frame.ix[:, ::-1] assert_frame_equal(df, expected) def test_sort_index_different_sortorder(self): A = np.arange(20).repeat(5) B = np.tile(np.arange(5), 20) indexer = np.random.permutation(100) A = A.take(indexer) B = B.take(indexer) df = DataFrame({'A': A, 'B': B, 'C': np.random.randn(100)}) # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): df.sort_index(by=['A', 'B'], ascending=[1, 0]) result = df.sort_values(by=['A', 'B'], ascending=[1, 0]) ex_indexer = np.lexsort((df.B.max() - df.B, df.A)) expected = df.take(ex_indexer) assert_frame_equal(result, expected) # test with multiindex, too idf = df.set_index(['A', 'B']) result = idf.sort_index(ascending=[1, 0]) expected = idf.take(ex_indexer) assert_frame_equal(result, expected) # also, Series! result = idf['C'].sort_index(ascending=[1, 0]) assert_series_equal(result, expected['C']) def test_sort_index_duplicates(self): # with 9816, these are all translated to .sort_values df = DataFrame([lrange(5, 9), lrange(4)], columns=['a', 'a', 'b', 'b']) with assertRaisesRegexp(ValueError, 'duplicate'): # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): df.sort_index(by='a') with assertRaisesRegexp(ValueError, 'duplicate'): df.sort_values(by='a') with assertRaisesRegexp(ValueError, 'duplicate'): # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): df.sort_index(by=['a']) with assertRaisesRegexp(ValueError, 'duplicate'): df.sort_values(by=['a']) with assertRaisesRegexp(ValueError, 'duplicate'): # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): # multi-column 'by' is separate codepath df.sort_index(by=['a', 'b']) with assertRaisesRegexp(ValueError, 'duplicate'): # multi-column 'by' is separate codepath df.sort_values(by=['a', 'b']) # with multi-index # GH4370 df = DataFrame(np.random.randn(4, 2), columns=MultiIndex.from_tuples([('a', 0), ('a', 1)])) with assertRaisesRegexp(ValueError, 'levels'): # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): df.sort_index(by='a') with assertRaisesRegexp(ValueError, 'levels'): df.sort_values(by='a') # convert tuples to a list of tuples # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): df.sort_index(by=[('a', 1)]) expected = df.sort_values(by=[('a', 1)]) # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): df.sort_index(by=('a', 1)) result = df.sort_values(by=('a', 1)) assert_frame_equal(result, expected) def test_sortlevel(self): mi = MultiIndex.from_tuples([[1, 1, 3], [1, 1, 1]], names=list('ABC')) df = DataFrame([[1, 2], [3, 4]], mi) res = df.sortlevel('A', sort_remaining=False) assert_frame_equal(df, res) res = df.sortlevel(['A', 'B'], sort_remaining=False) assert_frame_equal(df, res) def test_sort_datetimes(self): # GH 3461, argsort / lexsort differences for a datetime column df = DataFrame(['a', 'a', 'a', 'b', 'c', 'd', 'e', 'f', 'g'], columns=['A'], index=date_range('20130101', periods=9)) dts = [Timestamp(x) for x in ['2004-02-11', '2004-01-21', '2004-01-26', '2005-09-20', '2010-10-04', '2009-05-12', '2008-11-12', '2010-09-28', '2010-09-28']] df['B'] = dts[::2] + dts[1::2] df['C'] = 2. df['A1'] = 3. df1 = df.sort_values(by='A') df2 = df.sort_values(by=['A']) assert_frame_equal(df1, df2) df1 = df.sort_values(by='B') df2 = df.sort_values(by=['B']) assert_frame_equal(df1, df2) def test_frame_column_inplace_sort_exception(self): s = self.frame['A'] with assertRaisesRegexp(ValueError, "This Series is a view"): s.sort_values(inplace=True) cp = s.copy() cp.sort_values() # it works!
mit
garbersc/keras-galaxies
try_convnet_keras_try_fullFit_maxout.py
1
16971
import theano.sandbox.cuda.basic_ops as sbcuda import numpy as np # import pandas as pd import keras.backend as T import load_data import realtime_augmentation as ra import time import csv import os import cPickle as pickle from datetime import datetime, timedelta from keras.models import Sequential, Model from keras.layers import Dense, Activation, MaxPooling1D, Dropout, Input, Convolution2D, MaxoutDense from keras.layers.core import Lambda, Flatten, Reshape, Permute from keras.optimizers import SGD, Adam from keras.engine.topology import Merge from keras.callbacks import LearningRateScheduler from keras import initializations import functools from keras_extra_layers import kerasCudaConvnetPooling2DLayer, kerasCudaConvnetConv2DLayer, fPermute from custom_for_keras import kaggle_MultiRotMergeLayer_output, OptimisedDivGalaxyOutput, kaggle_input, kaggle_sliced_accuracy, dense_weight_init_values, rmse, input_generator #FIXME not finished # import matplotlib.pyplot as plt # plt.ion() # import utils debug = True predict = False continueAnalysis = True saveAtEveryValidation = True getWinSolWeights = False if getWinSolWeights: WINSOL_PATH = "analysis/final/try_convent_gpu1_win_sol_net_on_0p0775_validation.pkl" analysis = np.load(WINSOL_PATH) l_weights = analysis['param_values'] #w_pairs=[] #for i in range(len(l_weights)/2): # w_pairs.append([l_weights[2*i],l_weights[2*i+1]]) w_kSorted=[] for i in range(len(l_weights)/2): w_kSorted.append(l_weights[-2-2*i]) w_kSorted.append(l_weights[-1-2*i]) CATEGORISED = False y_train = np.load("data/solutions_train.npy") if CATEGORISED: y_train = np.load("data/solutions_train_categorised.npy") ra.y_train=y_train # split training data into training + a small validation set ra.num_train = y_train.shape[0] ra.num_valid = ra.num_train // 10 # integer division, is defining validation size ra.num_train -= ra.num_valid #training num check for EV usage if ra.num_train!=55420: print "num_train = %s not %s" % (ra.num_train,55420) ra.y_valid = ra.y_train[ra.num_train:] ra.y_train = ra.y_train[:ra.num_train] load_data.num_train=y_train.shape[0] load_data.train_ids = np.load("data/train_ids.npy") ra.load_data.num_train = load_data.num_train ra.load_data.train_ids = load_data.train_ids ra.valid_ids = load_data.train_ids[ra.num_train:] ra.train_ids = load_data.train_ids[:ra.num_train] train_ids = load_data.train_ids test_ids = load_data.test_ids num_train = ra.num_train num_test = len(test_ids) num_valid = ra.num_valid y_valid = ra.y_valid y_train = ra.y_train valid_ids = ra.valid_ids train_ids = ra.train_ids train_indices = np.arange(num_train) valid_indices = np.arange(num_train, num_train + num_valid) test_indices = np.arange(num_test) BATCH_SIZE = 512 #keep in mind NUM_INPUT_FEATURES = 3 LEARNING_RATE_SCHEDULE = { #if adam is used the learning rate doesnt follow the schedule 0: 0.1, 20: 0.05, 40: 0.01, 80: 0.005 #500: 0.04, #0: 0.01, #1800: 0.004, #2300: 0.0004, # 0: 0.08, # 50: 0.04, # 2000: 0.008, # 3200: 0.0008, # 4600: 0.0004, } if continueAnalysis or getWinSolWeights : LEARNING_RATE_SCHEDULE = { 0: 0.1, 20: 0.05, 40: 0.01, 80: 0.005 #0: 0.0001, #500: 0.002, #800: 0.0004, #3200: 0.0002, #4600: 0.0001, } MOMENTUM = 0.9 WEIGHT_DECAY = 0.0 N_TRAIN = num_train# 2000#1008#10000 # 30000 # this should be a multiple of the batch size, ideally. EPOCHS = 100 VALIDATE_EVERY = 10 #20 # 12 # 6 # 6 # 6 # 5 # # else computing the analysis data does not work correctly, since it assumes that the validation set is still loaded. print("The training sample contains %s , the validation sample contains %s images. \n" % ( ra.num_train, ra.num_valid )) NUM_EPOCHS_NONORM = 0.1 # train without normalisation for this many epochs, to get the weights in the right 'zone'. # this should be only a few, just 1 hopefully suffices. #FIXME does ist run for part batches one day??? yes! ''' while (N_TRAIN) % BATCH_SIZE: N_TRAIN-=1 if debug: print N_TRAIN ''' USE_ADAM = False #TODO not implemented USE_LLERROR=False #TODO not implemented USE_WEIGHTS=False #TODO not implemented if USE_LLERROR and USE_WEIGHTS: print 'combination of weighted classes and log loss fuction not implemented yet' WEIGHTS=np.ones((37)) #WEIGHTS[2]=1 #star or artifact WEIGHTS[3]=1.5 #edge on yes WEIGHTS[4]=1.5 #edge on no #WEIGHTS[5]=1 #bar feature yes #WEIGHTS[7]=1 #spiral arms yes #WEIGHTS[14]=1 #anything odd? no #WEIGHTS[18]=1 #ring #WEIGHTS[19]=1 #lence #WEIGHTS[20]=1 #disturbed #WEIGHTS[21]=1 #irregular #WEIGHTS[22]=1 #other #WEIGHTS[23]=1 #merger #WEIGHTS[24]=1 #dust lane WEIGHTS=WEIGHTS/WEIGHTS[WEIGHTS.argmax()] GEN_BUFFER_SIZE = 1 TRAIN_LOSS_SF_PATH = "trainingNmbrs_keras_hist_new.txt" #TARGET_PATH = "predictions/final/try_convnet.csv" WEIGHTS_PATH = "analysis/final/try_convent_keras_maxout_no_finaldropout.h5" with open(TRAIN_LOSS_SF_PATH, 'a')as f: if continueAnalysis: f.write('#continuing from ') f.write(WEIGHTS_PATH) f.write("#wRandFlip \n") f.write("#The training is running for %s epochs, each with %s images. The validation sample contains %s images. \n" % (EPOCHS,N_TRAIN, ra.num_valid )) f.write("#round ,time, mean_train_loss , mean_valid_loss, mean_sliced_accuracy, mean_train_loss_test, mean_accuracy \n") input_sizes = [(69, 69), (69, 69)] PART_SIZE=45 N_INPUT_VARIATION=2 print "Build model" if debug : print("input size: %s x %s x %s x %s" % (input_sizes[0][0],input_sizes[0][1],NUM_INPUT_FEATURES,BATCH_SIZE)) input_tensor = Input(batch_shape=(BATCH_SIZE, NUM_INPUT_FEATURES, input_sizes[0][0], input_sizes[0][1]) , dtype='float32', name='input_tensor') input_tensor_45 = Input(batch_shape=(BATCH_SIZE, NUM_INPUT_FEATURES, input_sizes[0][0], input_sizes[0][1]) , dtype='float32', name='input_tensor_45') input_0 = Lambda(lambda x: x,output_shape=(NUM_INPUT_FEATURES, input_sizes[0][0], input_sizes[0][1]),batch_input_shape=(BATCH_SIZE, NUM_INPUT_FEATURES, input_sizes[0][0], input_sizes[0][1]),name='lambda_input_0') input_45 = Lambda(lambda x: x,output_shape=(NUM_INPUT_FEATURES, input_sizes[1][0], input_sizes[1][1]),batch_input_shape=(BATCH_SIZE, NUM_INPUT_FEATURES, input_sizes[0][0], input_sizes[0][1]),name='lambda_input_45') model1 = Sequential() model1.add(input_0) model2 = Sequential() model2.add(input_45) if debug :print model1.output_shape model = Sequential() model.add(Merge([model1, model2], mode=kaggle_input , output_shape=lambda x: ((model1.output_shape[0]+model2.output_shape[0])*2*N_INPUT_VARIATION, NUM_INPUT_FEATURES, PART_SIZE, PART_SIZE) , arguments={'part_size':PART_SIZE, 'n_input_var': N_INPUT_VARIATION, 'include_flip':False, 'random_flip':True} )) if debug : print model.output_shape #needed for the pylearn moduls used by kerasCudaConvnetConv2DLayer and kerasCudaConvnetPooling2DLayer model.add(fPermute((1,2,3,0))) if debug : print model.output_shape model.add(kerasCudaConvnetConv2DLayer(n_filters=32, filter_size=6 , untie_biases=True)) if debug : print model.output_shape model.add(kerasCudaConvnetPooling2DLayer()) if debug : print model.output_shape model.add(kerasCudaConvnetConv2DLayer(n_filters=64, filter_size=5 , untie_biases=True)) if debug : print model.output_shape model.add(kerasCudaConvnetPooling2DLayer()) model.add(kerasCudaConvnetConv2DLayer(n_filters=128, filter_size=3 , untie_biases=True)) model.add(kerasCudaConvnetConv2DLayer(n_filters=128, filter_size=3, weights_std=0.1 , untie_biases=True )) if debug : print model.output_shape model.add(kerasCudaConvnetPooling2DLayer()) if debug : print model.output_shape model.add(fPermute((3,0,1,2))) if debug : print model.output_shape model.add(Lambda(function=kaggle_MultiRotMergeLayer_output, output_shape=lambda x : ( x[0]//4//N_INPUT_VARIATION, (x[1]*x[2]*x[3]*4* N_INPUT_VARIATION) ) , arguments={'num_views':N_INPUT_VARIATION}) ) if debug : print model.output_shape model.add(Dropout(0.5)) model.add(MaxoutDense(output_dim=2048, nb_feature=2 ,weights = dense_weight_init_values(model.output_shape[-1],2048, nb_feature=2) )) model.add(Dropout(0.5)) model.add(MaxoutDense(output_dim=2048, nb_feature=2 ,weights = dense_weight_init_values(model.output_shape[-1],2048, nb_feature=2) )) model.add(Dropout(0.5)) model.add(Dense(output_dim=37, weights = dense_weight_init_values(model.output_shape[-1],37 ,w_std = 0.01 , b_init_val = 0.1 ) )) if debug : print model.output_shape model_seq=model([input_tensor,input_tensor_45]) output_layer_norm = Lambda(function=OptimisedDivGalaxyOutput , output_shape=lambda x: x ,arguments={'normalised':True,'categorised':CATEGORISED})(model_seq) output_layer_noNorm = Lambda(function=OptimisedDivGalaxyOutput , output_shape=lambda x: x ,arguments={'normalised':False,'categorised':CATEGORISED})(model_seq) model_norm=Model(input=[input_tensor,input_tensor_45],output=output_layer_norm) model_norm_metrics = Model(input=[input_tensor,input_tensor_45],output=output_layer_norm) model_noNorm=Model(input=[input_tensor,input_tensor_45],output=output_layer_noNorm) if debug : print model_norm.output_shape if debug : print model_noNorm.output_shape current_lr=LEARNING_RATE_SCHEDULE[0] def lr_function(e): global current_lr if e in LEARNING_RATE_SCHEDULE: _current_lr = LEARNING_RATE_SCHEDULE[e] current_lr = _current_lr else: _current_lr = current_lr return _current_lr lr_callback = LearningRateScheduler(lr_function) if getWinSolWeights: w_load_worked = False for l in model_norm.layers: if debug: print '---' if debug: print len(l.get_weights()) l_weights = l.get_weights() if len(l_weights)==len(w_kSorted): if debug: for i in range(len(l_weights)): print type(l_weights[i]) print np.shape(l_weights[i]) if not np.shape(l_weights[i]) == np.shape(w_kSorted[i]): "somethings wrong with the loaded weight shapes" l.set_weights(w_kSorted) w_load_worked = True if not w_load_worked: print "no matching weight length were found" model_norm.compile(loss='mean_squared_error', optimizer=SGD(lr=LEARNING_RATE_SCHEDULE[0], momentum=MOMENTUM, nesterov=True) )#, metrics=[rmse, 'categorical_accuracy',kaggle_sliced_accuracy]) model_noNorm.compile(loss='mean_squared_error', optimizer=SGD(lr=LEARNING_RATE_SCHEDULE[0], momentum=MOMENTUM, nesterov=True)) model_norm_metrics.compile(loss='mean_squared_error', optimizer=SGD(lr=LEARNING_RATE_SCHEDULE[0], momentum=MOMENTUM, nesterov=True), metrics=[rmse, 'categorical_accuracy',kaggle_sliced_accuracy]) #adam = Adam(lr=LEARNING_RATE_SCHEDULE[0], beta_1=0.9, beta_2=0.999, epsilon=1e-07, decay=0.0) #model_norm.compile(loss='mean_squared_error', optimizer=adam, metrics=['categorical_accuracy',kaggle_sliced_accuracy]) #model_noNorm.compile(loss='mean_squared_error', optimizer=adam, metrics=['categorical_accuracy']) model_norm.summary() if continueAnalysis: print "Load model weights" model_norm.load_weights(WEIGHTS_PATH) WEIGHTS_PATH = ((WEIGHTS_PATH.split('.',1)[0]+'_next.h5')) print "Set up data loading" ds_transforms = [ ra.build_ds_transform(3.0, target_size=input_sizes[0]), ra.build_ds_transform(3.0, target_size=input_sizes[1]) + ra.build_augmentation_transform(rotation=45) ] num_input_representations = len(ds_transforms) augmentation_params = { 'zoom_range': (1.0 / 1.3, 1.3), 'rotation_range': (0, 360), 'shear_range': (0, 0), 'translation_range': (-4, 4), 'do_flip': True, } augmented_data_gen = ra.realtime_augmented_data_gen(num_chunks=N_TRAIN/BATCH_SIZE, chunk_size=BATCH_SIZE, augmentation_params=augmentation_params, ds_transforms=ds_transforms, target_sizes=input_sizes) post_augmented_data_gen = ra.post_augment_brightness_gen(augmented_data_gen, std=0.5) #train_gen = post_augmented_data_gen train_gen = load_data.buffered_gen_mp(post_augmented_data_gen, buffer_size=GEN_BUFFER_SIZE) #augmentation buffering will not work with the keras .fit, works with fit_generator input_gen = input_generator(train_gen) ''' def create_train_gen(): """ this generates the training data in order, for postprocessing. Do not use this for actual training. """ data_gen_train = ra.realtime_fixed_augmented_data_gen(train_indices, 'train', ds_transforms=ds_transforms, chunk_size=N_TRAIN, target_sizes=input_sizes) return load_data.buffered_gen_mp(data_gen_train, buffer_size=GEN_BUFFER_SIZE) ''' def create_valid_gen(): data_gen_valid = ra.realtime_fixed_augmented_data_gen(valid_indices, 'train', ds_transforms=ds_transforms, chunk_size=N_TRAIN, target_sizes=input_sizes) return data_gen_valid #load_data.buffered_gen_mp(data_gen_valid, buffer_size=GEN_BUFFER_SIZE) ''' def create_test_gen(): data_gen_test = ra.realtime_fixed_augmented_data_gen(test_indices, 'test', ds_transforms=ds_transforms, chunk_size=N_TRAIN, target_sizes=input_sizes) return load_data.buffered_gen_mp(data_gen_test, buffer_size=GEN_BUFFER_SIZE) ''' print "Preprocess validation data upfront" start_time = time.time() xs_valid = [[] for _ in xrange(num_input_representations)] for data, length in create_valid_gen(): for x_valid_list, x_chunk in zip(xs_valid, data): x_valid_list.append(x_chunk[:length]) xs_valid = [np.vstack(x_valid) for x_valid in xs_valid] xs_valid = [x_valid.transpose(0, 3, 1, 2) for x_valid in xs_valid] # move the colour dimension up t_val=(time.time() - start_time) print " took %.2f seconds" % (t_val) if debug: print("Free GPU Mem before first step %s MiB " % (sbcuda.cuda_ndarray.cuda_ndarray.mem_info()[0]/1024./1024.)) print '' print "losses without training on validation sample up front" evalHistdic = {} for n in model_norm_metrics.metrics_names: evalHistdic[n]=[] evalHist = model_norm_metrics.evaluate(x=[xs_valid[0],xs_valid[1]] , y=y_valid,batch_size=BATCH_SIZE, verbose=1) for i in range(len(model_norm_metrics.metrics_names)): print " %s : %.3f" %(model_norm_metrics.metrics_names[i],evalHist[i]) evalHistdic[model_norm_metrics.metrics_names[i]].append(evalHist[i]) if debug: print("Free GPU Mem after validation check %s MiB " % (sbcuda.cuda_ndarray.cuda_ndarray.mem_info()[0]/1024./1024.)) print '' print "load and augment data, ETA %.f s" % (t_val*N_TRAIN/num_valid*2) start_time = time.time() chunk_data, chunk_length = train_gen.next() y_chunk = chunk_data.pop() # last element is labels. xs_chunk = chunk_data # need to transpose the chunks to move the 'channels' dimension up xs_chunk = [x_chunk.transpose(0, 3, 1, 2) for x_chunk in xs_chunk] l0_input_var = xs_chunk[0] l0_45_input_var = xs_chunk[1] l6_target_var = y_chunk print " took %.2f seconds" % (time.time() - start_time) print '' print "Train %s epoch without norm" % NUM_EPOCHS_NONORM no_norm_events = int(NUM_EPOCHS_NONORM*N_TRAIN) hist = model_noNorm.fit( x=[l0_input_var[:no_norm_events],l0_45_input_var[:no_norm_events]] , y=l6_target_var[:no_norm_events],validation_data=([xs_valid[0],xs_valid[1]],y_valid),batch_size=BATCH_SIZE, nb_epoch=1, verbose=1, callbacks=[lr_callback] ) #loss is squared!!! hists=hist.history if debug: print("\nFree GPU Mem before train loop %s MiB " % (sbcuda.cuda_ndarray.cuda_ndarray.mem_info()[0]/1024./1024.)) epochs_run = 0 epoch_togo =EPOCHS for i in range(EPOCHS/VALIDATE_EVERY if not EPOCHS%VALIDATE_EVERY else EPOCHS/VALIDATE_EVERY+1 ): print '' print "epochs run: %s - epochs to go: %s " % (epochs_run,epoch_togo) hist = model_norm.fit( x=[l0_input_var,l0_45_input_var] , y=l6_target_var, validation_data=([xs_valid[0],xs_valid[1]],y_valid) ,batch_size=BATCH_SIZE, nb_epoch=np.min([epoch_togo,VALIDATE_EVERY])+epochs_run, initial_epoch=epochs_run, verbose=1, callbacks=[lr_callback] ) for k in hists: hists[k]+=hist.history[k] epoch_togo-=np.min([epoch_togo,VALIDATE_EVERY]) epochs_run+=np.min([epoch_togo,VALIDATE_EVERY]) print '' print 'validate:' evalHist = model_norm_metrics.evaluate(x=[xs_valid[0],xs_valid[1]] , y=y_valid,batch_size=BATCH_SIZE, verbose=1) for i in range(len(model_norm_metrics.metrics_names)): print " %s : %.3f" %(model_norm_metrics.metrics_names[i],evalHist[i]) evalHistdic[model_norm_metrics.metrics_names[i]].append(evalHist[i]) if saveAtEveryValidation: print "saving weights" model_norm.save_weights(WEIGHTS_PATH) elif ((i+1)==(EPOCHS/VALIDATE_EVERY if not EPOCHS%VALIDATE_EVERY else EPOCHS/VALIDATE_EVERY+1)): print "saving weights" model_norm.save_weights(WEIGHTS_PATH) if (i == 0) and debug: print("\nFree GPU Mem in train loop %s MiB " % (sbcuda.cuda_ndarray.cuda_ndarray.mem_info()[0]/1024./1024.)) import json with open(TRAIN_LOSS_SF_PATH, 'a')as f: f.write("#eval losses and metrics:\n") f.write(json.dumps(evalHistdic)) f.write("\n") f.write("#fit losses:\n") f.write(json.dumps(hists)) f.write("\n") print "Done!" exit()
bsd-3-clause
andaag/scikit-learn
examples/cluster/plot_birch_vs_minibatchkmeans.py
333
3694
""" ================================= Compare BIRCH and MiniBatchKMeans ================================= This example compares the timing of Birch (with and without the global clustering step) and MiniBatchKMeans on a synthetic dataset having 100,000 samples and 2 features generated using make_blobs. If ``n_clusters`` is set to None, the data is reduced from 100,000 samples to a set of 158 clusters. This can be viewed as a preprocessing step before the final (global) clustering step that further reduces these 158 clusters to 100 clusters. """ # Authors: Manoj Kumar <[email protected] # Alexandre Gramfort <[email protected]> # License: BSD 3 clause print(__doc__) from itertools import cycle from time import time import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors from sklearn.preprocessing import StandardScaler from sklearn.cluster import Birch, MiniBatchKMeans from sklearn.datasets.samples_generator import make_blobs # Generate centers for the blobs so that it forms a 10 X 10 grid. xx = np.linspace(-22, 22, 10) yy = np.linspace(-22, 22, 10) xx, yy = np.meshgrid(xx, yy) n_centres = np.hstack((np.ravel(xx)[:, np.newaxis], np.ravel(yy)[:, np.newaxis])) # Generate blobs to do a comparison between MiniBatchKMeans and Birch. X, y = make_blobs(n_samples=100000, centers=n_centres, random_state=0) # Use all colors that matplotlib provides by default. colors_ = cycle(colors.cnames.keys()) fig = plt.figure(figsize=(12, 4)) fig.subplots_adjust(left=0.04, right=0.98, bottom=0.1, top=0.9) # Compute clustering with Birch with and without the final clustering step # and plot. birch_models = [Birch(threshold=1.7, n_clusters=None), Birch(threshold=1.7, n_clusters=100)] final_step = ['without global clustering', 'with global clustering'] for ind, (birch_model, info) in enumerate(zip(birch_models, final_step)): t = time() birch_model.fit(X) time_ = time() - t print("Birch %s as the final step took %0.2f seconds" % ( info, (time() - t))) # Plot result labels = birch_model.labels_ centroids = birch_model.subcluster_centers_ n_clusters = np.unique(labels).size print("n_clusters : %d" % n_clusters) ax = fig.add_subplot(1, 3, ind + 1) for this_centroid, k, col in zip(centroids, range(n_clusters), colors_): mask = labels == k ax.plot(X[mask, 0], X[mask, 1], 'w', markerfacecolor=col, marker='.') if birch_model.n_clusters is None: ax.plot(this_centroid[0], this_centroid[1], '+', markerfacecolor=col, markeredgecolor='k', markersize=5) ax.set_ylim([-25, 25]) ax.set_xlim([-25, 25]) ax.set_autoscaley_on(False) ax.set_title('Birch %s' % info) # Compute clustering with MiniBatchKMeans. mbk = MiniBatchKMeans(init='k-means++', n_clusters=100, batch_size=100, n_init=10, max_no_improvement=10, verbose=0, random_state=0) t0 = time() mbk.fit(X) t_mini_batch = time() - t0 print("Time taken to run MiniBatchKMeans %0.2f seconds" % t_mini_batch) mbk_means_labels_unique = np.unique(mbk.labels_) ax = fig.add_subplot(1, 3, 3) for this_centroid, k, col in zip(mbk.cluster_centers_, range(n_clusters), colors_): mask = mbk.labels_ == k ax.plot(X[mask, 0], X[mask, 1], 'w', markerfacecolor=col, marker='.') ax.plot(this_centroid[0], this_centroid[1], '+', markeredgecolor='k', markersize=5) ax.set_xlim([-25, 25]) ax.set_ylim([-25, 25]) ax.set_title("MiniBatchKMeans") ax.set_autoscaley_on(False) plt.show()
bsd-3-clause
adelomana/schema
conditionedFitness/figureEngineered/script.1.2.py
2
2568
import numpy,sys,scipy,pickle import matplotlib.pyplot sys.path.append('../lib') import calculateStatistics ### MAIN matplotlib.rcParams.update({'font.size':36,'font.family':'Times New Roman','xtick.labelsize':28,'ytick.labelsize':28}) thePointSize=12 jarDir='/Users/adriandelomana/scratch/' # engineered 1.2 xSignal=numpy.array([[216,212,180,196,190],[49,50,59,60,61]]) xNoSignal=numpy.array([[195,186,164,228,159],[87,76,80,94,92]]) cf_mu_0, cf_sd_0, pvalue_0 = calculateStatistics.main(xSignal, xNoSignal) xSignal=numpy.array([[152,147,102,110,127,],[104,73,92,76,89]]) xNoSignal=numpy.array([[126,155,145,126,145],[72,60,61,61,67]]) cf_mu_50, cf_sd_50, pvalue_50 = calculateStatistics.main(xSignal, xNoSignal) xSignal=numpy.array([[116,124,87],[123,114,134]]) xNoSignal=numpy.array([[148,142,144],[125,94,104]]) cf_mu_190, cf_sd_190, pvalue_190 = calculateStatistics.main(xSignal, xNoSignal) xSignal=numpy.array([[116,105,88,83,78],[96,126,135,118,118]]) xNoSignal=numpy.array([[79,81,101,92,114],[147,132,111,112,109]]) cf_mu_300, cf_sd_300, pvalue_300 = calculateStatistics.main(xSignal, xNoSignal) x = [0, 50, 190, 300] y = [cf_mu_0, cf_mu_50, cf_mu_190, cf_mu_300] z = [cf_sd_0, cf_sd_50, cf_sd_190, cf_sd_300] w = [pvalue_0, pvalue_50, pvalue_190, pvalue_300] print(y) matplotlib.pyplot.errorbar(x,y,yerr=z,fmt=':o',color='blue',ecolor='blue',markeredgecolor='blue',capsize=0,ms=thePointSize,mew=0) for i in range(len(w)): if y[i] > 0.: sp=y[i]+z[i]+0.02 else: sp=y[i]-z[i]-0.02 if w[i] < 0.05 and w[i] >= 0.01: matplotlib.pyplot.scatter(x[i], sp, s=75, c='black', marker=r"${*}$", edgecolors='none') if w[i] < 0.01: matplotlib.pyplot.scatter(x[i]-3, sp, s=75, c='black', marker=r"${*}$", edgecolors='none') matplotlib.pyplot.scatter(x[i]+3, sp, s=75, c='black', marker=r"${*}$", edgecolors='none') matplotlib.pyplot.plot([0,300],[0,0],'--',color='black') sequencing=[0,50,300] top=-0.4 for xpos in sequencing: matplotlib.pyplot.scatter(xpos, top, s=400, c='black', marker=r"x", edgecolors='none') matplotlib.pyplot.xlim([-25,325]) matplotlib.pyplot.ylim([-0.55,0.55]) matplotlib.pyplot.yticks([-0.4,-0.2,0,0.2,0.4]) matplotlib.pyplot.xlabel('Generation') matplotlib.pyplot.ylabel('Conditioned Fitness') matplotlib.pyplot.tight_layout(pad=0.5) matplotlib.pyplot.savefig('figure.engineered.1.2.pdf') matplotlib.pyplot.clf() # save processed data alternative plotting trajectory=[x,y,z] jarFile=jarDir+'engineered.1.2.pickle' f=open(jarFile,'wb') pickle.dump(trajectory,f) f.close()
gpl-3.0
zaxtax/scikit-learn
examples/cluster/plot_lena_compress.py
271
2229
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Vector Quantization Example ========================================================= The classic image processing example, Lena, an 8-bit grayscale bit-depth, 512 x 512 sized image, is used here to illustrate how `k`-means is used for vector quantization. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import scipy as sp import matplotlib.pyplot as plt from sklearn import cluster n_clusters = 5 np.random.seed(0) try: lena = sp.lena() except AttributeError: # Newer versions of scipy have lena in misc from scipy import misc lena = misc.lena() X = lena.reshape((-1, 1)) # We need an (n_sample, n_feature) array k_means = cluster.KMeans(n_clusters=n_clusters, n_init=4) k_means.fit(X) values = k_means.cluster_centers_.squeeze() labels = k_means.labels_ # create an array from labels and values lena_compressed = np.choose(labels, values) lena_compressed.shape = lena.shape vmin = lena.min() vmax = lena.max() # original lena plt.figure(1, figsize=(3, 2.2)) plt.imshow(lena, cmap=plt.cm.gray, vmin=vmin, vmax=256) # compressed lena plt.figure(2, figsize=(3, 2.2)) plt.imshow(lena_compressed, cmap=plt.cm.gray, vmin=vmin, vmax=vmax) # equal bins lena regular_values = np.linspace(0, 256, n_clusters + 1) regular_labels = np.searchsorted(regular_values, lena) - 1 regular_values = .5 * (regular_values[1:] + regular_values[:-1]) # mean regular_lena = np.choose(regular_labels.ravel(), regular_values) regular_lena.shape = lena.shape plt.figure(3, figsize=(3, 2.2)) plt.imshow(regular_lena, cmap=plt.cm.gray, vmin=vmin, vmax=vmax) # histogram plt.figure(4, figsize=(3, 2.2)) plt.clf() plt.axes([.01, .01, .98, .98]) plt.hist(X, bins=256, color='.5', edgecolor='.5') plt.yticks(()) plt.xticks(regular_values) values = np.sort(values) for center_1, center_2 in zip(values[:-1], values[1:]): plt.axvline(.5 * (center_1 + center_2), color='b') for center_1, center_2 in zip(regular_values[:-1], regular_values[1:]): plt.axvline(.5 * (center_1 + center_2), color='b', linestyle='--') plt.show()
bsd-3-clause
kylerbrown/scikit-learn
sklearn/semi_supervised/label_propagation.py
128
15312
# coding=utf8 """ Label propagation in the context of this module refers to a set of semisupervised classification algorithms. In the high level, these algorithms work by forming a fully-connected graph between all points given and solving for the steady-state distribution of labels at each point. These algorithms perform very well in practice. The cost of running can be very expensive, at approximately O(N^3) where N is the number of (labeled and unlabeled) points. The theory (why they perform so well) is motivated by intuitions from random walk algorithms and geometric relationships in the data. For more information see the references below. Model Features -------------- Label clamping: The algorithm tries to learn distributions of labels over the dataset. In the "Hard Clamp" mode, the true ground labels are never allowed to change. They are clamped into position. In the "Soft Clamp" mode, they are allowed some wiggle room, but some alpha of their original value will always be retained. Hard clamp is the same as soft clamping with alpha set to 1. Kernel: A function which projects a vector into some higher dimensional space. This implementation supprots RBF and KNN kernels. Using the RBF kernel generates a dense matrix of size O(N^2). KNN kernel will generate a sparse matrix of size O(k*N) which will run much faster. See the documentation for SVMs for more info on kernels. Examples -------- >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelPropagation >>> label_prop_model = LabelPropagation() >>> iris = datasets.load_iris() >>> random_unlabeled_points = np.where(np.random.random_integers(0, 1, ... size=len(iris.target))) >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS LabelPropagation(...) Notes ----- References: [1] Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux. In Semi-Supervised Learning (2006), pp. 193-216 [2] Olivier Delalleau, Yoshua Bengio, Nicolas Le Roux. Efficient Non-Parametric Function Induction in Semi-Supervised Learning. AISTAT 2005 """ # Authors: Clay Woolam <[email protected]> # Licence: BSD from abc import ABCMeta, abstractmethod from scipy import sparse import numpy as np from ..base import BaseEstimator, ClassifierMixin from ..metrics.pairwise import rbf_kernel from ..utils.graph import graph_laplacian from ..utils.extmath import safe_sparse_dot from ..utils.validation import check_X_y, check_is_fitted from ..externals import six from ..neighbors.unsupervised import NearestNeighbors ### Helper functions def _not_converged(y_truth, y_prediction, tol=1e-3): """basic convergence check""" return np.abs(y_truth - y_prediction).sum() > tol class BaseLabelPropagation(six.with_metaclass(ABCMeta, BaseEstimator, ClassifierMixin)): """Base class for label propagation module. Parameters ---------- kernel : {'knn', 'rbf'} String identifier for kernel function to use. Only 'rbf' and 'knn' kernels are currently supported.. gamma : float Parameter for rbf kernel alpha : float Clamping factor max_iter : float Change maximum number of iterations allowed tol : float Convergence tolerance: threshold to consider the system at steady state n_neighbors : integer > 0 Parameter for knn kernel """ def __init__(self, kernel='rbf', gamma=20, n_neighbors=7, alpha=1, max_iter=30, tol=1e-3): self.max_iter = max_iter self.tol = tol # kernel parameters self.kernel = kernel self.gamma = gamma self.n_neighbors = n_neighbors # clamping factor self.alpha = alpha def _get_kernel(self, X, y=None): if self.kernel == "rbf": if y is None: return rbf_kernel(X, X, gamma=self.gamma) else: return rbf_kernel(X, y, gamma=self.gamma) elif self.kernel == "knn": if self.nn_fit is None: self.nn_fit = NearestNeighbors(self.n_neighbors).fit(X) if y is None: return self.nn_fit.kneighbors_graph(self.nn_fit._fit_X, self.n_neighbors, mode='connectivity') else: return self.nn_fit.kneighbors(y, return_distance=False) else: raise ValueError("%s is not a valid kernel. Only rbf and knn" " are supported at this time" % self.kernel) @abstractmethod def _build_graph(self): raise NotImplementedError("Graph construction must be implemented" " to fit a label propagation model.") def predict(self, X): """Performs inductive inference across the model. Parameters ---------- X : array_like, shape = [n_samples, n_features] Returns ------- y : array_like, shape = [n_samples] Predictions for input data """ probas = self.predict_proba(X) return self.classes_[np.argmax(probas, axis=1)].ravel() def predict_proba(self, X): """Predict probability for each possible outcome. Compute the probability estimates for each single sample in X and each possible outcome seen during training (categorical distribution). Parameters ---------- X : array_like, shape = [n_samples, n_features] Returns ------- probabilities : array, shape = [n_samples, n_classes] Normalized probability distributions across class labels """ check_is_fitted(self, 'X_') if sparse.isspmatrix(X): X_2d = X else: X_2d = np.atleast_2d(X) weight_matrices = self._get_kernel(self.X_, X_2d) if self.kernel == 'knn': probabilities = [] for weight_matrix in weight_matrices: ine = np.sum(self.label_distributions_[weight_matrix], axis=0) probabilities.append(ine) probabilities = np.array(probabilities) else: weight_matrices = weight_matrices.T probabilities = np.dot(weight_matrices, self.label_distributions_) normalizer = np.atleast_2d(np.sum(probabilities, axis=1)).T probabilities /= normalizer return probabilities def fit(self, X, y): """Fit a semi-supervised label propagation model based All the input data is provided matrix X (labeled and unlabeled) and corresponding label matrix y with a dedicated marker value for unlabeled samples. Parameters ---------- X : array-like, shape = [n_samples, n_features] A {n_samples by n_samples} size matrix will be created from this y : array_like, shape = [n_samples] n_labeled_samples (unlabeled points are marked as -1) All unlabeled samples will be transductively assigned labels Returns ------- self : returns an instance of self. """ X, y = check_X_y(X, y) self.X_ = X # actual graph construction (implementations should override this) graph_matrix = self._build_graph() # label construction # construct a categorical distribution for classification only classes = np.unique(y) classes = (classes[classes != -1]) self.classes_ = classes n_samples, n_classes = len(y), len(classes) y = np.asarray(y) unlabeled = y == -1 clamp_weights = np.ones((n_samples, 1)) clamp_weights[unlabeled, 0] = self.alpha # initialize distributions self.label_distributions_ = np.zeros((n_samples, n_classes)) for label in classes: self.label_distributions_[y == label, classes == label] = 1 y_static = np.copy(self.label_distributions_) if self.alpha > 0.: y_static *= 1 - self.alpha y_static[unlabeled] = 0 l_previous = np.zeros((self.X_.shape[0], n_classes)) remaining_iter = self.max_iter if sparse.isspmatrix(graph_matrix): graph_matrix = graph_matrix.tocsr() while (_not_converged(self.label_distributions_, l_previous, self.tol) and remaining_iter > 1): l_previous = self.label_distributions_ self.label_distributions_ = safe_sparse_dot( graph_matrix, self.label_distributions_) # clamp self.label_distributions_ = np.multiply( clamp_weights, self.label_distributions_) + y_static remaining_iter -= 1 normalizer = np.sum(self.label_distributions_, axis=1)[:, np.newaxis] self.label_distributions_ /= normalizer # set the transduction item transduction = self.classes_[np.argmax(self.label_distributions_, axis=1)] self.transduction_ = transduction.ravel() self.n_iter_ = self.max_iter - remaining_iter return self class LabelPropagation(BaseLabelPropagation): """Label Propagation classifier Read more in the :ref:`User Guide <label_propagation>`. Parameters ---------- kernel : {'knn', 'rbf'} String identifier for kernel function to use. Only 'rbf' and 'knn' kernels are currently supported.. gamma : float Parameter for rbf kernel n_neighbors : integer > 0 Parameter for knn kernel alpha : float Clamping factor max_iter : float Change maximum number of iterations allowed tol : float Convergence tolerance: threshold to consider the system at steady state Attributes ---------- X_ : array, shape = [n_samples, n_features] Input array. classes_ : array, shape = [n_classes] The distinct labels used in classifying instances. label_distributions_ : array, shape = [n_samples, n_classes] Categorical distribution for each item. transduction_ : array, shape = [n_samples] Label assigned to each item via the transduction. n_iter_ : int Number of iterations run. Examples -------- >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelPropagation >>> label_prop_model = LabelPropagation() >>> iris = datasets.load_iris() >>> random_unlabeled_points = np.where(np.random.random_integers(0, 1, ... size=len(iris.target))) >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS LabelPropagation(...) References ---------- Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label propagation. Technical Report CMU-CALD-02-107, Carnegie Mellon University, 2002 http://pages.cs.wisc.edu/~jerryzhu/pub/CMU-CALD-02-107.pdf See Also -------- LabelSpreading : Alternate label propagation strategy more robust to noise """ def _build_graph(self): """Matrix representing a fully connected graph between each sample This basic implementation creates a non-stochastic affinity matrix, so class distributions will exceed 1 (normalization may be desired). """ if self.kernel == 'knn': self.nn_fit = None affinity_matrix = self._get_kernel(self.X_) normalizer = affinity_matrix.sum(axis=0) if sparse.isspmatrix(affinity_matrix): affinity_matrix.data /= np.diag(np.array(normalizer)) else: affinity_matrix /= normalizer[:, np.newaxis] return affinity_matrix class LabelSpreading(BaseLabelPropagation): """LabelSpreading model for semi-supervised learning This model is similar to the basic Label Propgation algorithm, but uses affinity matrix based on the normalized graph Laplacian and soft clamping across the labels. Read more in the :ref:`User Guide <label_propagation>`. Parameters ---------- kernel : {'knn', 'rbf'} String identifier for kernel function to use. Only 'rbf' and 'knn' kernels are currently supported. gamma : float parameter for rbf kernel n_neighbors : integer > 0 parameter for knn kernel alpha : float clamping factor max_iter : float maximum number of iterations allowed tol : float Convergence tolerance: threshold to consider the system at steady state Attributes ---------- X_ : array, shape = [n_samples, n_features] Input array. classes_ : array, shape = [n_classes] The distinct labels used in classifying instances. label_distributions_ : array, shape = [n_samples, n_classes] Categorical distribution for each item. transduction_ : array, shape = [n_samples] Label assigned to each item via the transduction. n_iter_ : int Number of iterations run. Examples -------- >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelSpreading >>> label_prop_model = LabelSpreading() >>> iris = datasets.load_iris() >>> random_unlabeled_points = np.where(np.random.random_integers(0, 1, ... size=len(iris.target))) >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS LabelSpreading(...) References ---------- Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, Bernhard Schoelkopf. Learning with local and global consistency (2004) http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.3219 See Also -------- LabelPropagation : Unregularized graph based semi-supervised learning """ def __init__(self, kernel='rbf', gamma=20, n_neighbors=7, alpha=0.2, max_iter=30, tol=1e-3): # this one has different base parameters super(LabelSpreading, self).__init__(kernel=kernel, gamma=gamma, n_neighbors=n_neighbors, alpha=alpha, max_iter=max_iter, tol=tol) def _build_graph(self): """Graph matrix for Label Spreading computes the graph laplacian""" # compute affinity matrix (or gram matrix) if self.kernel == 'knn': self.nn_fit = None n_samples = self.X_.shape[0] affinity_matrix = self._get_kernel(self.X_) laplacian = graph_laplacian(affinity_matrix, normed=True) laplacian = -laplacian if sparse.isspmatrix(laplacian): diag_mask = (laplacian.row == laplacian.col) laplacian.data[diag_mask] = 0.0 else: laplacian.flat[::n_samples + 1] = 0.0 # set diag to 0.0 return laplacian
bsd-3-clause
myselfHimanshu/UdacityDSWork
Intro-To-Data-Science/Lesson2/PS2_1.py
2
1480
import pandas import pandasql def num_rainy_days(filename): ''' This function should run a SQL query on a dataframe of weather data. The SQL query should return one column and one row - a count of the number of days in the dataframe where the rain column is equal to 1 (i.e., the number of days it rained). The dataframe will be titled 'weather_data'. You'll need to provide the SQL query. You might find SQL's count function useful for this exercise. You can read more about it here: https://dev.mysql.com/doc/refman/5.1/en/counting-rows.html You might also find that interpreting numbers as integers or floats may not work initially. In order to get around this issue, it may be useful to cast these numbers as integers. This can be done by writing cast(column as integer). So for example, if we wanted to cast the maxtempi column as an integer, we would actually write something like where cast(maxtempi as integer) = 76, as opposed to simply where maxtempi = 76. You can see the weather data that we are passing in below: https://www.dropbox.com/s/7sf0yqc9ykpq3w8/weather_underground.csv ''' weather_data = pandas.read_csv(filename) #print weather_data['rain'].head() q = """ SELECT sum(rain) from weather_data """ #Execute your SQL command against the pandas frame rainy_days = pandasql.sqldf(q.lower(), locals()) return rainy_days
gpl-2.0
abretaud/tools-iuc
tools/table_compute/scripts/table_compute.py
10
14161
#!/usr/bin/env python3 """ Table Compute tool - a wrapper around pandas with parameter input validation. """ __version__ = "0.9.2" import csv import math from sys import argv import numpy as np import pandas as pd from safety import Safety if len(argv) == 2 and argv[1] == "--version": print(__version__) exit(-1) # The import below should be generated in the same directory as # the table_compute.py script. # It is placed here so that the --version switch does not fail import userconfig as uc # noqa: I100,I202 class Utils: @staticmethod def getOneValueMathOp(op_name): "Returns a simple one value math operator such as log, sqrt, etc" return getattr(math, op_name) @staticmethod def getVectorPandaOp(op_name): "Returns a valid DataFrame vector operator" return getattr(pd.DataFrame, op_name) @staticmethod def getTwoValuePandaOp(op_name, pd_obj): "Returns a valid two value DataFrame or Series operator" return getattr(type(pd_obj), "__" + op_name + "__") @staticmethod def readcsv(filedict, narm): data = pd.read_csv( filedict["file"], header=filedict["header"], index_col=filedict["row_names"], keep_default_na=narm, nrows=filedict["nrows"], skipfooter=filedict["skipfooter"], skip_blank_lines=filedict["skip_blank_lines"], sep='\t' ) # Fix whitespace issues in index or column names data.columns = [col.strip() if type(col) is str else col for col in data.columns] data.index = [row.strip() if type(row) is str else row for row in data.index] return(data) @staticmethod def rangemaker(tab): # e.g. "1:3,2:-2" specifies "1,2,3,2,1,0,-1,-2" to give [0,1,2,1,0,-1,-2] # Positive indices are decremented by 1 to reference 0-base numbering # Negative indices are unaltered, so that -1 refers to the last column out = [] err_mess = None for ranges in tab.split(","): nums = ranges.split(":") if len(nums) == 1: numb = int(nums[0]) # Positive numbers get decremented. # i.e. column "3" refers to index 2 # column "-1" still refers to index -1 if numb != 0: out.append(numb if (numb < 0) else (numb - 1)) else: err_mess = "Please do not use 0 as an index" elif len(nums) == 2: left, right = map(int, nums) if 0 in (left, right): err_mess = "Please do not use 0 as an index" elif left < right: if left > 0: # and right > 0 too # 1:3 to 0,1,2 out.extend(range(left - 1, right)) elif right < 0: # and left < 0 too # -3:-1 to -3,-2,-1 out.extend(range(left, right + 1)) elif left < 0 and right > 0: # -2:2 to -2,-1,0,1 out.extend(range(left, 0)) out.extend(range(0, right)) elif right < left: if right > 0: # and left > 0 # 3:1 to 2,1,0 out.extend(range(left - 1, right - 2, -1)) elif left < 0: # and right < 0 # -1:-3 to -1,-2,-3 out.extend(range(left, right - 1, -1)) elif right < 0 and left > 0: # 2:-2 to 1,0,-1,-2 out.extend(range(left - 1, right - 1, -1)) else: err_mess = "%s should not be equal or contain a zero" % nums if err_mess: print(err_mess) return(None) return(out) # Set decimal precision pd.options.display.precision = uc.Default["precision"] user_mode = uc.Default["user_mode"] user_mode_single = None out_table = None params = uc.Data["params"] if user_mode == "single": # Read in TSV file data = Utils.readcsv(uc.Data["tables"][0], uc.Default["narm"]) user_mode_single = params["user_mode_single"] if user_mode_single == "precision": # Useful for changing decimal precision on write out out_table = data elif user_mode_single == "select": cols_specified = params["select_cols_wanted"] rows_specified = params["select_rows_wanted"] # Select all indexes if empty array of values if cols_specified: cols_specified = Utils.rangemaker(cols_specified) else: cols_specified = range(len(data.columns)) if rows_specified: rows_specified = Utils.rangemaker(rows_specified) else: rows_specified = range(len(data)) # do not use duplicate indexes # e.g. [2,3,2,5,5,4,2] to [2,3,5,4] nodupes_col = not params["select_cols_unique"] nodupes_row = not params["select_rows_unique"] if nodupes_col: cols_specified = [x for i, x in enumerate(cols_specified) if x not in cols_specified[:i]] if nodupes_row: rows_specified = [x for i, x in enumerate(rows_specified) if x not in rows_specified[:i]] out_table = data.iloc[rows_specified, cols_specified] elif user_mode_single == "filtersumval": mode = params["filtersumval_mode"] axis = params["filtersumval_axis"] operation = params["filtersumval_op"] compare_operation = params["filtersumval_compare"] value = params["filtersumval_against"] minmatch = params["filtersumval_minmatch"] if mode == "operation": # Perform axis operation summary_op = Utils.getVectorPandaOp(operation) axis_summary = summary_op(data, axis=axis) # Perform vector comparison compare_op = Utils.getTwoValuePandaOp( compare_operation, axis_summary ) axis_bool = compare_op(axis_summary, value) elif mode == "element": if operation.startswith("str_"): data = data.astype("str") value = str(value) # Convert str_eq to eq operation = operation[4:] else: value = float(value) op = Utils.getTwoValuePandaOp(operation, data) bool_mat = op(data, value) axis_bool = np.sum(bool_mat, axis=axis) >= minmatch out_table = data.loc[:, axis_bool] if axis == 0 else data.loc[axis_bool, :] elif user_mode_single == "matrixapply": # 0 - column, 1 - row axis = params["matrixapply_dimension"] # sd, mean, max, min, sum, median, summary operation = params["matrixapply_op"] if operation is None: use_custom = params["matrixapply_custom"] if use_custom: custom_func = params["matrixapply_custom_func"] def fun(vec): """Dummy Function""" return vec ss = Safety(custom_func, ['vec'], 'pd.Series') fun_string = ss.generateFunction() exec(fun_string) # SUPER DUPER SAFE... out_table = data.apply(fun, axis) else: print("No operation given") exit(-1) else: op = getattr(pd.DataFrame, operation) out_table = op(data, axis) elif user_mode_single == "element": # lt, gt, ge, etc. operation = params["element_op"] bool_mat = None if operation is not None: if operation == "rowcol": # Select all indexes if empty array of values if "element_cols" in params: cols_specified = Utils.rangemaker(params["element_cols"]) else: cols_specified = range(len(data.columns)) if "element_rows" in params: rows_specified = Utils.rangemaker(params["element_rows"]) else: rows_specified = range(len(data)) # Inclusive selection: # - True: Giving a row or column will match all elements in that row or column # - False: Give a row or column will match only elements in both those rows or columns inclusive = params["element_inclusive"] # Create a bool matrix (intialised to False) with selected # rows and columns set to True bool_mat = data.copy() bool_mat[:] = False if inclusive: bool_mat.iloc[rows_specified, :] = True bool_mat.iloc[:, cols_specified] = True else: bool_mat.iloc[rows_specified, cols_specified] = True else: op = Utils.getTwoValuePandaOp(operation, data) value = params["element_value"] try: # Could be numeric value = float(value) except ValueError: pass # generate filter matrix of True/False values bool_mat = op(data, value) else: # implement no filtering through a filter matrix filled with # True values. bool_mat = np.full(data.shape, True) # Get the main processing mode mode = params["element_mode"] if mode == "replace": replacement_val = params["element_replace"] out_table = data.mask( bool_mat, data.where(bool_mat).applymap( lambda x: replacement_val.format(elem=x) ) ) elif mode == "modify": mod_op = Utils.getOneValueMathOp(params["element_modify_op"]) out_table = data.mask( bool_mat, data.where(bool_mat).applymap(mod_op) ) elif mode == "scale": scale_op = Utils.getTwoValuePandaOp( params["element_scale_op"], data ) scale_value = params["element_scale_value"] out_table = data.mask( bool_mat, scale_op(data.where(bool_mat), scale_value) ) elif mode == "custom": element_customop = params["element_customop"] def fun(elem): """Dummy Function""" return elem ss = Safety(element_customop, ['elem']) fun_string = ss.generateFunction() exec(fun_string) # SUPER DUPER SAFE... out_table = data.mask( bool_mat, data.where(bool_mat).applymap(fun) ) else: print("No such element mode!", mode) exit(-1) elif user_mode_single == "fulltable": general_mode = params["mode"] if general_mode == "transpose": out_table = data.T elif general_mode == "melt": melt_ids = params["MELT"]["melt_ids"] melt_values = params["MELT"]["melt_values"] out_table = pd.melt(data, id_vars=melt_ids, value_vars=melt_values) elif general_mode == "pivot": pivot_index = params["PIVOT"]["pivot_index"] pivot_column = params["PIVOT"]["pivot_column"] pivot_values = params["PIVOT"]["pivot_values"] out_table = data.pivot( index=pivot_index, columns=pivot_column, values=pivot_values ) elif general_mode == "custom": custom_func = params["fulltable_customop"] def fun(tableau): """Dummy Function""" return tableau ss = Safety(custom_func, ['table'], 'pd.DataFrame') fun_string = ss.generateFunction() exec(fun_string) # SUPER DUPER SAFE... out_table = fun(data) else: print("No such mode!", user_mode_single) exit(-1) elif user_mode == "multiple": table_sections = uc.Data["tables"] if not table_sections: print("Multiple table sets not given!") exit(-1) reader_skip = uc.Default["reader_skip"] # Data table = [] # 1-based handlers for users "table1", "table2", etc. table_names = [] # Actual 0-based references "table[0]", "table[1]", etc. table_names_real = [] # Read and populate tables for x, t_sect in enumerate(table_sections): tmp = Utils.readcsv(t_sect, uc.Default["narm"]) table.append(tmp) table_names.append("table" + str(x + 1)) table_names_real.append("table[" + str(x) + "]") custom_op = params["fulltable_customop"] ss = Safety(custom_op, table_names, 'pd.DataFrame') fun_string = ss.generateFunction() # Change the argument to table fun_string = fun_string.replace("fun(table1):", "fun():") # table1 to table[1] for name, name_real in zip(table_names, table_names_real): fun_string = fun_string.replace(name, name_real) fun_string = fun_string.replace("fun():", "fun(table):") exec(fun_string) # SUPER DUPER SAFE... out_table = fun(table) else: print("No such mode!", user_mode) exit(-1) if not isinstance(out_table, (pd.DataFrame, pd.Series)): print('The specified operation did not result in a table to return.') raise RuntimeError( 'The operation did not generate a pd.DataFrame or pd.Series to return.' ) out_parameters = { "sep": "\t", "float_format": "%%.%df" % pd.options.display.precision, "header": uc.Default["out_headers_col"], "index": uc.Default["out_headers_row"] } if user_mode_single not in ('matrixapply', None): out_parameters["quoting"] = csv.QUOTE_NONE out_table.to_csv(uc.Default["outtable"], **out_parameters)
mit
shaman-tech/Hacker-Hostel-2017
reader.py
1
1943
import pandas as pd import numpy as np import sqlite3 def create_sql_command(row_entry): index = "" for column_value in row_entry: if index == "": if type(column_value) == str: index = "'%s'"%(column_value) else: index = str(column_value) else: if type(column_value) == str: index = index + ", " + "'%s'"%(column_value) else: index = index + ", " + str(column_value) return str(index) def change_float_int(df_column): for index,value in enumerate(df_column.values): df_column[index] = int(value) return df_column def populate_product_num(df): supplier_columns = ['PONUM','PODate','SUPPLIER','ShippingLine','ETAJamaica','ETATGG','AADTGG','DateOffloaded','Dateleft'] for index, prod_num in enumerate(df['PONUM']): if prod_num == '?' and df.loc[index,'SUPPLIER'] == "?": for column in supplier_columns: df.loc[index,column] = df.loc[index-1,column] elif df.loc[index,'SUPPLIER'] == "?" and prod_num != "?": for column in supplier_columns[2:]: df.loc[index,column] = df.loc[index-1,column] elif prod_num == "?": for column in supplier_columns: df.loc[index,column] = df.loc[index-1,column] return df # cn = sqlite3.connect('db.sqlite') # curs = cn.cursor() fields = "PONUM,PODate,SUPPLIER,ProductDescription,Qty,SizeContainer,ContainerNUM,ShippingLine,ETAJamaica,ETATGG,AADTGG,DateOffloaded,Dateleft"#create_sql_command(column_names) df = pd.read_csv('TGG_Merchandise.csv',skiprows=5, names=fields.split(",")) df = df.fillna(0) df['PONUM']= df['PONUM'].astype(int) column_names = list(df.columns) column_values = df.values df = df.replace(0, '?') df = df.replace("","?") df = populate_product_num(df) df.to_csv('sample.csv') # for row in column_values: # create_table_command = "{} TGG_MERCHANDISE ({}) {} ({})".format('INSERT INTO',fields,'VALUES',create_sql_command(row)) # curs.execute((create_table_command)) # for name in column_names: # print(name.split())
mit
voxlol/scikit-learn
sklearn/linear_model/least_angle.py
42
49357
""" Least Angle Regression algorithm. See the documentation on the Generalized Linear Model for a complete discussion. """ from __future__ import print_function # Author: Fabian Pedregosa <[email protected]> # Alexandre Gramfort <[email protected]> # Gael Varoquaux # # License: BSD 3 clause from math import log import sys import warnings from distutils.version import LooseVersion import numpy as np from scipy import linalg, interpolate from scipy.linalg.lapack import get_lapack_funcs from .base import LinearModel from ..base import RegressorMixin from ..utils import arrayfuncs, as_float_array, check_X_y from ..cross_validation import check_cv from ..utils import ConvergenceWarning from ..externals.joblib import Parallel, delayed from ..externals.six.moves import xrange import scipy solve_triangular_args = {} if LooseVersion(scipy.__version__) >= LooseVersion('0.12'): solve_triangular_args = {'check_finite': False} def lars_path(X, y, Xy=None, Gram=None, max_iter=500, alpha_min=0, method='lar', copy_X=True, eps=np.finfo(np.float).eps, copy_Gram=True, verbose=0, return_path=True, return_n_iter=False): """Compute Least Angle Regression or Lasso path using LARS algorithm [1] The optimization objective for the case method='lasso' is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 in the case of method='lars', the objective function is only known in the form of an implicit equation (see discussion in [1]) Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ----------- X : array, shape: (n_samples, n_features) Input data. y : array, shape: (n_samples) Input targets. max_iter : integer, optional (default=500) Maximum number of iterations to perform, set to infinity for no limit. Gram : None, 'auto', array, shape: (n_features, n_features), optional Precomputed Gram matrix (X' * X), if ``'auto'``, the Gram matrix is precomputed from the given X, if there are more samples than features. alpha_min : float, optional (default=0) Minimum correlation along the path. It corresponds to the regularization parameter alpha parameter in the Lasso. method : {'lar', 'lasso'}, optional (default='lar') Specifies the returned model. Select ``'lar'`` for Least Angle Regression, ``'lasso'`` for the Lasso. eps : float, optional (default=``np.finfo(np.float).eps``) The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. copy_X : bool, optional (default=True) If ``False``, ``X`` is overwritten. copy_Gram : bool, optional (default=True) If ``False``, ``Gram`` is overwritten. verbose : int (default=0) Controls output verbosity. return_path : bool, optional (default=True) If ``return_path==True`` returns the entire path, else returns only the last point of the path. return_n_iter : bool, optional (default=False) Whether to return the number of iterations. Returns -------- alphas : array, shape: [n_alphas + 1] Maximum of covariances (in absolute value) at each iteration. ``n_alphas`` is either ``max_iter``, ``n_features`` or the number of nodes in the path with ``alpha >= alpha_min``, whichever is smaller. active : array, shape [n_alphas] Indices of active variables at the end of the path. coefs : array, shape (n_features, n_alphas + 1) Coefficients along the path n_iter : int Number of iterations run. Returned only if return_n_iter is set to True. See also -------- lasso_path LassoLars Lars LassoLarsCV LarsCV sklearn.decomposition.sparse_encode References ---------- .. [1] "Least Angle Regression", Effron et al. http://www-stat.stanford.edu/~tibs/ftp/lars.pdf .. [2] `Wikipedia entry on the Least-angle regression <http://en.wikipedia.org/wiki/Least-angle_regression>`_ .. [3] `Wikipedia entry on the Lasso <http://en.wikipedia.org/wiki/Lasso_(statistics)#Lasso_method>`_ """ n_features = X.shape[1] n_samples = y.size max_features = min(max_iter, n_features) if return_path: coefs = np.zeros((max_features + 1, n_features)) alphas = np.zeros(max_features + 1) else: coef, prev_coef = np.zeros(n_features), np.zeros(n_features) alpha, prev_alpha = np.array([0.]), np.array([0.]) # better ideas? n_iter, n_active = 0, 0 active, indices = list(), np.arange(n_features) # holds the sign of covariance sign_active = np.empty(max_features, dtype=np.int8) drop = False # will hold the cholesky factorization. Only lower part is # referenced. # We are initializing this to "zeros" and not empty, because # it is passed to scipy linalg functions and thus if it has NaNs, # even if they are in the upper part that it not used, we # get errors raised. # Once we support only scipy > 0.12 we can use check_finite=False and # go back to "empty" L = np.zeros((max_features, max_features), dtype=X.dtype) swap, nrm2 = linalg.get_blas_funcs(('swap', 'nrm2'), (X,)) solve_cholesky, = get_lapack_funcs(('potrs',), (X,)) if Gram is None: if copy_X: # force copy. setting the array to be fortran-ordered # speeds up the calculation of the (partial) Gram matrix # and allows to easily swap columns X = X.copy('F') elif Gram == 'auto': Gram = None if X.shape[0] > X.shape[1]: Gram = np.dot(X.T, X) elif copy_Gram: Gram = Gram.copy() if Xy is None: Cov = np.dot(X.T, y) else: Cov = Xy.copy() if verbose: if verbose > 1: print("Step\t\tAdded\t\tDropped\t\tActive set size\t\tC") else: sys.stdout.write('.') sys.stdout.flush() tiny = np.finfo(np.float).tiny # to avoid division by 0 warning tiny32 = np.finfo(np.float32).tiny # to avoid division by 0 warning equality_tolerance = np.finfo(np.float32).eps while True: if Cov.size: C_idx = np.argmax(np.abs(Cov)) C_ = Cov[C_idx] C = np.fabs(C_) else: C = 0. if return_path: alpha = alphas[n_iter, np.newaxis] coef = coefs[n_iter] prev_alpha = alphas[n_iter - 1, np.newaxis] prev_coef = coefs[n_iter - 1] alpha[0] = C / n_samples if alpha[0] <= alpha_min + equality_tolerance: # early stopping if abs(alpha[0] - alpha_min) > equality_tolerance: # interpolation factor 0 <= ss < 1 if n_iter > 0: # In the first iteration, all alphas are zero, the formula # below would make ss a NaN ss = ((prev_alpha[0] - alpha_min) / (prev_alpha[0] - alpha[0])) coef[:] = prev_coef + ss * (coef - prev_coef) alpha[0] = alpha_min if return_path: coefs[n_iter] = coef break if n_iter >= max_iter or n_active >= n_features: break if not drop: ########################################################## # Append x_j to the Cholesky factorization of (Xa * Xa') # # # # ( L 0 ) # # L -> ( ) , where L * w = Xa' x_j # # ( w z ) and z = ||x_j|| # # # ########################################################## sign_active[n_active] = np.sign(C_) m, n = n_active, C_idx + n_active Cov[C_idx], Cov[0] = swap(Cov[C_idx], Cov[0]) indices[n], indices[m] = indices[m], indices[n] Cov_not_shortened = Cov Cov = Cov[1:] # remove Cov[0] if Gram is None: X.T[n], X.T[m] = swap(X.T[n], X.T[m]) c = nrm2(X.T[n_active]) ** 2 L[n_active, :n_active] = \ np.dot(X.T[n_active], X.T[:n_active].T) else: # swap does only work inplace if matrix is fortran # contiguous ... Gram[m], Gram[n] = swap(Gram[m], Gram[n]) Gram[:, m], Gram[:, n] = swap(Gram[:, m], Gram[:, n]) c = Gram[n_active, n_active] L[n_active, :n_active] = Gram[n_active, :n_active] # Update the cholesky decomposition for the Gram matrix if n_active: linalg.solve_triangular(L[:n_active, :n_active], L[n_active, :n_active], trans=0, lower=1, overwrite_b=True, **solve_triangular_args) v = np.dot(L[n_active, :n_active], L[n_active, :n_active]) diag = max(np.sqrt(np.abs(c - v)), eps) L[n_active, n_active] = diag if diag < 1e-7: # The system is becoming too ill-conditioned. # We have degenerate vectors in our active set. # We'll 'drop for good' the last regressor added. # Note: this case is very rare. It is no longer triggered by the # test suite. The `equality_tolerance` margin added in 0.16.0 to # get early stopping to work consistently on all versions of # Python including 32 bit Python under Windows seems to make it # very difficult to trigger the 'drop for good' strategy. warnings.warn('Regressors in active set degenerate. ' 'Dropping a regressor, after %i iterations, ' 'i.e. alpha=%.3e, ' 'with an active set of %i regressors, and ' 'the smallest cholesky pivot element being %.3e' % (n_iter, alpha, n_active, diag), ConvergenceWarning) # XXX: need to figure a 'drop for good' way Cov = Cov_not_shortened Cov[0] = 0 Cov[C_idx], Cov[0] = swap(Cov[C_idx], Cov[0]) continue active.append(indices[n_active]) n_active += 1 if verbose > 1: print("%s\t\t%s\t\t%s\t\t%s\t\t%s" % (n_iter, active[-1], '', n_active, C)) if method == 'lasso' and n_iter > 0 and prev_alpha[0] < alpha[0]: # alpha is increasing. This is because the updates of Cov are # bringing in too much numerical error that is greater than # than the remaining correlation with the # regressors. Time to bail out warnings.warn('Early stopping the lars path, as the residues ' 'are small and the current value of alpha is no ' 'longer well controlled. %i iterations, alpha=%.3e, ' 'previous alpha=%.3e, with an active set of %i ' 'regressors.' % (n_iter, alpha, prev_alpha, n_active), ConvergenceWarning) break # least squares solution least_squares, info = solve_cholesky(L[:n_active, :n_active], sign_active[:n_active], lower=True) if least_squares.size == 1 and least_squares == 0: # This happens because sign_active[:n_active] = 0 least_squares[...] = 1 AA = 1. else: # is this really needed ? AA = 1. / np.sqrt(np.sum(least_squares * sign_active[:n_active])) if not np.isfinite(AA): # L is too ill-conditioned i = 0 L_ = L[:n_active, :n_active].copy() while not np.isfinite(AA): L_.flat[::n_active + 1] += (2 ** i) * eps least_squares, info = solve_cholesky( L_, sign_active[:n_active], lower=True) tmp = max(np.sum(least_squares * sign_active[:n_active]), eps) AA = 1. / np.sqrt(tmp) i += 1 least_squares *= AA if Gram is None: # equiangular direction of variables in the active set eq_dir = np.dot(X.T[:n_active].T, least_squares) # correlation between each unactive variables and # eqiangular vector corr_eq_dir = np.dot(X.T[n_active:], eq_dir) else: # if huge number of features, this takes 50% of time, I # think could be avoided if we just update it using an # orthogonal (QR) decomposition of X corr_eq_dir = np.dot(Gram[:n_active, n_active:].T, least_squares) g1 = arrayfuncs.min_pos((C - Cov) / (AA - corr_eq_dir + tiny)) g2 = arrayfuncs.min_pos((C + Cov) / (AA + corr_eq_dir + tiny)) gamma_ = min(g1, g2, C / AA) # TODO: better names for these variables: z drop = False z = -coef[active] / (least_squares + tiny32) z_pos = arrayfuncs.min_pos(z) if z_pos < gamma_: # some coefficients have changed sign idx = np.where(z == z_pos)[0][::-1] # update the sign, important for LAR sign_active[idx] = -sign_active[idx] if method == 'lasso': gamma_ = z_pos drop = True n_iter += 1 if return_path: if n_iter >= coefs.shape[0]: del coef, alpha, prev_alpha, prev_coef # resize the coefs and alphas array add_features = 2 * max(1, (max_features - n_active)) coefs = np.resize(coefs, (n_iter + add_features, n_features)) alphas = np.resize(alphas, n_iter + add_features) coef = coefs[n_iter] prev_coef = coefs[n_iter - 1] alpha = alphas[n_iter, np.newaxis] prev_alpha = alphas[n_iter - 1, np.newaxis] else: # mimic the effect of incrementing n_iter on the array references prev_coef = coef prev_alpha[0] = alpha[0] coef = np.zeros_like(coef) coef[active] = prev_coef[active] + gamma_ * least_squares # update correlations Cov -= gamma_ * corr_eq_dir # See if any coefficient has changed sign if drop and method == 'lasso': # handle the case when idx is not length of 1 [arrayfuncs.cholesky_delete(L[:n_active, :n_active], ii) for ii in idx] n_active -= 1 m, n = idx, n_active # handle the case when idx is not length of 1 drop_idx = [active.pop(ii) for ii in idx] if Gram is None: # propagate dropped variable for ii in idx: for i in range(ii, n_active): X.T[i], X.T[i + 1] = swap(X.T[i], X.T[i + 1]) # yeah this is stupid indices[i], indices[i + 1] = indices[i + 1], indices[i] # TODO: this could be updated residual = y - np.dot(X[:, :n_active], coef[active]) temp = np.dot(X.T[n_active], residual) Cov = np.r_[temp, Cov] else: for ii in idx: for i in range(ii, n_active): indices[i], indices[i + 1] = indices[i + 1], indices[i] Gram[i], Gram[i + 1] = swap(Gram[i], Gram[i + 1]) Gram[:, i], Gram[:, i + 1] = swap(Gram[:, i], Gram[:, i + 1]) # Cov_n = Cov_j + x_j * X + increment(betas) TODO: # will this still work with multiple drops ? # recompute covariance. Probably could be done better # wrong as Xy is not swapped with the rest of variables # TODO: this could be updated residual = y - np.dot(X, coef) temp = np.dot(X.T[drop_idx], residual) Cov = np.r_[temp, Cov] sign_active = np.delete(sign_active, idx) sign_active = np.append(sign_active, 0.) # just to maintain size if verbose > 1: print("%s\t\t%s\t\t%s\t\t%s\t\t%s" % (n_iter, '', drop_idx, n_active, abs(temp))) if return_path: # resize coefs in case of early stop alphas = alphas[:n_iter + 1] coefs = coefs[:n_iter + 1] if return_n_iter: return alphas, active, coefs.T, n_iter else: return alphas, active, coefs.T else: if return_n_iter: return alpha, active, coef, n_iter else: return alpha, active, coef ############################################################################### # Estimator classes class Lars(LinearModel, RegressorMixin): """Least Angle Regression model a.k.a. LAR Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- n_nonzero_coefs : int, optional Target number of non-zero coefficients. Use ``np.inf`` for no limit. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. fit_path : boolean If True the full path is stored in the ``coef_path_`` attribute. If you compute the solution for a large problem or many targets, setting ``fit_path`` to ``False`` will lead to a speedup, especially with a small alpha. Attributes ---------- alphas_ : array, shape (n_alphas + 1,) | list of n_targets such arrays Maximum of covariances (in absolute value) at each iteration. \ ``n_alphas`` is either ``n_nonzero_coefs`` or ``n_features``, \ whichever is smaller. active_ : list, length = n_alphas | list of n_targets such lists Indices of active variables at the end of the path. coef_path_ : array, shape (n_features, n_alphas + 1) \ | list of n_targets such arrays The varying values of the coefficients along the path. It is not present if the ``fit_path`` parameter is ``False``. coef_ : array, shape (n_features,) or (n_targets, n_features) Parameter vector (w in the formulation formula). intercept_ : float | array, shape (n_targets,) Independent term in decision function. n_iter_ : array-like or int The number of iterations taken by lars_path to find the grid of alphas for each target. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.Lars(n_nonzero_coefs=1) >>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111]) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE Lars(copy_X=True, eps=..., fit_intercept=True, fit_path=True, n_nonzero_coefs=1, normalize=True, precompute='auto', verbose=False) >>> print(clf.coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE [ 0. -1.11...] See also -------- lars_path, LarsCV sklearn.decomposition.sparse_encode """ def __init__(self, fit_intercept=True, verbose=False, normalize=True, precompute='auto', n_nonzero_coefs=500, eps=np.finfo(np.float).eps, copy_X=True, fit_path=True): self.fit_intercept = fit_intercept self.verbose = verbose self.normalize = normalize self.method = 'lar' self.precompute = precompute self.n_nonzero_coefs = n_nonzero_coefs self.eps = eps self.copy_X = copy_X self.fit_path = fit_path def _get_gram(self): # precompute if n_samples > n_features precompute = self.precompute if hasattr(precompute, '__array__'): Gram = precompute elif precompute == 'auto': Gram = 'auto' else: Gram = None return Gram def fit(self, X, y, Xy=None): """Fit the model using X, y as training data. parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. Xy : array-like, shape (n_samples,) or (n_samples, n_targets), \ optional Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. returns ------- self : object returns an instance of self. """ X, y = check_X_y(X, y, y_numeric=True, multi_output=True) n_features = X.shape[1] X, y, X_mean, y_mean, X_std = self._center_data(X, y, self.fit_intercept, self.normalize, self.copy_X) if y.ndim == 1: y = y[:, np.newaxis] n_targets = y.shape[1] alpha = getattr(self, 'alpha', 0.) if hasattr(self, 'n_nonzero_coefs'): alpha = 0. # n_nonzero_coefs parametrization takes priority max_iter = self.n_nonzero_coefs else: max_iter = self.max_iter precompute = self.precompute if not hasattr(precompute, '__array__') and ( precompute is True or (precompute == 'auto' and X.shape[0] > X.shape[1]) or (precompute == 'auto' and y.shape[1] > 1)): Gram = np.dot(X.T, X) else: Gram = self._get_gram() self.alphas_ = [] self.n_iter_ = [] if self.fit_path: self.coef_ = [] self.active_ = [] self.coef_path_ = [] for k in xrange(n_targets): this_Xy = None if Xy is None else Xy[:, k] alphas, active, coef_path, n_iter_ = lars_path( X, y[:, k], Gram=Gram, Xy=this_Xy, copy_X=self.copy_X, copy_Gram=True, alpha_min=alpha, method=self.method, verbose=max(0, self.verbose - 1), max_iter=max_iter, eps=self.eps, return_path=True, return_n_iter=True) self.alphas_.append(alphas) self.active_.append(active) self.n_iter_.append(n_iter_) self.coef_path_.append(coef_path) self.coef_.append(coef_path[:, -1]) if n_targets == 1: self.alphas_, self.active_, self.coef_path_, self.coef_ = [ a[0] for a in (self.alphas_, self.active_, self.coef_path_, self.coef_)] self.n_iter_ = self.n_iter_[0] else: self.coef_ = np.empty((n_targets, n_features)) for k in xrange(n_targets): this_Xy = None if Xy is None else Xy[:, k] alphas, _, self.coef_[k], n_iter_ = lars_path( X, y[:, k], Gram=Gram, Xy=this_Xy, copy_X=self.copy_X, copy_Gram=True, alpha_min=alpha, method=self.method, verbose=max(0, self.verbose - 1), max_iter=max_iter, eps=self.eps, return_path=False, return_n_iter=True) self.alphas_.append(alphas) self.n_iter_.append(n_iter_) if n_targets == 1: self.alphas_ = self.alphas_[0] self.n_iter_ = self.n_iter_[0] self._set_intercept(X_mean, y_mean, X_std) return self class LassoLars(Lars): """Lasso model fit with Least Angle Regression a.k.a. Lars It is a Linear Model trained with an L1 prior as regularizer. The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- alpha : float Constant that multiplies the penalty term. Defaults to 1.0. ``alpha = 0`` is equivalent to an ordinary least square, solved by :class:`LinearRegression`. For numerical reasons, using ``alpha = 0`` with the LassoLars object is not advised and you should prefer the LinearRegression object. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : integer, optional Maximum number of iterations to perform. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. fit_path : boolean If ``True`` the full path is stored in the ``coef_path_`` attribute. If you compute the solution for a large problem or many targets, setting ``fit_path`` to ``False`` will lead to a speedup, especially with a small alpha. Attributes ---------- alphas_ : array, shape (n_alphas + 1,) | list of n_targets such arrays Maximum of covariances (in absolute value) at each iteration. \ ``n_alphas`` is either ``max_iter``, ``n_features``, or the number of \ nodes in the path with correlation greater than ``alpha``, whichever \ is smaller. active_ : list, length = n_alphas | list of n_targets such lists Indices of active variables at the end of the path. coef_path_ : array, shape (n_features, n_alphas + 1) or list If a list is passed it's expected to be one of n_targets such arrays. The varying values of the coefficients along the path. It is not present if the ``fit_path`` parameter is ``False``. coef_ : array, shape (n_features,) or (n_targets, n_features) Parameter vector (w in the formulation formula). intercept_ : float | array, shape (n_targets,) Independent term in decision function. n_iter_ : array-like or int. The number of iterations taken by lars_path to find the grid of alphas for each target. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.LassoLars(alpha=0.01) >>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1, 0, -1]) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE LassoLars(alpha=0.01, copy_X=True, eps=..., fit_intercept=True, fit_path=True, max_iter=500, normalize=True, precompute='auto', verbose=False) >>> print(clf.coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE [ 0. -0.963257...] See also -------- lars_path lasso_path Lasso LassoCV LassoLarsCV sklearn.decomposition.sparse_encode """ def __init__(self, alpha=1.0, fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500, eps=np.finfo(np.float).eps, copy_X=True, fit_path=True): self.alpha = alpha self.fit_intercept = fit_intercept self.max_iter = max_iter self.verbose = verbose self.normalize = normalize self.method = 'lasso' self.precompute = precompute self.copy_X = copy_X self.eps = eps self.fit_path = fit_path ############################################################################### # Cross-validated estimator classes def _check_copy_and_writeable(array, copy=False): if copy or not array.flags.writeable: return array.copy() return array def _lars_path_residues(X_train, y_train, X_test, y_test, Gram=None, copy=True, method='lars', verbose=False, fit_intercept=True, normalize=True, max_iter=500, eps=np.finfo(np.float).eps): """Compute the residues on left-out data for a full LARS path Parameters ----------- X_train : array, shape (n_samples, n_features) The data to fit the LARS on y_train : array, shape (n_samples) The target variable to fit LARS on X_test : array, shape (n_samples, n_features) The data to compute the residues on y_test : array, shape (n_samples) The target variable to compute the residues on Gram : None, 'auto', array, shape: (n_features, n_features), optional Precomputed Gram matrix (X' * X), if ``'auto'``, the Gram matrix is precomputed from the given X, if there are more samples than features copy : boolean, optional Whether X_train, X_test, y_train and y_test should be copied; if False, they may be overwritten. method : 'lar' | 'lasso' Specifies the returned model. Select ``'lar'`` for Least Angle Regression, ``'lasso'`` for the Lasso. verbose : integer, optional Sets the amount of verbosity fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. max_iter : integer, optional Maximum number of iterations to perform. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. Returns -------- alphas : array, shape (n_alphas,) Maximum of covariances (in absolute value) at each iteration. ``n_alphas`` is either ``max_iter`` or ``n_features``, whichever is smaller. active : list Indices of active variables at the end of the path. coefs : array, shape (n_features, n_alphas) Coefficients along the path residues : array, shape (n_alphas, n_samples) Residues of the prediction on the test data """ X_train = _check_copy_and_writeable(X_train, copy) y_train = _check_copy_and_writeable(y_train, copy) X_test = _check_copy_and_writeable(X_test, copy) y_test = _check_copy_and_writeable(y_test, copy) if fit_intercept: X_mean = X_train.mean(axis=0) X_train -= X_mean X_test -= X_mean y_mean = y_train.mean(axis=0) y_train = as_float_array(y_train, copy=False) y_train -= y_mean y_test = as_float_array(y_test, copy=False) y_test -= y_mean if normalize: norms = np.sqrt(np.sum(X_train ** 2, axis=0)) nonzeros = np.flatnonzero(norms) X_train[:, nonzeros] /= norms[nonzeros] alphas, active, coefs = lars_path( X_train, y_train, Gram=Gram, copy_X=False, copy_Gram=False, method=method, verbose=max(0, verbose - 1), max_iter=max_iter, eps=eps) if normalize: coefs[nonzeros] /= norms[nonzeros][:, np.newaxis] residues = np.dot(X_test, coefs) - y_test[:, np.newaxis] return alphas, active, coefs, residues.T class LarsCV(Lars): """Cross-validated Least Angle Regression model Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter: integer, optional Maximum number of iterations to perform. cv : cross-validation generator, optional see :mod:`sklearn.cross_validation`. If ``None`` is passed, default to a 5-fold strategy max_n_alphas : integer, optional The maximum number of points on the path used to compute the residuals in the cross-validation n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Attributes ---------- coef_ : array, shape (n_features,) parameter vector (w in the formulation formula) intercept_ : float independent term in decision function coef_path_ : array, shape (n_features, n_alphas) the varying values of the coefficients along the path alpha_ : float the estimated regularization parameter alpha alphas_ : array, shape (n_alphas,) the different values of alpha along the path cv_alphas_ : array, shape (n_cv_alphas,) all the values of alpha along the path for the different folds cv_mse_path_ : array, shape (n_folds, n_cv_alphas) the mean square error on left-out for each fold along the path (alpha values given by ``cv_alphas``) n_iter_ : array-like or int the number of iterations run by Lars with the optimal alpha. See also -------- lars_path, LassoLars, LassoLarsCV """ method = 'lar' def __init__(self, fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute='auto', cv=None, max_n_alphas=1000, n_jobs=1, eps=np.finfo(np.float).eps, copy_X=True): self.fit_intercept = fit_intercept self.max_iter = max_iter self.verbose = verbose self.normalize = normalize self.precompute = precompute self.copy_X = copy_X self.cv = cv self.max_n_alphas = max_n_alphas self.n_jobs = n_jobs self.eps = eps def fit(self, X, y): """Fit the model using X, y as training data. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) Target values. Returns ------- self : object returns an instance of self. """ self.fit_path = True X, y = check_X_y(X, y, y_numeric=True) # init cross-validation generator cv = check_cv(self.cv, X, y, classifier=False) Gram = 'auto' if self.precompute else None cv_paths = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)( delayed(_lars_path_residues)( X[train], y[train], X[test], y[test], Gram=Gram, copy=False, method=self.method, verbose=max(0, self.verbose - 1), normalize=self.normalize, fit_intercept=self.fit_intercept, max_iter=self.max_iter, eps=self.eps) for train, test in cv) all_alphas = np.concatenate(list(zip(*cv_paths))[0]) # Unique also sorts all_alphas = np.unique(all_alphas) # Take at most max_n_alphas values stride = int(max(1, int(len(all_alphas) / float(self.max_n_alphas)))) all_alphas = all_alphas[::stride] mse_path = np.empty((len(all_alphas), len(cv_paths))) for index, (alphas, active, coefs, residues) in enumerate(cv_paths): alphas = alphas[::-1] residues = residues[::-1] if alphas[0] != 0: alphas = np.r_[0, alphas] residues = np.r_[residues[0, np.newaxis], residues] if alphas[-1] != all_alphas[-1]: alphas = np.r_[alphas, all_alphas[-1]] residues = np.r_[residues, residues[-1, np.newaxis]] this_residues = interpolate.interp1d(alphas, residues, axis=0)(all_alphas) this_residues **= 2 mse_path[:, index] = np.mean(this_residues, axis=-1) mask = np.all(np.isfinite(mse_path), axis=-1) all_alphas = all_alphas[mask] mse_path = mse_path[mask] # Select the alpha that minimizes left-out error i_best_alpha = np.argmin(mse_path.mean(axis=-1)) best_alpha = all_alphas[i_best_alpha] # Store our parameters self.alpha_ = best_alpha self.cv_alphas_ = all_alphas self.cv_mse_path_ = mse_path # Now compute the full model # it will call a lasso internally when self if LassoLarsCV # as self.method == 'lasso' Lars.fit(self, X, y) return self @property def alpha(self): # impedance matching for the above Lars.fit (should not be documented) return self.alpha_ class LassoLarsCV(LarsCV): """Cross-validated Lasso, using the LARS algorithm The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : integer, optional Maximum number of iterations to perform. cv : cross-validation generator, optional see sklearn.cross_validation module. If None is passed, default to a 5-fold strategy max_n_alphas : integer, optional The maximum number of points on the path used to compute the residuals in the cross-validation n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. Attributes ---------- coef_ : array, shape (n_features,) parameter vector (w in the formulation formula) intercept_ : float independent term in decision function. coef_path_ : array, shape (n_features, n_alphas) the varying values of the coefficients along the path alpha_ : float the estimated regularization parameter alpha alphas_ : array, shape (n_alphas,) the different values of alpha along the path cv_alphas_ : array, shape (n_cv_alphas,) all the values of alpha along the path for the different folds cv_mse_path_ : array, shape (n_folds, n_cv_alphas) the mean square error on left-out for each fold along the path (alpha values given by ``cv_alphas``) n_iter_ : array-like or int the number of iterations run by Lars with the optimal alpha. Notes ----- The object solves the same problem as the LassoCV object. However, unlike the LassoCV, it find the relevant alphas values by itself. In general, because of this property, it will be more stable. However, it is more fragile to heavily multicollinear datasets. It is more efficient than the LassoCV if only a small number of features are selected compared to the total number, for instance if there are very few samples compared to the number of features. See also -------- lars_path, LassoLars, LarsCV, LassoCV """ method = 'lasso' class LassoLarsIC(LassoLars): """Lasso model fit with Lars using BIC or AIC for model selection The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 AIC is the Akaike information criterion and BIC is the Bayes Information criterion. Such criteria are useful to select the value of the regularization parameter by making a trade-off between the goodness of fit and the complexity of the model. A good model should explain well the data while being simple. Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- criterion : 'bic' | 'aic' The type of criterion to use. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : integer, optional Maximum number of iterations to perform. Can be used for early stopping. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. Attributes ---------- coef_ : array, shape (n_features,) parameter vector (w in the formulation formula) intercept_ : float independent term in decision function. alpha_ : float the alpha parameter chosen by the information criterion n_iter_ : int number of iterations run by lars_path to find the grid of alphas. criterion_ : array, shape (n_alphas,) The value of the information criteria ('aic', 'bic') across all alphas. The alpha which has the smallest information criteria is chosen. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.LassoLarsIC(criterion='bic') >>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111]) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE LassoLarsIC(copy_X=True, criterion='bic', eps=..., fit_intercept=True, max_iter=500, normalize=True, precompute='auto', verbose=False) >>> print(clf.coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE [ 0. -1.11...] Notes ----- The estimation of the number of degrees of freedom is given by: "On the degrees of freedom of the lasso" Hui Zou, Trevor Hastie, and Robert Tibshirani Ann. Statist. Volume 35, Number 5 (2007), 2173-2192. http://en.wikipedia.org/wiki/Akaike_information_criterion http://en.wikipedia.org/wiki/Bayesian_information_criterion See also -------- lars_path, LassoLars, LassoLarsCV """ def __init__(self, criterion='aic', fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500, eps=np.finfo(np.float).eps, copy_X=True): self.criterion = criterion self.fit_intercept = fit_intercept self.max_iter = max_iter self.verbose = verbose self.normalize = normalize self.copy_X = copy_X self.precompute = precompute self.eps = eps def fit(self, X, y, copy_X=True): """Fit the model using X, y as training data. Parameters ---------- X : array-like, shape (n_samples, n_features) training data. y : array-like, shape (n_samples,) target values. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. Returns ------- self : object returns an instance of self. """ self.fit_path = True X, y = check_X_y(X, y, multi_output=True, y_numeric=True) X, y, Xmean, ymean, Xstd = LinearModel._center_data( X, y, self.fit_intercept, self.normalize, self.copy_X) max_iter = self.max_iter Gram = self._get_gram() alphas_, active_, coef_path_, self.n_iter_ = lars_path( X, y, Gram=Gram, copy_X=copy_X, copy_Gram=True, alpha_min=0.0, method='lasso', verbose=self.verbose, max_iter=max_iter, eps=self.eps, return_n_iter=True) n_samples = X.shape[0] if self.criterion == 'aic': K = 2 # AIC elif self.criterion == 'bic': K = log(n_samples) # BIC else: raise ValueError('criterion should be either bic or aic') R = y[:, np.newaxis] - np.dot(X, coef_path_) # residuals mean_squared_error = np.mean(R ** 2, axis=0) df = np.zeros(coef_path_.shape[1], dtype=np.int) # Degrees of freedom for k, coef in enumerate(coef_path_.T): mask = np.abs(coef) > np.finfo(coef.dtype).eps if not np.any(mask): continue # get the number of degrees of freedom equal to: # Xc = X[:, mask] # Trace(Xc * inv(Xc.T, Xc) * Xc.T) ie the number of non-zero coefs df[k] = np.sum(mask) self.alphas_ = alphas_ with np.errstate(divide='ignore'): self.criterion_ = n_samples * np.log(mean_squared_error) + K * df n_best = np.argmin(self.criterion_) self.alpha_ = alphas_[n_best] self.coef_ = coef_path_[:, n_best] self._set_intercept(Xmean, ymean, Xstd) return self
bsd-3-clause
joernhees/scikit-learn
examples/linear_model/plot_lasso_coordinate_descent_path.py
63
2945
""" ===================== Lasso and Elastic Net ===================== Lasso and elastic net (L1 and L2 penalisation) implemented using a coordinate descent. The coefficients can be forced to be positive. """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause from itertools import cycle import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import lasso_path, enet_path from sklearn import datasets diabetes = datasets.load_diabetes() X = diabetes.data y = diabetes.target X /= X.std(axis=0) # Standardize data (easier to set the l1_ratio parameter) # Compute paths eps = 5e-3 # the smaller it is the longer is the path print("Computing regularization path using the lasso...") alphas_lasso, coefs_lasso, _ = lasso_path(X, y, eps, fit_intercept=False) print("Computing regularization path using the positive lasso...") alphas_positive_lasso, coefs_positive_lasso, _ = lasso_path( X, y, eps, positive=True, fit_intercept=False) print("Computing regularization path using the elastic net...") alphas_enet, coefs_enet, _ = enet_path( X, y, eps=eps, l1_ratio=0.8, fit_intercept=False) print("Computing regularization path using the positive elastic net...") alphas_positive_enet, coefs_positive_enet, _ = enet_path( X, y, eps=eps, l1_ratio=0.8, positive=True, fit_intercept=False) # Display results plt.figure(1) ax = plt.gca() colors = cycle(['b', 'r', 'g', 'c', 'k']) neg_log_alphas_lasso = -np.log10(alphas_lasso) neg_log_alphas_enet = -np.log10(alphas_enet) for coef_l, coef_e, c in zip(coefs_lasso, coefs_enet, colors): l1 = plt.plot(neg_log_alphas_lasso, coef_l, c=c) l2 = plt.plot(neg_log_alphas_enet, coef_e, linestyle='--', c=c) plt.xlabel('-Log(alpha)') plt.ylabel('coefficients') plt.title('Lasso and Elastic-Net Paths') plt.legend((l1[-1], l2[-1]), ('Lasso', 'Elastic-Net'), loc='lower left') plt.axis('tight') plt.figure(2) ax = plt.gca() neg_log_alphas_positive_lasso = -np.log10(alphas_positive_lasso) for coef_l, coef_pl, c in zip(coefs_lasso, coefs_positive_lasso, colors): l1 = plt.plot(neg_log_alphas_lasso, coef_l, c=c) l2 = plt.plot(neg_log_alphas_positive_lasso, coef_pl, linestyle='--', c=c) plt.xlabel('-Log(alpha)') plt.ylabel('coefficients') plt.title('Lasso and positive Lasso') plt.legend((l1[-1], l2[-1]), ('Lasso', 'positive Lasso'), loc='lower left') plt.axis('tight') plt.figure(3) ax = plt.gca() neg_log_alphas_positive_enet = -np.log10(alphas_positive_enet) for (coef_e, coef_pe, c) in zip(coefs_enet, coefs_positive_enet, colors): l1 = plt.plot(neg_log_alphas_enet, coef_e, c=c) l2 = plt.plot(neg_log_alphas_positive_enet, coef_pe, linestyle='--', c=c) plt.xlabel('-Log(alpha)') plt.ylabel('coefficients') plt.title('Elastic-Net and positive Elastic-Net') plt.legend((l1[-1], l2[-1]), ('Elastic-Net', 'positive Elastic-Net'), loc='lower left') plt.axis('tight') plt.show()
bsd-3-clause
saquiba2/numpy2
numpy/core/tests/test_multiarray.py
4
224802
from __future__ import division, absolute_import, print_function import collections import tempfile import sys import shutil import warnings import operator import io import itertools import ctypes if sys.version_info[0] >= 3: import builtins else: import __builtin__ as builtins from decimal import Decimal import numpy as np from nose import SkipTest from numpy.compat import asbytes, getexception, strchar, unicode, sixu from test_print import in_foreign_locale from numpy.core.multiarray_tests import ( test_neighborhood_iterator, test_neighborhood_iterator_oob, test_pydatamem_seteventhook_start, test_pydatamem_seteventhook_end, test_inplace_increment, get_buffer_info, test_as_c_array ) from numpy.testing import ( TestCase, run_module_suite, assert_, assert_raises, assert_equal, assert_almost_equal, assert_array_equal, assert_array_almost_equal, assert_allclose, assert_array_less, runstring, dec ) # Need to test an object that does not fully implement math interface from datetime import timedelta if sys.version_info[:2] > (3, 2): # In Python 3.3 the representation of empty shape, strides and suboffsets # is an empty tuple instead of None. # http://docs.python.org/dev/whatsnew/3.3.html#api-changes EMPTY = () else: EMPTY = None class TestFlags(TestCase): def setUp(self): self.a = np.arange(10) def test_writeable(self): mydict = locals() self.a.flags.writeable = False self.assertRaises(ValueError, runstring, 'self.a[0] = 3', mydict) self.assertRaises(ValueError, runstring, 'self.a[0:1].itemset(3)', mydict) self.a.flags.writeable = True self.a[0] = 5 self.a[0] = 0 def test_otherflags(self): assert_equal(self.a.flags.carray, True) assert_equal(self.a.flags.farray, False) assert_equal(self.a.flags.behaved, True) assert_equal(self.a.flags.fnc, False) assert_equal(self.a.flags.forc, True) assert_equal(self.a.flags.owndata, True) assert_equal(self.a.flags.writeable, True) assert_equal(self.a.flags.aligned, True) assert_equal(self.a.flags.updateifcopy, False) def test_string_align(self): a = np.zeros(4, dtype=np.dtype('|S4')) assert_(a.flags.aligned) # not power of two are accessed bytewise and thus considered aligned a = np.zeros(5, dtype=np.dtype('|S4')) assert_(a.flags.aligned) def test_void_align(self): a = np.zeros(4, dtype=np.dtype([("a", "i4"), ("b", "i4")])) assert_(a.flags.aligned) class TestHash(TestCase): # see #3793 def test_int(self): for st, ut, s in [(np.int8, np.uint8, 8), (np.int16, np.uint16, 16), (np.int32, np.uint32, 32), (np.int64, np.uint64, 64)]: for i in range(1, s): assert_equal(hash(st(-2**i)), hash(-2**i), err_msg="%r: -2**%d" % (st, i)) assert_equal(hash(st(2**(i - 1))), hash(2**(i - 1)), err_msg="%r: 2**%d" % (st, i - 1)) assert_equal(hash(st(2**i - 1)), hash(2**i - 1), err_msg="%r: 2**%d - 1" % (st, i)) i = max(i - 1, 1) assert_equal(hash(ut(2**(i - 1))), hash(2**(i - 1)), err_msg="%r: 2**%d" % (ut, i - 1)) assert_equal(hash(ut(2**i - 1)), hash(2**i - 1), err_msg="%r: 2**%d - 1" % (ut, i)) class TestAttributes(TestCase): def setUp(self): self.one = np.arange(10) self.two = np.arange(20).reshape(4, 5) self.three = np.arange(60, dtype=np.float64).reshape(2, 5, 6) def test_attributes(self): assert_equal(self.one.shape, (10,)) assert_equal(self.two.shape, (4, 5)) assert_equal(self.three.shape, (2, 5, 6)) self.three.shape = (10, 3, 2) assert_equal(self.three.shape, (10, 3, 2)) self.three.shape = (2, 5, 6) assert_equal(self.one.strides, (self.one.itemsize,)) num = self.two.itemsize assert_equal(self.two.strides, (5*num, num)) num = self.three.itemsize assert_equal(self.three.strides, (30*num, 6*num, num)) assert_equal(self.one.ndim, 1) assert_equal(self.two.ndim, 2) assert_equal(self.three.ndim, 3) num = self.two.itemsize assert_equal(self.two.size, 20) assert_equal(self.two.nbytes, 20*num) assert_equal(self.two.itemsize, self.two.dtype.itemsize) assert_equal(self.two.base, np.arange(20)) def test_dtypeattr(self): assert_equal(self.one.dtype, np.dtype(np.int_)) assert_equal(self.three.dtype, np.dtype(np.float_)) assert_equal(self.one.dtype.char, 'l') assert_equal(self.three.dtype.char, 'd') self.assertTrue(self.three.dtype.str[0] in '<>') assert_equal(self.one.dtype.str[1], 'i') assert_equal(self.three.dtype.str[1], 'f') def test_int_subclassing(self): # Regression test for https://github.com/numpy/numpy/pull/3526 numpy_int = np.int_(0) if sys.version_info[0] >= 3: # On Py3k int_ should not inherit from int, because it's not fixed-width anymore assert_equal(isinstance(numpy_int, int), False) else: # Otherwise, it should inherit from int... assert_equal(isinstance(numpy_int, int), True) # ... and fast-path checks on C-API level should also work from numpy.core.multiarray_tests import test_int_subclass assert_equal(test_int_subclass(numpy_int), True) def test_stridesattr(self): x = self.one def make_array(size, offset, strides): return np.ndarray(size, buffer=x, dtype=int, offset=offset*x.itemsize, strides=strides*x.itemsize) assert_equal(make_array(4, 4, -1), np.array([4, 3, 2, 1])) self.assertRaises(ValueError, make_array, 4, 4, -2) self.assertRaises(ValueError, make_array, 4, 2, -1) self.assertRaises(ValueError, make_array, 8, 3, 1) assert_equal(make_array(8, 3, 0), np.array([3]*8)) # Check behavior reported in gh-2503: self.assertRaises(ValueError, make_array, (2, 3), 5, np.array([-2, -3])) make_array(0, 0, 10) def test_set_stridesattr(self): x = self.one def make_array(size, offset, strides): try: r = np.ndarray([size], dtype=int, buffer=x, offset=offset*x.itemsize) except: raise RuntimeError(getexception()) r.strides = strides = strides*x.itemsize return r assert_equal(make_array(4, 4, -1), np.array([4, 3, 2, 1])) assert_equal(make_array(7, 3, 1), np.array([3, 4, 5, 6, 7, 8, 9])) self.assertRaises(ValueError, make_array, 4, 4, -2) self.assertRaises(ValueError, make_array, 4, 2, -1) self.assertRaises(RuntimeError, make_array, 8, 3, 1) # Check that the true extent of the array is used. # Test relies on as_strided base not exposing a buffer. x = np.lib.stride_tricks.as_strided(np.arange(1), (10, 10), (0, 0)) def set_strides(arr, strides): arr.strides = strides self.assertRaises(ValueError, set_strides, x, (10*x.itemsize, x.itemsize)) # Test for offset calculations: x = np.lib.stride_tricks.as_strided(np.arange(10, dtype=np.int8)[-1], shape=(10,), strides=(-1,)) self.assertRaises(ValueError, set_strides, x[::-1], -1) a = x[::-1] a.strides = 1 a[::2].strides = 2 def test_fill(self): for t in "?bhilqpBHILQPfdgFDGO": x = np.empty((3, 2, 1), t) y = np.empty((3, 2, 1), t) x.fill(1) y[...] = 1 assert_equal(x, y) def test_fill_max_uint64(self): x = np.empty((3, 2, 1), dtype=np.uint64) y = np.empty((3, 2, 1), dtype=np.uint64) value = 2**64 - 1 y[...] = value x.fill(value) assert_array_equal(x, y) def test_fill_struct_array(self): # Filling from a scalar x = np.array([(0, 0.0), (1, 1.0)], dtype='i4,f8') x.fill(x[0]) assert_equal(x['f1'][1], x['f1'][0]) # Filling from a tuple that can be converted # to a scalar x = np.zeros(2, dtype=[('a', 'f8'), ('b', 'i4')]) x.fill((3.5, -2)) assert_array_equal(x['a'], [3.5, 3.5]) assert_array_equal(x['b'], [-2, -2]) class TestArrayConstruction(TestCase): def test_array(self): d = np.ones(6) r = np.array([d, d]) assert_equal(r, np.ones((2, 6))) d = np.ones(6) tgt = np.ones((2, 6)) r = np.array([d, d]) assert_equal(r, tgt) tgt[1] = 2 r = np.array([d, d + 1]) assert_equal(r, tgt) d = np.ones(6) r = np.array([[d, d]]) assert_equal(r, np.ones((1, 2, 6))) d = np.ones(6) r = np.array([[d, d], [d, d]]) assert_equal(r, np.ones((2, 2, 6))) d = np.ones((6, 6)) r = np.array([d, d]) assert_equal(r, np.ones((2, 6, 6))) d = np.ones((6, )) r = np.array([[d, d + 1], d + 2]) assert_equal(len(r), 2) assert_equal(r[0], [d, d + 1]) assert_equal(r[1], d + 2) tgt = np.ones((2, 3), dtype=np.bool) tgt[0, 2] = False tgt[1, 0:2] = False r = np.array([[True, True, False], [False, False, True]]) assert_equal(r, tgt) r = np.array([[True, False], [True, False], [False, True]]) assert_equal(r, tgt.T) def test_array_empty(self): assert_raises(TypeError, np.array) def test_array_copy_false(self): d = np.array([1, 2, 3]) e = np.array(d, copy=False) d[1] = 3 assert_array_equal(e, [1, 3, 3]) e = np.array(d, copy=False, order='F') d[1] = 4 assert_array_equal(e, [1, 4, 3]) e[2] = 7 assert_array_equal(d, [1, 4, 7]) def test_array_copy_true(self): d = np.array([[1,2,3], [1, 2, 3]]) e = np.array(d, copy=True) d[0, 1] = 3 e[0, 2] = -7 assert_array_equal(e, [[1, 2, -7], [1, 2, 3]]) assert_array_equal(d, [[1, 3, 3], [1, 2, 3]]) e = np.array(d, copy=True, order='F') d[0, 1] = 5 e[0, 2] = 7 assert_array_equal(e, [[1, 3, 7], [1, 2, 3]]) assert_array_equal(d, [[1, 5, 3], [1,2,3]]) def test_array_cont(self): d = np.ones(10)[::2] assert_(np.ascontiguousarray(d).flags.c_contiguous) assert_(np.ascontiguousarray(d).flags.f_contiguous) assert_(np.asfortranarray(d).flags.c_contiguous) assert_(np.asfortranarray(d).flags.f_contiguous) d = np.ones((10, 10))[::2,::2] assert_(np.ascontiguousarray(d).flags.c_contiguous) assert_(np.asfortranarray(d).flags.f_contiguous) class TestAssignment(TestCase): def test_assignment_broadcasting(self): a = np.arange(6).reshape(2, 3) # Broadcasting the input to the output a[...] = np.arange(3) assert_equal(a, [[0, 1, 2], [0, 1, 2]]) a[...] = np.arange(2).reshape(2, 1) assert_equal(a, [[0, 0, 0], [1, 1, 1]]) # For compatibility with <= 1.5, a limited version of broadcasting # the output to the input. # # This behavior is inconsistent with NumPy broadcasting # in general, because it only uses one of the two broadcasting # rules (adding a new "1" dimension to the left of the shape), # applied to the output instead of an input. In NumPy 2.0, this kind # of broadcasting assignment will likely be disallowed. a[...] = np.arange(6)[::-1].reshape(1, 2, 3) assert_equal(a, [[5, 4, 3], [2, 1, 0]]) # The other type of broadcasting would require a reduction operation. def assign(a, b): a[...] = b assert_raises(ValueError, assign, a, np.arange(12).reshape(2, 2, 3)) def test_assignment_errors(self): # Address issue #2276 class C: pass a = np.zeros(1) def assign(v): a[0] = v assert_raises((AttributeError, TypeError), assign, C()) assert_raises(ValueError, assign, [1]) class TestDtypedescr(TestCase): def test_construction(self): d1 = np.dtype('i4') assert_equal(d1, np.dtype(np.int32)) d2 = np.dtype('f8') assert_equal(d2, np.dtype(np.float64)) def test_byteorders(self): self.assertNotEqual(np.dtype('<i4'), np.dtype('>i4')) self.assertNotEqual(np.dtype([('a', '<i4')]), np.dtype([('a', '>i4')])) class TestZeroRank(TestCase): def setUp(self): self.d = np.array(0), np.array('x', object) def test_ellipsis_subscript(self): a, b = self.d self.assertEqual(a[...], 0) self.assertEqual(b[...], 'x') self.assertTrue(a[...].base is a) # `a[...] is a` in numpy <1.9. self.assertTrue(b[...].base is b) # `b[...] is b` in numpy <1.9. def test_empty_subscript(self): a, b = self.d self.assertEqual(a[()], 0) self.assertEqual(b[()], 'x') self.assertTrue(type(a[()]) is a.dtype.type) self.assertTrue(type(b[()]) is str) def test_invalid_subscript(self): a, b = self.d self.assertRaises(IndexError, lambda x: x[0], a) self.assertRaises(IndexError, lambda x: x[0], b) self.assertRaises(IndexError, lambda x: x[np.array([], int)], a) self.assertRaises(IndexError, lambda x: x[np.array([], int)], b) def test_ellipsis_subscript_assignment(self): a, b = self.d a[...] = 42 self.assertEqual(a, 42) b[...] = '' self.assertEqual(b.item(), '') def test_empty_subscript_assignment(self): a, b = self.d a[()] = 42 self.assertEqual(a, 42) b[()] = '' self.assertEqual(b.item(), '') def test_invalid_subscript_assignment(self): a, b = self.d def assign(x, i, v): x[i] = v self.assertRaises(IndexError, assign, a, 0, 42) self.assertRaises(IndexError, assign, b, 0, '') self.assertRaises(ValueError, assign, a, (), '') def test_newaxis(self): a, b = self.d self.assertEqual(a[np.newaxis].shape, (1,)) self.assertEqual(a[..., np.newaxis].shape, (1,)) self.assertEqual(a[np.newaxis, ...].shape, (1,)) self.assertEqual(a[..., np.newaxis].shape, (1,)) self.assertEqual(a[np.newaxis, ..., np.newaxis].shape, (1, 1)) self.assertEqual(a[..., np.newaxis, np.newaxis].shape, (1, 1)) self.assertEqual(a[np.newaxis, np.newaxis, ...].shape, (1, 1)) self.assertEqual(a[(np.newaxis,)*10].shape, (1,)*10) def test_invalid_newaxis(self): a, b = self.d def subscript(x, i): x[i] self.assertRaises(IndexError, subscript, a, (np.newaxis, 0)) self.assertRaises(IndexError, subscript, a, (np.newaxis,)*50) def test_constructor(self): x = np.ndarray(()) x[()] = 5 self.assertEqual(x[()], 5) y = np.ndarray((), buffer=x) y[()] = 6 self.assertEqual(x[()], 6) def test_output(self): x = np.array(2) self.assertRaises(ValueError, np.add, x, [1], x) class TestScalarIndexing(TestCase): def setUp(self): self.d = np.array([0, 1])[0] def test_ellipsis_subscript(self): a = self.d self.assertEqual(a[...], 0) self.assertEqual(a[...].shape, ()) def test_empty_subscript(self): a = self.d self.assertEqual(a[()], 0) self.assertEqual(a[()].shape, ()) def test_invalid_subscript(self): a = self.d self.assertRaises(IndexError, lambda x: x[0], a) self.assertRaises(IndexError, lambda x: x[np.array([], int)], a) def test_invalid_subscript_assignment(self): a = self.d def assign(x, i, v): x[i] = v self.assertRaises(TypeError, assign, a, 0, 42) def test_newaxis(self): a = self.d self.assertEqual(a[np.newaxis].shape, (1,)) self.assertEqual(a[..., np.newaxis].shape, (1,)) self.assertEqual(a[np.newaxis, ...].shape, (1,)) self.assertEqual(a[..., np.newaxis].shape, (1,)) self.assertEqual(a[np.newaxis, ..., np.newaxis].shape, (1, 1)) self.assertEqual(a[..., np.newaxis, np.newaxis].shape, (1, 1)) self.assertEqual(a[np.newaxis, np.newaxis, ...].shape, (1, 1)) self.assertEqual(a[(np.newaxis,)*10].shape, (1,)*10) def test_invalid_newaxis(self): a = self.d def subscript(x, i): x[i] self.assertRaises(IndexError, subscript, a, (np.newaxis, 0)) self.assertRaises(IndexError, subscript, a, (np.newaxis,)*50) def test_overlapping_assignment(self): # With positive strides a = np.arange(4) a[:-1] = a[1:] assert_equal(a, [1, 2, 3, 3]) a = np.arange(4) a[1:] = a[:-1] assert_equal(a, [0, 0, 1, 2]) # With positive and negative strides a = np.arange(4) a[:] = a[::-1] assert_equal(a, [3, 2, 1, 0]) a = np.arange(6).reshape(2, 3) a[::-1,:] = a[:, ::-1] assert_equal(a, [[5, 4, 3], [2, 1, 0]]) a = np.arange(6).reshape(2, 3) a[::-1, ::-1] = a[:, ::-1] assert_equal(a, [[3, 4, 5], [0, 1, 2]]) # With just one element overlapping a = np.arange(5) a[:3] = a[2:] assert_equal(a, [2, 3, 4, 3, 4]) a = np.arange(5) a[2:] = a[:3] assert_equal(a, [0, 1, 0, 1, 2]) a = np.arange(5) a[2::-1] = a[2:] assert_equal(a, [4, 3, 2, 3, 4]) a = np.arange(5) a[2:] = a[2::-1] assert_equal(a, [0, 1, 2, 1, 0]) a = np.arange(5) a[2::-1] = a[:1:-1] assert_equal(a, [2, 3, 4, 3, 4]) a = np.arange(5) a[:1:-1] = a[2::-1] assert_equal(a, [0, 1, 0, 1, 2]) class TestCreation(TestCase): def test_from_attribute(self): class x(object): def __array__(self, dtype=None): pass self.assertRaises(ValueError, np.array, x()) def test_from_string(self): types = np.typecodes['AllInteger'] + np.typecodes['Float'] nstr = ['123', '123'] result = np.array([123, 123], dtype=int) for type in types: msg = 'String conversion for %s' % type assert_equal(np.array(nstr, dtype=type), result, err_msg=msg) def test_void(self): arr = np.array([], dtype='V') assert_equal(arr.dtype.kind, 'V') def test_zeros(self): types = np.typecodes['AllInteger'] + np.typecodes['AllFloat'] for dt in types: d = np.zeros((13,), dtype=dt) assert_equal(np.count_nonzero(d), 0) # true for ieee floats assert_equal(d.sum(), 0) assert_(not d.any()) d = np.zeros(2, dtype='(2,4)i4') assert_equal(np.count_nonzero(d), 0) assert_equal(d.sum(), 0) assert_(not d.any()) d = np.zeros(2, dtype='4i4') assert_equal(np.count_nonzero(d), 0) assert_equal(d.sum(), 0) assert_(not d.any()) d = np.zeros(2, dtype='(2,4)i4, (2,4)i4') assert_equal(np.count_nonzero(d), 0) @dec.slow def test_zeros_big(self): # test big array as they might be allocated different by the sytem types = np.typecodes['AllInteger'] + np.typecodes['AllFloat'] for dt in types: d = np.zeros((30 * 1024**2,), dtype=dt) assert_(not d.any()) def test_zeros_obj(self): # test initialization from PyLong(0) d = np.zeros((13,), dtype=object) assert_array_equal(d, [0] * 13) assert_equal(np.count_nonzero(d), 0) def test_zeros_obj_obj(self): d = np.zeros(10, dtype=[('k', object, 2)]) assert_array_equal(d['k'], 0) def test_zeros_like_like_zeros(self): # test zeros_like returns the same as zeros for c in np.typecodes['All']: if c == 'V': continue d = np.zeros((3,3), dtype=c) assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) # explicitly check some special cases d = np.zeros((3,3), dtype='S5') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='U5') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='<i4') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='>i4') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='<M8[s]') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='>M8[s]') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='f4,f4') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) def test_empty_unicode(self): # don't throw decode errors on garbage memory for i in range(5, 100, 5): d = np.empty(i, dtype='U') str(d) def test_sequence_non_homogenous(self): assert_equal(np.array([4, 2**80]).dtype, np.object) assert_equal(np.array([4, 2**80, 4]).dtype, np.object) assert_equal(np.array([2**80, 4]).dtype, np.object) assert_equal(np.array([2**80] * 3).dtype, np.object) assert_equal(np.array([[1, 1],[1j, 1j]]).dtype, np.complex) assert_equal(np.array([[1j, 1j],[1, 1]]).dtype, np.complex) assert_equal(np.array([[1, 1, 1],[1, 1j, 1.], [1, 1, 1]]).dtype, np.complex) @dec.skipif(sys.version_info[0] >= 3) def test_sequence_long(self): assert_equal(np.array([long(4), long(4)]).dtype, np.long) assert_equal(np.array([long(4), 2**80]).dtype, np.object) assert_equal(np.array([long(4), 2**80, long(4)]).dtype, np.object) assert_equal(np.array([2**80, long(4)]).dtype, np.object) def test_non_sequence_sequence(self): """Should not segfault. Class Fail breaks the sequence protocol for new style classes, i.e., those derived from object. Class Map is a mapping type indicated by raising a ValueError. At some point we may raise a warning instead of an error in the Fail case. """ class Fail(object): def __len__(self): return 1 def __getitem__(self, index): raise ValueError() class Map(object): def __len__(self): return 1 def __getitem__(self, index): raise KeyError() a = np.array([Map()]) assert_(a.shape == (1,)) assert_(a.dtype == np.dtype(object)) assert_raises(ValueError, np.array, [Fail()]) def test_no_len_object_type(self): # gh-5100, want object array from iterable object without len() class Point2: def __init__(self): pass def __getitem__(self, ind): if ind in [0, 1]: return ind else: raise IndexError() d = np.array([Point2(), Point2(), Point2()]) assert_equal(d.dtype, np.dtype(object)) class TestStructured(TestCase): def test_subarray_field_access(self): a = np.zeros((3, 5), dtype=[('a', ('i4', (2, 2)))]) a['a'] = np.arange(60).reshape(3, 5, 2, 2) # Since the subarray is always in C-order, a transpose # does not swap the subarray: assert_array_equal(a.T['a'], a['a'].transpose(1, 0, 2, 3)) # In Fortran order, the subarray gets appended # like in all other cases, not prepended as a special case b = a.copy(order='F') assert_equal(a['a'].shape, b['a'].shape) assert_equal(a.T['a'].shape, a.T.copy()['a'].shape) def test_subarray_comparison(self): # Check that comparisons between record arrays with # multi-dimensional field types work properly a = np.rec.fromrecords( [([1, 2, 3], 'a', [[1, 2], [3, 4]]), ([3, 3, 3], 'b', [[0, 0], [0, 0]])], dtype=[('a', ('f4', 3)), ('b', np.object), ('c', ('i4', (2, 2)))]) b = a.copy() assert_equal(a == b, [True, True]) assert_equal(a != b, [False, False]) b[1].b = 'c' assert_equal(a == b, [True, False]) assert_equal(a != b, [False, True]) for i in range(3): b[0].a = a[0].a b[0].a[i] = 5 assert_equal(a == b, [False, False]) assert_equal(a != b, [True, True]) for i in range(2): for j in range(2): b = a.copy() b[0].c[i, j] = 10 assert_equal(a == b, [False, True]) assert_equal(a != b, [True, False]) # Check that broadcasting with a subarray works a = np.array([[(0,)], [(1,)]], dtype=[('a', 'f8')]) b = np.array([(0,), (0,), (1,)], dtype=[('a', 'f8')]) assert_equal(a == b, [[True, True, False], [False, False, True]]) assert_equal(b == a, [[True, True, False], [False, False, True]]) a = np.array([[(0,)], [(1,)]], dtype=[('a', 'f8', (1,))]) b = np.array([(0,), (0,), (1,)], dtype=[('a', 'f8', (1,))]) assert_equal(a == b, [[True, True, False], [False, False, True]]) assert_equal(b == a, [[True, True, False], [False, False, True]]) a = np.array([[([0, 0],)], [([1, 1],)]], dtype=[('a', 'f8', (2,))]) b = np.array([([0, 0],), ([0, 1],), ([1, 1],)], dtype=[('a', 'f8', (2,))]) assert_equal(a == b, [[True, False, False], [False, False, True]]) assert_equal(b == a, [[True, False, False], [False, False, True]]) # Check that broadcasting Fortran-style arrays with a subarray work a = np.array([[([0, 0],)], [([1, 1],)]], dtype=[('a', 'f8', (2,))], order='F') b = np.array([([0, 0],), ([0, 1],), ([1, 1],)], dtype=[('a', 'f8', (2,))]) assert_equal(a == b, [[True, False, False], [False, False, True]]) assert_equal(b == a, [[True, False, False], [False, False, True]]) # Check that incompatible sub-array shapes don't result to broadcasting x = np.zeros((1,), dtype=[('a', ('f4', (1, 2))), ('b', 'i1')]) y = np.zeros((1,), dtype=[('a', ('f4', (2,))), ('b', 'i1')]) # This comparison invokes deprecated behaviour, and will probably # start raising an error eventually. What we really care about in this # test is just that it doesn't return True. with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) assert_equal(x == y, False) x = np.zeros((1,), dtype=[('a', ('f4', (2, 1))), ('b', 'i1')]) y = np.zeros((1,), dtype=[('a', ('f4', (2,))), ('b', 'i1')]) # This comparison invokes deprecated behaviour, and will probably # start raising an error eventually. What we really care about in this # test is just that it doesn't return True. with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) assert_equal(x == y, False) # Check that structured arrays that are different only in # byte-order work a = np.array([(5, 42), (10, 1)], dtype=[('a', '>i8'), ('b', '<f8')]) b = np.array([(5, 43), (10, 1)], dtype=[('a', '<i8'), ('b', '>f8')]) assert_equal(a == b, [False, True]) def test_casting(self): # Check that casting a structured array to change its byte order # works a = np.array([(1,)], dtype=[('a', '<i4')]) assert_(np.can_cast(a.dtype, [('a', '>i4')], casting='unsafe')) b = a.astype([('a', '>i4')]) assert_equal(b, a.byteswap().newbyteorder()) assert_equal(a['a'][0], b['a'][0]) # Check that equality comparison works on structured arrays if # they are 'equiv'-castable a = np.array([(5, 42), (10, 1)], dtype=[('a', '>i4'), ('b', '<f8')]) b = np.array([(42, 5), (1, 10)], dtype=[('b', '>f8'), ('a', '<i4')]) assert_(np.can_cast(a.dtype, b.dtype, casting='equiv')) assert_equal(a == b, [True, True]) # Check that 'equiv' casting can reorder fields and change byte # order assert_(np.can_cast(a.dtype, b.dtype, casting='equiv')) c = a.astype(b.dtype, casting='equiv') assert_equal(a == c, [True, True]) # Check that 'safe' casting can change byte order and up-cast # fields t = [('a', '<i8'), ('b', '>f8')] assert_(np.can_cast(a.dtype, t, casting='safe')) c = a.astype(t, casting='safe') assert_equal((c == np.array([(5, 42), (10, 1)], dtype=t)), [True, True]) # Check that 'same_kind' casting can change byte order and # change field widths within a "kind" t = [('a', '<i4'), ('b', '>f4')] assert_(np.can_cast(a.dtype, t, casting='same_kind')) c = a.astype(t, casting='same_kind') assert_equal((c == np.array([(5, 42), (10, 1)], dtype=t)), [True, True]) # Check that casting fails if the casting rule should fail on # any of the fields t = [('a', '>i8'), ('b', '<f4')] assert_(not np.can_cast(a.dtype, t, casting='safe')) assert_raises(TypeError, a.astype, t, casting='safe') t = [('a', '>i2'), ('b', '<f8')] assert_(not np.can_cast(a.dtype, t, casting='equiv')) assert_raises(TypeError, a.astype, t, casting='equiv') t = [('a', '>i8'), ('b', '<i2')] assert_(not np.can_cast(a.dtype, t, casting='same_kind')) assert_raises(TypeError, a.astype, t, casting='same_kind') assert_(not np.can_cast(a.dtype, b.dtype, casting='no')) assert_raises(TypeError, a.astype, b.dtype, casting='no') # Check that non-'unsafe' casting can't change the set of field names for casting in ['no', 'safe', 'equiv', 'same_kind']: t = [('a', '>i4')] assert_(not np.can_cast(a.dtype, t, casting=casting)) t = [('a', '>i4'), ('b', '<f8'), ('c', 'i4')] assert_(not np.can_cast(a.dtype, t, casting=casting)) def test_objview(self): # https://github.com/numpy/numpy/issues/3286 a = np.array([], dtype=[('a', 'f'), ('b', 'f'), ('c', 'O')]) a[['a', 'b']] # TypeError? # https://github.com/numpy/numpy/issues/3253 dat2 = np.zeros(3, [('A', 'i'), ('B', '|O')]) dat2[['B', 'A']] # TypeError? def test_setfield(self): # https://github.com/numpy/numpy/issues/3126 struct_dt = np.dtype([('elem', 'i4', 5),]) dt = np.dtype([('field', 'i4', 10),('struct', struct_dt)]) x = np.zeros(1, dt) x[0]['field'] = np.ones(10, dtype='i4') x[0]['struct'] = np.ones(1, dtype=struct_dt) assert_equal(x[0]['field'], np.ones(10, dtype='i4')) def test_setfield_object(self): # make sure object field assignment with ndarray value # on void scalar mimics setitem behavior b = np.zeros(1, dtype=[('x', 'O')]) # next line should work identically to b['x'][0] = np.arange(3) b[0]['x'] = np.arange(3) assert_equal(b[0]['x'], np.arange(3)) #check that broadcasting check still works c = np.zeros(1, dtype=[('x', 'O', 5)]) def testassign(): c[0]['x'] = np.arange(3) assert_raises(ValueError, testassign) class TestBool(TestCase): def test_test_interning(self): a0 = np.bool_(0) b0 = np.bool_(False) self.assertTrue(a0 is b0) a1 = np.bool_(1) b1 = np.bool_(True) self.assertTrue(a1 is b1) self.assertTrue(np.array([True])[0] is a1) self.assertTrue(np.array(True)[()] is a1) def test_sum(self): d = np.ones(101, dtype=np.bool) assert_equal(d.sum(), d.size) assert_equal(d[::2].sum(), d[::2].size) assert_equal(d[::-2].sum(), d[::-2].size) d = np.frombuffer(b'\xff\xff' * 100, dtype=bool) assert_equal(d.sum(), d.size) assert_equal(d[::2].sum(), d[::2].size) assert_equal(d[::-2].sum(), d[::-2].size) def check_count_nonzero(self, power, length): powers = [2 ** i for i in range(length)] for i in range(2**power): l = [(i & x) != 0 for x in powers] a = np.array(l, dtype=np.bool) c = builtins.sum(l) self.assertEqual(np.count_nonzero(a), c) av = a.view(np.uint8) av *= 3 self.assertEqual(np.count_nonzero(a), c) av *= 4 self.assertEqual(np.count_nonzero(a), c) av[av != 0] = 0xFF self.assertEqual(np.count_nonzero(a), c) def test_count_nonzero(self): # check all 12 bit combinations in a length 17 array # covers most cases of the 16 byte unrolled code self.check_count_nonzero(12, 17) @dec.slow def test_count_nonzero_all(self): # check all combinations in a length 17 array # covers all cases of the 16 byte unrolled code self.check_count_nonzero(17, 17) def test_count_nonzero_unaligned(self): # prevent mistakes as e.g. gh-4060 for o in range(7): a = np.zeros((18,), dtype=np.bool)[o+1:] a[:o] = True self.assertEqual(np.count_nonzero(a), builtins.sum(a.tolist())) a = np.ones((18,), dtype=np.bool)[o+1:] a[:o] = False self.assertEqual(np.count_nonzero(a), builtins.sum(a.tolist())) class TestMethods(TestCase): def test_round(self): def check_round(arr, expected, *round_args): assert_equal(arr.round(*round_args), expected) # With output array out = np.zeros_like(arr) res = arr.round(*round_args, out=out) assert_equal(out, expected) assert_equal(out, res) check_round(np.array([1.2, 1.5]), [1, 2]) check_round(np.array(1.5), 2) check_round(np.array([12.2, 15.5]), [10, 20], -1) check_round(np.array([12.15, 15.51]), [12.2, 15.5], 1) # Complex rounding check_round(np.array([4.5 + 1.5j]), [4 + 2j]) check_round(np.array([12.5 + 15.5j]), [10 + 20j], -1) def test_transpose(self): a = np.array([[1, 2], [3, 4]]) assert_equal(a.transpose(), [[1, 3], [2, 4]]) self.assertRaises(ValueError, lambda: a.transpose(0)) self.assertRaises(ValueError, lambda: a.transpose(0, 0)) self.assertRaises(ValueError, lambda: a.transpose(0, 1, 2)) def test_sort(self): # test ordering for floats and complex containing nans. It is only # necessary to check the lessthan comparison, so sorts that # only follow the insertion sort path are sufficient. We only # test doubles and complex doubles as the logic is the same. # check doubles msg = "Test real sort order with nans" a = np.array([np.nan, 1, 0]) b = np.sort(a) assert_equal(b, a[::-1], msg) # check complex msg = "Test complex sort order with nans" a = np.zeros(9, dtype=np.complex128) a.real += [np.nan, np.nan, np.nan, 1, 0, 1, 1, 0, 0] a.imag += [np.nan, 1, 0, np.nan, np.nan, 1, 0, 1, 0] b = np.sort(a) assert_equal(b, a[::-1], msg) # all c scalar sorts use the same code with different types # so it suffices to run a quick check with one type. The number # of sorted items must be greater than ~50 to check the actual # algorithm because quick and merge sort fall over to insertion # sort for small arrays. a = np.arange(101) b = a[::-1].copy() for kind in ['q', 'm', 'h']: msg = "scalar sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test complex sorts. These use the same code as the scalars # but the compare function differs. ai = a*1j + 1 bi = b*1j + 1 for kind in ['q', 'm', 'h']: msg = "complex sort, real part == 1, kind=%s" % kind c = ai.copy() c.sort(kind=kind) assert_equal(c, ai, msg) c = bi.copy() c.sort(kind=kind) assert_equal(c, ai, msg) ai = a + 1j bi = b + 1j for kind in ['q', 'm', 'h']: msg = "complex sort, imag part == 1, kind=%s" % kind c = ai.copy() c.sort(kind=kind) assert_equal(c, ai, msg) c = bi.copy() c.sort(kind=kind) assert_equal(c, ai, msg) # test sorting of complex arrays requiring byte-swapping, gh-5441 for endianess in '<>': for dt in np.typecodes['Complex']: arr = np.array([1+3.j, 2+2.j, 3+1.j], dtype=endianess + dt) c = arr.copy() c.sort() msg = 'byte-swapped complex sort, dtype={0}'.format(dt) assert_equal(c, arr, msg) # test string sorts. s = 'aaaaaaaa' a = np.array([s + chr(i) for i in range(101)]) b = a[::-1].copy() for kind in ['q', 'm', 'h']: msg = "string sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test unicode sorts. s = 'aaaaaaaa' a = np.array([s + chr(i) for i in range(101)], dtype=np.unicode) b = a[::-1].copy() for kind in ['q', 'm', 'h']: msg = "unicode sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test object array sorts. a = np.empty((101,), dtype=np.object) a[:] = list(range(101)) b = a[::-1] for kind in ['q', 'h', 'm']: msg = "object sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test record array sorts. dt = np.dtype([('f', float), ('i', int)]) a = np.array([(i, i) for i in range(101)], dtype=dt) b = a[::-1] for kind in ['q', 'h', 'm']: msg = "object sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test datetime64 sorts. a = np.arange(0, 101, dtype='datetime64[D]') b = a[::-1] for kind in ['q', 'h', 'm']: msg = "datetime64 sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test timedelta64 sorts. a = np.arange(0, 101, dtype='timedelta64[D]') b = a[::-1] for kind in ['q', 'h', 'm']: msg = "timedelta64 sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # check axis handling. This should be the same for all type # specific sorts, so we only check it for one type and one kind a = np.array([[3, 2], [1, 0]]) b = np.array([[1, 0], [3, 2]]) c = np.array([[2, 3], [0, 1]]) d = a.copy() d.sort(axis=0) assert_equal(d, b, "test sort with axis=0") d = a.copy() d.sort(axis=1) assert_equal(d, c, "test sort with axis=1") d = a.copy() d.sort() assert_equal(d, c, "test sort with default axis") # check axis handling for multidimensional empty arrays a = np.array([]) a.shape = (3, 2, 1, 0) for axis in range(-a.ndim, a.ndim): msg = 'test empty array sort with axis={0}'.format(axis) assert_equal(np.sort(a, axis=axis), a, msg) msg = 'test empty array sort with axis=None' assert_equal(np.sort(a, axis=None), a.ravel(), msg) def test_copy(self): def assert_fortran(arr): assert_(arr.flags.fortran) assert_(arr.flags.f_contiguous) assert_(not arr.flags.c_contiguous) def assert_c(arr): assert_(not arr.flags.fortran) assert_(not arr.flags.f_contiguous) assert_(arr.flags.c_contiguous) a = np.empty((2, 2), order='F') # Test copying a Fortran array assert_c(a.copy()) assert_c(a.copy('C')) assert_fortran(a.copy('F')) assert_fortran(a.copy('A')) # Now test starting with a C array. a = np.empty((2, 2), order='C') assert_c(a.copy()) assert_c(a.copy('C')) assert_fortran(a.copy('F')) assert_c(a.copy('A')) def test_sort_order(self): # Test sorting an array with fields x1 = np.array([21, 32, 14]) x2 = np.array(['my', 'first', 'name']) x3 = np.array([3.1, 4.5, 6.2]) r = np.rec.fromarrays([x1, x2, x3], names='id,word,number') r.sort(order=['id']) assert_equal(r.id, np.array([14, 21, 32])) assert_equal(r.word, np.array(['name', 'my', 'first'])) assert_equal(r.number, np.array([6.2, 3.1, 4.5])) r.sort(order=['word']) assert_equal(r.id, np.array([32, 21, 14])) assert_equal(r.word, np.array(['first', 'my', 'name'])) assert_equal(r.number, np.array([4.5, 3.1, 6.2])) r.sort(order=['number']) assert_equal(r.id, np.array([21, 32, 14])) assert_equal(r.word, np.array(['my', 'first', 'name'])) assert_equal(r.number, np.array([3.1, 4.5, 6.2])) if sys.byteorder == 'little': strtype = '>i2' else: strtype = '<i2' mydtype = [('name', strchar + '5'), ('col2', strtype)] r = np.array([('a', 1), ('b', 255), ('c', 3), ('d', 258)], dtype=mydtype) r.sort(order='col2') assert_equal(r['col2'], [1, 3, 255, 258]) assert_equal(r, np.array([('a', 1), ('c', 3), ('b', 255), ('d', 258)], dtype=mydtype)) def test_argsort(self): # all c scalar argsorts use the same code with different types # so it suffices to run a quick check with one type. The number # of sorted items must be greater than ~50 to check the actual # algorithm because quick and merge sort fall over to insertion # sort for small arrays. a = np.arange(101) b = a[::-1].copy() for kind in ['q', 'm', 'h']: msg = "scalar argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), a, msg) assert_equal(b.copy().argsort(kind=kind), b, msg) # test complex argsorts. These use the same code as the scalars # but the compare fuction differs. ai = a*1j + 1 bi = b*1j + 1 for kind in ['q', 'm', 'h']: msg = "complex argsort, kind=%s" % kind assert_equal(ai.copy().argsort(kind=kind), a, msg) assert_equal(bi.copy().argsort(kind=kind), b, msg) ai = a + 1j bi = b + 1j for kind in ['q', 'm', 'h']: msg = "complex argsort, kind=%s" % kind assert_equal(ai.copy().argsort(kind=kind), a, msg) assert_equal(bi.copy().argsort(kind=kind), b, msg) # test argsort of complex arrays requiring byte-swapping, gh-5441 for endianess in '<>': for dt in np.typecodes['Complex']: arr = np.array([1+3.j, 2+2.j, 3+1.j], dtype=endianess + dt) msg = 'byte-swapped complex argsort, dtype={0}'.format(dt) assert_equal(arr.argsort(), np.arange(len(arr), dtype=np.intp), msg) # test string argsorts. s = 'aaaaaaaa' a = np.array([s + chr(i) for i in range(101)]) b = a[::-1].copy() r = np.arange(101) rr = r[::-1] for kind in ['q', 'm', 'h']: msg = "string argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # test unicode argsorts. s = 'aaaaaaaa' a = np.array([s + chr(i) for i in range(101)], dtype=np.unicode) b = a[::-1] r = np.arange(101) rr = r[::-1] for kind in ['q', 'm', 'h']: msg = "unicode argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # test object array argsorts. a = np.empty((101,), dtype=np.object) a[:] = list(range(101)) b = a[::-1] r = np.arange(101) rr = r[::-1] for kind in ['q', 'm', 'h']: msg = "object argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # test structured array argsorts. dt = np.dtype([('f', float), ('i', int)]) a = np.array([(i, i) for i in range(101)], dtype=dt) b = a[::-1] r = np.arange(101) rr = r[::-1] for kind in ['q', 'm', 'h']: msg = "structured array argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # test datetime64 argsorts. a = np.arange(0, 101, dtype='datetime64[D]') b = a[::-1] r = np.arange(101) rr = r[::-1] for kind in ['q', 'h', 'm']: msg = "datetime64 argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # test timedelta64 argsorts. a = np.arange(0, 101, dtype='timedelta64[D]') b = a[::-1] r = np.arange(101) rr = r[::-1] for kind in ['q', 'h', 'm']: msg = "timedelta64 argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # check axis handling. This should be the same for all type # specific argsorts, so we only check it for one type and one kind a = np.array([[3, 2], [1, 0]]) b = np.array([[1, 1], [0, 0]]) c = np.array([[1, 0], [1, 0]]) assert_equal(a.copy().argsort(axis=0), b) assert_equal(a.copy().argsort(axis=1), c) assert_equal(a.copy().argsort(), c) # using None is known fail at this point #assert_equal(a.copy().argsort(axis=None, c) # check axis handling for multidimensional empty arrays a = np.array([]) a.shape = (3, 2, 1, 0) for axis in range(-a.ndim, a.ndim): msg = 'test empty array argsort with axis={0}'.format(axis) assert_equal(np.argsort(a, axis=axis), np.zeros_like(a, dtype=np.intp), msg) msg = 'test empty array argsort with axis=None' assert_equal(np.argsort(a, axis=None), np.zeros_like(a.ravel(), dtype=np.intp), msg) # check that stable argsorts are stable r = np.arange(100) # scalars a = np.zeros(100) assert_equal(a.argsort(kind='m'), r) # complex a = np.zeros(100, dtype=np.complex) assert_equal(a.argsort(kind='m'), r) # string a = np.array(['aaaaaaaaa' for i in range(100)]) assert_equal(a.argsort(kind='m'), r) # unicode a = np.array(['aaaaaaaaa' for i in range(100)], dtype=np.unicode) assert_equal(a.argsort(kind='m'), r) def test_sort_unicode_kind(self): d = np.arange(10) k = b'\xc3\xa4'.decode("UTF8") assert_raises(ValueError, d.sort, kind=k) assert_raises(ValueError, d.argsort, kind=k) def test_searchsorted(self): # test for floats and complex containing nans. The logic is the # same for all float types so only test double types for now. # The search sorted routines use the compare functions for the # array type, so this checks if that is consistent with the sort # order. # check double a = np.array([0, 1, np.nan]) msg = "Test real searchsorted with nans, side='l'" b = a.searchsorted(a, side='l') assert_equal(b, np.arange(3), msg) msg = "Test real searchsorted with nans, side='r'" b = a.searchsorted(a, side='r') assert_equal(b, np.arange(1, 4), msg) # check double complex a = np.zeros(9, dtype=np.complex128) a.real += [0, 0, 1, 1, 0, 1, np.nan, np.nan, np.nan] a.imag += [0, 1, 0, 1, np.nan, np.nan, 0, 1, np.nan] msg = "Test complex searchsorted with nans, side='l'" b = a.searchsorted(a, side='l') assert_equal(b, np.arange(9), msg) msg = "Test complex searchsorted with nans, side='r'" b = a.searchsorted(a, side='r') assert_equal(b, np.arange(1, 10), msg) msg = "Test searchsorted with little endian, side='l'" a = np.array([0, 128], dtype='<i4') b = a.searchsorted(np.array(128, dtype='<i4')) assert_equal(b, 1, msg) msg = "Test searchsorted with big endian, side='l'" a = np.array([0, 128], dtype='>i4') b = a.searchsorted(np.array(128, dtype='>i4')) assert_equal(b, 1, msg) # Check 0 elements a = np.ones(0) b = a.searchsorted([0, 1, 2], 'l') assert_equal(b, [0, 0, 0]) b = a.searchsorted([0, 1, 2], 'r') assert_equal(b, [0, 0, 0]) a = np.ones(1) # Check 1 element b = a.searchsorted([0, 1, 2], 'l') assert_equal(b, [0, 0, 1]) b = a.searchsorted([0, 1, 2], 'r') assert_equal(b, [0, 1, 1]) # Check all elements equal a = np.ones(2) b = a.searchsorted([0, 1, 2], 'l') assert_equal(b, [0, 0, 2]) b = a.searchsorted([0, 1, 2], 'r') assert_equal(b, [0, 2, 2]) # Test searching unaligned array a = np.arange(10) aligned = np.empty(a.itemsize * a.size + 1, 'uint8') unaligned = aligned[1:].view(a.dtype) unaligned[:] = a # Test searching unaligned array b = unaligned.searchsorted(a, 'l') assert_equal(b, a) b = unaligned.searchsorted(a, 'r') assert_equal(b, a + 1) # Test searching for unaligned keys b = a.searchsorted(unaligned, 'l') assert_equal(b, a) b = a.searchsorted(unaligned, 'r') assert_equal(b, a + 1) # Test smart resetting of binsearch indices a = np.arange(5) b = a.searchsorted([6, 5, 4], 'l') assert_equal(b, [5, 5, 4]) b = a.searchsorted([6, 5, 4], 'r') assert_equal(b, [5, 5, 5]) # Test all type specific binary search functions types = ''.join((np.typecodes['AllInteger'], np.typecodes['AllFloat'], np.typecodes['Datetime'], '?O')) for dt in types: if dt == 'M': dt = 'M8[D]' if dt == '?': a = np.arange(2, dtype=dt) out = np.arange(2) else: a = np.arange(0, 5, dtype=dt) out = np.arange(5) b = a.searchsorted(a, 'l') assert_equal(b, out) b = a.searchsorted(a, 'r') assert_equal(b, out + 1) def test_searchsorted_unicode(self): # Test searchsorted on unicode strings. # 1.6.1 contained a string length miscalculation in # arraytypes.c.src:UNICODE_compare() which manifested as # incorrect/inconsistent results from searchsorted. a = np.array(['P:\\20x_dapi_cy3\\20x_dapi_cy3_20100185_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100186_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100187_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100189_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100190_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100191_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100192_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100193_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100194_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100195_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100196_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100197_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100198_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100199_1'], dtype=np.unicode) ind = np.arange(len(a)) assert_equal([a.searchsorted(v, 'left') for v in a], ind) assert_equal([a.searchsorted(v, 'right') for v in a], ind + 1) assert_equal([a.searchsorted(a[i], 'left') for i in ind], ind) assert_equal([a.searchsorted(a[i], 'right') for i in ind], ind + 1) def test_searchsorted_with_sorter(self): a = np.array([5, 2, 1, 3, 4]) s = np.argsort(a) assert_raises(TypeError, np.searchsorted, a, 0, sorter=(1, (2, 3))) assert_raises(TypeError, np.searchsorted, a, 0, sorter=[1.1]) assert_raises(ValueError, np.searchsorted, a, 0, sorter=[1, 2, 3, 4]) assert_raises(ValueError, np.searchsorted, a, 0, sorter=[1, 2, 3, 4, 5, 6]) # bounds check assert_raises(ValueError, np.searchsorted, a, 4, sorter=[0, 1, 2, 3, 5]) assert_raises(ValueError, np.searchsorted, a, 0, sorter=[-1, 0, 1, 2, 3]) assert_raises(ValueError, np.searchsorted, a, 0, sorter=[4, 0, -1, 2, 3]) a = np.random.rand(300) s = a.argsort() b = np.sort(a) k = np.linspace(0, 1, 20) assert_equal(b.searchsorted(k), a.searchsorted(k, sorter=s)) a = np.array([0, 1, 2, 3, 5]*20) s = a.argsort() k = [0, 1, 2, 3, 5] expected = [0, 20, 40, 60, 80] assert_equal(a.searchsorted(k, side='l', sorter=s), expected) expected = [20, 40, 60, 80, 100] assert_equal(a.searchsorted(k, side='r', sorter=s), expected) # Test searching unaligned array keys = np.arange(10) a = keys.copy() np.random.shuffle(s) s = a.argsort() aligned = np.empty(a.itemsize * a.size + 1, 'uint8') unaligned = aligned[1:].view(a.dtype) # Test searching unaligned array unaligned[:] = a b = unaligned.searchsorted(keys, 'l', s) assert_equal(b, keys) b = unaligned.searchsorted(keys, 'r', s) assert_equal(b, keys + 1) # Test searching for unaligned keys unaligned[:] = keys b = a.searchsorted(unaligned, 'l', s) assert_equal(b, keys) b = a.searchsorted(unaligned, 'r', s) assert_equal(b, keys + 1) # Test all type specific indirect binary search functions types = ''.join((np.typecodes['AllInteger'], np.typecodes['AllFloat'], np.typecodes['Datetime'], '?O')) for dt in types: if dt == 'M': dt = 'M8[D]' if dt == '?': a = np.array([1, 0], dtype=dt) # We want the sorter array to be of a type that is different # from np.intp in all platforms, to check for #4698 s = np.array([1, 0], dtype=np.int16) out = np.array([1, 0]) else: a = np.array([3, 4, 1, 2, 0], dtype=dt) # We want the sorter array to be of a type that is different # from np.intp in all platforms, to check for #4698 s = np.array([4, 2, 3, 0, 1], dtype=np.int16) out = np.array([3, 4, 1, 2, 0], dtype=np.intp) b = a.searchsorted(a, 'l', s) assert_equal(b, out) b = a.searchsorted(a, 'r', s) assert_equal(b, out + 1) # Test non-contiguous sorter array a = np.array([3, 4, 1, 2, 0]) srt = np.empty((10,), dtype=np.intp) srt[1::2] = -1 srt[::2] = [4, 2, 3, 0, 1] s = srt[::2] out = np.array([3, 4, 1, 2, 0], dtype=np.intp) b = a.searchsorted(a, 'l', s) assert_equal(b, out) b = a.searchsorted(a, 'r', s) assert_equal(b, out + 1) def test_searchsorted_return_type(self): # Functions returning indices should always return base ndarrays class A(np.ndarray): pass a = np.arange(5).view(A) b = np.arange(1, 3).view(A) s = np.arange(5).view(A) assert_(not isinstance(a.searchsorted(b, 'l'), A)) assert_(not isinstance(a.searchsorted(b, 'r'), A)) assert_(not isinstance(a.searchsorted(b, 'l', s), A)) assert_(not isinstance(a.searchsorted(b, 'r', s), A)) def test_argpartition_out_of_range(self): # Test out of range values in kth raise an error, gh-5469 d = np.arange(10) assert_raises(ValueError, d.argpartition, 10) assert_raises(ValueError, d.argpartition, -11) # Test also for generic type argpartition, which uses sorting # and used to not bound check kth d_obj = np.arange(10, dtype=object) assert_raises(ValueError, d_obj.argpartition, 10) assert_raises(ValueError, d_obj.argpartition, -11) def test_partition_out_of_range(self): # Test out of range values in kth raise an error, gh-5469 d = np.arange(10) assert_raises(ValueError, d.partition, 10) assert_raises(ValueError, d.partition, -11) # Test also for generic type partition, which uses sorting # and used to not bound check kth d_obj = np.arange(10, dtype=object) assert_raises(ValueError, d_obj.partition, 10) assert_raises(ValueError, d_obj.partition, -11) def test_partition_empty_array(self): # check axis handling for multidimensional empty arrays a = np.array([]) a.shape = (3, 2, 1, 0) for axis in range(-a.ndim, a.ndim): msg = 'test empty array partition with axis={0}'.format(axis) assert_equal(np.partition(a, 0, axis=axis), a, msg) msg = 'test empty array partition with axis=None' assert_equal(np.partition(a, 0, axis=None), a.ravel(), msg) def test_argpartition_empty_array(self): # check axis handling for multidimensional empty arrays a = np.array([]) a.shape = (3, 2, 1, 0) for axis in range(-a.ndim, a.ndim): msg = 'test empty array argpartition with axis={0}'.format(axis) assert_equal(np.partition(a, 0, axis=axis), np.zeros_like(a, dtype=np.intp), msg) msg = 'test empty array argpartition with axis=None' assert_equal(np.partition(a, 0, axis=None), np.zeros_like(a.ravel(), dtype=np.intp), msg) def test_partition(self): d = np.arange(10) assert_raises(TypeError, np.partition, d, 2, kind=1) assert_raises(ValueError, np.partition, d, 2, kind="nonsense") assert_raises(ValueError, np.argpartition, d, 2, kind="nonsense") assert_raises(ValueError, d.partition, 2, axis=0, kind="nonsense") assert_raises(ValueError, d.argpartition, 2, axis=0, kind="nonsense") for k in ("introselect",): d = np.array([]) assert_array_equal(np.partition(d, 0, kind=k), d) assert_array_equal(np.argpartition(d, 0, kind=k), d) d = np.ones((1)) assert_array_equal(np.partition(d, 0, kind=k)[0], d) assert_array_equal(d[np.argpartition(d, 0, kind=k)], np.partition(d, 0, kind=k)) # kth not modified kth = np.array([30, 15, 5]) okth = kth.copy() np.partition(np.arange(40), kth) assert_array_equal(kth, okth) for r in ([2, 1], [1, 2], [1, 1]): d = np.array(r) tgt = np.sort(d) assert_array_equal(np.partition(d, 0, kind=k)[0], tgt[0]) assert_array_equal(np.partition(d, 1, kind=k)[1], tgt[1]) assert_array_equal(d[np.argpartition(d, 0, kind=k)], np.partition(d, 0, kind=k)) assert_array_equal(d[np.argpartition(d, 1, kind=k)], np.partition(d, 1, kind=k)) for i in range(d.size): d[i:].partition(0, kind=k) assert_array_equal(d, tgt) for r in ([3, 2, 1], [1, 2, 3], [2, 1, 3], [2, 3, 1], [1, 1, 1], [1, 2, 2], [2, 2, 1], [1, 2, 1]): d = np.array(r) tgt = np.sort(d) assert_array_equal(np.partition(d, 0, kind=k)[0], tgt[0]) assert_array_equal(np.partition(d, 1, kind=k)[1], tgt[1]) assert_array_equal(np.partition(d, 2, kind=k)[2], tgt[2]) assert_array_equal(d[np.argpartition(d, 0, kind=k)], np.partition(d, 0, kind=k)) assert_array_equal(d[np.argpartition(d, 1, kind=k)], np.partition(d, 1, kind=k)) assert_array_equal(d[np.argpartition(d, 2, kind=k)], np.partition(d, 2, kind=k)) for i in range(d.size): d[i:].partition(0, kind=k) assert_array_equal(d, tgt) d = np.ones((50)) assert_array_equal(np.partition(d, 0, kind=k), d) assert_array_equal(d[np.argpartition(d, 0, kind=k)], np.partition(d, 0, kind=k)) # sorted d = np.arange((49)) self.assertEqual(np.partition(d, 5, kind=k)[5], 5) self.assertEqual(np.partition(d, 15, kind=k)[15], 15) assert_array_equal(d[np.argpartition(d, 5, kind=k)], np.partition(d, 5, kind=k)) assert_array_equal(d[np.argpartition(d, 15, kind=k)], np.partition(d, 15, kind=k)) # rsorted d = np.arange((47))[::-1] self.assertEqual(np.partition(d, 6, kind=k)[6], 6) self.assertEqual(np.partition(d, 16, kind=k)[16], 16) assert_array_equal(d[np.argpartition(d, 6, kind=k)], np.partition(d, 6, kind=k)) assert_array_equal(d[np.argpartition(d, 16, kind=k)], np.partition(d, 16, kind=k)) assert_array_equal(np.partition(d, -6, kind=k), np.partition(d, 41, kind=k)) assert_array_equal(np.partition(d, -16, kind=k), np.partition(d, 31, kind=k)) assert_array_equal(d[np.argpartition(d, -6, kind=k)], np.partition(d, 41, kind=k)) # median of 3 killer, O(n^2) on pure median 3 pivot quickselect # exercises the median of median of 5 code used to keep O(n) d = np.arange(1000000) x = np.roll(d, d.size // 2) mid = x.size // 2 + 1 assert_equal(np.partition(x, mid)[mid], mid) d = np.arange(1000001) x = np.roll(d, d.size // 2 + 1) mid = x.size // 2 + 1 assert_equal(np.partition(x, mid)[mid], mid) # max d = np.ones(10) d[1] = 4 assert_equal(np.partition(d, (2, -1))[-1], 4) assert_equal(np.partition(d, (2, -1))[2], 1) assert_equal(d[np.argpartition(d, (2, -1))][-1], 4) assert_equal(d[np.argpartition(d, (2, -1))][2], 1) d[1] = np.nan assert_(np.isnan(d[np.argpartition(d, (2, -1))][-1])) assert_(np.isnan(np.partition(d, (2, -1))[-1])) # equal elements d = np.arange((47)) % 7 tgt = np.sort(np.arange((47)) % 7) np.random.shuffle(d) for i in range(d.size): self.assertEqual(np.partition(d, i, kind=k)[i], tgt[i]) assert_array_equal(d[np.argpartition(d, 6, kind=k)], np.partition(d, 6, kind=k)) assert_array_equal(d[np.argpartition(d, 16, kind=k)], np.partition(d, 16, kind=k)) for i in range(d.size): d[i:].partition(0, kind=k) assert_array_equal(d, tgt) d = np.array([0, 1, 2, 3, 4, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 9]) kth = [0, 3, 19, 20] assert_equal(np.partition(d, kth, kind=k)[kth], (0, 3, 7, 7)) assert_equal(d[np.argpartition(d, kth, kind=k)][kth], (0, 3, 7, 7)) d = np.array([2, 1]) d.partition(0, kind=k) assert_raises(ValueError, d.partition, 2) assert_raises(ValueError, d.partition, 3, axis=1) assert_raises(ValueError, np.partition, d, 2) assert_raises(ValueError, np.partition, d, 2, axis=1) assert_raises(ValueError, d.argpartition, 2) assert_raises(ValueError, d.argpartition, 3, axis=1) assert_raises(ValueError, np.argpartition, d, 2) assert_raises(ValueError, np.argpartition, d, 2, axis=1) d = np.arange(10).reshape((2, 5)) d.partition(1, axis=0, kind=k) d.partition(4, axis=1, kind=k) np.partition(d, 1, axis=0, kind=k) np.partition(d, 4, axis=1, kind=k) np.partition(d, 1, axis=None, kind=k) np.partition(d, 9, axis=None, kind=k) d.argpartition(1, axis=0, kind=k) d.argpartition(4, axis=1, kind=k) np.argpartition(d, 1, axis=0, kind=k) np.argpartition(d, 4, axis=1, kind=k) np.argpartition(d, 1, axis=None, kind=k) np.argpartition(d, 9, axis=None, kind=k) assert_raises(ValueError, d.partition, 2, axis=0) assert_raises(ValueError, d.partition, 11, axis=1) assert_raises(TypeError, d.partition, 2, axis=None) assert_raises(ValueError, np.partition, d, 9, axis=1) assert_raises(ValueError, np.partition, d, 11, axis=None) assert_raises(ValueError, d.argpartition, 2, axis=0) assert_raises(ValueError, d.argpartition, 11, axis=1) assert_raises(ValueError, np.argpartition, d, 9, axis=1) assert_raises(ValueError, np.argpartition, d, 11, axis=None) td = [(dt, s) for dt in [np.int32, np.float32, np.complex64] for s in (9, 16)] for dt, s in td: aae = assert_array_equal at = self.assertTrue d = np.arange(s, dtype=dt) np.random.shuffle(d) d1 = np.tile(np.arange(s, dtype=dt), (4, 1)) map(np.random.shuffle, d1) d0 = np.transpose(d1) for i in range(d.size): p = np.partition(d, i, kind=k) self.assertEqual(p[i], i) # all before are smaller assert_array_less(p[:i], p[i]) # all after are larger assert_array_less(p[i], p[i + 1:]) aae(p, d[np.argpartition(d, i, kind=k)]) p = np.partition(d1, i, axis=1, kind=k) aae(p[:, i], np.array([i] * d1.shape[0], dtype=dt)) # array_less does not seem to work right at((p[:, :i].T <= p[:, i]).all(), msg="%d: %r <= %r" % (i, p[:, i], p[:, :i].T)) at((p[:, i + 1:].T > p[:, i]).all(), msg="%d: %r < %r" % (i, p[:, i], p[:, i + 1:].T)) aae(p, d1[np.arange(d1.shape[0])[:, None], np.argpartition(d1, i, axis=1, kind=k)]) p = np.partition(d0, i, axis=0, kind=k) aae(p[i,:], np.array([i] * d1.shape[0], dtype=dt)) # array_less does not seem to work right at((p[:i,:] <= p[i,:]).all(), msg="%d: %r <= %r" % (i, p[i,:], p[:i,:])) at((p[i + 1:,:] > p[i,:]).all(), msg="%d: %r < %r" % (i, p[i,:], p[:, i + 1:])) aae(p, d0[np.argpartition(d0, i, axis=0, kind=k), np.arange(d0.shape[1])[None,:]]) # check inplace dc = d.copy() dc.partition(i, kind=k) assert_equal(dc, np.partition(d, i, kind=k)) dc = d0.copy() dc.partition(i, axis=0, kind=k) assert_equal(dc, np.partition(d0, i, axis=0, kind=k)) dc = d1.copy() dc.partition(i, axis=1, kind=k) assert_equal(dc, np.partition(d1, i, axis=1, kind=k)) def assert_partitioned(self, d, kth): prev = 0 for k in np.sort(kth): assert_array_less(d[prev:k], d[k], err_msg='kth %d' % k) assert_((d[k:] >= d[k]).all(), msg="kth %d, %r not greater equal %d" % (k, d[k:], d[k])) prev = k + 1 def test_partition_iterative(self): d = np.arange(17) kth = (0, 1, 2, 429, 231) assert_raises(ValueError, d.partition, kth) assert_raises(ValueError, d.argpartition, kth) d = np.arange(10).reshape((2, 5)) assert_raises(ValueError, d.partition, kth, axis=0) assert_raises(ValueError, d.partition, kth, axis=1) assert_raises(ValueError, np.partition, d, kth, axis=1) assert_raises(ValueError, np.partition, d, kth, axis=None) d = np.array([3, 4, 2, 1]) p = np.partition(d, (0, 3)) self.assert_partitioned(p, (0, 3)) self.assert_partitioned(d[np.argpartition(d, (0, 3))], (0, 3)) assert_array_equal(p, np.partition(d, (-3, -1))) assert_array_equal(p, d[np.argpartition(d, (-3, -1))]) d = np.arange(17) np.random.shuffle(d) d.partition(range(d.size)) assert_array_equal(np.arange(17), d) np.random.shuffle(d) assert_array_equal(np.arange(17), d[d.argpartition(range(d.size))]) # test unsorted kth d = np.arange(17) np.random.shuffle(d) keys = np.array([1, 3, 8, -2]) np.random.shuffle(d) p = np.partition(d, keys) self.assert_partitioned(p, keys) p = d[np.argpartition(d, keys)] self.assert_partitioned(p, keys) np.random.shuffle(keys) assert_array_equal(np.partition(d, keys), p) assert_array_equal(d[np.argpartition(d, keys)], p) # equal kth d = np.arange(20)[::-1] self.assert_partitioned(np.partition(d, [5]*4), [5]) self.assert_partitioned(np.partition(d, [5]*4 + [6, 13]), [5]*4 + [6, 13]) self.assert_partitioned(d[np.argpartition(d, [5]*4)], [5]) self.assert_partitioned(d[np.argpartition(d, [5]*4 + [6, 13])], [5]*4 + [6, 13]) d = np.arange(12) np.random.shuffle(d) d1 = np.tile(np.arange(12), (4, 1)) map(np.random.shuffle, d1) d0 = np.transpose(d1) kth = (1, 6, 7, -1) p = np.partition(d1, kth, axis=1) pa = d1[np.arange(d1.shape[0])[:, None], d1.argpartition(kth, axis=1)] assert_array_equal(p, pa) for i in range(d1.shape[0]): self.assert_partitioned(p[i,:], kth) p = np.partition(d0, kth, axis=0) pa = d0[np.argpartition(d0, kth, axis=0), np.arange(d0.shape[1])[None,:]] assert_array_equal(p, pa) for i in range(d0.shape[1]): self.assert_partitioned(p[:, i], kth) def test_partition_cdtype(self): d = np.array([('Galahad', 1.7, 38), ('Arthur', 1.8, 41), ('Lancelot', 1.9, 38)], dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')]) tgt = np.sort(d, order=['age', 'height']) assert_array_equal(np.partition(d, range(d.size), order=['age', 'height']), tgt) assert_array_equal(d[np.argpartition(d, range(d.size), order=['age', 'height'])], tgt) for k in range(d.size): assert_equal(np.partition(d, k, order=['age', 'height'])[k], tgt[k]) assert_equal(d[np.argpartition(d, k, order=['age', 'height'])][k], tgt[k]) d = np.array(['Galahad', 'Arthur', 'zebra', 'Lancelot']) tgt = np.sort(d) assert_array_equal(np.partition(d, range(d.size)), tgt) for k in range(d.size): assert_equal(np.partition(d, k)[k], tgt[k]) assert_equal(d[np.argpartition(d, k)][k], tgt[k]) def test_partition_unicode_kind(self): d = np.arange(10) k = b'\xc3\xa4'.decode("UTF8") assert_raises(ValueError, d.partition, 2, kind=k) assert_raises(ValueError, d.argpartition, 2, kind=k) def test_partition_fuzz(self): # a few rounds of random data testing for j in range(10, 30): for i in range(1, j - 2): d = np.arange(j) np.random.shuffle(d) d = d % np.random.randint(2, 30) idx = np.random.randint(d.size) kth = [0, idx, i, i + 1] tgt = np.sort(d)[kth] assert_array_equal(np.partition(d, kth)[kth], tgt, err_msg="data: %r\n kth: %r" % (d, kth)) def test_argpartition_gh5524(self): # A test for functionality of argpartition on lists. d = [6,7,3,2,9,0] p = np.argpartition(d,1) self.assert_partitioned(np.array(d)[p],[1]) def test_flatten(self): x0 = np.array([[1, 2, 3], [4, 5, 6]], np.int32) x1 = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]], np.int32) y0 = np.array([1, 2, 3, 4, 5, 6], np.int32) y0f = np.array([1, 4, 2, 5, 3, 6], np.int32) y1 = np.array([1, 2, 3, 4, 5, 6, 7, 8], np.int32) y1f = np.array([1, 5, 3, 7, 2, 6, 4, 8], np.int32) assert_equal(x0.flatten(), y0) assert_equal(x0.flatten('F'), y0f) assert_equal(x0.flatten('F'), x0.T.flatten()) assert_equal(x1.flatten(), y1) assert_equal(x1.flatten('F'), y1f) assert_equal(x1.flatten('F'), x1.T.flatten()) def test_dot(self): a = np.array([[1, 0], [0, 1]]) b = np.array([[0, 1], [1, 0]]) c = np.array([[9, 1], [1, -9]]) assert_equal(np.dot(a, b), a.dot(b)) assert_equal(np.dot(np.dot(a, b), c), a.dot(b).dot(c)) # test passing in an output array c = np.zeros_like(a) a.dot(b, c) assert_equal(c, np.dot(a, b)) # test keyword args c = np.zeros_like(a) a.dot(b=b, out=c) assert_equal(c, np.dot(a, b)) def test_dot_override(self): class A(object): def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return "A" class B(object): def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return NotImplemented a = A() b = B() c = np.array([[1]]) assert_equal(np.dot(a, b), "A") assert_equal(c.dot(a), "A") assert_raises(TypeError, np.dot, b, c) assert_raises(TypeError, c.dot, b) def test_diagonal(self): a = np.arange(12).reshape((3, 4)) assert_equal(a.diagonal(), [0, 5, 10]) assert_equal(a.diagonal(0), [0, 5, 10]) assert_equal(a.diagonal(1), [1, 6, 11]) assert_equal(a.diagonal(-1), [4, 9]) b = np.arange(8).reshape((2, 2, 2)) assert_equal(b.diagonal(), [[0, 6], [1, 7]]) assert_equal(b.diagonal(0), [[0, 6], [1, 7]]) assert_equal(b.diagonal(1), [[2], [3]]) assert_equal(b.diagonal(-1), [[4], [5]]) assert_raises(ValueError, b.diagonal, axis1=0, axis2=0) assert_equal(b.diagonal(0, 1, 2), [[0, 3], [4, 7]]) assert_equal(b.diagonal(0, 0, 1), [[0, 6], [1, 7]]) assert_equal(b.diagonal(offset=1, axis1=0, axis2=2), [[1], [3]]) # Order of axis argument doesn't matter: assert_equal(b.diagonal(0, 2, 1), [[0, 3], [4, 7]]) def test_diagonal_view_notwriteable(self): # this test is only for 1.9, the diagonal view will be # writeable in 1.10. a = np.eye(3).diagonal() assert_(not a.flags.writeable) assert_(not a.flags.owndata) a = np.diagonal(np.eye(3)) assert_(not a.flags.writeable) assert_(not a.flags.owndata) a = np.diag(np.eye(3)) assert_(not a.flags.writeable) assert_(not a.flags.owndata) def test_diagonal_memleak(self): # Regression test for a bug that crept in at one point a = np.zeros((100, 100)) assert_(sys.getrefcount(a) < 50) for i in range(100): a.diagonal() assert_(sys.getrefcount(a) < 50) def test_put(self): icodes = np.typecodes['AllInteger'] fcodes = np.typecodes['AllFloat'] for dt in icodes + fcodes + 'O': tgt = np.array([0, 1, 0, 3, 0, 5], dtype=dt) # test 1-d a = np.zeros(6, dtype=dt) a.put([1, 3, 5], [1, 3, 5]) assert_equal(a, tgt) # test 2-d a = np.zeros((2, 3), dtype=dt) a.put([1, 3, 5], [1, 3, 5]) assert_equal(a, tgt.reshape(2, 3)) for dt in '?': tgt = np.array([False, True, False, True, False, True], dtype=dt) # test 1-d a = np.zeros(6, dtype=dt) a.put([1, 3, 5], [True]*3) assert_equal(a, tgt) # test 2-d a = np.zeros((2, 3), dtype=dt) a.put([1, 3, 5], [True]*3) assert_equal(a, tgt.reshape(2, 3)) # check must be writeable a = np.zeros(6) a.flags.writeable = False assert_raises(ValueError, a.put, [1, 3, 5], [1, 3, 5]) def test_ravel(self): a = np.array([[0, 1], [2, 3]]) assert_equal(a.ravel(), [0, 1, 2, 3]) assert_(not a.ravel().flags.owndata) assert_equal(a.ravel('F'), [0, 2, 1, 3]) assert_equal(a.ravel(order='C'), [0, 1, 2, 3]) assert_equal(a.ravel(order='F'), [0, 2, 1, 3]) assert_equal(a.ravel(order='A'), [0, 1, 2, 3]) assert_(not a.ravel(order='A').flags.owndata) assert_equal(a.ravel(order='K'), [0, 1, 2, 3]) assert_(not a.ravel(order='K').flags.owndata) assert_equal(a.ravel(), a.reshape(-1)) a = np.array([[0, 1], [2, 3]], order='F') assert_equal(a.ravel(), [0, 1, 2, 3]) assert_equal(a.ravel(order='A'), [0, 2, 1, 3]) assert_equal(a.ravel(order='K'), [0, 2, 1, 3]) assert_(not a.ravel(order='A').flags.owndata) assert_(not a.ravel(order='K').flags.owndata) assert_equal(a.ravel(), a.reshape(-1)) assert_equal(a.ravel(order='A'), a.reshape(-1, order='A')) a = np.array([[0, 1], [2, 3]])[::-1, :] assert_equal(a.ravel(), [2, 3, 0, 1]) assert_equal(a.ravel(order='C'), [2, 3, 0, 1]) assert_equal(a.ravel(order='F'), [2, 0, 3, 1]) assert_equal(a.ravel(order='A'), [2, 3, 0, 1]) # 'K' doesn't reverse the axes of negative strides assert_equal(a.ravel(order='K'), [2, 3, 0, 1]) assert_(a.ravel(order='K').flags.owndata) # Test simple 1-d copy behaviour: a = np.arange(10)[::2] assert_(a.ravel('K').flags.owndata) assert_(a.ravel('C').flags.owndata) assert_(a.ravel('F').flags.owndata) # Not contiguous and 1-sized axis with non matching stride a = np.arange(2**3 * 2)[::2] a = a.reshape(2, 1, 2, 2).swapaxes(-1, -2) strides = list(a.strides) strides[1] = 123 a.strides = strides assert_(a.ravel(order='K').flags.owndata) assert_equal(a.ravel('K'), np.arange(0, 15, 2)) # contiguous and 1-sized axis with non matching stride works: a = np.arange(2**3) a = a.reshape(2, 1, 2, 2).swapaxes(-1, -2) strides = list(a.strides) strides[1] = 123 a.strides = strides assert_(np.may_share_memory(a.ravel(order='K'), a)) assert_equal(a.ravel(order='K'), np.arange(2**3)) # Test negative strides (not very interesting since non-contiguous): a = np.arange(4)[::-1].reshape(2, 2) assert_(a.ravel(order='C').flags.owndata) assert_(a.ravel(order='K').flags.owndata) assert_equal(a.ravel('C'), [3, 2, 1, 0]) assert_equal(a.ravel('K'), [3, 2, 1, 0]) # 1-element tidy strides test (NPY_RELAXED_STRIDES_CHECKING): a = np.array([[1]]) a.strides = (123, 432) # If the stride is not 8, NPY_RELAXED_STRIDES_CHECKING is messing # them up on purpose: if np.ones(1).strides == (8,): assert_(np.may_share_memory(a.ravel('K'), a)) assert_equal(a.ravel('K').strides, (a.dtype.itemsize,)) for order in ('C', 'F', 'A', 'K'): # 0-d corner case: a = np.array(0) assert_equal(a.ravel(order), [0]) assert_(np.may_share_memory(a.ravel(order), a)) # Test that certain non-inplace ravels work right (mostly) for 'K': b = np.arange(2**4 * 2)[::2].reshape(2, 2, 2, 2) a = b[..., ::2] assert_equal(a.ravel('K'), [0, 4, 8, 12, 16, 20, 24, 28]) assert_equal(a.ravel('C'), [0, 4, 8, 12, 16, 20, 24, 28]) assert_equal(a.ravel('A'), [0, 4, 8, 12, 16, 20, 24, 28]) assert_equal(a.ravel('F'), [0, 16, 8, 24, 4, 20, 12, 28]) a = b[::2, ...] assert_equal(a.ravel('K'), [0, 2, 4, 6, 8, 10, 12, 14]) assert_equal(a.ravel('C'), [0, 2, 4, 6, 8, 10, 12, 14]) assert_equal(a.ravel('A'), [0, 2, 4, 6, 8, 10, 12, 14]) assert_equal(a.ravel('F'), [0, 8, 4, 12, 2, 10, 6, 14]) def test_ravel_subclass(self): class ArraySubclass(np.ndarray): pass a = np.arange(10).view(ArraySubclass) assert_(isinstance(a.ravel('C'), ArraySubclass)) assert_(isinstance(a.ravel('F'), ArraySubclass)) assert_(isinstance(a.ravel('A'), ArraySubclass)) assert_(isinstance(a.ravel('K'), ArraySubclass)) a = np.arange(10)[::2].view(ArraySubclass) assert_(isinstance(a.ravel('C'), ArraySubclass)) assert_(isinstance(a.ravel('F'), ArraySubclass)) assert_(isinstance(a.ravel('A'), ArraySubclass)) assert_(isinstance(a.ravel('K'), ArraySubclass)) def test_swapaxes(self): a = np.arange(1*2*3*4).reshape(1, 2, 3, 4).copy() idx = np.indices(a.shape) assert_(a.flags['OWNDATA']) b = a.copy() # check exceptions assert_raises(ValueError, a.swapaxes, -5, 0) assert_raises(ValueError, a.swapaxes, 4, 0) assert_raises(ValueError, a.swapaxes, 0, -5) assert_raises(ValueError, a.swapaxes, 0, 4) for i in range(-4, 4): for j in range(-4, 4): for k, src in enumerate((a, b)): c = src.swapaxes(i, j) # check shape shape = list(src.shape) shape[i] = src.shape[j] shape[j] = src.shape[i] assert_equal(c.shape, shape, str((i, j, k))) # check array contents i0, i1, i2, i3 = [dim-1 for dim in c.shape] j0, j1, j2, j3 = [dim-1 for dim in src.shape] assert_equal(src[idx[j0], idx[j1], idx[j2], idx[j3]], c[idx[i0], idx[i1], idx[i2], idx[i3]], str((i, j, k))) # check a view is always returned, gh-5260 assert_(not c.flags['OWNDATA'], str((i, j, k))) # check on non-contiguous input array if k == 1: b = c def test_conjugate(self): a = np.array([1-1j, 1+1j, 23+23.0j]) ac = a.conj() assert_equal(a.real, ac.real) assert_equal(a.imag, -ac.imag) assert_equal(ac, a.conjugate()) assert_equal(ac, np.conjugate(a)) a = np.array([1-1j, 1+1j, 23+23.0j], 'F') ac = a.conj() assert_equal(a.real, ac.real) assert_equal(a.imag, -ac.imag) assert_equal(ac, a.conjugate()) assert_equal(ac, np.conjugate(a)) a = np.array([1, 2, 3]) ac = a.conj() assert_equal(a, ac) assert_equal(ac, a.conjugate()) assert_equal(ac, np.conjugate(a)) a = np.array([1.0, 2.0, 3.0]) ac = a.conj() assert_equal(a, ac) assert_equal(ac, a.conjugate()) assert_equal(ac, np.conjugate(a)) a = np.array([1-1j, 1+1j, 1, 2.0], object) ac = a.conj() assert_equal(ac, [k.conjugate() for k in a]) assert_equal(ac, a.conjugate()) assert_equal(ac, np.conjugate(a)) a = np.array([1-1j, 1, 2.0, 'f'], object) assert_raises(AttributeError, lambda: a.conj()) assert_raises(AttributeError, lambda: a.conjugate()) class TestBinop(object): def test_inplace(self): # test refcount 1 inplace conversion assert_array_almost_equal(np.array([0.5]) * np.array([1.0, 2.0]), [0.5, 1.0]) d = np.array([0.5, 0.5])[::2] assert_array_almost_equal(d * (d * np.array([1.0, 2.0])), [0.25, 0.5]) a = np.array([0.5]) b = np.array([0.5]) c = a + b c = a - b c = a * b c = a / b assert_equal(a, b) assert_almost_equal(c, 1.) c = a + b * 2. / b * a - a / b assert_equal(a, b) assert_equal(c, 0.5) # true divide a = np.array([5]) b = np.array([3]) c = (a * a) / b assert_almost_equal(c, 25 / 3) assert_equal(a, 5) assert_equal(b, 3) def test_extension_incref_elide(self): # test extension (e.g. cython) calling PyNumber_* slots without # increasing the reference counts # # def incref_elide(a): # d = input.copy() # refcount 1 # return d, d + d # PyNumber_Add without increasing refcount from numpy.core.multiarray_tests import incref_elide d = np.ones(5) orig, res = incref_elide(d) # the return original should not be changed to an inplace operation assert_array_equal(orig, d) assert_array_equal(res, d + d) def test_extension_incref_elide_stack(self): # scanning if the refcount == 1 object is on the python stack to check # that we are called directly from python is flawed as object may still # be above the stack pointer and we have no access to the top of it # # def incref_elide_l(d): # return l[4] + l[4] # PyNumber_Add without increasing refcount from numpy.core.multiarray_tests import incref_elide_l # padding with 1 makes sure the object on the stack is not overwriten l = [1, 1, 1, 1, np.ones(5)] res = incref_elide_l(l) # the return original should not be changed to an inplace operation assert_array_equal(l[4], np.ones(5)) assert_array_equal(res, l[4] + l[4]) def test_ufunc_override_rop_precedence(self): # Check that __rmul__ and other right-hand operations have # precedence over __numpy_ufunc__ ops = { '__add__': ('__radd__', np.add, True), '__sub__': ('__rsub__', np.subtract, True), '__mul__': ('__rmul__', np.multiply, True), '__truediv__': ('__rtruediv__', np.true_divide, True), '__floordiv__': ('__rfloordiv__', np.floor_divide, True), '__mod__': ('__rmod__', np.remainder, True), '__divmod__': ('__rdivmod__', None, False), '__pow__': ('__rpow__', np.power, True), '__lshift__': ('__rlshift__', np.left_shift, True), '__rshift__': ('__rrshift__', np.right_shift, True), '__and__': ('__rand__', np.bitwise_and, True), '__xor__': ('__rxor__', np.bitwise_xor, True), '__or__': ('__ror__', np.bitwise_or, True), '__ge__': ('__le__', np.less_equal, False), '__gt__': ('__lt__', np.less, False), '__le__': ('__ge__', np.greater_equal, False), '__lt__': ('__gt__', np.greater, False), '__eq__': ('__eq__', np.equal, False), '__ne__': ('__ne__', np.not_equal, False), } class OtherNdarraySubclass(np.ndarray): pass class OtherNdarraySubclassWithOverride(np.ndarray): def __numpy_ufunc__(self, *a, **kw): raise AssertionError(("__numpy_ufunc__ %r %r shouldn't have " "been called!") % (a, kw)) def check(op_name, ndsubclass): rop_name, np_op, has_iop = ops[op_name] if has_iop: iop_name = '__i' + op_name[2:] iop = getattr(operator, iop_name) if op_name == "__divmod__": op = divmod else: op = getattr(operator, op_name) # Dummy class def __init__(self, *a, **kw): pass def __numpy_ufunc__(self, *a, **kw): raise AssertionError(("__numpy_ufunc__ %r %r shouldn't have " "been called!") % (a, kw)) def __op__(self, *other): return "op" def __rop__(self, *other): return "rop" if ndsubclass: bases = (np.ndarray,) else: bases = (object,) dct = {'__init__': __init__, '__numpy_ufunc__': __numpy_ufunc__, op_name: __op__} if op_name != rop_name: dct[rop_name] = __rop__ cls = type("Rop" + rop_name, bases, dct) # Check behavior against both bare ndarray objects and a # ndarray subclasses with and without their own override obj = cls((1,), buffer=np.ones(1,)) arr_objs = [np.array([1]), np.array([2]).view(OtherNdarraySubclass), np.array([3]).view(OtherNdarraySubclassWithOverride), ] for arr in arr_objs: err_msg = "%r %r" % (op_name, arr,) # Check that ndarray op gives up if it sees a non-subclass if not isinstance(obj, arr.__class__): assert_equal(getattr(arr, op_name)(obj), NotImplemented, err_msg=err_msg) # Check that the Python binops have priority assert_equal(op(obj, arr), "op", err_msg=err_msg) if op_name == rop_name: assert_equal(op(arr, obj), "op", err_msg=err_msg) else: assert_equal(op(arr, obj), "rop", err_msg=err_msg) # Check that Python binops have priority also for in-place ops if has_iop: assert_equal(getattr(arr, iop_name)(obj), NotImplemented, err_msg=err_msg) if op_name != "__pow__": # inplace pow requires the other object to be # integer-like? assert_equal(iop(arr, obj), "rop", err_msg=err_msg) # Check that ufunc call __numpy_ufunc__ normally if np_op is not None: assert_raises(AssertionError, np_op, arr, obj, err_msg=err_msg) assert_raises(AssertionError, np_op, obj, arr, err_msg=err_msg) # Check all binary operations for op_name in sorted(ops.keys()): yield check, op_name, True yield check, op_name, False def test_ufunc_override_rop_simple(self): # Check parts of the binary op overriding behavior in an # explicit test case that is easier to understand. class SomeClass(object): def __numpy_ufunc__(self, *a, **kw): return "ufunc" def __mul__(self, other): return 123 def __rmul__(self, other): return 321 def __rsub__(self, other): return "no subs for me" def __gt__(self, other): return "yep" def __lt__(self, other): return "nope" class SomeClass2(SomeClass, np.ndarray): def __numpy_ufunc__(self, ufunc, method, i, inputs, **kw): if ufunc is np.multiply or ufunc is np.bitwise_and: return "ufunc" else: inputs = list(inputs) if i < len(inputs): inputs[i] = np.asarray(self) func = getattr(ufunc, method) if ('out' in kw) and (kw['out'] is not None): kw['out'] = np.asarray(kw['out']) r = func(*inputs, **kw) x = self.__class__(r.shape, dtype=r.dtype) x[...] = r return x class SomeClass3(SomeClass2): def __rsub__(self, other): return "sub for me" arr = np.array([0]) obj = SomeClass() obj2 = SomeClass2((1,), dtype=np.int_) obj2[0] = 9 obj3 = SomeClass3((1,), dtype=np.int_) obj3[0] = 4 # obj is first, so should get to define outcome. assert_equal(obj * arr, 123) # obj is second, but has __numpy_ufunc__ and defines __rmul__. assert_equal(arr * obj, 321) # obj is second, but has __numpy_ufunc__ and defines __rsub__. assert_equal(arr - obj, "no subs for me") # obj is second, but has __numpy_ufunc__ and defines __lt__. assert_equal(arr > obj, "nope") # obj is second, but has __numpy_ufunc__ and defines __gt__. assert_equal(arr < obj, "yep") # Called as a ufunc, obj.__numpy_ufunc__ is used. assert_equal(np.multiply(arr, obj), "ufunc") # obj is second, but has __numpy_ufunc__ and defines __rmul__. arr *= obj assert_equal(arr, 321) # obj2 is an ndarray subclass, so CPython takes care of the same rules. assert_equal(obj2 * arr, 123) assert_equal(arr * obj2, 321) assert_equal(arr - obj2, "no subs for me") assert_equal(arr > obj2, "nope") assert_equal(arr < obj2, "yep") # Called as a ufunc, obj2.__numpy_ufunc__ is called. assert_equal(np.multiply(arr, obj2), "ufunc") # Also when the method is not overridden. assert_equal(arr & obj2, "ufunc") arr *= obj2 assert_equal(arr, 321) obj2 += 33 assert_equal(obj2[0], 42) assert_equal(obj2.sum(), 42) assert_(isinstance(obj2, SomeClass2)) # Obj3 is subclass that defines __rsub__. CPython calls it. assert_equal(arr - obj3, "sub for me") assert_equal(obj2 - obj3, "sub for me") # obj3 is a subclass that defines __rmul__. CPython calls it. assert_equal(arr * obj3, 321) # But not here, since obj3.__rmul__ is obj2.__rmul__. assert_equal(obj2 * obj3, 123) # And of course, here obj3.__mul__ should be called. assert_equal(obj3 * obj2, 123) # obj3 defines __numpy_ufunc__ but obj3.__radd__ is obj2.__radd__. # (and both are just ndarray.__radd__); see #4815. res = obj2 + obj3 assert_equal(res, 46) assert_(isinstance(res, SomeClass2)) # Since obj3 is a subclass, it should have precedence, like CPython # would give, even though obj2 has __numpy_ufunc__ and __radd__. # See gh-4815 and gh-5747. res = obj3 + obj2 assert_equal(res, 46) assert_(isinstance(res, SomeClass3)) def test_ufunc_override_normalize_signature(self): # gh-5674 class SomeClass(object): def __numpy_ufunc__(self, ufunc, method, i, inputs, **kw): return kw a = SomeClass() kw = np.add(a, [1]) assert_('sig' not in kw and 'signature' not in kw) kw = np.add(a, [1], sig='ii->i') assert_('sig' not in kw and 'signature' in kw) assert_equal(kw['signature'], 'ii->i') kw = np.add(a, [1], signature='ii->i') assert_('sig' not in kw and 'signature' in kw) assert_equal(kw['signature'], 'ii->i') def test_numpy_ufunc_index(self): # Check that index is set appropriately, also if only an output # is passed on (latter is another regression tests for github bug 4753) class CheckIndex(object): def __numpy_ufunc__(self, ufunc, method, i, inputs, **kw): return i a = CheckIndex() dummy = np.arange(2.) # 1 input, 1 output assert_equal(np.sin(a), 0) assert_equal(np.sin(dummy, a), 1) assert_equal(np.sin(dummy, out=a), 1) assert_equal(np.sin(dummy, out=(a,)), 1) assert_equal(np.sin(a, a), 0) assert_equal(np.sin(a, out=a), 0) assert_equal(np.sin(a, out=(a,)), 0) # 1 input, 2 outputs assert_equal(np.modf(dummy, a), 1) assert_equal(np.modf(dummy, None, a), 2) assert_equal(np.modf(dummy, dummy, a), 2) assert_equal(np.modf(dummy, out=a), 1) assert_equal(np.modf(dummy, out=(a,)), 1) assert_equal(np.modf(dummy, out=(a, None)), 1) assert_equal(np.modf(dummy, out=(a, dummy)), 1) assert_equal(np.modf(dummy, out=(None, a)), 2) assert_equal(np.modf(dummy, out=(dummy, a)), 2) assert_equal(np.modf(a, out=(dummy, a)), 0) # 2 inputs, 1 output assert_equal(np.add(a, dummy), 0) assert_equal(np.add(dummy, a), 1) assert_equal(np.add(dummy, dummy, a), 2) assert_equal(np.add(dummy, a, a), 1) assert_equal(np.add(dummy, dummy, out=a), 2) assert_equal(np.add(dummy, dummy, out=(a,)), 2) assert_equal(np.add(a, dummy, out=a), 0) def test_out_override(self): # regression test for github bug 4753 class OutClass(np.ndarray): def __numpy_ufunc__(self, ufunc, method, i, inputs, **kw): if 'out' in kw: tmp_kw = kw.copy() tmp_kw.pop('out') func = getattr(ufunc, method) kw['out'][...] = func(*inputs, **tmp_kw) A = np.array([0]).view(OutClass) B = np.array([5]) C = np.array([6]) np.multiply(C, B, A) assert_equal(A[0], 30) assert_(isinstance(A, OutClass)) A[0] = 0 np.multiply(C, B, out=A) assert_equal(A[0], 30) assert_(isinstance(A, OutClass)) class TestCAPI(TestCase): def test_IsPythonScalar(self): from numpy.core.multiarray_tests import IsPythonScalar assert_(IsPythonScalar(b'foobar')) assert_(IsPythonScalar(1)) assert_(IsPythonScalar(2**80)) assert_(IsPythonScalar(2.)) assert_(IsPythonScalar("a")) class TestSubscripting(TestCase): def test_test_zero_rank(self): x = np.array([1, 2, 3]) self.assertTrue(isinstance(x[0], np.int_)) if sys.version_info[0] < 3: self.assertTrue(isinstance(x[0], int)) self.assertTrue(type(x[0, ...]) is np.ndarray) class TestPickling(TestCase): def test_roundtrip(self): import pickle carray = np.array([[2, 9], [7, 0], [3, 8]]) DATA = [ carray, np.transpose(carray), np.array([('xxx', 1, 2.0)], dtype=[('a', (str, 3)), ('b', int), ('c', float)]) ] for a in DATA: assert_equal(a, pickle.loads(a.dumps()), err_msg="%r" % a) def _loads(self, obj): if sys.version_info[0] >= 3: return np.loads(obj, encoding='latin1') else: return np.loads(obj) # version 0 pickles, using protocol=2 to pickle # version 0 doesn't have a version field def test_version0_int8(self): s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x04\x85cnumpy\ndtype\nq\x04U\x02i1K\x00K\x01\x87Rq\x05(U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x04\x01\x02\x03\x04tb.' a = np.array([1, 2, 3, 4], dtype=np.int8) p = self._loads(asbytes(s)) assert_equal(a, p) def test_version0_float32(self): s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x04\x85cnumpy\ndtype\nq\x04U\x02f4K\x00K\x01\x87Rq\x05(U\x01<NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x10\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@tb.' a = np.array([1.0, 2.0, 3.0, 4.0], dtype=np.float32) p = self._loads(asbytes(s)) assert_equal(a, p) def test_version0_object(self): s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x02\x85cnumpy\ndtype\nq\x04U\x02O8K\x00K\x01\x87Rq\x05(U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89]q\x06(}q\x07U\x01aK\x01s}q\x08U\x01bK\x02setb.' a = np.array([{'a':1}, {'b':2}]) p = self._loads(asbytes(s)) assert_equal(a, p) # version 1 pickles, using protocol=2 to pickle def test_version1_int8(self): s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\x04\x85cnumpy\ndtype\nq\x04U\x02i1K\x00K\x01\x87Rq\x05(K\x01U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x04\x01\x02\x03\x04tb.' a = np.array([1, 2, 3, 4], dtype=np.int8) p = self._loads(asbytes(s)) assert_equal(a, p) def test_version1_float32(self): s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\x04\x85cnumpy\ndtype\nq\x04U\x02f4K\x00K\x01\x87Rq\x05(K\x01U\x01<NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x10\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@tb.' a = np.array([1.0, 2.0, 3.0, 4.0], dtype=np.float32) p = self._loads(asbytes(s)) assert_equal(a, p) def test_version1_object(self): s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\x02\x85cnumpy\ndtype\nq\x04U\x02O8K\x00K\x01\x87Rq\x05(K\x01U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89]q\x06(}q\x07U\x01aK\x01s}q\x08U\x01bK\x02setb.' a = np.array([{'a':1}, {'b':2}]) p = self._loads(asbytes(s)) assert_equal(a, p) def test_subarray_int_shape(self): s = "cnumpy.core.multiarray\n_reconstruct\np0\n(cnumpy\nndarray\np1\n(I0\ntp2\nS'b'\np3\ntp4\nRp5\n(I1\n(I1\ntp6\ncnumpy\ndtype\np7\n(S'V6'\np8\nI0\nI1\ntp9\nRp10\n(I3\nS'|'\np11\nN(S'a'\np12\ng3\ntp13\n(dp14\ng12\n(g7\n(S'V4'\np15\nI0\nI1\ntp16\nRp17\n(I3\nS'|'\np18\n(g7\n(S'i1'\np19\nI0\nI1\ntp20\nRp21\n(I3\nS'|'\np22\nNNNI-1\nI-1\nI0\ntp23\nb(I2\nI2\ntp24\ntp25\nNNI4\nI1\nI0\ntp26\nbI0\ntp27\nsg3\n(g7\n(S'V2'\np28\nI0\nI1\ntp29\nRp30\n(I3\nS'|'\np31\n(g21\nI2\ntp32\nNNI2\nI1\nI0\ntp33\nbI4\ntp34\nsI6\nI1\nI0\ntp35\nbI00\nS'\\x01\\x01\\x01\\x01\\x01\\x02'\np36\ntp37\nb." a = np.array([(1, (1, 2))], dtype=[('a', 'i1', (2, 2)), ('b', 'i1', 2)]) p = self._loads(asbytes(s)) assert_equal(a, p) class TestFancyIndexing(TestCase): def test_list(self): x = np.ones((1, 1)) x[:, [0]] = 2.0 assert_array_equal(x, np.array([[2.0]])) x = np.ones((1, 1, 1)) x[:,:, [0]] = 2.0 assert_array_equal(x, np.array([[[2.0]]])) def test_tuple(self): x = np.ones((1, 1)) x[:, (0,)] = 2.0 assert_array_equal(x, np.array([[2.0]])) x = np.ones((1, 1, 1)) x[:,:, (0,)] = 2.0 assert_array_equal(x, np.array([[[2.0]]])) def test_mask(self): x = np.array([1, 2, 3, 4]) m = np.array([0, 1, 0, 0], bool) assert_array_equal(x[m], np.array([2])) def test_mask2(self): x = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) m = np.array([0, 1], bool) m2 = np.array([[0, 1, 0, 0], [1, 0, 0, 0]], bool) m3 = np.array([[0, 1, 0, 0], [0, 0, 0, 0]], bool) assert_array_equal(x[m], np.array([[5, 6, 7, 8]])) assert_array_equal(x[m2], np.array([2, 5])) assert_array_equal(x[m3], np.array([2])) def test_assign_mask(self): x = np.array([1, 2, 3, 4]) m = np.array([0, 1, 0, 0], bool) x[m] = 5 assert_array_equal(x, np.array([1, 5, 3, 4])) def test_assign_mask2(self): xorig = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) m = np.array([0, 1], bool) m2 = np.array([[0, 1, 0, 0], [1, 0, 0, 0]], bool) m3 = np.array([[0, 1, 0, 0], [0, 0, 0, 0]], bool) x = xorig.copy() x[m] = 10 assert_array_equal(x, np.array([[1, 2, 3, 4], [10, 10, 10, 10]])) x = xorig.copy() x[m2] = 10 assert_array_equal(x, np.array([[1, 10, 3, 4], [10, 6, 7, 8]])) x = xorig.copy() x[m3] = 10 assert_array_equal(x, np.array([[1, 10, 3, 4], [5, 6, 7, 8]])) class TestStringCompare(TestCase): def test_string(self): g1 = np.array(["This", "is", "example"]) g2 = np.array(["This", "was", "example"]) assert_array_equal(g1 == g2, [g1[i] == g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 != g2, [g1[i] != g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 <= g2, [g1[i] <= g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 >= g2, [g1[i] >= g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 < g2, [g1[i] < g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 > g2, [g1[i] > g2[i] for i in [0, 1, 2]]) def test_mixed(self): g1 = np.array(["spam", "spa", "spammer", "and eggs"]) g2 = "spam" assert_array_equal(g1 == g2, [x == g2 for x in g1]) assert_array_equal(g1 != g2, [x != g2 for x in g1]) assert_array_equal(g1 < g2, [x < g2 for x in g1]) assert_array_equal(g1 > g2, [x > g2 for x in g1]) assert_array_equal(g1 <= g2, [x <= g2 for x in g1]) assert_array_equal(g1 >= g2, [x >= g2 for x in g1]) def test_unicode(self): g1 = np.array([sixu("This"), sixu("is"), sixu("example")]) g2 = np.array([sixu("This"), sixu("was"), sixu("example")]) assert_array_equal(g1 == g2, [g1[i] == g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 != g2, [g1[i] != g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 <= g2, [g1[i] <= g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 >= g2, [g1[i] >= g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 < g2, [g1[i] < g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 > g2, [g1[i] > g2[i] for i in [0, 1, 2]]) class TestArgmax(TestCase): nan_arr = [ ([0, 1, 2, 3, np.nan], 4), ([0, 1, 2, np.nan, 3], 3), ([np.nan, 0, 1, 2, 3], 0), ([np.nan, 0, np.nan, 2, 3], 0), ([0, 1, 2, 3, complex(0, np.nan)], 4), ([0, 1, 2, 3, complex(np.nan, 0)], 4), ([0, 1, 2, complex(np.nan, 0), 3], 3), ([0, 1, 2, complex(0, np.nan), 3], 3), ([complex(0, np.nan), 0, 1, 2, 3], 0), ([complex(np.nan, np.nan), 0, 1, 2, 3], 0), ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, 1)], 0), ([complex(np.nan, np.nan), complex(np.nan, 2), complex(np.nan, 1)], 0), ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, np.nan)], 0), ([complex(0, 0), complex(0, 2), complex(0, 1)], 1), ([complex(1, 0), complex(0, 2), complex(0, 1)], 0), ([complex(1, 0), complex(0, 2), complex(1, 1)], 2), ([np.datetime64('1923-04-14T12:43:12'), np.datetime64('1994-06-21T14:43:15'), np.datetime64('2001-10-15T04:10:32'), np.datetime64('1995-11-25T16:02:16'), np.datetime64('2005-01-04T03:14:12'), np.datetime64('2041-12-03T14:05:03')], 5), ([np.datetime64('1935-09-14T04:40:11'), np.datetime64('1949-10-12T12:32:11'), np.datetime64('2010-01-03T05:14:12'), np.datetime64('2015-11-20T12:20:59'), np.datetime64('1932-09-23T10:10:13'), np.datetime64('2014-10-10T03:50:30')], 3), # Assorted tests with NaTs ([np.datetime64('NaT'), np.datetime64('NaT'), np.datetime64('2010-01-03T05:14:12'), np.datetime64('NaT'), np.datetime64('2015-09-23T10:10:13'), np.datetime64('1932-10-10T03:50:30')], 4), ([np.datetime64('2059-03-14T12:43:12'), np.datetime64('1996-09-21T14:43:15'), np.datetime64('NaT'), np.datetime64('2022-12-25T16:02:16'), np.datetime64('1963-10-04T03:14:12'), np.datetime64('2013-05-08T18:15:23')], 0), ([np.timedelta64(2, 's'), np.timedelta64(1, 's'), np.timedelta64('NaT', 's'), np.timedelta64(3, 's')], 3), ([np.timedelta64('NaT', 's')] * 3, 0), ([timedelta(days=5, seconds=14), timedelta(days=2, seconds=35), timedelta(days=-1, seconds=23)], 0), ([timedelta(days=1, seconds=43), timedelta(days=10, seconds=5), timedelta(days=5, seconds=14)], 1), ([timedelta(days=10, seconds=24), timedelta(days=10, seconds=5), timedelta(days=10, seconds=43)], 2), ([False, False, False, False, True], 4), ([False, False, False, True, False], 3), ([True, False, False, False, False], 0), ([True, False, True, False, False], 0), # Can't reduce a "flexible type" #(['a', 'z', 'aa', 'zz'], 3), #(['zz', 'a', 'aa', 'a'], 0), #(['aa', 'z', 'zz', 'a'], 2), ] def test_all(self): a = np.random.normal(0, 1, (4, 5, 6, 7, 8)) for i in range(a.ndim): amax = a.max(i) aargmax = a.argmax(i) axes = list(range(a.ndim)) axes.remove(i) assert_(np.all(amax == aargmax.choose(*a.transpose(i,*axes)))) def test_combinations(self): for arr, pos in self.nan_arr: assert_equal(np.argmax(arr), pos, err_msg="%r" % arr) assert_equal(arr[np.argmax(arr)], np.max(arr), err_msg="%r" % arr) def test_output_shape(self): # see also gh-616 a = np.ones((10, 5)) # Check some simple shape mismatches out = np.ones(11, dtype=np.int_) assert_raises(ValueError, a.argmax, -1, out) out = np.ones((2, 5), dtype=np.int_) assert_raises(ValueError, a.argmax, -1, out) # these could be relaxed possibly (used to allow even the previous) out = np.ones((1, 10), dtype=np.int_) assert_raises(ValueError, a.argmax, -1, np.ones((1, 10))) out = np.ones(10, dtype=np.int_) a.argmax(-1, out=out) assert_equal(out, a.argmax(-1)) def test_argmax_unicode(self): d = np.zeros(6031, dtype='<U9') d[5942] = "as" assert_equal(d.argmax(), 5942) def test_np_vs_ndarray(self): # make sure both ndarray.argmax and numpy.argmax support out/axis args a = np.random.normal(size=(2,3)) #check positional args out1 = np.zeros(2, dtype=int) out2 = np.zeros(2, dtype=int) assert_equal(a.argmax(1, out1), np.argmax(a, 1, out2)) assert_equal(out1, out2) #check keyword args out1 = np.zeros(3, dtype=int) out2 = np.zeros(3, dtype=int) assert_equal(a.argmax(out=out1, axis=0), np.argmax(a, out=out2, axis=0)) assert_equal(out1, out2) def test_object_argmax_with_NULLs(self): # See gh-6032 a = np.empty(4, dtype='O') ctypes.memset(a.ctypes.data, 0, a.nbytes) assert_equal(a.argmax(), 0) a[3] = 10 assert_equal(a.argmax(), 3) a[1] = 30 assert_equal(a.argmax(), 1) class TestArgmin(TestCase): nan_arr = [ ([0, 1, 2, 3, np.nan], 4), ([0, 1, 2, np.nan, 3], 3), ([np.nan, 0, 1, 2, 3], 0), ([np.nan, 0, np.nan, 2, 3], 0), ([0, 1, 2, 3, complex(0, np.nan)], 4), ([0, 1, 2, 3, complex(np.nan, 0)], 4), ([0, 1, 2, complex(np.nan, 0), 3], 3), ([0, 1, 2, complex(0, np.nan), 3], 3), ([complex(0, np.nan), 0, 1, 2, 3], 0), ([complex(np.nan, np.nan), 0, 1, 2, 3], 0), ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, 1)], 0), ([complex(np.nan, np.nan), complex(np.nan, 2), complex(np.nan, 1)], 0), ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, np.nan)], 0), ([complex(0, 0), complex(0, 2), complex(0, 1)], 0), ([complex(1, 0), complex(0, 2), complex(0, 1)], 2), ([complex(1, 0), complex(0, 2), complex(1, 1)], 1), ([np.datetime64('1923-04-14T12:43:12'), np.datetime64('1994-06-21T14:43:15'), np.datetime64('2001-10-15T04:10:32'), np.datetime64('1995-11-25T16:02:16'), np.datetime64('2005-01-04T03:14:12'), np.datetime64('2041-12-03T14:05:03')], 0), ([np.datetime64('1935-09-14T04:40:11'), np.datetime64('1949-10-12T12:32:11'), np.datetime64('2010-01-03T05:14:12'), np.datetime64('2014-11-20T12:20:59'), np.datetime64('2015-09-23T10:10:13'), np.datetime64('1932-10-10T03:50:30')], 5), # Assorted tests with NaTs ([np.datetime64('NaT'), np.datetime64('NaT'), np.datetime64('2010-01-03T05:14:12'), np.datetime64('NaT'), np.datetime64('2015-09-23T10:10:13'), np.datetime64('1932-10-10T03:50:30')], 5), ([np.datetime64('2059-03-14T12:43:12'), np.datetime64('1996-09-21T14:43:15'), np.datetime64('NaT'), np.datetime64('2022-12-25T16:02:16'), np.datetime64('1963-10-04T03:14:12'), np.datetime64('2013-05-08T18:15:23')], 4), ([np.timedelta64(2, 's'), np.timedelta64(1, 's'), np.timedelta64('NaT', 's'), np.timedelta64(3, 's')], 1), ([np.timedelta64('NaT', 's')] * 3, 0), ([timedelta(days=5, seconds=14), timedelta(days=2, seconds=35), timedelta(days=-1, seconds=23)], 2), ([timedelta(days=1, seconds=43), timedelta(days=10, seconds=5), timedelta(days=5, seconds=14)], 0), ([timedelta(days=10, seconds=24), timedelta(days=10, seconds=5), timedelta(days=10, seconds=43)], 1), ([True, True, True, True, False], 4), ([True, True, True, False, True], 3), ([False, True, True, True, True], 0), ([False, True, False, True, True], 0), # Can't reduce a "flexible type" #(['a', 'z', 'aa', 'zz'], 0), #(['zz', 'a', 'aa', 'a'], 1), #(['aa', 'z', 'zz', 'a'], 3), ] def test_all(self): a = np.random.normal(0, 1, (4, 5, 6, 7, 8)) for i in range(a.ndim): amin = a.min(i) aargmin = a.argmin(i) axes = list(range(a.ndim)) axes.remove(i) assert_(np.all(amin == aargmin.choose(*a.transpose(i,*axes)))) def test_combinations(self): for arr, pos in self.nan_arr: assert_equal(np.argmin(arr), pos, err_msg="%r" % arr) assert_equal(arr[np.argmin(arr)], np.min(arr), err_msg="%r" % arr) def test_minimum_signed_integers(self): a = np.array([1, -2**7, -2**7 + 1], dtype=np.int8) assert_equal(np.argmin(a), 1) a = np.array([1, -2**15, -2**15 + 1], dtype=np.int16) assert_equal(np.argmin(a), 1) a = np.array([1, -2**31, -2**31 + 1], dtype=np.int32) assert_equal(np.argmin(a), 1) a = np.array([1, -2**63, -2**63 + 1], dtype=np.int64) assert_equal(np.argmin(a), 1) def test_output_shape(self): # see also gh-616 a = np.ones((10, 5)) # Check some simple shape mismatches out = np.ones(11, dtype=np.int_) assert_raises(ValueError, a.argmin, -1, out) out = np.ones((2, 5), dtype=np.int_) assert_raises(ValueError, a.argmin, -1, out) # these could be relaxed possibly (used to allow even the previous) out = np.ones((1, 10), dtype=np.int_) assert_raises(ValueError, a.argmin, -1, np.ones((1, 10))) out = np.ones(10, dtype=np.int_) a.argmin(-1, out=out) assert_equal(out, a.argmin(-1)) def test_argmin_unicode(self): d = np.ones(6031, dtype='<U9') d[6001] = "0" assert_equal(d.argmin(), 6001) def test_np_vs_ndarray(self): # make sure both ndarray.argmin and numpy.argmin support out/axis args a = np.random.normal(size=(2,3)) #check positional args out1 = np.zeros(2, dtype=int) out2 = np.ones(2, dtype=int) assert_equal(a.argmin(1, out1), np.argmin(a, 1, out2)) assert_equal(out1, out2) #check keyword args out1 = np.zeros(3, dtype=int) out2 = np.ones(3, dtype=int) assert_equal(a.argmin(out=out1, axis=0), np.argmin(a, out=out2, axis=0)) assert_equal(out1, out2) def test_object_argmin_with_NULLs(self): # See gh-6032 a = np.empty(4, dtype='O') ctypes.memset(a.ctypes.data, 0, a.nbytes) assert_equal(a.argmin(), 0) a[3] = 30 assert_equal(a.argmin(), 3) a[1] = 10 assert_equal(a.argmin(), 1) class TestMinMax(TestCase): def test_scalar(self): assert_raises(ValueError, np.amax, 1, 1) assert_raises(ValueError, np.amin, 1, 1) assert_equal(np.amax(1, axis=0), 1) assert_equal(np.amin(1, axis=0), 1) assert_equal(np.amax(1, axis=None), 1) assert_equal(np.amin(1, axis=None), 1) def test_axis(self): assert_raises(ValueError, np.amax, [1, 2, 3], 1000) assert_equal(np.amax([[1, 2, 3]], axis=1), 3) def test_datetime(self): # NaTs are ignored for dtype in ('m8[s]', 'm8[Y]'): a = np.arange(10).astype(dtype) a[3] = 'NaT' assert_equal(np.amin(a), a[0]) assert_equal(np.amax(a), a[9]) a[0] = 'NaT' assert_equal(np.amin(a), a[1]) assert_equal(np.amax(a), a[9]) a.fill('NaT') assert_equal(np.amin(a), a[0]) assert_equal(np.amax(a), a[0]) class TestNewaxis(TestCase): def test_basic(self): sk = np.array([0, -0.1, 0.1]) res = 250*sk[:, np.newaxis] assert_almost_equal(res.ravel(), 250*sk) class TestClip(TestCase): def _check_range(self, x, cmin, cmax): assert_(np.all(x >= cmin)) assert_(np.all(x <= cmax)) def _clip_type(self, type_group, array_max, clip_min, clip_max, inplace=False, expected_min=None, expected_max=None): if expected_min is None: expected_min = clip_min if expected_max is None: expected_max = clip_max for T in np.sctypes[type_group]: if sys.byteorder == 'little': byte_orders = ['=', '>'] else: byte_orders = ['<', '='] for byteorder in byte_orders: dtype = np.dtype(T).newbyteorder(byteorder) x = (np.random.random(1000) * array_max).astype(dtype) if inplace: x.clip(clip_min, clip_max, x) else: x = x.clip(clip_min, clip_max) byteorder = '=' if x.dtype.byteorder == '|': byteorder = '|' assert_equal(x.dtype.byteorder, byteorder) self._check_range(x, expected_min, expected_max) return x def test_basic(self): for inplace in [False, True]: self._clip_type( 'float', 1024, -12.8, 100.2, inplace=inplace) self._clip_type( 'float', 1024, 0, 0, inplace=inplace) self._clip_type( 'int', 1024, -120, 100.5, inplace=inplace) self._clip_type( 'int', 1024, 0, 0, inplace=inplace) self._clip_type( 'uint', 1024, 0, 0, inplace=inplace) self._clip_type( 'uint', 1024, -120, 100, inplace=inplace, expected_min=0) def test_record_array(self): rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)], dtype=[('x', '<f8'), ('y', '<f8'), ('z', '<f8')]) y = rec['x'].clip(-0.3, 0.5) self._check_range(y, -0.3, 0.5) def test_max_or_min(self): val = np.array([0, 1, 2, 3, 4, 5, 6, 7]) x = val.clip(3) assert_(np.all(x >= 3)) x = val.clip(min=3) assert_(np.all(x >= 3)) x = val.clip(max=4) assert_(np.all(x <= 4)) class TestPutmask(object): def tst_basic(self, x, T, mask, val): np.putmask(x, mask, val) assert_(np.all(x[mask] == T(val))) assert_(x.dtype == T) def test_ip_types(self): unchecked_types = [str, unicode, np.void, object] x = np.random.random(1000)*100 mask = x < 40 for val in [-100, 0, 15]: for types in np.sctypes.values(): for T in types: if T not in unchecked_types: yield self.tst_basic, x.copy().astype(T), T, mask, val def test_mask_size(self): assert_raises(ValueError, np.putmask, np.array([1, 2, 3]), [True], 5) def tst_byteorder(self, dtype): x = np.array([1, 2, 3], dtype) np.putmask(x, [True, False, True], -1) assert_array_equal(x, [-1, 2, -1]) def test_ip_byteorder(self): for dtype in ('>i4', '<i4'): yield self.tst_byteorder, dtype def test_record_array(self): # Note mixed byteorder. rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)], dtype=[('x', '<f8'), ('y', '>f8'), ('z', '<f8')]) np.putmask(rec['x'], [True, False], 10) assert_array_equal(rec['x'], [10, 5]) assert_array_equal(rec['y'], [2, 4]) assert_array_equal(rec['z'], [3, 3]) np.putmask(rec['y'], [True, False], 11) assert_array_equal(rec['x'], [10, 5]) assert_array_equal(rec['y'], [11, 4]) assert_array_equal(rec['z'], [3, 3]) def test_masked_array(self): ## x = np.array([1,2,3]) ## z = np.ma.array(x,mask=[True,False,False]) ## np.putmask(z,[True,True,True],3) pass class TestTake(object): def tst_basic(self, x): ind = list(range(x.shape[0])) assert_array_equal(x.take(ind, axis=0), x) def test_ip_types(self): unchecked_types = [str, unicode, np.void, object] x = np.random.random(24)*100 x.shape = 2, 3, 4 for types in np.sctypes.values(): for T in types: if T not in unchecked_types: yield self.tst_basic, x.copy().astype(T) def test_raise(self): x = np.random.random(24)*100 x.shape = 2, 3, 4 assert_raises(IndexError, x.take, [0, 1, 2], axis=0) assert_raises(IndexError, x.take, [-3], axis=0) assert_array_equal(x.take([-1], axis=0)[0], x[1]) def test_clip(self): x = np.random.random(24)*100 x.shape = 2, 3, 4 assert_array_equal(x.take([-1], axis=0, mode='clip')[0], x[0]) assert_array_equal(x.take([2], axis=0, mode='clip')[0], x[1]) def test_wrap(self): x = np.random.random(24)*100 x.shape = 2, 3, 4 assert_array_equal(x.take([-1], axis=0, mode='wrap')[0], x[1]) assert_array_equal(x.take([2], axis=0, mode='wrap')[0], x[0]) assert_array_equal(x.take([3], axis=0, mode='wrap')[0], x[1]) def tst_byteorder(self, dtype): x = np.array([1, 2, 3], dtype) assert_array_equal(x.take([0, 2, 1]), [1, 3, 2]) def test_ip_byteorder(self): for dtype in ('>i4', '<i4'): yield self.tst_byteorder, dtype def test_record_array(self): # Note mixed byteorder. rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)], dtype=[('x', '<f8'), ('y', '>f8'), ('z', '<f8')]) rec1 = rec.take([1]) assert_(rec1['x'] == 5.0 and rec1['y'] == 4.0) class TestLexsort(TestCase): def test_basic(self): a = [1, 2, 1, 3, 1, 5] b = [0, 4, 5, 6, 2, 3] idx = np.lexsort((b, a)) expected_idx = np.array([0, 4, 2, 1, 3, 5]) assert_array_equal(idx, expected_idx) x = np.vstack((b, a)) idx = np.lexsort(x) assert_array_equal(idx, expected_idx) assert_array_equal(x[1][idx], np.sort(x[1])) def test_datetime(self): a = np.array([0,0,0], dtype='datetime64[D]') b = np.array([2,1,0], dtype='datetime64[D]') idx = np.lexsort((b, a)) expected_idx = np.array([2, 1, 0]) assert_array_equal(idx, expected_idx) a = np.array([0,0,0], dtype='timedelta64[D]') b = np.array([2,1,0], dtype='timedelta64[D]') idx = np.lexsort((b, a)) expected_idx = np.array([2, 1, 0]) assert_array_equal(idx, expected_idx) def test_object(self): # gh-6312 a = np.random.choice(10, 1000) b = np.random.choice(['abc', 'xy', 'wz', 'efghi', 'qwst', 'x'], 1000) for u in a, b: left = np.lexsort((u.astype('O'),)) right = np.argsort(u, kind='mergesort') assert_array_equal(left, right) for u, v in (a, b), (b, a): idx = np.lexsort((u, v)) assert_array_equal(idx, np.lexsort((u.astype('O'), v))) assert_array_equal(idx, np.lexsort((u, v.astype('O')))) u, v = np.array(u, dtype='object'), np.array(v, dtype='object') assert_array_equal(idx, np.lexsort((u, v))) class TestIO(object): """Test tofile, fromfile, tobytes, and fromstring""" def setUp(self): shape = (2, 4, 3) rand = np.random.random self.x = rand(shape) + rand(shape).astype(np.complex)*1j self.x[0,:, 1] = [np.nan, np.inf, -np.inf, np.nan] self.dtype = self.x.dtype self.tempdir = tempfile.mkdtemp() self.filename = tempfile.mktemp(dir=self.tempdir) def tearDown(self): shutil.rmtree(self.tempdir) def test_bool_fromstring(self): v = np.array([True, False, True, False], dtype=np.bool_) y = np.fromstring('1 0 -2.3 0.0', sep=' ', dtype=np.bool_) assert_array_equal(v, y) def test_uint64_fromstring(self): d = np.fromstring("9923372036854775807 104783749223640", dtype=np.uint64, sep=' ') e = np.array([9923372036854775807, 104783749223640], dtype=np.uint64) assert_array_equal(d, e) def test_int64_fromstring(self): d = np.fromstring("-25041670086757 104783749223640", dtype=np.int64, sep=' ') e = np.array([-25041670086757, 104783749223640], dtype=np.int64) assert_array_equal(d, e) def test_empty_files_binary(self): f = open(self.filename, 'w') f.close() y = np.fromfile(self.filename) assert_(y.size == 0, "Array not empty") def test_empty_files_text(self): f = open(self.filename, 'w') f.close() y = np.fromfile(self.filename, sep=" ") assert_(y.size == 0, "Array not empty") def test_roundtrip_file(self): f = open(self.filename, 'wb') self.x.tofile(f) f.close() # NB. doesn't work with flush+seek, due to use of C stdio f = open(self.filename, 'rb') y = np.fromfile(f, dtype=self.dtype) f.close() assert_array_equal(y, self.x.flat) def test_roundtrip_filename(self): self.x.tofile(self.filename) y = np.fromfile(self.filename, dtype=self.dtype) assert_array_equal(y, self.x.flat) def test_roundtrip_binary_str(self): s = self.x.tobytes() y = np.fromstring(s, dtype=self.dtype) assert_array_equal(y, self.x.flat) s = self.x.tobytes('F') y = np.fromstring(s, dtype=self.dtype) assert_array_equal(y, self.x.flatten('F')) def test_roundtrip_str(self): x = self.x.real.ravel() s = "@".join(map(str, x)) y = np.fromstring(s, sep="@") # NB. str imbues less precision nan_mask = ~np.isfinite(x) assert_array_equal(x[nan_mask], y[nan_mask]) assert_array_almost_equal(x[~nan_mask], y[~nan_mask], decimal=5) def test_roundtrip_repr(self): x = self.x.real.ravel() s = "@".join(map(repr, x)) y = np.fromstring(s, sep="@") assert_array_equal(x, y) def test_unbuffered_fromfile(self): # gh-6246 self.x.tofile(self.filename) def fail(*args, **kwargs): raise io.IOError('Can not tell or seek') f = io.open(self.filename, 'rb', buffering=0) f.seek = fail f.tell = fail y = np.fromfile(self.filename, dtype=self.dtype) assert_array_equal(y, self.x.flat) def test_file_position_after_fromfile(self): # gh-4118 sizes = [io.DEFAULT_BUFFER_SIZE//8, io.DEFAULT_BUFFER_SIZE, io.DEFAULT_BUFFER_SIZE*8] for size in sizes: f = open(self.filename, 'wb') f.seek(size-1) f.write(b'\0') f.close() for mode in ['rb', 'r+b']: err_msg = "%d %s" % (size, mode) f = open(self.filename, mode) f.read(2) np.fromfile(f, dtype=np.float64, count=1) pos = f.tell() f.close() assert_equal(pos, 10, err_msg=err_msg) def test_file_position_after_tofile(self): # gh-4118 sizes = [io.DEFAULT_BUFFER_SIZE//8, io.DEFAULT_BUFFER_SIZE, io.DEFAULT_BUFFER_SIZE*8] for size in sizes: err_msg = "%d" % (size,) f = open(self.filename, 'wb') f.seek(size-1) f.write(b'\0') f.seek(10) f.write(b'12') np.array([0], dtype=np.float64).tofile(f) pos = f.tell() f.close() assert_equal(pos, 10 + 2 + 8, err_msg=err_msg) f = open(self.filename, 'r+b') f.read(2) f.seek(0, 1) # seek between read&write required by ANSI C np.array([0], dtype=np.float64).tofile(f) pos = f.tell() f.close() assert_equal(pos, 10, err_msg=err_msg) def _check_from(self, s, value, **kw): y = np.fromstring(asbytes(s), **kw) assert_array_equal(y, value) f = open(self.filename, 'wb') f.write(asbytes(s)) f.close() y = np.fromfile(self.filename, **kw) assert_array_equal(y, value) def test_nan(self): self._check_from( "nan +nan -nan NaN nan(foo) +NaN(BAR) -NAN(q_u_u_x_)", [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan], sep=' ') def test_inf(self): self._check_from( "inf +inf -inf infinity -Infinity iNfInItY -inF", [np.inf, np.inf, -np.inf, np.inf, -np.inf, np.inf, -np.inf], sep=' ') def test_numbers(self): self._check_from("1.234 -1.234 .3 .3e55 -123133.1231e+133", [1.234, -1.234, .3, .3e55, -123133.1231e+133], sep=' ') def test_binary(self): self._check_from('\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@', np.array([1, 2, 3, 4]), dtype='<f4') @dec.slow # takes > 1 minute on mechanical hard drive def test_big_binary(self): """Test workarounds for 32-bit limited fwrite, fseek, and ftell calls in windows. These normally would hang doing something like this. See http://projects.scipy.org/numpy/ticket/1660""" if sys.platform != 'win32': return try: # before workarounds, only up to 2**32-1 worked fourgbplus = 2**32 + 2**16 testbytes = np.arange(8, dtype=np.int8) n = len(testbytes) flike = tempfile.NamedTemporaryFile() f = flike.file np.tile(testbytes, fourgbplus // testbytes.nbytes).tofile(f) flike.seek(0) a = np.fromfile(f, dtype=np.int8) flike.close() assert_(len(a) == fourgbplus) # check only start and end for speed: assert_((a[:n] == testbytes).all()) assert_((a[-n:] == testbytes).all()) except (MemoryError, ValueError): pass def test_string(self): self._check_from('1,2,3,4', [1., 2., 3., 4.], sep=',') def test_counted_string(self): self._check_from('1,2,3,4', [1., 2., 3., 4.], count=4, sep=',') self._check_from('1,2,3,4', [1., 2., 3.], count=3, sep=',') self._check_from('1,2,3,4', [1., 2., 3., 4.], count=-1, sep=',') def test_string_with_ws(self): self._check_from('1 2 3 4 ', [1, 2, 3, 4], dtype=int, sep=' ') def test_counted_string_with_ws(self): self._check_from('1 2 3 4 ', [1, 2, 3], count=3, dtype=int, sep=' ') def test_ascii(self): self._check_from('1 , 2 , 3 , 4', [1., 2., 3., 4.], sep=',') self._check_from('1,2,3,4', [1., 2., 3., 4.], dtype=float, sep=',') def test_malformed(self): self._check_from('1.234 1,234', [1.234, 1.], sep=' ') def test_long_sep(self): self._check_from('1_x_3_x_4_x_5', [1, 3, 4, 5], sep='_x_') def test_dtype(self): v = np.array([1, 2, 3, 4], dtype=np.int_) self._check_from('1,2,3,4', v, sep=',', dtype=np.int_) def test_dtype_bool(self): # can't use _check_from because fromstring can't handle True/False v = np.array([True, False, True, False], dtype=np.bool_) s = '1,0,-2.3,0' f = open(self.filename, 'wb') f.write(asbytes(s)) f.close() y = np.fromfile(self.filename, sep=',', dtype=np.bool_) assert_(y.dtype == '?') assert_array_equal(y, v) def test_tofile_sep(self): x = np.array([1.51, 2, 3.51, 4], dtype=float) f = open(self.filename, 'w') x.tofile(f, sep=',') f.close() f = open(self.filename, 'r') s = f.read() f.close() #assert_equal(s, '1.51,2.0,3.51,4.0') y = np.array([float(p) for p in s.split(',')]) assert_array_equal(x,y) def test_tofile_format(self): x = np.array([1.51, 2, 3.51, 4], dtype=float) f = open(self.filename, 'w') x.tofile(f, sep=',', format='%.2f') f.close() f = open(self.filename, 'r') s = f.read() f.close() assert_equal(s, '1.51,2.00,3.51,4.00') def test_locale(self): in_foreign_locale(self.test_numbers)() in_foreign_locale(self.test_nan)() in_foreign_locale(self.test_inf)() in_foreign_locale(self.test_counted_string)() in_foreign_locale(self.test_ascii)() in_foreign_locale(self.test_malformed)() in_foreign_locale(self.test_tofile_sep)() in_foreign_locale(self.test_tofile_format)() class TestFromBuffer(object): def tst_basic(self, buffer, expected, kwargs): assert_array_equal(np.frombuffer(buffer,**kwargs), expected) def test_ip_basic(self): for byteorder in ['<', '>']: for dtype in [float, int, np.complex]: dt = np.dtype(dtype).newbyteorder(byteorder) x = (np.random.random((4, 7))*5).astype(dt) buf = x.tobytes() yield self.tst_basic, buf, x.flat, {'dtype':dt} def test_empty(self): yield self.tst_basic, asbytes(''), np.array([]), {} class TestFlat(TestCase): def setUp(self): a0 = np.arange(20.0) a = a0.reshape(4, 5) a0.shape = (4, 5) a.flags.writeable = False self.a = a self.b = a[::2, ::2] self.a0 = a0 self.b0 = a0[::2, ::2] def test_contiguous(self): testpassed = False try: self.a.flat[12] = 100.0 except ValueError: testpassed = True assert testpassed assert self.a.flat[12] == 12.0 def test_discontiguous(self): testpassed = False try: self.b.flat[4] = 100.0 except ValueError: testpassed = True assert testpassed assert self.b.flat[4] == 12.0 def test___array__(self): c = self.a.flat.__array__() d = self.b.flat.__array__() e = self.a0.flat.__array__() f = self.b0.flat.__array__() assert c.flags.writeable is False assert d.flags.writeable is False assert e.flags.writeable is True assert f.flags.writeable is True assert c.flags.updateifcopy is False assert d.flags.updateifcopy is False assert e.flags.updateifcopy is False assert f.flags.updateifcopy is True assert f.base is self.b0 class TestResize(TestCase): def test_basic(self): x = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) x.resize((5, 5)) assert_array_equal(x.flat[:9], np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]).flat) assert_array_equal(x[9:].flat, 0) def test_check_reference(self): x = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) y = x self.assertRaises(ValueError, x.resize, (5, 1)) del y # avoid pyflakes unused variable warning. def test_int_shape(self): x = np.eye(3) x.resize(3) assert_array_equal(x, np.eye(3)[0,:]) def test_none_shape(self): x = np.eye(3) x.resize(None) assert_array_equal(x, np.eye(3)) x.resize() assert_array_equal(x, np.eye(3)) def test_invalid_arguements(self): self.assertRaises(TypeError, np.eye(3).resize, 'hi') self.assertRaises(ValueError, np.eye(3).resize, -1) self.assertRaises(TypeError, np.eye(3).resize, order=1) self.assertRaises(TypeError, np.eye(3).resize, refcheck='hi') def test_freeform_shape(self): x = np.eye(3) x.resize(3, 2, 1) assert_(x.shape == (3, 2, 1)) def test_zeros_appended(self): x = np.eye(3) x.resize(2, 3, 3) assert_array_equal(x[0], np.eye(3)) assert_array_equal(x[1], np.zeros((3, 3))) def test_obj_obj(self): # check memory is initialized on resize, gh-4857 a = np.ones(10, dtype=[('k', object, 2)]) a.resize(15,) assert_equal(a.shape, (15,)) assert_array_equal(a['k'][-5:], 0) assert_array_equal(a['k'][:-5], 1) class TestRecord(TestCase): def test_field_rename(self): dt = np.dtype([('f', float), ('i', int)]) dt.names = ['p', 'q'] assert_equal(dt.names, ['p', 'q']) def test_multiple_field_name_occurrence(self): def test_assign(): dtype = np.dtype([("A", "f8"), ("B", "f8"), ("A", "f8")]) # Error raised when multiple fields have the same name assert_raises(ValueError, test_assign) if sys.version_info[0] >= 3: def test_bytes_fields(self): # Bytes are not allowed in field names and not recognized in titles # on Py3 assert_raises(TypeError, np.dtype, [(asbytes('a'), int)]) assert_raises(TypeError, np.dtype, [(('b', asbytes('a')), int)]) dt = np.dtype([((asbytes('a'), 'b'), int)]) assert_raises(ValueError, dt.__getitem__, asbytes('a')) x = np.array([(1,), (2,), (3,)], dtype=dt) assert_raises(IndexError, x.__getitem__, asbytes('a')) y = x[0] assert_raises(IndexError, y.__getitem__, asbytes('a')) def test_multiple_field_name_unicode(self): def test_assign_unicode(): dt = np.dtype([("\u20B9", "f8"), ("B", "f8"), ("\u20B9", "f8")]) # Error raised when multiple fields have the same name(unicode included) assert_raises(ValueError, test_assign_unicode) else: def test_unicode_field_titles(self): # Unicode field titles are added to field dict on Py2 title = unicode('b') dt = np.dtype([((title, 'a'), int)]) dt[title] dt['a'] x = np.array([(1,), (2,), (3,)], dtype=dt) x[title] x['a'] y = x[0] y[title] y['a'] def test_unicode_field_names(self): # Unicode field names are not allowed on Py2 title = unicode('b') assert_raises(TypeError, np.dtype, [(title, int)]) assert_raises(TypeError, np.dtype, [(('a', title), int)]) def test_field_names(self): # Test unicode and 8-bit / byte strings can be used a = np.zeros((1,), dtype=[('f1', 'i4'), ('f2', 'i4'), ('f3', [('sf1', 'i4')])]) is_py3 = sys.version_info[0] >= 3 if is_py3: funcs = (str,) # byte string indexing fails gracefully assert_raises(IndexError, a.__setitem__, asbytes('f1'), 1) assert_raises(IndexError, a.__getitem__, asbytes('f1')) assert_raises(IndexError, a['f1'].__setitem__, asbytes('sf1'), 1) assert_raises(IndexError, a['f1'].__getitem__, asbytes('sf1')) else: funcs = (str, unicode) for func in funcs: b = a.copy() fn1 = func('f1') b[fn1] = 1 assert_equal(b[fn1], 1) fnn = func('not at all') assert_raises(ValueError, b.__setitem__, fnn, 1) assert_raises(ValueError, b.__getitem__, fnn) b[0][fn1] = 2 assert_equal(b[fn1], 2) # Subfield assert_raises(ValueError, b[0].__setitem__, fnn, 1) assert_raises(ValueError, b[0].__getitem__, fnn) # Subfield fn3 = func('f3') sfn1 = func('sf1') b[fn3][sfn1] = 1 assert_equal(b[fn3][sfn1], 1) assert_raises(ValueError, b[fn3].__setitem__, fnn, 1) assert_raises(ValueError, b[fn3].__getitem__, fnn) # multiple Subfields fn2 = func('f2') b[fn2] = 3 assert_equal(b[['f1', 'f2']][0].tolist(), (2, 3)) assert_equal(b[['f2', 'f1']][0].tolist(), (3, 2)) assert_equal(b[['f1', 'f3']][0].tolist(), (2, (1,))) # view of subfield view/copy assert_equal(b[['f1', 'f2']][0].view(('i4', 2)).tolist(), (2, 3)) assert_equal(b[['f2', 'f1']][0].view(('i4', 2)).tolist(), (3, 2)) view_dtype = [('f1', 'i4'), ('f3', [('', 'i4')])] assert_equal(b[['f1', 'f3']][0].view(view_dtype).tolist(), (2, (1,))) # non-ascii unicode field indexing is well behaved if not is_py3: raise SkipTest('non ascii unicode field indexing skipped; ' 'raises segfault on python 2.x') else: assert_raises(ValueError, a.__setitem__, sixu('\u03e0'), 1) assert_raises(ValueError, a.__getitem__, sixu('\u03e0')) def test_field_names_deprecation(self): def collect_warnings(f, *args, **kwargs): with warnings.catch_warnings(record=True) as log: warnings.simplefilter("always") f(*args, **kwargs) return [w.category for w in log] a = np.zeros((1,), dtype=[('f1', 'i4'), ('f2', 'i4'), ('f3', [('sf1', 'i4')])]) a['f1'][0] = 1 a['f2'][0] = 2 a['f3'][0] = (3,) b = np.zeros((1,), dtype=[('f1', 'i4'), ('f2', 'i4'), ('f3', [('sf1', 'i4')])]) b['f1'][0] = 1 b['f2'][0] = 2 b['f3'][0] = (3,) # All the different functions raise a warning, but not an error, and # 'a' is not modified: assert_equal(collect_warnings(a[['f1', 'f2']].__setitem__, 0, (10, 20)), [FutureWarning]) assert_equal(a, b) # Views also warn subset = a[['f1', 'f2']] subset_view = subset.view() assert_equal(collect_warnings(subset_view['f1'].__setitem__, 0, 10), [FutureWarning]) # But the write goes through: assert_equal(subset['f1'][0], 10) # Only one warning per multiple field indexing, though (even if there # are multiple views involved): assert_equal(collect_warnings(subset['f1'].__setitem__, 0, 10), []) def test_record_hash(self): a = np.array([(1, 2), (1, 2)], dtype='i1,i2') a.flags.writeable = False b = np.array([(1, 2), (3, 4)], dtype=[('num1', 'i1'), ('num2', 'i2')]) b.flags.writeable = False c = np.array([(1, 2), (3, 4)], dtype='i1,i2') c.flags.writeable = False self.assertTrue(hash(a[0]) == hash(a[1])) self.assertTrue(hash(a[0]) == hash(b[0])) self.assertTrue(hash(a[0]) != hash(b[1])) self.assertTrue(hash(c[0]) == hash(a[0]) and c[0] == a[0]) def test_record_no_hash(self): a = np.array([(1, 2), (1, 2)], dtype='i1,i2') self.assertRaises(TypeError, hash, a[0]) def test_empty_structure_creation(self): # make sure these do not raise errors (gh-5631) np.array([()], dtype={'names': [], 'formats': [], 'offsets': [], 'itemsize': 12}) np.array([(), (), (), (), ()], dtype={'names': [], 'formats': [], 'offsets': [], 'itemsize': 12}) class TestView(TestCase): def test_basic(self): x = np.array([(1, 2, 3, 4), (5, 6, 7, 8)], dtype=[('r', np.int8), ('g', np.int8), ('b', np.int8), ('a', np.int8)]) # We must be specific about the endianness here: y = x.view(dtype='<i4') # ... and again without the keyword. z = x.view('<i4') assert_array_equal(y, z) assert_array_equal(y, [67305985, 134678021]) def _mean(a, **args): return a.mean(**args) def _var(a, **args): return a.var(**args) def _std(a, **args): return a.std(**args) class TestStats(TestCase): funcs = [_mean, _var, _std] def setUp(self): np.random.seed(range(3)) self.rmat = np.random.random((4, 5)) self.cmat = self.rmat + 1j * self.rmat self.omat = np.array([Decimal(repr(r)) for r in self.rmat.flat]) self.omat = self.omat.reshape(4, 5) def test_keepdims(self): mat = np.eye(3) for f in self.funcs: for axis in [0, 1]: res = f(mat, axis=axis, keepdims=True) assert_(res.ndim == mat.ndim) assert_(res.shape[axis] == 1) for axis in [None]: res = f(mat, axis=axis, keepdims=True) assert_(res.shape == (1, 1)) def test_out(self): mat = np.eye(3) for f in self.funcs: out = np.zeros(3) tgt = f(mat, axis=1) res = f(mat, axis=1, out=out) assert_almost_equal(res, out) assert_almost_equal(res, tgt) out = np.empty(2) assert_raises(ValueError, f, mat, axis=1, out=out) out = np.empty((2, 2)) assert_raises(ValueError, f, mat, axis=1, out=out) def test_dtype_from_input(self): icodes = np.typecodes['AllInteger'] fcodes = np.typecodes['AllFloat'] # object type for f in self.funcs: mat = np.array([[Decimal(1)]*3]*3) tgt = mat.dtype.type res = f(mat, axis=1).dtype.type assert_(res is tgt) # scalar case res = type(f(mat, axis=None)) assert_(res is Decimal) # integer types for f in self.funcs: for c in icodes: mat = np.eye(3, dtype=c) tgt = np.float64 res = f(mat, axis=1).dtype.type assert_(res is tgt) # scalar case res = f(mat, axis=None).dtype.type assert_(res is tgt) # mean for float types for f in [_mean]: for c in fcodes: mat = np.eye(3, dtype=c) tgt = mat.dtype.type res = f(mat, axis=1).dtype.type assert_(res is tgt) # scalar case res = f(mat, axis=None).dtype.type assert_(res is tgt) # var, std for float types for f in [_var, _std]: for c in fcodes: mat = np.eye(3, dtype=c) # deal with complex types tgt = mat.real.dtype.type res = f(mat, axis=1).dtype.type assert_(res is tgt) # scalar case res = f(mat, axis=None).dtype.type assert_(res is tgt) def test_dtype_from_dtype(self): mat = np.eye(3) # stats for integer types # FIXME: # this needs definition as there are lots places along the line # where type casting may take place. #for f in self.funcs: # for c in np.typecodes['AllInteger']: # tgt = np.dtype(c).type # res = f(mat, axis=1, dtype=c).dtype.type # assert_(res is tgt) # # scalar case # res = f(mat, axis=None, dtype=c).dtype.type # assert_(res is tgt) # stats for float types for f in self.funcs: for c in np.typecodes['AllFloat']: tgt = np.dtype(c).type res = f(mat, axis=1, dtype=c).dtype.type assert_(res is tgt) # scalar case res = f(mat, axis=None, dtype=c).dtype.type assert_(res is tgt) def test_ddof(self): for f in [_var]: for ddof in range(3): dim = self.rmat.shape[1] tgt = f(self.rmat, axis=1) * dim res = f(self.rmat, axis=1, ddof=ddof) * (dim - ddof) for f in [_std]: for ddof in range(3): dim = self.rmat.shape[1] tgt = f(self.rmat, axis=1) * np.sqrt(dim) res = f(self.rmat, axis=1, ddof=ddof) * np.sqrt(dim - ddof) assert_almost_equal(res, tgt) assert_almost_equal(res, tgt) def test_ddof_too_big(self): dim = self.rmat.shape[1] for f in [_var, _std]: for ddof in range(dim, dim + 2): with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') res = f(self.rmat, axis=1, ddof=ddof) assert_(not (res < 0).any()) assert_(len(w) > 0) assert_(issubclass(w[0].category, RuntimeWarning)) def test_empty(self): A = np.zeros((0, 3)) for f in self.funcs: for axis in [0, None]: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_(np.isnan(f(A, axis=axis)).all()) assert_(len(w) > 0) assert_(issubclass(w[0].category, RuntimeWarning)) for axis in [1]: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_equal(f(A, axis=axis), np.zeros([])) def test_mean_values(self): for mat in [self.rmat, self.cmat, self.omat]: for axis in [0, 1]: tgt = mat.sum(axis=axis) res = _mean(mat, axis=axis) * mat.shape[axis] assert_almost_equal(res, tgt) for axis in [None]: tgt = mat.sum(axis=axis) res = _mean(mat, axis=axis) * np.prod(mat.shape) assert_almost_equal(res, tgt) def test_var_values(self): for mat in [self.rmat, self.cmat, self.omat]: for axis in [0, 1, None]: msqr = _mean(mat * mat.conj(), axis=axis) mean = _mean(mat, axis=axis) tgt = msqr - mean * mean.conjugate() res = _var(mat, axis=axis) assert_almost_equal(res, tgt) def test_std_values(self): for mat in [self.rmat, self.cmat, self.omat]: for axis in [0, 1, None]: tgt = np.sqrt(_var(mat, axis=axis)) res = _std(mat, axis=axis) assert_almost_equal(res, tgt) def test_subclass(self): class TestArray(np.ndarray): def __new__(cls, data, info): result = np.array(data) result = result.view(cls) result.info = info return result def __array_finalize__(self, obj): self.info = getattr(obj, "info", '') dat = TestArray([[1, 2, 3, 4], [5, 6, 7, 8]], 'jubba') res = dat.mean(1) assert_(res.info == dat.info) res = dat.std(1) assert_(res.info == dat.info) res = dat.var(1) assert_(res.info == dat.info) class TestVdot(TestCase): def test_basic(self): dt_numeric = np.typecodes['AllFloat'] + np.typecodes['AllInteger'] dt_complex = np.typecodes['Complex'] # test real a = np.eye(3) for dt in dt_numeric + 'O': b = a.astype(dt) res = np.vdot(b, b) assert_(np.isscalar(res)) assert_equal(np.vdot(b, b), 3) # test complex a = np.eye(3) * 1j for dt in dt_complex + 'O': b = a.astype(dt) res = np.vdot(b, b) assert_(np.isscalar(res)) assert_equal(np.vdot(b, b), 3) # test boolean b = np.eye(3, dtype=np.bool) res = np.vdot(b, b) assert_(np.isscalar(res)) assert_equal(np.vdot(b, b), True) def test_vdot_array_order(self): a = np.array([[1, 2], [3, 4]], order='C') b = np.array([[1, 2], [3, 4]], order='F') res = np.vdot(a, a) # integer arrays are exact assert_equal(np.vdot(a, b), res) assert_equal(np.vdot(b, a), res) assert_equal(np.vdot(b, b), res) def test_vdot_uncontiguous(self): for size in [2, 1000]: # Different sizes match different branches in vdot. a = np.zeros((size, 2, 2)) b = np.zeros((size, 2, 2)) a[:, 0, 0] = np.arange(size) b[:, 0, 0] = np.arange(size) + 1 # Make a and b uncontiguous: a = a[..., 0] b = b[..., 0] assert_equal(np.vdot(a, b), np.vdot(a.flatten(), b.flatten())) assert_equal(np.vdot(a, b.copy()), np.vdot(a.flatten(), b.flatten())) assert_equal(np.vdot(a.copy(), b), np.vdot(a.flatten(), b.flatten())) assert_equal(np.vdot(a.copy('F'), b), np.vdot(a.flatten(), b.flatten())) assert_equal(np.vdot(a, b.copy('F')), np.vdot(a.flatten(), b.flatten())) class TestDot(TestCase): def setUp(self): np.random.seed(128) self.A = np.random.rand(4, 2) self.b1 = np.random.rand(2, 1) self.b2 = np.random.rand(2) self.b3 = np.random.rand(1, 2) self.b4 = np.random.rand(4) self.N = 7 def test_dotmatmat(self): A = self.A res = np.dot(A.transpose(), A) tgt = np.array([[1.45046013, 0.86323640], [0.86323640, 0.84934569]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotmatvec(self): A, b1 = self.A, self.b1 res = np.dot(A, b1) tgt = np.array([[0.32114320], [0.04889721], [0.15696029], [0.33612621]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotmatvec2(self): A, b2 = self.A, self.b2 res = np.dot(A, b2) tgt = np.array([0.29677940, 0.04518649, 0.14468333, 0.31039293]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecmat(self): A, b4 = self.A, self.b4 res = np.dot(b4, A) tgt = np.array([1.23495091, 1.12222648]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecmat2(self): b3, A = self.b3, self.A res = np.dot(b3, A.transpose()) tgt = np.array([[0.58793804, 0.08957460, 0.30605758, 0.62716383]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecmat3(self): A, b4 = self.A, self.b4 res = np.dot(A.transpose(), b4) tgt = np.array([1.23495091, 1.12222648]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecvecouter(self): b1, b3 = self.b1, self.b3 res = np.dot(b1, b3) tgt = np.array([[0.20128610, 0.08400440], [0.07190947, 0.03001058]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecvecinner(self): b1, b3 = self.b1, self.b3 res = np.dot(b3, b1) tgt = np.array([[ 0.23129668]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotcolumnvect1(self): b1 = np.ones((3, 1)) b2 = [5.3] res = np.dot(b1, b2) tgt = np.array([5.3, 5.3, 5.3]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotcolumnvect2(self): b1 = np.ones((3, 1)).transpose() b2 = [6.2] res = np.dot(b2, b1) tgt = np.array([6.2, 6.2, 6.2]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecscalar(self): np.random.seed(100) b1 = np.random.rand(1, 1) b2 = np.random.rand(1, 4) res = np.dot(b1, b2) tgt = np.array([[0.15126730, 0.23068496, 0.45905553, 0.00256425]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecscalar2(self): np.random.seed(100) b1 = np.random.rand(4, 1) b2 = np.random.rand(1, 1) res = np.dot(b1, b2) tgt = np.array([[0.00256425],[0.00131359],[0.00200324],[ 0.00398638]]) assert_almost_equal(res, tgt, decimal=self.N) def test_all(self): dims = [(), (1,), (1, 1)] dout = [(), (1,), (1, 1), (1,), (), (1,), (1, 1), (1,), (1, 1)] for dim, (dim1, dim2) in zip(dout, itertools.product(dims, dims)): b1 = np.zeros(dim1) b2 = np.zeros(dim2) res = np.dot(b1, b2) tgt = np.zeros(dim) assert_(res.shape == tgt.shape) assert_almost_equal(res, tgt, decimal=self.N) def test_vecobject(self): class Vec(object): def __init__(self, sequence=None): if sequence is None: sequence = [] self.array = np.array(sequence) def __add__(self, other): out = Vec() out.array = self.array + other.array return out def __sub__(self, other): out = Vec() out.array = self.array - other.array return out def __mul__(self, other): # with scalar out = Vec(self.array.copy()) out.array *= other return out def __rmul__(self, other): return self*other U_non_cont = np.transpose([[1., 1.], [1., 2.]]) U_cont = np.ascontiguousarray(U_non_cont) x = np.array([Vec([1., 0.]), Vec([0., 1.])]) zeros = np.array([Vec([0., 0.]), Vec([0., 0.])]) zeros_test = np.dot(U_cont, x) - np.dot(U_non_cont, x) assert_equal(zeros[0].array, zeros_test[0].array) assert_equal(zeros[1].array, zeros_test[1].array) def test_dot_2args(self): from numpy.core.multiarray import dot a = np.array([[1, 2], [3, 4]], dtype=float) b = np.array([[1, 0], [1, 1]], dtype=float) c = np.array([[3, 2], [7, 4]], dtype=float) d = dot(a, b) assert_allclose(c, d) def test_dot_3args(self): from numpy.core.multiarray import dot np.random.seed(22) f = np.random.random_sample((1024, 16)) v = np.random.random_sample((16, 32)) r = np.empty((1024, 32)) for i in range(12): dot(f, v, r) assert_equal(sys.getrefcount(r), 2) r2 = dot(f, v, out=None) assert_array_equal(r2, r) assert_(r is dot(f, v, out=r)) v = v[:, 0].copy() # v.shape == (16,) r = r[:, 0].copy() # r.shape == (1024,) r2 = dot(f, v) assert_(r is dot(f, v, r)) assert_array_equal(r2, r) def test_dot_3args_errors(self): from numpy.core.multiarray import dot np.random.seed(22) f = np.random.random_sample((1024, 16)) v = np.random.random_sample((16, 32)) r = np.empty((1024, 31)) assert_raises(ValueError, dot, f, v, r) r = np.empty((1024,)) assert_raises(ValueError, dot, f, v, r) r = np.empty((32,)) assert_raises(ValueError, dot, f, v, r) r = np.empty((32, 1024)) assert_raises(ValueError, dot, f, v, r) assert_raises(ValueError, dot, f, v, r.T) r = np.empty((1024, 64)) assert_raises(ValueError, dot, f, v, r[:, ::2]) assert_raises(ValueError, dot, f, v, r[:, :32]) r = np.empty((1024, 32), dtype=np.float32) assert_raises(ValueError, dot, f, v, r) r = np.empty((1024, 32), dtype=int) assert_raises(ValueError, dot, f, v, r) def test_dot_array_order(self): a = np.array([[1, 2], [3, 4]], order='C') b = np.array([[1, 2], [3, 4]], order='F') res = np.dot(a, a) # integer arrays are exact assert_equal(np.dot(a, b), res) assert_equal(np.dot(b, a), res) assert_equal(np.dot(b, b), res) def test_dot_scalar_and_matrix_of_objects(self): # Ticket #2469 arr = np.matrix([1, 2], dtype=object) desired = np.matrix([[3, 6]], dtype=object) assert_equal(np.dot(arr, 3), desired) assert_equal(np.dot(3, arr), desired) def test_dot_override(self): class A(object): def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return "A" class B(object): def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return NotImplemented a = A() b = B() c = np.array([[1]]) assert_equal(np.dot(a, b), "A") assert_equal(c.dot(a), "A") assert_raises(TypeError, np.dot, b, c) assert_raises(TypeError, c.dot, b) def test_accelerate_framework_sgemv_fix(self): def aligned_array(shape, align, dtype, order='C'): d = dtype(0) N = np.prod(shape) tmp = np.zeros(N * d.nbytes + align, dtype=np.uint8) address = tmp.__array_interface__["data"][0] for offset in range(align): if (address + offset) % align == 0: break tmp = tmp[offset:offset+N*d.nbytes].view(dtype=dtype) return tmp.reshape(shape, order=order) def as_aligned(arr, align, dtype, order='C'): aligned = aligned_array(arr.shape, align, dtype, order) aligned[:] = arr[:] return aligned def assert_dot_close(A, X, desired): assert_allclose(np.dot(A, X), desired, rtol=1e-5, atol=1e-7) m = aligned_array(100, 15, np.float32) s = aligned_array((100, 100), 15, np.float32) np.dot(s, m) # this will always segfault if the bug is present testdata = itertools.product((15,32), (10000,), (200,89), ('C','F')) for align, m, n, a_order in testdata: # Calculation in double precision A_d = np.random.rand(m, n) X_d = np.random.rand(n) desired = np.dot(A_d, X_d) # Calculation with aligned single precision A_f = as_aligned(A_d, align, np.float32, order=a_order) X_f = as_aligned(X_d, align, np.float32) assert_dot_close(A_f, X_f, desired) # Strided A rows A_d_2 = A_d[::2] desired = np.dot(A_d_2, X_d) A_f_2 = A_f[::2] assert_dot_close(A_f_2, X_f, desired) # Strided A columns, strided X vector A_d_22 = A_d_2[:, ::2] X_d_2 = X_d[::2] desired = np.dot(A_d_22, X_d_2) A_f_22 = A_f_2[:, ::2] X_f_2 = X_f[::2] assert_dot_close(A_f_22, X_f_2, desired) # Check the strides are as expected if a_order == 'F': assert_equal(A_f_22.strides, (8, 8 * m)) else: assert_equal(A_f_22.strides, (8 * n, 8)) assert_equal(X_f_2.strides, (8,)) # Strides in A rows + cols only X_f_2c = as_aligned(X_f_2, align, np.float32) assert_dot_close(A_f_22, X_f_2c, desired) # Strides just in A cols A_d_12 = A_d[:, ::2] desired = np.dot(A_d_12, X_d_2) A_f_12 = A_f[:, ::2] assert_dot_close(A_f_12, X_f_2c, desired) # Strides in A cols and X assert_dot_close(A_f_12, X_f_2, desired) class MatmulCommon(): """Common tests for '@' operator and numpy.matmul. Do not derive from TestCase to avoid nose running it. """ # Should work with these types. Will want to add # "O" at some point types = "?bhilqBHILQefdgFDG" def test_exceptions(self): dims = [ ((1,), (2,)), # mismatched vector vector ((2, 1,), (2,)), # mismatched matrix vector ((2,), (1, 2)), # mismatched vector matrix ((1, 2), (3, 1)), # mismatched matrix matrix ((1,), ()), # vector scalar ((), (1)), # scalar vector ((1, 1), ()), # matrix scalar ((), (1, 1)), # scalar matrix ((2, 2, 1), (3, 1, 2)), # cannot broadcast ] for dt, (dm1, dm2) in itertools.product(self.types, dims): a = np.ones(dm1, dtype=dt) b = np.ones(dm2, dtype=dt) assert_raises(ValueError, self.matmul, a, b) def test_shapes(self): dims = [ ((1, 1), (2, 1, 1)), # broadcast first argument ((2, 1, 1), (1, 1)), # broadcast second argument ((2, 1, 1), (2, 1, 1)), # matrix stack sizes match ] for dt, (dm1, dm2) in itertools.product(self.types, dims): a = np.ones(dm1, dtype=dt) b = np.ones(dm2, dtype=dt) res = self.matmul(a, b) assert_(res.shape == (2, 1, 1)) # vector vector returns scalars. for dt in self.types: a = np.ones((2,), dtype=dt) b = np.ones((2,), dtype=dt) c = self.matmul(a, b) assert_(np.array(c).shape == ()) def test_result_types(self): mat = np.ones((1,1)) vec = np.ones((1,)) for dt in self.types: m = mat.astype(dt) v = vec.astype(dt) for arg in [(m, v), (v, m), (m, m)]: res = self.matmul(*arg) assert_(res.dtype == dt) # vector vector returns scalars res = self.matmul(v, v) assert_(type(res) is np.dtype(dt).type) def test_vector_vector_values(self): vec = np.array([1, 2]) tgt = 5 for dt in self.types[1:]: v1 = vec.astype(dt) res = self.matmul(v1, v1) assert_equal(res, tgt) # boolean type vec = np.array([True, True], dtype='?') res = self.matmul(vec, vec) assert_equal(res, True) def test_vector_matrix_values(self): vec = np.array([1, 2]) mat1 = np.array([[1, 2], [3, 4]]) mat2 = np.stack([mat1]*2, axis=0) tgt1 = np.array([7, 10]) tgt2 = np.stack([tgt1]*2, axis=0) for dt in self.types[1:]: v = vec.astype(dt) m1 = mat1.astype(dt) m2 = mat2.astype(dt) res = self.matmul(v, m1) assert_equal(res, tgt1) res = self.matmul(v, m2) assert_equal(res, tgt2) # boolean type vec = np.array([True, False]) mat1 = np.array([[True, False], [False, True]]) mat2 = np.stack([mat1]*2, axis=0) tgt1 = np.array([True, False]) tgt2 = np.stack([tgt1]*2, axis=0) res = self.matmul(vec, mat1) assert_equal(res, tgt1) res = self.matmul(vec, mat2) assert_equal(res, tgt2) def test_matrix_vector_values(self): vec = np.array([1, 2]) mat1 = np.array([[1, 2], [3, 4]]) mat2 = np.stack([mat1]*2, axis=0) tgt1 = np.array([5, 11]) tgt2 = np.stack([tgt1]*2, axis=0) for dt in self.types[1:]: v = vec.astype(dt) m1 = mat1.astype(dt) m2 = mat2.astype(dt) res = self.matmul(m1, v) assert_equal(res, tgt1) res = self.matmul(m2, v) assert_equal(res, tgt2) # boolean type vec = np.array([True, False]) mat1 = np.array([[True, False], [False, True]]) mat2 = np.stack([mat1]*2, axis=0) tgt1 = np.array([True, False]) tgt2 = np.stack([tgt1]*2, axis=0) res = self.matmul(vec, mat1) assert_equal(res, tgt1) res = self.matmul(vec, mat2) assert_equal(res, tgt2) def test_matrix_matrix_values(self): mat1 = np.array([[1, 2], [3, 4]]) mat2 = np.array([[1, 0], [1, 1]]) mat12 = np.stack([mat1, mat2], axis=0) mat21 = np.stack([mat2, mat1], axis=0) tgt11 = np.array([[7, 10], [15, 22]]) tgt12 = np.array([[3, 2], [7, 4]]) tgt21 = np.array([[1, 2], [4, 6]]) tgt12_21 = np.stack([tgt12, tgt21], axis=0) tgt11_12 = np.stack((tgt11, tgt12), axis=0) tgt11_21 = np.stack((tgt11, tgt21), axis=0) for dt in self.types[1:]: m1 = mat1.astype(dt) m2 = mat2.astype(dt) m12 = mat12.astype(dt) m21 = mat21.astype(dt) # matrix @ matrix res = self.matmul(m1, m2) assert_equal(res, tgt12) res = self.matmul(m2, m1) assert_equal(res, tgt21) # stacked @ matrix res = self.matmul(m12, m1) assert_equal(res, tgt11_21) # matrix @ stacked res = self.matmul(m1, m12) assert_equal(res, tgt11_12) # stacked @ stacked res = self.matmul(m12, m21) assert_equal(res, tgt12_21) # boolean type m1 = np.array([[1, 1], [0, 0]], dtype=np.bool_) m2 = np.array([[1, 0], [1, 1]], dtype=np.bool_) m12 = np.stack([m1, m2], axis=0) m21 = np.stack([m2, m1], axis=0) tgt11 = m1 tgt12 = m1 tgt21 = np.array([[1, 1], [1, 1]], dtype=np.bool_) tgt12_21 = np.stack([tgt12, tgt21], axis=0) tgt11_12 = np.stack((tgt11, tgt12), axis=0) tgt11_21 = np.stack((tgt11, tgt21), axis=0) # matrix @ matrix res = self.matmul(m1, m2) assert_equal(res, tgt12) res = self.matmul(m2, m1) assert_equal(res, tgt21) # stacked @ matrix res = self.matmul(m12, m1) assert_equal(res, tgt11_21) # matrix @ stacked res = self.matmul(m1, m12) assert_equal(res, tgt11_12) # stacked @ stacked res = self.matmul(m12, m21) assert_equal(res, tgt12_21) def test_numpy_ufunc_override(self): class A(np.ndarray): def __new__(cls, *args, **kwargs): return np.array(*args, **kwargs).view(cls) def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return "A" class B(np.ndarray): def __new__(cls, *args, **kwargs): return np.array(*args, **kwargs).view(cls) def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return NotImplemented a = A([1, 2]) b = B([1, 2]) c = np.ones(2) assert_equal(self.matmul(a, b), "A") assert_equal(self.matmul(b, a), "A") assert_raises(TypeError, self.matmul, b, c) class TestMatmul(MatmulCommon, TestCase): matmul = np.matmul def test_out_arg(self): a = np.ones((2, 2), dtype=np.float) b = np.ones((2, 2), dtype=np.float) tgt = np.full((2,2), 2, dtype=np.float) # test as positional argument msg = "out positional argument" out = np.zeros((2, 2), dtype=np.float) self.matmul(a, b, out) assert_array_equal(out, tgt, err_msg=msg) # test as keyword argument msg = "out keyword argument" out = np.zeros((2, 2), dtype=np.float) self.matmul(a, b, out=out) assert_array_equal(out, tgt, err_msg=msg) # test out with not allowed type cast (safe casting) # einsum and cblas raise different error types, so # use Exception. msg = "out argument with illegal cast" out = np.zeros((2, 2), dtype=np.int32) assert_raises(Exception, self.matmul, a, b, out=out) # skip following tests for now, cblas does not allow non-contiguous # outputs and consistency with dot would require same type, # dimensions, subtype, and c_contiguous. # test out with allowed type cast # msg = "out argument with allowed cast" # out = np.zeros((2, 2), dtype=np.complex128) # self.matmul(a, b, out=out) # assert_array_equal(out, tgt, err_msg=msg) # test out non-contiguous # msg = "out argument with non-contiguous layout" # c = np.zeros((2, 2, 2), dtype=np.float) # self.matmul(a, b, out=c[..., 0]) # assert_array_equal(c, tgt, err_msg=msg) if sys.version_info[:2] >= (3, 5): class TestMatmulOperator(MatmulCommon, TestCase): import operator matmul = operator.matmul def test_array_priority_override(self): class A(object): __array_priority__ = 1000 def __matmul__(self, other): return "A" def __rmatmul__(self, other): return "A" a = A() b = np.ones(2) assert_equal(self.matmul(a, b), "A") assert_equal(self.matmul(b, a), "A") def test_matmul_inplace(): # It would be nice to support in-place matmul eventually, but for now # we don't have a working implementation, so better just to error out # and nudge people to writing "a = a @ b". a = np.eye(3) b = np.eye(3) assert_raises(TypeError, a.__imatmul__, b) import operator assert_raises(TypeError, operator.imatmul, a, b) # we avoid writing the token `exec` so as not to crash python 2's # parser exec_ = getattr(builtins, "exec") assert_raises(TypeError, exec_, "a @= b", globals(), locals()) class TestInner(TestCase): def test_inner_scalar_and_matrix_of_objects(self): # Ticket #4482 arr = np.matrix([1, 2], dtype=object) desired = np.matrix([[3, 6]], dtype=object) assert_equal(np.inner(arr, 3), desired) assert_equal(np.inner(3, arr), desired) def test_vecself(self): # Ticket 844. # Inner product of a vector with itself segfaults or give # meaningless result a = np.zeros(shape=(1, 80), dtype=np.float64) p = np.inner(a, a) assert_almost_equal(p, 0, decimal=14) def test_inner_product_with_various_contiguities(self): # github issue 6532 for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?': # check an inner product involving a matrix transpose A = np.array([[1, 2], [3, 4]], dtype=dt) B = np.array([[1, 3], [2, 4]], dtype=dt) C = np.array([1, 1], dtype=dt) desired = np.array([4, 6], dtype=dt) assert_equal(np.inner(A.T, C), desired) assert_equal(np.inner(B, C), desired) # check an inner product involving an aliased and reversed view a = np.arange(5).astype(dt) b = a[::-1] desired = np.array(10, dtype=dt).item() assert_equal(np.inner(b, a), desired) class TestSummarization(TestCase): def test_1d(self): A = np.arange(1001) strA = '[ 0 1 2 ..., 998 999 1000]' assert_(str(A) == strA) reprA = 'array([ 0, 1, 2, ..., 998, 999, 1000])' assert_(repr(A) == reprA) def test_2d(self): A = np.arange(1002).reshape(2, 501) strA = '[[ 0 1 2 ..., 498 499 500]\n' \ ' [ 501 502 503 ..., 999 1000 1001]]' assert_(str(A) == strA) reprA = 'array([[ 0, 1, 2, ..., 498, 499, 500],\n' \ ' [ 501, 502, 503, ..., 999, 1000, 1001]])' assert_(repr(A) == reprA) class TestChoose(TestCase): def setUp(self): self.x = 2*np.ones((3,), dtype=int) self.y = 3*np.ones((3,), dtype=int) self.x2 = 2*np.ones((2, 3), dtype=int) self.y2 = 3*np.ones((2, 3), dtype=int) self.ind = [0, 0, 1] def test_basic(self): A = np.choose(self.ind, (self.x, self.y)) assert_equal(A, [2, 2, 3]) def test_broadcast1(self): A = np.choose(self.ind, (self.x2, self.y2)) assert_equal(A, [[2, 2, 3], [2, 2, 3]]) def test_broadcast2(self): A = np.choose(self.ind, (self.x, self.y2)) assert_equal(A, [[2, 2, 3], [2, 2, 3]]) # TODO: test for multidimensional NEIGH_MODE = {'zero': 0, 'one': 1, 'constant': 2, 'circular': 3, 'mirror': 4} class TestNeighborhoodIter(TestCase): # Simple, 2d tests def _test_simple2d(self, dt): # Test zero and one padding for simple data type x = np.array([[0, 1], [2, 3]], dtype=dt) r = [np.array([[0, 0, 0], [0, 0, 1]], dtype=dt), np.array([[0, 0, 0], [0, 1, 0]], dtype=dt), np.array([[0, 0, 1], [0, 2, 3]], dtype=dt), np.array([[0, 1, 0], [2, 3, 0]], dtype=dt)] l = test_neighborhood_iterator(x, [-1, 0, -1, 1], x[0], NEIGH_MODE['zero']) assert_array_equal(l, r) r = [np.array([[1, 1, 1], [1, 0, 1]], dtype=dt), np.array([[1, 1, 1], [0, 1, 1]], dtype=dt), np.array([[1, 0, 1], [1, 2, 3]], dtype=dt), np.array([[0, 1, 1], [2, 3, 1]], dtype=dt)] l = test_neighborhood_iterator(x, [-1, 0, -1, 1], x[0], NEIGH_MODE['one']) assert_array_equal(l, r) r = [np.array([[4, 4, 4], [4, 0, 1]], dtype=dt), np.array([[4, 4, 4], [0, 1, 4]], dtype=dt), np.array([[4, 0, 1], [4, 2, 3]], dtype=dt), np.array([[0, 1, 4], [2, 3, 4]], dtype=dt)] l = test_neighborhood_iterator(x, [-1, 0, -1, 1], 4, NEIGH_MODE['constant']) assert_array_equal(l, r) def test_simple2d(self): self._test_simple2d(np.float) def test_simple2d_object(self): self._test_simple2d(Decimal) def _test_mirror2d(self, dt): x = np.array([[0, 1], [2, 3]], dtype=dt) r = [np.array([[0, 0, 1], [0, 0, 1]], dtype=dt), np.array([[0, 1, 1], [0, 1, 1]], dtype=dt), np.array([[0, 0, 1], [2, 2, 3]], dtype=dt), np.array([[0, 1, 1], [2, 3, 3]], dtype=dt)] l = test_neighborhood_iterator(x, [-1, 0, -1, 1], x[0], NEIGH_MODE['mirror']) assert_array_equal(l, r) def test_mirror2d(self): self._test_mirror2d(np.float) def test_mirror2d_object(self): self._test_mirror2d(Decimal) # Simple, 1d tests def _test_simple(self, dt): # Test padding with constant values x = np.linspace(1, 5, 5).astype(dt) r = [[0, 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, 0]] l = test_neighborhood_iterator(x, [-1, 1], x[0], NEIGH_MODE['zero']) assert_array_equal(l, r) r = [[1, 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, 1]] l = test_neighborhood_iterator(x, [-1, 1], x[0], NEIGH_MODE['one']) assert_array_equal(l, r) r = [[x[4], 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, x[4]]] l = test_neighborhood_iterator(x, [-1, 1], x[4], NEIGH_MODE['constant']) assert_array_equal(l, r) def test_simple_float(self): self._test_simple(np.float) def test_simple_object(self): self._test_simple(Decimal) # Test mirror modes def _test_mirror(self, dt): x = np.linspace(1, 5, 5).astype(dt) r = np.array([[2, 1, 1, 2, 3], [1, 1, 2, 3, 4], [1, 2, 3, 4, 5], [2, 3, 4, 5, 5], [3, 4, 5, 5, 4]], dtype=dt) l = test_neighborhood_iterator(x, [-2, 2], x[1], NEIGH_MODE['mirror']) self.assertTrue([i.dtype == dt for i in l]) assert_array_equal(l, r) def test_mirror(self): self._test_mirror(np.float) def test_mirror_object(self): self._test_mirror(Decimal) # Circular mode def _test_circular(self, dt): x = np.linspace(1, 5, 5).astype(dt) r = np.array([[4, 5, 1, 2, 3], [5, 1, 2, 3, 4], [1, 2, 3, 4, 5], [2, 3, 4, 5, 1], [3, 4, 5, 1, 2]], dtype=dt) l = test_neighborhood_iterator(x, [-2, 2], x[0], NEIGH_MODE['circular']) assert_array_equal(l, r) def test_circular(self): self._test_circular(np.float) def test_circular_object(self): self._test_circular(Decimal) # Test stacking neighborhood iterators class TestStackedNeighborhoodIter(TestCase): # Simple, 1d test: stacking 2 constant-padded neigh iterators def test_simple_const(self): dt = np.float64 # Test zero and one padding for simple data type x = np.array([1, 2, 3], dtype=dt) r = [np.array([0], dtype=dt), np.array([0], dtype=dt), np.array([1], dtype=dt), np.array([2], dtype=dt), np.array([3], dtype=dt), np.array([0], dtype=dt), np.array([0], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-2, 4], NEIGH_MODE['zero'], [0, 0], NEIGH_MODE['zero']) assert_array_equal(l, r) r = [np.array([1, 0, 1], dtype=dt), np.array([0, 1, 2], dtype=dt), np.array([1, 2, 3], dtype=dt), np.array([2, 3, 0], dtype=dt), np.array([3, 0, 1], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'], [-1, 1], NEIGH_MODE['one']) assert_array_equal(l, r) # 2nd simple, 1d test: stacking 2 neigh iterators, mixing const padding and # mirror padding def test_simple_mirror(self): dt = np.float64 # Stacking zero on top of mirror x = np.array([1, 2, 3], dtype=dt) r = [np.array([0, 1, 1], dtype=dt), np.array([1, 1, 2], dtype=dt), np.array([1, 2, 3], dtype=dt), np.array([2, 3, 3], dtype=dt), np.array([3, 3, 0], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['mirror'], [-1, 1], NEIGH_MODE['zero']) assert_array_equal(l, r) # Stacking mirror on top of zero x = np.array([1, 2, 3], dtype=dt) r = [np.array([1, 0, 0], dtype=dt), np.array([0, 0, 1], dtype=dt), np.array([0, 1, 2], dtype=dt), np.array([1, 2, 3], dtype=dt), np.array([2, 3, 0], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'], [-2, 0], NEIGH_MODE['mirror']) assert_array_equal(l, r) # Stacking mirror on top of zero: 2nd x = np.array([1, 2, 3], dtype=dt) r = [np.array([0, 1, 2], dtype=dt), np.array([1, 2, 3], dtype=dt), np.array([2, 3, 0], dtype=dt), np.array([3, 0, 0], dtype=dt), np.array([0, 0, 3], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'], [0, 2], NEIGH_MODE['mirror']) assert_array_equal(l, r) # Stacking mirror on top of zero: 3rd x = np.array([1, 2, 3], dtype=dt) r = [np.array([1, 0, 0, 1, 2], dtype=dt), np.array([0, 0, 1, 2, 3], dtype=dt), np.array([0, 1, 2, 3, 0], dtype=dt), np.array([1, 2, 3, 0, 0], dtype=dt), np.array([2, 3, 0, 0, 3], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'], [-2, 2], NEIGH_MODE['mirror']) assert_array_equal(l, r) # 3rd simple, 1d test: stacking 2 neigh iterators, mixing const padding and # circular padding def test_simple_circular(self): dt = np.float64 # Stacking zero on top of mirror x = np.array([1, 2, 3], dtype=dt) r = [np.array([0, 3, 1], dtype=dt), np.array([3, 1, 2], dtype=dt), np.array([1, 2, 3], dtype=dt), np.array([2, 3, 1], dtype=dt), np.array([3, 1, 0], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['circular'], [-1, 1], NEIGH_MODE['zero']) assert_array_equal(l, r) # Stacking mirror on top of zero x = np.array([1, 2, 3], dtype=dt) r = [np.array([3, 0, 0], dtype=dt), np.array([0, 0, 1], dtype=dt), np.array([0, 1, 2], dtype=dt), np.array([1, 2, 3], dtype=dt), np.array([2, 3, 0], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'], [-2, 0], NEIGH_MODE['circular']) assert_array_equal(l, r) # Stacking mirror on top of zero: 2nd x = np.array([1, 2, 3], dtype=dt) r = [np.array([0, 1, 2], dtype=dt), np.array([1, 2, 3], dtype=dt), np.array([2, 3, 0], dtype=dt), np.array([3, 0, 0], dtype=dt), np.array([0, 0, 1], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'], [0, 2], NEIGH_MODE['circular']) assert_array_equal(l, r) # Stacking mirror on top of zero: 3rd x = np.array([1, 2, 3], dtype=dt) r = [np.array([3, 0, 0, 1, 2], dtype=dt), np.array([0, 0, 1, 2, 3], dtype=dt), np.array([0, 1, 2, 3, 0], dtype=dt), np.array([1, 2, 3, 0, 0], dtype=dt), np.array([2, 3, 0, 0, 1], dtype=dt)] l = test_neighborhood_iterator_oob(x, [-1, 3], NEIGH_MODE['zero'], [-2, 2], NEIGH_MODE['circular']) assert_array_equal(l, r) # 4th simple, 1d test: stacking 2 neigh iterators, but with lower iterator # being strictly within the array def test_simple_strict_within(self): dt = np.float64 # Stacking zero on top of zero, first neighborhood strictly inside the # array x = np.array([1, 2, 3], dtype=dt) r = [np.array([1, 2, 3, 0], dtype=dt)] l = test_neighborhood_iterator_oob(x, [1, 1], NEIGH_MODE['zero'], [-1, 2], NEIGH_MODE['zero']) assert_array_equal(l, r) # Stacking mirror on top of zero, first neighborhood strictly inside the # array x = np.array([1, 2, 3], dtype=dt) r = [np.array([1, 2, 3, 3], dtype=dt)] l = test_neighborhood_iterator_oob(x, [1, 1], NEIGH_MODE['zero'], [-1, 2], NEIGH_MODE['mirror']) assert_array_equal(l, r) # Stacking mirror on top of zero, first neighborhood strictly inside the # array x = np.array([1, 2, 3], dtype=dt) r = [np.array([1, 2, 3, 1], dtype=dt)] l = test_neighborhood_iterator_oob(x, [1, 1], NEIGH_MODE['zero'], [-1, 2], NEIGH_MODE['circular']) assert_array_equal(l, r) class TestWarnings(object): def test_complex_warning(self): x = np.array([1, 2]) y = np.array([1-2j, 1+2j]) with warnings.catch_warnings(): warnings.simplefilter("error", np.ComplexWarning) assert_raises(np.ComplexWarning, x.__setitem__, slice(None), y) assert_equal(x, [1, 2]) class TestMinScalarType(object): def test_usigned_shortshort(self): dt = np.min_scalar_type(2**8-1) wanted = np.dtype('uint8') assert_equal(wanted, dt) def test_usigned_short(self): dt = np.min_scalar_type(2**16-1) wanted = np.dtype('uint16') assert_equal(wanted, dt) def test_usigned_int(self): dt = np.min_scalar_type(2**32-1) wanted = np.dtype('uint32') assert_equal(wanted, dt) def test_usigned_longlong(self): dt = np.min_scalar_type(2**63-1) wanted = np.dtype('uint64') assert_equal(wanted, dt) def test_object(self): dt = np.min_scalar_type(2**64) wanted = np.dtype('O') assert_equal(wanted, dt) if sys.version_info[:2] == (2, 6): from numpy.core.multiarray import memorysimpleview as memoryview from numpy.core._internal import _dtype_from_pep3118 class TestPEP3118Dtype(object): def _check(self, spec, wanted): dt = np.dtype(wanted) if isinstance(wanted, list) and isinstance(wanted[-1], tuple): if wanted[-1][0] == '': names = list(dt.names) names[-1] = '' dt.names = tuple(names) assert_equal(_dtype_from_pep3118(spec), dt, err_msg="spec %r != dtype %r" % (spec, wanted)) def test_native_padding(self): align = np.dtype('i').alignment for j in range(8): if j == 0: s = 'bi' else: s = 'b%dxi' % j self._check('@'+s, {'f0': ('i1', 0), 'f1': ('i', align*(1 + j//align))}) self._check('='+s, {'f0': ('i1', 0), 'f1': ('i', 1+j)}) def test_native_padding_2(self): # Native padding should work also for structs and sub-arrays self._check('x3T{xi}', {'f0': (({'f0': ('i', 4)}, (3,)), 4)}) self._check('^x3T{xi}', {'f0': (({'f0': ('i', 1)}, (3,)), 1)}) def test_trailing_padding(self): # Trailing padding should be included, *and*, the item size # should match the alignment if in aligned mode align = np.dtype('i').alignment def VV(n): return 'V%d' % (align*(1 + (n-1)//align)) self._check('ix', [('f0', 'i'), ('', VV(1))]) self._check('ixx', [('f0', 'i'), ('', VV(2))]) self._check('ixxx', [('f0', 'i'), ('', VV(3))]) self._check('ixxxx', [('f0', 'i'), ('', VV(4))]) self._check('i7x', [('f0', 'i'), ('', VV(7))]) self._check('^ix', [('f0', 'i'), ('', 'V1')]) self._check('^ixx', [('f0', 'i'), ('', 'V2')]) self._check('^ixxx', [('f0', 'i'), ('', 'V3')]) self._check('^ixxxx', [('f0', 'i'), ('', 'V4')]) self._check('^i7x', [('f0', 'i'), ('', 'V7')]) def test_native_padding_3(self): dt = np.dtype( [('a', 'b'), ('b', 'i'), ('sub', np.dtype('b,i')), ('c', 'i')], align=True) self._check("T{b:a:xxxi:b:T{b:f0:=i:f1:}:sub:xxxi:c:}", dt) dt = np.dtype( [('a', 'b'), ('b', 'i'), ('c', 'b'), ('d', 'b'), ('e', 'b'), ('sub', np.dtype('b,i', align=True))]) self._check("T{b:a:=i:b:b:c:b:d:b:e:T{b:f0:xxxi:f1:}:sub:}", dt) def test_padding_with_array_inside_struct(self): dt = np.dtype( [('a', 'b'), ('b', 'i'), ('c', 'b', (3,)), ('d', 'i')], align=True) self._check("T{b:a:xxxi:b:3b:c:xi:d:}", dt) def test_byteorder_inside_struct(self): # The byte order after @T{=i} should be '=', not '@'. # Check this by noting the absence of native alignment. self._check('@T{^i}xi', {'f0': ({'f0': ('i', 0)}, 0), 'f1': ('i', 5)}) def test_intra_padding(self): # Natively aligned sub-arrays may require some internal padding align = np.dtype('i').alignment def VV(n): return 'V%d' % (align*(1 + (n-1)//align)) self._check('(3)T{ix}', ({'f0': ('i', 0), '': (VV(1), 4)}, (3,))) class TestNewBufferProtocol(object): def _check_roundtrip(self, obj): obj = np.asarray(obj) x = memoryview(obj) y = np.asarray(x) y2 = np.array(x) assert_(not y.flags.owndata) assert_(y2.flags.owndata) assert_equal(y.dtype, obj.dtype) assert_equal(y.shape, obj.shape) assert_array_equal(obj, y) assert_equal(y2.dtype, obj.dtype) assert_equal(y2.shape, obj.shape) assert_array_equal(obj, y2) def test_roundtrip(self): x = np.array([1, 2, 3, 4, 5], dtype='i4') self._check_roundtrip(x) x = np.array([[1, 2], [3, 4]], dtype=np.float64) self._check_roundtrip(x) x = np.zeros((3, 3, 3), dtype=np.float32)[:, 0,:] self._check_roundtrip(x) dt = [('a', 'b'), ('b', 'h'), ('c', 'i'), ('d', 'l'), ('dx', 'q'), ('e', 'B'), ('f', 'H'), ('g', 'I'), ('h', 'L'), ('hx', 'Q'), ('i', np.single), ('j', np.double), ('k', np.longdouble), ('ix', np.csingle), ('jx', np.cdouble), ('kx', np.clongdouble), ('l', 'S4'), ('m', 'U4'), ('n', 'V3'), ('o', '?'), ('p', np.half), ] x = np.array( [(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, asbytes('aaaa'), 'bbbb', asbytes('xxx'), True, 1.0)], dtype=dt) self._check_roundtrip(x) x = np.array(([[1, 2], [3, 4]],), dtype=[('a', (int, (2, 2)))]) self._check_roundtrip(x) x = np.array([1, 2, 3], dtype='>i2') self._check_roundtrip(x) x = np.array([1, 2, 3], dtype='<i2') self._check_roundtrip(x) x = np.array([1, 2, 3], dtype='>i4') self._check_roundtrip(x) x = np.array([1, 2, 3], dtype='<i4') self._check_roundtrip(x) # check long long can be represented as non-native x = np.array([1, 2, 3], dtype='>q') self._check_roundtrip(x) # Native-only data types can be passed through the buffer interface # only in native byte order if sys.byteorder == 'little': x = np.array([1, 2, 3], dtype='>g') assert_raises(ValueError, self._check_roundtrip, x) x = np.array([1, 2, 3], dtype='<g') self._check_roundtrip(x) else: x = np.array([1, 2, 3], dtype='>g') self._check_roundtrip(x) x = np.array([1, 2, 3], dtype='<g') assert_raises(ValueError, self._check_roundtrip, x) def test_roundtrip_half(self): half_list = [ 1.0, -2.0, 6.5504 * 10**4, # (max half precision) 2**-14, # ~= 6.10352 * 10**-5 (minimum positive normal) 2**-24, # ~= 5.96046 * 10**-8 (minimum strictly positive subnormal) 0.0, -0.0, float('+inf'), float('-inf'), 0.333251953125, # ~= 1/3 ] x = np.array(half_list, dtype='>e') self._check_roundtrip(x) x = np.array(half_list, dtype='<e') self._check_roundtrip(x) def test_roundtrip_single_types(self): for typ in np.typeDict.values(): dtype = np.dtype(typ) if dtype.char in 'Mm': # datetimes cannot be used in buffers continue if dtype.char == 'V': # skip void continue x = np.zeros(4, dtype=dtype) self._check_roundtrip(x) if dtype.char not in 'qQgG': dt = dtype.newbyteorder('<') x = np.zeros(4, dtype=dt) self._check_roundtrip(x) dt = dtype.newbyteorder('>') x = np.zeros(4, dtype=dt) self._check_roundtrip(x) def test_roundtrip_scalar(self): # Issue #4015. self._check_roundtrip(0) def test_export_simple_1d(self): x = np.array([1, 2, 3, 4, 5], dtype='i') y = memoryview(x) assert_equal(y.format, 'i') assert_equal(y.shape, (5,)) assert_equal(y.ndim, 1) assert_equal(y.strides, (4,)) assert_equal(y.suboffsets, EMPTY) assert_equal(y.itemsize, 4) def test_export_simple_nd(self): x = np.array([[1, 2], [3, 4]], dtype=np.float64) y = memoryview(x) assert_equal(y.format, 'd') assert_equal(y.shape, (2, 2)) assert_equal(y.ndim, 2) assert_equal(y.strides, (16, 8)) assert_equal(y.suboffsets, EMPTY) assert_equal(y.itemsize, 8) def test_export_discontiguous(self): x = np.zeros((3, 3, 3), dtype=np.float32)[:, 0,:] y = memoryview(x) assert_equal(y.format, 'f') assert_equal(y.shape, (3, 3)) assert_equal(y.ndim, 2) assert_equal(y.strides, (36, 4)) assert_equal(y.suboffsets, EMPTY) assert_equal(y.itemsize, 4) def test_export_record(self): dt = [('a', 'b'), ('b', 'h'), ('c', 'i'), ('d', 'l'), ('dx', 'q'), ('e', 'B'), ('f', 'H'), ('g', 'I'), ('h', 'L'), ('hx', 'Q'), ('i', np.single), ('j', np.double), ('k', np.longdouble), ('ix', np.csingle), ('jx', np.cdouble), ('kx', np.clongdouble), ('l', 'S4'), ('m', 'U4'), ('n', 'V3'), ('o', '?'), ('p', np.half), ] x = np.array( [(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, asbytes('aaaa'), 'bbbb', asbytes(' '), True, 1.0)], dtype=dt) y = memoryview(x) assert_equal(y.shape, (1,)) assert_equal(y.ndim, 1) assert_equal(y.suboffsets, EMPTY) sz = sum([np.dtype(b).itemsize for a, b in dt]) if np.dtype('l').itemsize == 4: assert_equal(y.format, 'T{b:a:=h:b:i:c:l:d:q:dx:B:e:@H:f:=I:g:L:h:Q:hx:f:i:d:j:^g:k:=Zf:ix:Zd:jx:^Zg:kx:4s:l:=4w:m:3x:n:?:o:@e:p:}') else: assert_equal(y.format, 'T{b:a:=h:b:i:c:q:d:q:dx:B:e:@H:f:=I:g:Q:h:Q:hx:f:i:d:j:^g:k:=Zf:ix:Zd:jx:^Zg:kx:4s:l:=4w:m:3x:n:?:o:@e:p:}') # Cannot test if NPY_RELAXED_STRIDES_CHECKING changes the strides if not (np.ones(1).strides[0] == np.iinfo(np.intp).max): assert_equal(y.strides, (sz,)) assert_equal(y.itemsize, sz) def test_export_subarray(self): x = np.array(([[1, 2], [3, 4]],), dtype=[('a', ('i', (2, 2)))]) y = memoryview(x) assert_equal(y.format, 'T{(2,2)i:a:}') assert_equal(y.shape, EMPTY) assert_equal(y.ndim, 0) assert_equal(y.strides, EMPTY) assert_equal(y.suboffsets, EMPTY) assert_equal(y.itemsize, 16) def test_export_endian(self): x = np.array([1, 2, 3], dtype='>i') y = memoryview(x) if sys.byteorder == 'little': assert_equal(y.format, '>i') else: assert_equal(y.format, 'i') x = np.array([1, 2, 3], dtype='<i') y = memoryview(x) if sys.byteorder == 'little': assert_equal(y.format, 'i') else: assert_equal(y.format, '<i') def test_export_flags(self): # Check SIMPLE flag, see also gh-3613 (exception should be BufferError) assert_raises(ValueError, get_buffer_info, np.arange(5)[::2], ('SIMPLE',)) def test_padding(self): for j in range(8): x = np.array([(1,), (2,)], dtype={'f0': (int, j)}) self._check_roundtrip(x) def test_reference_leak(self): count_1 = sys.getrefcount(np.core._internal) a = np.zeros(4) b = memoryview(a) c = np.asarray(b) count_2 = sys.getrefcount(np.core._internal) assert_equal(count_1, count_2) del c # avoid pyflakes unused variable warning. def test_padded_struct_array(self): dt1 = np.dtype( [('a', 'b'), ('b', 'i'), ('sub', np.dtype('b,i')), ('c', 'i')], align=True) x1 = np.arange(dt1.itemsize, dtype=np.int8).view(dt1) self._check_roundtrip(x1) dt2 = np.dtype( [('a', 'b'), ('b', 'i'), ('c', 'b', (3,)), ('d', 'i')], align=True) x2 = np.arange(dt2.itemsize, dtype=np.int8).view(dt2) self._check_roundtrip(x2) dt3 = np.dtype( [('a', 'b'), ('b', 'i'), ('c', 'b'), ('d', 'b'), ('e', 'b'), ('sub', np.dtype('b,i', align=True))]) x3 = np.arange(dt3.itemsize, dtype=np.int8).view(dt3) self._check_roundtrip(x3) def test_relaxed_strides(self): # Test that relaxed strides are converted to non-relaxed c = np.ones((1, 10, 10), dtype='i8') # Check for NPY_RELAXED_STRIDES_CHECKING: if np.ones((10, 1), order="C").flags.f_contiguous: c.strides = (-1, 80, 8) assert memoryview(c).strides == (800, 80, 8) # Writing C-contiguous data to a BytesIO buffer should work fd = io.BytesIO() fd.write(c.data) fortran = c.T assert memoryview(fortran).strides == (8, 80, 800) arr = np.ones((1, 10)) if arr.flags.f_contiguous: shape, strides = get_buffer_info(arr, ['F_CONTIGUOUS']) assert_(strides[0] == 8) arr = np.ones((10, 1), order='F') shape, strides = get_buffer_info(arr, ['C_CONTIGUOUS']) assert_(strides[-1] == 8) class TestArrayAttributeDeletion(object): def test_multiarray_writable_attributes_deletion(self): """ticket #2046, should not seqfault, raise AttributeError""" a = np.ones(2) attr = ['shape', 'strides', 'data', 'dtype', 'real', 'imag', 'flat'] for s in attr: assert_raises(AttributeError, delattr, a, s) def test_multiarray_not_writable_attributes_deletion(self): a = np.ones(2) attr = ["ndim", "flags", "itemsize", "size", "nbytes", "base", "ctypes", "T", "__array_interface__", "__array_struct__", "__array_priority__", "__array_finalize__"] for s in attr: assert_raises(AttributeError, delattr, a, s) def test_multiarray_flags_writable_attribute_deletion(self): a = np.ones(2).flags attr = ['updateifcopy', 'aligned', 'writeable'] for s in attr: assert_raises(AttributeError, delattr, a, s) def test_multiarray_flags_not_writable_attribute_deletion(self): a = np.ones(2).flags attr = ["contiguous", "c_contiguous", "f_contiguous", "fortran", "owndata", "fnc", "forc", "behaved", "carray", "farray", "num"] for s in attr: assert_raises(AttributeError, delattr, a, s) def test_array_interface(): # Test scalar coercion within the array interface class Foo(object): def __init__(self, value): self.value = value self.iface = {'typestr': '=f8'} def __float__(self): return float(self.value) @property def __array_interface__(self): return self.iface f = Foo(0.5) assert_equal(np.array(f), 0.5) assert_equal(np.array([f]), [0.5]) assert_equal(np.array([f, f]), [0.5, 0.5]) assert_equal(np.array(f).dtype, np.dtype('=f8')) # Test various shape definitions f.iface['shape'] = () assert_equal(np.array(f), 0.5) f.iface['shape'] = None assert_raises(TypeError, np.array, f) f.iface['shape'] = (1, 1) assert_equal(np.array(f), [[0.5]]) f.iface['shape'] = (2,) assert_raises(ValueError, np.array, f) # test scalar with no shape class ArrayLike(object): array = np.array(1) __array_interface__ = array.__array_interface__ assert_equal(np.array(ArrayLike()), 1) def test_array_interface_itemsize(): # See gh-6361 my_dtype = np.dtype({'names': ['A', 'B'], 'formats': ['f4', 'f4'], 'offsets': [0, 8], 'itemsize': 16}) a = np.ones(10, dtype=my_dtype) descr_t = np.dtype(a.__array_interface__['descr']) typestr_t = np.dtype(a.__array_interface__['typestr']) assert_equal(descr_t.itemsize, typestr_t.itemsize) def test_flat_element_deletion(): it = np.ones(3).flat try: del it[1] del it[1:2] except TypeError: pass except: raise AssertionError def test_scalar_element_deletion(): a = np.zeros(2, dtype=[('x', 'int'), ('y', 'int')]) assert_raises(ValueError, a[0].__delitem__, 'x') class TestMemEventHook(TestCase): def test_mem_seteventhook(self): # The actual tests are within the C code in # multiarray/multiarray_tests.c.src test_pydatamem_seteventhook_start() # force an allocation and free of a numpy array # needs to be larger then limit of small memory cacher in ctors.c a = np.zeros(1000) del a test_pydatamem_seteventhook_end() class TestMapIter(TestCase): def test_mapiter(self): # The actual tests are within the C code in # multiarray/multiarray_tests.c.src a = np.arange(12).reshape((3, 4)).astype(float) index = ([1, 1, 2, 0], [0, 0, 2, 3]) vals = [50, 50, 30, 16] test_inplace_increment(a, index, vals) assert_equal(a, [[0.00, 1., 2.0, 19.], [104., 5., 6.0, 7.0], [8.00, 9., 40., 11.]]) b = np.arange(6).astype(float) index = (np.array([1, 2, 0]),) vals = [50, 4, 100.1] test_inplace_increment(b, index, vals) assert_equal(b, [100.1, 51., 6., 3., 4., 5.]) class TestAsCArray(TestCase): def test_1darray(self): array = np.arange(24, dtype=np.double) from_c = test_as_c_array(array, 3) assert_equal(array[3], from_c) def test_2darray(self): array = np.arange(24, dtype=np.double).reshape(3, 8) from_c = test_as_c_array(array, 2, 4) assert_equal(array[2, 4], from_c) def test_3darray(self): array = np.arange(24, dtype=np.double).reshape(2, 3, 4) from_c = test_as_c_array(array, 1, 2, 3) assert_equal(array[1, 2, 3], from_c) class TestConversion(TestCase): def test_array_scalar_relational_operation(self): #All integer for dt1 in np.typecodes['AllInteger']: assert_(1 > np.array(0, dtype=dt1), "type %s failed" % (dt1,)) assert_(not 1 < np.array(0, dtype=dt1), "type %s failed" % (dt1,)) for dt2 in np.typecodes['AllInteger']: assert_(np.array(1, dtype=dt1) > np.array(0, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) assert_(not np.array(1, dtype=dt1) < np.array(0, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) #Unsigned integers for dt1 in 'BHILQP': assert_(-1 < np.array(1, dtype=dt1), "type %s failed" % (dt1,)) assert_(not -1 > np.array(1, dtype=dt1), "type %s failed" % (dt1,)) assert_(-1 != np.array(1, dtype=dt1), "type %s failed" % (dt1,)) #unsigned vs signed for dt2 in 'bhilqp': assert_(np.array(1, dtype=dt1) > np.array(-1, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) assert_(not np.array(1, dtype=dt1) < np.array(-1, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) assert_(np.array(1, dtype=dt1) != np.array(-1, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) #Signed integers and floats for dt1 in 'bhlqp' + np.typecodes['Float']: assert_(1 > np.array(-1, dtype=dt1), "type %s failed" % (dt1,)) assert_(not 1 < np.array(-1, dtype=dt1), "type %s failed" % (dt1,)) assert_(-1 == np.array(-1, dtype=dt1), "type %s failed" % (dt1,)) for dt2 in 'bhlqp' + np.typecodes['Float']: assert_(np.array(1, dtype=dt1) > np.array(-1, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) assert_(not np.array(1, dtype=dt1) < np.array(-1, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) assert_(np.array(-1, dtype=dt1) == np.array(-1, dtype=dt2), "type %s and %s failed" % (dt1, dt2)) class TestWhere(TestCase): def test_basic(self): dts = [np.bool, np.int16, np.int32, np.int64, np.double, np.complex128, np.longdouble, np.clongdouble] for dt in dts: c = np.ones(53, dtype=np.bool) assert_equal(np.where( c, dt(0), dt(1)), dt(0)) assert_equal(np.where(~c, dt(0), dt(1)), dt(1)) assert_equal(np.where(True, dt(0), dt(1)), dt(0)) assert_equal(np.where(False, dt(0), dt(1)), dt(1)) d = np.ones_like(c).astype(dt) e = np.zeros_like(d) r = d.astype(dt) c[7] = False r[7] = e[7] assert_equal(np.where(c, e, e), e) assert_equal(np.where(c, d, e), r) assert_equal(np.where(c, d, e[0]), r) assert_equal(np.where(c, d[0], e), r) assert_equal(np.where(c[::2], d[::2], e[::2]), r[::2]) assert_equal(np.where(c[1::2], d[1::2], e[1::2]), r[1::2]) assert_equal(np.where(c[::3], d[::3], e[::3]), r[::3]) assert_equal(np.where(c[1::3], d[1::3], e[1::3]), r[1::3]) assert_equal(np.where(c[::-2], d[::-2], e[::-2]), r[::-2]) assert_equal(np.where(c[::-3], d[::-3], e[::-3]), r[::-3]) assert_equal(np.where(c[1::-3], d[1::-3], e[1::-3]), r[1::-3]) def test_exotic(self): # object assert_array_equal(np.where(True, None, None), np.array(None)) # zero sized m = np.array([], dtype=bool).reshape(0, 3) b = np.array([], dtype=np.float64).reshape(0, 3) assert_array_equal(np.where(m, 0, b), np.array([]).reshape(0, 3)) # object cast d = np.array([-1.34, -0.16, -0.54, -0.31, -0.08, -0.95, 0.000, 0.313, 0.547, -0.18, 0.876, 0.236, 1.969, 0.310, 0.699, 1.013, 1.267, 0.229, -1.39, 0.487]) nan = float('NaN') e = np.array(['5z', '0l', nan, 'Wz', nan, nan, 'Xq', 'cs', nan, nan, 'QN', nan, nan, 'Fd', nan, nan, 'kp', nan, '36', 'i1'], dtype=object) m = np.array([0,0,1,0,1,1,0,0,1,1,0,1,1,0,1,1,0,1,0,0], dtype=bool) r = e[:] r[np.where(m)] = d[np.where(m)] assert_array_equal(np.where(m, d, e), r) r = e[:] r[np.where(~m)] = d[np.where(~m)] assert_array_equal(np.where(m, e, d), r) assert_array_equal(np.where(m, e, e), e) # minimal dtype result with NaN scalar (e.g required by pandas) d = np.array([1., 2.], dtype=np.float32) e = float('NaN') assert_equal(np.where(True, d, e).dtype, np.float32) e = float('Infinity') assert_equal(np.where(True, d, e).dtype, np.float32) e = float('-Infinity') assert_equal(np.where(True, d, e).dtype, np.float32) # also check upcast e = float(1e150) assert_equal(np.where(True, d, e).dtype, np.float64) def test_ndim(self): c = [True, False] a = np.zeros((2, 25)) b = np.ones((2, 25)) r = np.where(np.array(c)[:,np.newaxis], a, b) assert_array_equal(r[0], a[0]) assert_array_equal(r[1], b[0]) a = a.T b = b.T r = np.where(c, a, b) assert_array_equal(r[:,0], a[:,0]) assert_array_equal(r[:,1], b[:,0]) def test_dtype_mix(self): c = np.array([False, True, False, False, False, False, True, False, False, False, True, False]) a = np.uint32(1) b = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.], dtype=np.float64) r = np.array([5., 1., 3., 2., -1., -4., 1., -10., 10., 1., 1., 3.], dtype=np.float64) assert_equal(np.where(c, a, b), r) a = a.astype(np.float32) b = b.astype(np.int64) assert_equal(np.where(c, a, b), r) # non bool mask c = c.astype(np.int) c[c != 0] = 34242324 assert_equal(np.where(c, a, b), r) # invert tmpmask = c != 0 c[c == 0] = 41247212 c[tmpmask] = 0 assert_equal(np.where(c, b, a), r) def test_foreign(self): c = np.array([False, True, False, False, False, False, True, False, False, False, True, False]) r = np.array([5., 1., 3., 2., -1., -4., 1., -10., 10., 1., 1., 3.], dtype=np.float64) a = np.ones(1, dtype='>i4') b = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.], dtype=np.float64) assert_equal(np.where(c, a, b), r) b = b.astype('>f8') assert_equal(np.where(c, a, b), r) a = a.astype('<i4') assert_equal(np.where(c, a, b), r) c = c.astype('>i4') assert_equal(np.where(c, a, b), r) def test_error(self): c = [True, True] a = np.ones((4, 5)) b = np.ones((5, 5)) assert_raises(ValueError, np.where, c, a, a) assert_raises(ValueError, np.where, c[0], a, b) def test_string(self): # gh-4778 check strings are properly filled with nulls a = np.array("abc") b = np.array("x" * 753) assert_equal(np.where(True, a, b), "abc") assert_equal(np.where(False, b, a), "abc") # check native datatype sized strings a = np.array("abcd") b = np.array("x" * 8) assert_equal(np.where(True, a, b), "abcd") assert_equal(np.where(False, b, a), "abcd") class TestSizeOf(TestCase): def test_empty_array(self): x = np.array([]) assert_(sys.getsizeof(x) > 0) def check_array(self, dtype): elem_size = dtype(0).itemsize for length in [10, 50, 100, 500]: x = np.arange(length, dtype=dtype) assert_(sys.getsizeof(x) > length * elem_size) def test_array_int32(self): self.check_array(np.int32) def test_array_int64(self): self.check_array(np.int64) def test_array_float32(self): self.check_array(np.float32) def test_array_float64(self): self.check_array(np.float64) def test_view(self): d = np.ones(100) assert_(sys.getsizeof(d[...]) < sys.getsizeof(d)) def test_reshape(self): d = np.ones(100) assert_(sys.getsizeof(d) < sys.getsizeof(d.reshape(100, 1, 1).copy())) def test_resize(self): d = np.ones(100) old = sys.getsizeof(d) d.resize(50) assert_(old > sys.getsizeof(d)) d.resize(150) assert_(old < sys.getsizeof(d)) def test_error(self): d = np.ones(100) assert_raises(TypeError, d.__sizeof__, "a") class TestHashing(TestCase): def test_arrays_not_hashable(self): x = np.ones(3) assert_raises(TypeError, hash, x) def test_collections_hashable(self): x = np.array([]) self.assertFalse(isinstance(x, collections.Hashable)) class TestArrayPriority(TestCase): # This will go away when __array_priority__ is settled, meanwhile # it serves to check unintended changes. op = operator binary_ops = [ op.pow, op.add, op.sub, op.mul, op.floordiv, op.truediv, op.mod, op.and_, op.or_, op.xor, op.lshift, op.rshift, op.mod, op.gt, op.ge, op.lt, op.le, op.ne, op.eq ] if sys.version_info[0] < 3: binary_ops.append(op.div) class Foo(np.ndarray): __array_priority__ = 100. def __new__(cls, *args, **kwargs): return np.array(*args, **kwargs).view(cls) class Bar(np.ndarray): __array_priority__ = 101. def __new__(cls, *args, **kwargs): return np.array(*args, **kwargs).view(cls) class Other(object): __array_priority__ = 1000. def _all(self, other): return self.__class__() __add__ = __radd__ = _all __sub__ = __rsub__ = _all __mul__ = __rmul__ = _all __pow__ = __rpow__ = _all __div__ = __rdiv__ = _all __mod__ = __rmod__ = _all __truediv__ = __rtruediv__ = _all __floordiv__ = __rfloordiv__ = _all __and__ = __rand__ = _all __xor__ = __rxor__ = _all __or__ = __ror__ = _all __lshift__ = __rlshift__ = _all __rshift__ = __rrshift__ = _all __eq__ = _all __ne__ = _all __gt__ = _all __ge__ = _all __lt__ = _all __le__ = _all def test_ndarray_subclass(self): a = np.array([1, 2]) b = self.Bar([1, 2]) for f in self.binary_ops: msg = repr(f) assert_(isinstance(f(a, b), self.Bar), msg) assert_(isinstance(f(b, a), self.Bar), msg) def test_ndarray_other(self): a = np.array([1, 2]) b = self.Other() for f in self.binary_ops: msg = repr(f) assert_(isinstance(f(a, b), self.Other), msg) assert_(isinstance(f(b, a), self.Other), msg) def test_subclass_subclass(self): a = self.Foo([1, 2]) b = self.Bar([1, 2]) for f in self.binary_ops: msg = repr(f) assert_(isinstance(f(a, b), self.Bar), msg) assert_(isinstance(f(b, a), self.Bar), msg) def test_subclass_other(self): a = self.Foo([1, 2]) b = self.Other() for f in self.binary_ops: msg = repr(f) assert_(isinstance(f(a, b), self.Other), msg) assert_(isinstance(f(b, a), self.Other), msg) class TestBytestringArrayNonzero(TestCase): def test_empty_bstring_array_is_falsey(self): self.assertFalse(np.array([''], dtype=np.str)) def test_whitespace_bstring_array_is_falsey(self): a = np.array(['spam'], dtype=np.str) a[0] = ' \0\0' self.assertFalse(a) def test_all_null_bstring_array_is_falsey(self): a = np.array(['spam'], dtype=np.str) a[0] = '\0\0\0\0' self.assertFalse(a) def test_null_inside_bstring_array_is_truthy(self): a = np.array(['spam'], dtype=np.str) a[0] = ' \0 \0' self.assertTrue(a) class TestUnicodeArrayNonzero(TestCase): def test_empty_ustring_array_is_falsey(self): self.assertFalse(np.array([''], dtype=np.unicode)) def test_whitespace_ustring_array_is_falsey(self): a = np.array(['eggs'], dtype=np.unicode) a[0] = ' \0\0' self.assertFalse(a) def test_all_null_ustring_array_is_falsey(self): a = np.array(['eggs'], dtype=np.unicode) a[0] = '\0\0\0\0' self.assertFalse(a) def test_null_inside_ustring_array_is_truthy(self): a = np.array(['eggs'], dtype=np.unicode) a[0] = ' \0 \0' self.assertTrue(a) if __name__ == "__main__": run_module_suite()
bsd-3-clause
Carmezim/tensorflow
tensorflow/contrib/learn/python/learn/tests/dataframe/dataframe_test.py
62
3753
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests of the DataFrame class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.learn.python import learn from tensorflow.contrib.learn.python.learn.tests.dataframe import mocks from tensorflow.python.framework import dtypes from tensorflow.python.platform import test def setup_test_df(): """Create a dataframe populated with some test columns.""" df = learn.DataFrame() df["a"] = learn.TransformedSeries( [mocks.MockSeries("foobar", mocks.MockTensor("Tensor a", dtypes.int32))], mocks.MockTwoOutputTransform("iue", "eui", "snt"), "out1") df["b"] = learn.TransformedSeries( [mocks.MockSeries("foobar", mocks.MockTensor("Tensor b", dtypes.int32))], mocks.MockTwoOutputTransform("iue", "eui", "snt"), "out2") df["c"] = learn.TransformedSeries( [mocks.MockSeries("foobar", mocks.MockTensor("Tensor c", dtypes.int32))], mocks.MockTwoOutputTransform("iue", "eui", "snt"), "out1") return df class DataFrameTest(test.TestCase): """Test of `DataFrame`.""" def test_create(self): df = setup_test_df() self.assertEqual(df.columns(), frozenset(["a", "b", "c"])) def test_select_columns(self): df = setup_test_df() df2 = df.select_columns(["a", "c"]) self.assertEqual(df2.columns(), frozenset(["a", "c"])) def test_exclude_columns(self): df = setup_test_df() df2 = df.exclude_columns(["a", "c"]) self.assertEqual(df2.columns(), frozenset(["b"])) def test_get_item(self): df = setup_test_df() c1 = df["b"] self.assertEqual( mocks.MockTensor("Mock Tensor 2", dtypes.int32), c1.build()) def test_del_item_column(self): df = setup_test_df() self.assertEqual(3, len(df)) del df["b"] self.assertEqual(2, len(df)) self.assertEqual(df.columns(), frozenset(["a", "c"])) def test_set_item_column(self): df = setup_test_df() self.assertEqual(3, len(df)) col1 = mocks.MockSeries("QuackColumn", mocks.MockTensor("Tensor ", dtypes.int32)) df["quack"] = col1 self.assertEqual(4, len(df)) col2 = df["quack"] self.assertEqual(col1, col2) def test_set_item_column_multi(self): df = setup_test_df() self.assertEqual(3, len(df)) col1 = mocks.MockSeries("QuackColumn", []) col2 = mocks.MockSeries("MooColumn", []) df["quack", "moo"] = [col1, col2] self.assertEqual(5, len(df)) col3 = df["quack"] self.assertEqual(col1, col3) col4 = df["moo"] self.assertEqual(col2, col4) def test_set_item_pandas(self): # TODO(jamieas) pass def test_set_item_numpy(self): # TODO(jamieas) pass def test_build(self): df = setup_test_df() result = df.build() expected = { "a": mocks.MockTensor("Mock Tensor 1", dtypes.int32), "b": mocks.MockTensor("Mock Tensor 2", dtypes.int32), "c": mocks.MockTensor("Mock Tensor 1", dtypes.int32) } self.assertEqual(expected, result) if __name__ == "__main__": test.main()
apache-2.0
daynebatten/keras-wtte-rnn
wtte-rnn.py
1
5661
import numpy as np from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from keras.layers import Activation from keras.layers import Masking from keras.optimizers import RMSprop from keras import backend as k from sklearn.preprocessing import normalize """ Discrete log-likelihood for Weibull hazard function on censored survival data y_true is a (samples, 2) tensor containing time-to-event (y), and an event indicator (u) ab_pred is a (samples, 2) tensor containing predicted Weibull alpha (a) and beta (b) parameters For math, see https://ragulpr.github.io/assets/draft_master_thesis_martinsson_egil_wtte_rnn_2016.pdf (Page 35) """ def weibull_loglik_discrete(y_true, ab_pred, name=None): y_ = y_true[:, 0] u_ = y_true[:, 1] a_ = ab_pred[:, 0] b_ = ab_pred[:, 1] hazard0 = k.pow((y_ + 1e-35) / a_, b_) hazard1 = k.pow((y_ + 1) / a_, b_) return -1 * k.mean(u_ * k.log(k.exp(hazard1 - hazard0) - 1.0) - hazard1) """ Not used for this model, but included in case somebody needs it For math, see https://ragulpr.github.io/assets/draft_master_thesis_martinsson_egil_wtte_rnn_2016.pdf (Page 35) """ def weibull_loglik_continuous(y_true, ab_pred, name=None): y_ = y_true[:, 0] u_ = y_true[:, 1] a_ = ab_pred[:, 0] b_ = ab_pred[:, 1] ya = (y_ + 1e-35) / a_ return -1 * k.mean(u_ * (k.log(b_) + b_ * k.log(ya)) - k.pow(ya, b_)) """ Custom Keras activation function, outputs alpha neuron using exponentiation and beta using softplus """ def activate(ab): a = k.exp(ab[:, 0]) b = k.softplus(ab[:, 1]) a = k.reshape(a, (k.shape(a)[0], 1)) b = k.reshape(b, (k.shape(b)[0], 1)) return k.concatenate((a, b), axis=1) """ Load and parse engine data files into: - an (engine/day, observed history, sensor readings) x tensor, where observed history is 100 days, zero-padded for days that don't have a full 100 days of observed history (e.g., first observed day for an engine) - an (engine/day, 2) tensor containing time-to-event and 1 (since all engines failed) There are probably MUCH better ways of doing this, but I don't use Numpy that much, and the data parsing isn't the point of this demo anyway. """ def load_file(name): with open(name, 'r') as file: return np.loadtxt(file, delimiter=',') np.set_printoptions(suppress=True, threshold=10000) train = load_file('train.csv') test_x = load_file('test_x.csv') test_y = load_file('test_y.csv') # Combine the X values to normalize them, then split them back out all_x = np.concatenate((train[:, 2:26], test_x[:, 2:26])) all_x = normalize(all_x, axis=0) train[:, 2:26] = all_x[0:train.shape[0], :] test_x[:, 2:26] = all_x[train.shape[0]:, :] # Make engine numbers and days zero-indexed, for everybody's sanity train[:, 0:2] -= 1 test_x[:, 0:2] -= 1 # Configurable observation look-back period for each engine/day max_time = 100 def build_data(engine, time, x, max_time, is_test): # y[0] will be days remaining, y[1] will be event indicator, always 1 for this data out_y = np.empty((0, 2), dtype=np.float32) # A full history of sensor readings to date for each x out_x = np.empty((0, max_time, 24), dtype=np.float32) for i in range(100): print("Engine: " + str(i)) # When did the engine fail? (Last day + 1 for train data, irrelevant for test.) max_engine_time = int(np.max(time[engine == i])) + 1 if is_test: start = max_engine_time - 1 else: start = 0 this_x = np.empty((0, max_time, 24), dtype=np.float32) for j in range(start, max_engine_time): engine_x = x[engine == i] out_y = np.append(out_y, np.array((max_engine_time - j, 1), ndmin=2), axis=0) xtemp = np.zeros((1, max_time, 24)) xtemp[:, max_time-min(j, 99)-1:max_time, :] = engine_x[max(0, j-max_time+1):j+1, :] this_x = np.concatenate((this_x, xtemp)) out_x = np.concatenate((out_x, this_x)) return out_x, out_y train_x, train_y = build_data(train[:, 0], train[:, 1], train[:, 2:26], max_time, False) test_x = build_data(test_x[:, 0], test_x[:, 1], test_x[:, 2:26], max_time, True)[0] train_u = np.zeros((100, 1), dtype=np.float32) train_u += 1 test_y = np.append(np.reshape(test_y, (100, 1)), train_u, axis=1) """ Here's the rest of the meat of the demo... actually fitting and training the model. We'll also make some test predictions so we can evaluate model performance. """ # Start building our model model = Sequential() # Mask parts of the lookback period that are all zeros (i.e., unobserved) so they don't skew the model model.add(Masking(mask_value=0., input_shape=(max_time, 24))) # LSTM is just a common type of RNN. You could also try anything else (e.g., GRU). model.add(LSTM(20, input_dim=24)) # We need 2 neurons to output Alpha and Beta parameters for our Weibull distribution model.add(Dense(2)) # Apply the custom activation function mentioned above model.add(Activation(activate)) # Use the discrete log-likelihood for Weibull survival data as our loss function model.compile(loss=weibull_loglik_discrete, optimizer=RMSprop(lr=.001)) # Fit! model.fit(train_x, train_y, nb_epoch=250, batch_size=2000, verbose=2, validation_data=(test_x, test_y)) # Make some predictions and put them alongside the real TTE and event indicator values test_predict = model.predict(test_x) test_predict = np.resize(test_predict, (100, 2)) test_result = np.concatenate((test_y, test_predict), axis=1) # TTE, Event Indicator, Alpha, Beta print(test_result)
mit
IndraVikas/scikit-learn
sklearn/learning_curve.py
110
13467
"""Utilities to evaluate models with respect to a variable """ # Author: Alexander Fabisch <[email protected]> # # License: BSD 3 clause import warnings import numpy as np from .base import is_classifier, clone from .cross_validation import check_cv from .externals.joblib import Parallel, delayed from .cross_validation import _safe_split, _score, _fit_and_score from .metrics.scorer import check_scoring from .utils import indexable from .utils.fixes import astype __all__ = ['learning_curve', 'validation_curve'] def learning_curve(estimator, X, y, train_sizes=np.linspace(0.1, 1.0, 5), cv=None, scoring=None, exploit_incremental_learning=False, n_jobs=1, pre_dispatch="all", verbose=0): """Learning curve. Determines cross-validated training and test scores for different training set sizes. A cross-validation generator splits the whole dataset k times in training and test data. Subsets of the training set with varying sizes will be used to train the estimator and a score for each training subset size and the test set will be computed. Afterwards, the scores will be averaged over all k runs for each training subset size. Read more in the :ref:`User Guide <learning_curves>`. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods An object of that type which is cloned for each validation. X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples) or (n_samples, n_features), optional Target relative to X for classification or regression; None for unsupervised learning. train_sizes : array-like, shape (n_ticks,), dtype float or int Relative or absolute numbers of training examples that will be used to generate the learning curve. If the dtype is float, it is regarded as a fraction of the maximum size of the training set (that is determined by the selected validation method), i.e. it has to be within (0, 1]. Otherwise it is interpreted as absolute sizes of the training sets. Note that for classification the number of samples usually have to be big enough to contain at least one sample from each class. (default: np.linspace(0.1, 1.0, 5)) cv : integer, cross-validation generator, optional If an integer is passed, it is the number of folds (defaults to 3). Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. exploit_incremental_learning : boolean, optional, default: False If the estimator supports incremental learning, this will be used to speed up fitting for different training set sizes. n_jobs : integer, optional Number of jobs to run in parallel (default 1). pre_dispatch : integer or string, optional Number of predispatched jobs for parallel execution (default is all). The option can reduce the allocated memory. The string can be an expression like '2*n_jobs'. verbose : integer, optional Controls the verbosity: the higher, the more messages. Returns ------- train_sizes_abs : array, shape = (n_unique_ticks,), dtype int Numbers of training examples that has been used to generate the learning curve. Note that the number of ticks might be less than n_ticks because duplicate entries will be removed. train_scores : array, shape (n_ticks, n_cv_folds) Scores on training sets. test_scores : array, shape (n_ticks, n_cv_folds) Scores on test set. Notes ----- See :ref:`examples/model_selection/plot_learning_curve.py <example_model_selection_plot_learning_curve.py>` """ if exploit_incremental_learning and not hasattr(estimator, "partial_fit"): raise ValueError("An estimator must support the partial_fit interface " "to exploit incremental learning") X, y = indexable(X, y) # Make a list since we will be iterating multiple times over the folds cv = list(check_cv(cv, X, y, classifier=is_classifier(estimator))) scorer = check_scoring(estimator, scoring=scoring) # HACK as long as boolean indices are allowed in cv generators if cv[0][0].dtype == bool: new_cv = [] for i in range(len(cv)): new_cv.append((np.nonzero(cv[i][0])[0], np.nonzero(cv[i][1])[0])) cv = new_cv n_max_training_samples = len(cv[0][0]) # Because the lengths of folds can be significantly different, it is # not guaranteed that we use all of the available training data when we # use the first 'n_max_training_samples' samples. train_sizes_abs = _translate_train_sizes(train_sizes, n_max_training_samples) n_unique_ticks = train_sizes_abs.shape[0] if verbose > 0: print("[learning_curve] Training set sizes: " + str(train_sizes_abs)) parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch, verbose=verbose) if exploit_incremental_learning: classes = np.unique(y) if is_classifier(estimator) else None out = parallel(delayed(_incremental_fit_estimator)( clone(estimator), X, y, classes, train, test, train_sizes_abs, scorer, verbose) for train, test in cv) else: out = parallel(delayed(_fit_and_score)( clone(estimator), X, y, scorer, train[:n_train_samples], test, verbose, parameters=None, fit_params=None, return_train_score=True) for train, test in cv for n_train_samples in train_sizes_abs) out = np.array(out)[:, :2] n_cv_folds = out.shape[0] // n_unique_ticks out = out.reshape(n_cv_folds, n_unique_ticks, 2) out = np.asarray(out).transpose((2, 1, 0)) return train_sizes_abs, out[0], out[1] def _translate_train_sizes(train_sizes, n_max_training_samples): """Determine absolute sizes of training subsets and validate 'train_sizes'. Examples: _translate_train_sizes([0.5, 1.0], 10) -> [5, 10] _translate_train_sizes([5, 10], 10) -> [5, 10] Parameters ---------- train_sizes : array-like, shape (n_ticks,), dtype float or int Numbers of training examples that will be used to generate the learning curve. If the dtype is float, it is regarded as a fraction of 'n_max_training_samples', i.e. it has to be within (0, 1]. n_max_training_samples : int Maximum number of training samples (upper bound of 'train_sizes'). Returns ------- train_sizes_abs : array, shape (n_unique_ticks,), dtype int Numbers of training examples that will be used to generate the learning curve. Note that the number of ticks might be less than n_ticks because duplicate entries will be removed. """ train_sizes_abs = np.asarray(train_sizes) n_ticks = train_sizes_abs.shape[0] n_min_required_samples = np.min(train_sizes_abs) n_max_required_samples = np.max(train_sizes_abs) if np.issubdtype(train_sizes_abs.dtype, np.float): if n_min_required_samples <= 0.0 or n_max_required_samples > 1.0: raise ValueError("train_sizes has been interpreted as fractions " "of the maximum number of training samples and " "must be within (0, 1], but is within [%f, %f]." % (n_min_required_samples, n_max_required_samples)) train_sizes_abs = astype(train_sizes_abs * n_max_training_samples, dtype=np.int, copy=False) train_sizes_abs = np.clip(train_sizes_abs, 1, n_max_training_samples) else: if (n_min_required_samples <= 0 or n_max_required_samples > n_max_training_samples): raise ValueError("train_sizes has been interpreted as absolute " "numbers of training samples and must be within " "(0, %d], but is within [%d, %d]." % (n_max_training_samples, n_min_required_samples, n_max_required_samples)) train_sizes_abs = np.unique(train_sizes_abs) if n_ticks > train_sizes_abs.shape[0]: warnings.warn("Removed duplicate entries from 'train_sizes'. Number " "of ticks will be less than than the size of " "'train_sizes' %d instead of %d)." % (train_sizes_abs.shape[0], n_ticks), RuntimeWarning) return train_sizes_abs def _incremental_fit_estimator(estimator, X, y, classes, train, test, train_sizes, scorer, verbose): """Train estimator on training subsets incrementally and compute scores.""" train_scores, test_scores = [], [] partitions = zip(train_sizes, np.split(train, train_sizes)[:-1]) for n_train_samples, partial_train in partitions: train_subset = train[:n_train_samples] X_train, y_train = _safe_split(estimator, X, y, train_subset) X_partial_train, y_partial_train = _safe_split(estimator, X, y, partial_train) X_test, y_test = _safe_split(estimator, X, y, test, train_subset) if y_partial_train is None: estimator.partial_fit(X_partial_train, classes=classes) else: estimator.partial_fit(X_partial_train, y_partial_train, classes=classes) train_scores.append(_score(estimator, X_train, y_train, scorer)) test_scores.append(_score(estimator, X_test, y_test, scorer)) return np.array((train_scores, test_scores)).T def validation_curve(estimator, X, y, param_name, param_range, cv=None, scoring=None, n_jobs=1, pre_dispatch="all", verbose=0): """Validation curve. Determine training and test scores for varying parameter values. Compute scores for an estimator with different values of a specified parameter. This is similar to grid search with one parameter. However, this will also compute training scores and is merely a utility for plotting the results. Read more in the :ref:`User Guide <validation_curve>`. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods An object of that type which is cloned for each validation. X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples) or (n_samples, n_features), optional Target relative to X for classification or regression; None for unsupervised learning. param_name : string Name of the parameter that will be varied. param_range : array-like, shape (n_values,) The values of the parameter that will be evaluated. cv : integer, cross-validation generator, optional If an integer is passed, it is the number of folds (defaults to 3). Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. n_jobs : integer, optional Number of jobs to run in parallel (default 1). pre_dispatch : integer or string, optional Number of predispatched jobs for parallel execution (default is all). The option can reduce the allocated memory. The string can be an expression like '2*n_jobs'. verbose : integer, optional Controls the verbosity: the higher, the more messages. Returns ------- train_scores : array, shape (n_ticks, n_cv_folds) Scores on training sets. test_scores : array, shape (n_ticks, n_cv_folds) Scores on test set. Notes ----- See :ref:`examples/model_selection/plot_validation_curve.py <example_model_selection_plot_validation_curve.py>` """ X, y = indexable(X, y) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) scorer = check_scoring(estimator, scoring=scoring) parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch, verbose=verbose) out = parallel(delayed(_fit_and_score)( estimator, X, y, scorer, train, test, verbose, parameters={param_name: v}, fit_params=None, return_train_score=True) for train, test in cv for v in param_range) out = np.asarray(out)[:, :2] n_params = len(param_range) n_cv_folds = out.shape[0] // n_params out = out.reshape(n_cv_folds, n_params, 2).transpose((2, 1, 0)) return out[0], out[1]
bsd-3-clause
cactusbin/nyt
matplotlib/lib/matplotlib/pyplot.py
4
114926
# Note: The first part of this file can be modified in place, but the latter # part is autogenerated by the boilerplate.py script. """ Provides a MATLAB-like plotting framework. :mod:`~matplotlib.pylab` combines pyplot with numpy into a single namespace. This is convenient for interactive work, but for programming it is recommended that the namespaces be kept separate, e.g.:: import numpy as np import matplotlib.pyplot as plt x = np.arange(0, 5, 0.1); y = np.sin(x) plt.plot(x, y) """ from __future__ import print_function import sys import warnings import matplotlib import matplotlib.colorbar from matplotlib import _pylab_helpers, interactive from matplotlib.cbook import dedent, silent_list, is_string_like, is_numlike from matplotlib import docstring from matplotlib.backend_bases import FigureCanvasBase from matplotlib.figure import Figure, figaspect from matplotlib.gridspec import GridSpec from matplotlib.image import imread as _imread from matplotlib.image import imsave as _imsave from matplotlib import rcParams, rcParamsDefault, get_backend from matplotlib import rc_context from matplotlib.rcsetup import interactive_bk as _interactive_bk from matplotlib.artist import getp, get, Artist from matplotlib.artist import setp as _setp from matplotlib.axes import Axes, Subplot, _string_to_bool from matplotlib.projections import PolarAxes from matplotlib import mlab # for csv2rec, detrend_none, window_hanning from matplotlib.scale import get_scale_docs, get_scale_names from matplotlib import cm from matplotlib.cm import get_cmap, register_cmap import numpy as np # We may not need the following imports here: from matplotlib.colors import Normalize from matplotlib.colors import normalize # for backwards compat. from matplotlib.lines import Line2D from matplotlib.text import Text, Annotation from matplotlib.patches import Polygon, Rectangle, Circle, Arrow from matplotlib.widgets import SubplotTool, Button, Slider, Widget from ticker import TickHelper, Formatter, FixedFormatter, NullFormatter,\ FuncFormatter, FormatStrFormatter, ScalarFormatter,\ LogFormatter, LogFormatterExponent, LogFormatterMathtext,\ Locator, IndexLocator, FixedLocator, NullLocator,\ LinearLocator, LogLocator, AutoLocator, MultipleLocator,\ MaxNLocator ## Backend detection ## def _backend_selection(): """ If rcParams['backend_fallback'] is true, check to see if the current backend is compatible with the current running event loop, and if not switches to a compatible one. """ backend = rcParams['backend'] if not rcParams['backend_fallback'] or \ backend not in _interactive_bk: return is_agg_backend = rcParams['backend'].endswith('Agg') if 'wx' in sys.modules and not backend in ('WX', 'WXAgg'): import wx if wx.App.IsMainLoopRunning(): rcParams['backend'] = 'wx' + 'Agg' * is_agg_backend elif 'PyQt4.QtCore' in sys.modules and not backend == 'Qt4Agg': import PyQt4.QtGui if not PyQt4.QtGui.qApp.startingUp(): # The mainloop is running. rcParams['backend'] = 'qt4Agg' elif 'gtk' in sys.modules and not backend in ('GTK', 'GTKAgg', 'GTKCairo'): import gobject if gobject.MainLoop().is_running(): rcParams['backend'] = 'gtk' + 'Agg' * is_agg_backend elif 'Tkinter' in sys.modules and not backend == 'TkAgg': # import Tkinter pass # what if anything do we need to do for tkinter? _backend_selection() ## Global ## from matplotlib.backends import pylab_setup _backend_mod, new_figure_manager, draw_if_interactive, _show = pylab_setup() @docstring.copy_dedent(Artist.findobj) def findobj(o=None, match=None, include_self=True): if o is None: o = gcf() return o.findobj(match, include_self=include_self) def switch_backend(newbackend): """ Switch the default backend. This feature is **experimental**, and is only expected to work switching to an image backend. e.g., if you have a bunch of PostScript scripts that you want to run from an interactive ipython session, you may want to switch to the PS backend before running them to avoid having a bunch of GUI windows popup. If you try to interactively switch from one GUI backend to another, you will explode. Calling this command will close all open windows. """ close('all') global _backend_mod, new_figure_manager, draw_if_interactive, _show matplotlib.use(newbackend, warn=False, force=True) from matplotlib.backends import pylab_setup _backend_mod, new_figure_manager, draw_if_interactive, _show = pylab_setup() def show(*args, **kw): """ Display a figure. When running in ipython with its pylab mode, display all figures and return to the ipython prompt. In non-interactive mode, display all figures and block until the figures have been closed; in interactive mode it has no effect unless figures were created prior to a change from non-interactive to interactive mode (not recommended). In that case it displays the figures but does not block. A single experimental keyword argument, *block*, may be set to True or False to override the blocking behavior described above. """ global _show _show(*args, **kw) def isinteractive(): """ Return status of interactive mode. """ return matplotlib.is_interactive() def ioff(): 'Turn interactive mode off.' matplotlib.interactive(False) def ion(): 'Turn interactive mode on.' matplotlib.interactive(True) def pause(interval): """ Pause for *interval* seconds. If there is an active figure it will be updated and displayed, and the GUI event loop will run during the pause. If there is no active figure, or if a non-interactive backend is in use, this executes time.sleep(interval). This can be used for crude animation. For more complex animation, see :mod:`matplotlib.animation`. This function is experimental; its behavior may be changed or extended in a future release. """ backend = rcParams['backend'] if backend in _interactive_bk: figManager = _pylab_helpers.Gcf.get_active() if figManager is not None: canvas = figManager.canvas canvas.draw() show(block=False) canvas.start_event_loop(interval) return # No on-screen figure is active, so sleep() is all we need. import time time.sleep(interval) @docstring.copy_dedent(matplotlib.rc) def rc(*args, **kwargs): matplotlib.rc(*args, **kwargs) @docstring.copy_dedent(matplotlib.rc_context) def rc_context(rc=None, fname=None): return matplotlib.rc_context(rc, fname) @docstring.copy_dedent(matplotlib.rcdefaults) def rcdefaults(): matplotlib.rcdefaults() draw_if_interactive() # The current "image" (ScalarMappable) is retrieved or set # only via the pyplot interface using the following two # functions: def gci(): """ Get the current colorable artist. Specifically, returns the current :class:`~matplotlib.cm.ScalarMappable` instance (image or patch collection), or *None* if no images or patch collections have been defined. The commands :func:`~matplotlib.pyplot.imshow` and :func:`~matplotlib.pyplot.figimage` create :class:`~matplotlib.image.Image` instances, and the commands :func:`~matplotlib.pyplot.pcolor` and :func:`~matplotlib.pyplot.scatter` create :class:`~matplotlib.collections.Collection` instances. The current image is an attribute of the current axes, or the nearest earlier axes in the current figure that contains an image. """ return gcf()._gci() def sci(im): """ Set the current image. This image will be the target of colormap commands like :func:`~matplotlib.pyplot.jet`, :func:`~matplotlib.pyplot.hot` or :func:`~matplotlib.pyplot.clim`). The current image is an attribute of the current axes. """ gca()._sci(im) ## Any Artist ## # (getp is simply imported) @docstring.copy(_setp) def setp(*args, **kwargs): ret = _setp(*args, **kwargs) draw_if_interactive() return ret def xkcd(scale=1, length=100, randomness=2): """ Turns on `xkcd <http://xkcd.com/>`_ sketch-style drawing mode. This will only have effect on things drawn after this function is called. For best results, the "Humor Sans" font should be installed: it is not included with matplotlib. Parameters ---------- scale: float, optional The amplitude of the wiggle perpendicular to the source line. length: float, optional The length of the wiggle along the line. randomness: float, optional The scale factor by which the length is shrunken or expanded. This function works by a number of rcParams, so it will probably override others you have set before. If you want the effects of this function to be temporary, it can be used as a context manager, for example:: with plt.xkcd(): # This figure will be in XKCD-style fig1 = plt.figure() # ... # This figure will be in regular style fig2 = plt.figure() """ if rcParams['text.usetex']: raise RuntimeError( "xkcd mode is not compatible with text.usetex = True") from matplotlib import patheffects context = rc_context() try: rcParams['font.family'] = ['Humor Sans', 'Comic Sans MS'] rcParams['font.size'] = 14.0 rcParams['path.sketch'] = (scale, length, randomness) rcParams['path.effects'] = [ patheffects.withStroke(linewidth=4, foreground="w")] rcParams['axes.linewidth'] = 1.5 rcParams['lines.linewidth'] = 2.0 rcParams['figure.facecolor'] = 'white' rcParams['grid.linewidth'] = 0.0 rcParams['axes.unicode_minus'] = False rcParams['axes.color_cycle'] = ['b', 'r', 'c', 'm'] rcParams['xtick.major.size'] = 8 rcParams['xtick.major.width'] = 3 rcParams['ytick.major.size'] = 8 rcParams['ytick.major.width'] = 3 except: context.__exit__(*sys.exc_info()) raise return context ## Figures ## def figure(num=None, # autoincrement if None, else integer from 1-N figsize=None, # defaults to rc figure.figsize dpi=None, # defaults to rc figure.dpi facecolor=None, # defaults to rc figure.facecolor edgecolor=None, # defaults to rc figure.edgecolor frameon=True, FigureClass=Figure, **kwargs ): """ Creates a new figure. Parameters ---------- num : integer or string, optional, default: none If not provided, a new figure will be created, and a the figure number will be increamted. The figure objects holds this number in a `number` attribute. If num is provided, and a figure with this id already exists, make it active, and returns a reference to it. If this figure does not exists, create it and returns it. If num is a string, the window title will be set to this figure's `num`. figsize : tuple of integers, optional, default : None width, height in inches. If not provided, defaults to rc figure.figsize. dpi : integer, optional, default ; None resolution of the figure. If not provided, defaults to rc figure.dpi. facecolor : the background color; If not provided, defaults to rc figure.facecolor edgecolor : the border color. If not provided, defaults to rc figure.edgecolor Returns ------- figure : Figure The Figure instance returned will also be passed to new_figure_manager in the backends, which allows to hook custom Figure classes into the pylab interface. Additional kwargs will be passed to the figure init function. Note ---- If you are creating many figures, make sure you explicitly call "close" on the figures you are not using, because this will enable pylab to properly clean up the memory. rcParams defines the default values, which can be modified in the matplotlibrc file """ if figsize is None: figsize = rcParams['figure.figsize'] if dpi is None: dpi = rcParams['figure.dpi'] if facecolor is None: facecolor = rcParams['figure.facecolor'] if edgecolor is None: edgecolor = rcParams['figure.edgecolor'] allnums = get_fignums() next_num = max(allnums) + 1 if allnums else 1 figLabel = '' if num is None: num = next_num elif is_string_like(num): figLabel = num allLabels = get_figlabels() if figLabel not in allLabels: if figLabel == 'all': warnings.warn("close('all') closes all existing figures") num = next_num else: inum = allLabels.index(figLabel) num = allnums[inum] else: num = int(num) # crude validation of num argument figManager = _pylab_helpers.Gcf.get_fig_manager(num) if figManager is None: max_open_warning = rcParams['figure.max_open_warning'] if (max_open_warning >= 1 and len(allnums) >= max_open_warning): warnings.warn( "More than %d figures have been opened. Figures " "created through the pyplot interface " "(`matplotlib.pyplot.figure`) are retained until " "explicitly closed and may consume too much memory. " "(To control this warning, see the rcParam " "`figure.max_num_figures`)." % max_open_warning, RuntimeWarning) if get_backend().lower() == 'ps': dpi = 72 figManager = new_figure_manager(num, figsize=figsize, dpi=dpi, facecolor=facecolor, edgecolor=edgecolor, frameon=frameon, FigureClass=FigureClass, **kwargs) if figLabel: figManager.set_window_title(figLabel) figManager.canvas.figure.set_label(figLabel) # make this figure current on button press event def make_active(event): _pylab_helpers.Gcf.set_active(figManager) cid = figManager.canvas.mpl_connect('button_press_event', make_active) figManager._cidgcf = cid _pylab_helpers.Gcf.set_active(figManager) figManager.canvas.figure.number = num draw_if_interactive() return figManager.canvas.figure def gcf(): "Return a reference to the current figure." figManager = _pylab_helpers.Gcf.get_active() if figManager is not None: return figManager.canvas.figure else: return figure() fignum_exists = _pylab_helpers.Gcf.has_fignum def get_fignums(): """Return a list of existing figure numbers.""" fignums = _pylab_helpers.Gcf.figs.keys() fignums.sort() return fignums def get_figlabels(): "Return a list of existing figure labels." figManagers = _pylab_helpers.Gcf.get_all_fig_managers() figManagers.sort(key=lambda m: m.num) return [m.canvas.figure.get_label() for m in figManagers] def get_current_fig_manager(): figManager = _pylab_helpers.Gcf.get_active() if figManager is None: gcf() # creates an active figure as a side effect figManager = _pylab_helpers.Gcf.get_active() return figManager @docstring.copy_dedent(FigureCanvasBase.mpl_connect) def connect(s, func): return get_current_fig_manager().canvas.mpl_connect(s, func) @docstring.copy_dedent(FigureCanvasBase.mpl_disconnect) def disconnect(cid): return get_current_fig_manager().canvas.mpl_disconnect(cid) def close(*args): """ Close a figure window. ``close()`` by itself closes the current figure ``close(h)`` where *h* is a :class:`Figure` instance, closes that figure ``close(num)`` closes figure number *num* ``close(name)`` where *name* is a string, closes figure with that label ``close('all')`` closes all the figure windows """ if len(args) == 0: figManager = _pylab_helpers.Gcf.get_active() if figManager is None: return else: _pylab_helpers.Gcf.destroy(figManager.num) elif len(args) == 1: arg = args[0] if arg == 'all': _pylab_helpers.Gcf.destroy_all() elif isinstance(arg, int): _pylab_helpers.Gcf.destroy(arg) elif is_string_like(arg): allLabels = get_figlabels() if arg in allLabels: num = get_fignums()[allLabels.index(arg)] _pylab_helpers.Gcf.destroy(num) elif isinstance(arg, Figure): _pylab_helpers.Gcf.destroy_fig(arg) else: raise TypeError('Unrecognized argument type %s to close' % type(arg)) else: raise TypeError('close takes 0 or 1 arguments') def clf(): """ Clear the current figure. """ gcf().clf() draw_if_interactive() def draw(): """ Redraw the current figure. This is used in interactive mode to update a figure that has been altered using one or more plot object method calls; it is not needed if figure modification is done entirely with pyplot functions, if a sequence of modifications ends with a pyplot function, or if matplotlib is in non-interactive mode and the sequence of modifications ends with :func:`show` or :func:`savefig`. A more object-oriented alternative, given any :class:`~matplotlib.figure.Figure` instance, :attr:`fig`, that was created using a :mod:`~matplotlib.pyplot` function, is:: fig.canvas.draw() """ get_current_fig_manager().canvas.draw() @docstring.copy_dedent(Figure.savefig) def savefig(*args, **kwargs): fig = gcf() return fig.savefig(*args, **kwargs) @docstring.copy_dedent(Figure.ginput) def ginput(*args, **kwargs): """ Blocking call to interact with the figure. This will wait for *n* clicks from the user and return a list of the coordinates of each click. If *timeout* is negative, does not timeout. """ return gcf().ginput(*args, **kwargs) @docstring.copy_dedent(Figure.waitforbuttonpress) def waitforbuttonpress(*args, **kwargs): """ Blocking call to interact with the figure. This will wait for *n* key or mouse clicks from the user and return a list containing True's for keyboard clicks and False's for mouse clicks. If *timeout* is negative, does not timeout. """ return gcf().waitforbuttonpress(*args, **kwargs) # Putting things in figures @docstring.copy_dedent(Figure.text) def figtext(*args, **kwargs): ret = gcf().text(*args, **kwargs) draw_if_interactive() return ret @docstring.copy_dedent(Figure.suptitle) def suptitle(*args, **kwargs): ret = gcf().suptitle(*args, **kwargs) draw_if_interactive() return ret @docstring.Appender("Addition kwargs: hold = [True|False] overrides default hold state", "\n") @docstring.copy_dedent(Figure.figimage) def figimage(*args, **kwargs): # allow callers to override the hold state by passing hold=True|False ret = gcf().figimage(*args, **kwargs) draw_if_interactive() #sci(ret) # JDH figimage should not set current image -- it is not mappable, etc return ret def figlegend(handles, labels, loc, **kwargs): """ Place a legend in the figure. *labels* a sequence of strings *handles* a sequence of :class:`~matplotlib.lines.Line2D` or :class:`~matplotlib.patches.Patch` instances *loc* can be a string or an integer specifying the legend location A :class:`matplotlib.legend.Legend` instance is returned. Example:: figlegend( (line1, line2, line3), ('label1', 'label2', 'label3'), 'upper right' ) .. seealso:: :func:`~matplotlib.pyplot.legend` """ l = gcf().legend(handles, labels, loc, **kwargs) draw_if_interactive() return l ## Figure and Axes hybrid ## def hold(b=None): """ Set the hold state. If *b* is None (default), toggle the hold state, else set the hold state to boolean value *b*:: hold() # toggle hold hold(True) # hold is on hold(False) # hold is off When *hold* is *True*, subsequent plot commands will be added to the current axes. When *hold* is *False*, the current axes and figure will be cleared on the next plot command. """ fig = gcf() ax = fig.gca() fig.hold(b) ax.hold(b) # b=None toggles the hold state, so let's get get the current hold # state; but should pyplot hold toggle the rc setting - me thinks # not b = ax.ishold() rc('axes', hold=b) def ishold(): """ Return the hold status of the current axes. """ return gca().ishold() def over(func, *args, **kwargs): """ Call a function with hold(True). Calls:: func(*args, **kwargs) with ``hold(True)`` and then restores the hold state. """ h = ishold() hold(True) func(*args, **kwargs) hold(h) ## Axes ## def axes(*args, **kwargs): """ Add an axes to the figure. The axes is added at position *rect* specified by: - ``axes()`` by itself creates a default full ``subplot(111)`` window axis. - ``axes(rect, axisbg='w')`` where *rect* = [left, bottom, width, height] in normalized (0, 1) units. *axisbg* is the background color for the axis, default white. - ``axes(h)`` where *h* is an axes instance makes *h* the current axis. An :class:`~matplotlib.axes.Axes` instance is returned. ======= ============ ================================================ kwarg Accepts Description ======= ============ ================================================ axisbg color the axes background color frameon [True|False] display the frame? sharex otherax current axes shares xaxis attribute with otherax sharey otherax current axes shares yaxis attribute with otherax polar [True|False] use a polar axes? ======= ============ ================================================ Examples: * :file:`examples/pylab_examples/axes_demo.py` places custom axes. * :file:`examples/pylab_examples/shared_axis_demo.py` uses *sharex* and *sharey*. """ nargs = len(args) if len(args)==0: return subplot(111, **kwargs) if nargs>1: raise TypeError('Only one non keyword arg to axes allowed') arg = args[0] if isinstance(arg, Axes): a = gcf().sca(arg) else: rect = arg a = gcf().add_axes(rect, **kwargs) draw_if_interactive() return a def delaxes(*args): """ Remove an axes from the current figure. If *ax* doesn't exist, an error will be raised. ``delaxes()``: delete the current axes """ if not len(args): ax = gca() else: ax = args[0] ret = gcf().delaxes(ax) draw_if_interactive() return ret def sca(ax): """ Set the current Axes instance to *ax*. The current Figure is updated to the parent of *ax*. """ managers = _pylab_helpers.Gcf.get_all_fig_managers() for m in managers: if ax in m.canvas.figure.axes: _pylab_helpers.Gcf.set_active(m) m.canvas.figure.sca(ax) return raise ValueError("Axes instance argument was not found in a figure.") def gca(**kwargs): """ Return the current axis instance. This can be used to control axis properties either using set or the :class:`~matplotlib.axes.Axes` methods, for example, setting the xaxis range:: plot(t,s) set(gca(), 'xlim', [0,10]) or:: plot(t,s) a = gca() a.set_xlim([0,10]) """ ax = gcf().gca(**kwargs) return ax # More ways of creating axes: def subplot(*args, **kwargs): """ Return a subplot axes positioned by the given grid definition. Typical call signature:: subplot(nrows, ncols, plot_number) Where *nrows* and *ncols* are used to notionally split the figure into ``nrows * ncols`` sub-axes, and *plot_number* is used to identify the particular subplot that this function is to create within the notional grid. *plot_number* starts at 1, increments across rows first and has a maximum of ``nrows * ncols``. In the case when *nrows*, *ncols* and *plot_number* are all less than 10, a convenience exists, such that the a 3 digit number can be given instead, where the hundreds represent *nrows*, the tens represent *ncols* and the units represent *plot_number*. For instance:: subplot(211) produces a subaxes in a figure which represents the top plot (i.e. the first) in a 2 row by 1 column notional grid (no grid actually exists, but conceptually this is how the returned subplot has been positioned). .. note:: Creating a new subplot with a position which is entirely inside a pre-existing axes will trigger the larger axes to be deleted:: import matplotlib.pyplot as plt # plot a line, implicitly creating a subplot(111) plt.plot([1,2,3]) # now create a subplot which represents the top plot of a grid # with 2 rows and 1 column. Since this subplot will overlap the # first, the plot (and its axes) previously created, will be removed plt.subplot(211) plt.plot(range(12)) plt.subplot(212, axisbg='y') # creates 2nd subplot with yellow background If you do not want this behavior, use the :meth:`~matplotlib.figure.Figure.add_subplot` method or the :func:`~matplotlib.pyplot.axes` function instead. Keyword arguments: *axisbg*: The background color of the subplot, which can be any valid color specifier. See :mod:`matplotlib.colors` for more information. *polar*: A boolean flag indicating whether the subplot plot should be a polar projection. Defaults to *False*. *projection*: A string giving the name of a custom projection to be used for the subplot. This projection must have been previously registered. See :mod:`matplotlib.projections`. .. seealso:: :func:`~matplotlib.pyplot.axes` For additional information on :func:`axes` and :func:`subplot` keyword arguments. :file:`examples/pie_and_polar_charts/polar_scatter_demo.py` For an example **Example:** .. plot:: mpl_examples/subplots_axes_and_figures/subplot_demo.py """ # if subplot called without arguments, create subplot(1,1,1) if len(args)==0: args=(1,1,1) # This check was added because it is very easy to type # subplot(1, 2, False) when subplots(1, 2, False) was intended # (sharex=False, that is). In most cases, no error will # ever occur, but mysterious behavior can result because what was # intended to be the sharex argument is instead treated as a # subplot index for subplot() if len(args) >= 3 and isinstance(args[2], bool) : warnings.warn("The subplot index argument to subplot() appears" " to be a boolean. Did you intend to use subplots()?") fig = gcf() a = fig.add_subplot(*args, **kwargs) bbox = a.bbox byebye = [] for other in fig.axes: if other==a: continue if bbox.fully_overlaps(other.bbox): byebye.append(other) for ax in byebye: delaxes(ax) draw_if_interactive() return a def subplots(nrows=1, ncols=1, sharex=False, sharey=False, squeeze=True, subplot_kw=None, **fig_kw): """ Create a figure with a set of subplots already made. This utility wrapper makes it convenient to create common layouts of subplots, including the enclosing figure object, in a single call. Keyword arguments: *nrows* : int Number of rows of the subplot grid. Defaults to 1. *ncols* : int Number of columns of the subplot grid. Defaults to 1. *sharex* : string or bool If *True*, the X axis will be shared amongst all subplots. If *True* and you have multiple rows, the x tick labels on all but the last row of plots will have visible set to *False* If a string must be one of "row", "col", "all", or "none". "all" has the same effect as *True*, "none" has the same effect as *False*. If "row", each subplot row will share a X axis. If "col", each subplot column will share a X axis and the x tick labels on all but the last row will have visible set to *False*. *sharey* : string or bool If *True*, the Y axis will be shared amongst all subplots. If *True* and you have multiple columns, the y tick labels on all but the first column of plots will have visible set to *False* If a string must be one of "row", "col", "all", or "none". "all" has the same effect as *True*, "none" has the same effect as *False*. If "row", each subplot row will share a Y axis. If "col", each subplot column will share a Y axis and the y tick labels on all but the last row will have visible set to *False*. *squeeze* : bool If *True*, extra dimensions are squeezed out from the returned axis object: - if only one subplot is constructed (nrows=ncols=1), the resulting single Axis object is returned as a scalar. - for Nx1 or 1xN subplots, the returned object is a 1-d numpy object array of Axis objects are returned as numpy 1-d arrays. - for NxM subplots with N>1 and M>1 are returned as a 2d array. If *False*, no squeezing at all is done: the returned axis object is always a 2-d array containing Axis instances, even if it ends up being 1x1. *subplot_kw* : dict Dict with keywords passed to the :meth:`~matplotlib.figure.Figure.add_subplot` call used to create each subplots. *fig_kw* : dict Dict with keywords passed to the :func:`figure` call. Note that all keywords not recognized above will be automatically included here. Returns: fig, ax : tuple - *fig* is the :class:`matplotlib.figure.Figure` object - *ax* can be either a single axis object or an array of axis objects if more than one subplot was created. The dimensions of the resulting array can be controlled with the squeeze keyword, see above. Examples:: x = np.linspace(0, 2*np.pi, 400) y = np.sin(x**2) # Just a figure and one subplot f, ax = plt.subplots() ax.plot(x, y) ax.set_title('Simple plot') # Two subplots, unpack the output array immediately f, (ax1, ax2) = plt.subplots(1, 2, sharey=True) ax1.plot(x, y) ax1.set_title('Sharing Y axis') ax2.scatter(x, y) # Four polar axes plt.subplots(2, 2, subplot_kw=dict(polar=True)) # Share a X axis with each column of subplots plt.subplots(2, 2, sharex='col') # Share a Y axis with each row of subplots plt.subplots(2, 2, sharey='row') # Share a X and Y axis with all subplots plt.subplots(2, 2, sharex='all', sharey='all') # same as plt.subplots(2, 2, sharex=True, sharey=True) """ # for backwards compatibility if isinstance(sharex, bool): if sharex: sharex = "all" else: sharex = "none" if isinstance(sharey, bool): if sharey: sharey = "all" else: sharey = "none" share_values = ["all", "row", "col", "none"] if sharex not in share_values: # This check was added because it is very easy to type subplots(1, 2, 1) # when subplot(1, 2, 1) was intended. In most cases, no error will # ever occur, but mysterious behavior will result because what was # intended to be the subplot index is instead treated as a bool for # sharex. if isinstance(sharex, int): warnings.warn("sharex argument to subplots() was an integer." " Did you intend to use subplot() (without 's')?") raise ValueError("sharex [%s] must be one of %s" % \ (sharex, share_values)) if sharey not in share_values: raise ValueError("sharey [%s] must be one of %s" % \ (sharey, share_values)) if subplot_kw is None: subplot_kw = {} fig = figure(**fig_kw) # Create empty object array to hold all axes. It's easiest to make it 1-d # so we can just append subplots upon creation, and then nplots = nrows*ncols axarr = np.empty(nplots, dtype=object) # Create first subplot separately, so we can share it if requested ax0 = fig.add_subplot(nrows, ncols, 1, **subplot_kw) #if sharex: # subplot_kw['sharex'] = ax0 #if sharey: # subplot_kw['sharey'] = ax0 axarr[0] = ax0 r, c = np.mgrid[:nrows, :ncols] r = r.flatten() * ncols c = c.flatten() lookup = { "none": np.arange(nplots), "all": np.zeros(nplots, dtype=int), "row": r, "col": c, } sxs = lookup[sharex] sys = lookup[sharey] # Note off-by-one counting because add_subplot uses the MATLAB 1-based # convention. for i in range(1, nplots): if sxs[i] == i: subplot_kw['sharex'] = None else: subplot_kw['sharex'] = axarr[sxs[i]] if sys[i] == i: subplot_kw['sharey'] = None else: subplot_kw['sharey'] = axarr[sys[i]] axarr[i] = fig.add_subplot(nrows, ncols, i + 1, **subplot_kw) # returned axis array will be always 2-d, even if nrows=ncols=1 axarr = axarr.reshape(nrows, ncols) # turn off redundant tick labeling if sharex in ["col", "all"] and nrows > 1: #if sharex and nrows>1: # turn off all but the bottom row for ax in axarr[:-1, :].flat: for label in ax.get_xticklabels(): label.set_visible(False) ax.xaxis.offsetText.set_visible(False) if sharey in ["row", "all"] and ncols > 1: #if sharey and ncols>1: # turn off all but the first column for ax in axarr[:, 1:].flat: for label in ax.get_yticklabels(): label.set_visible(False) ax.yaxis.offsetText.set_visible(False) if squeeze: # Reshape the array to have the final desired dimension (nrow,ncol), # though discarding unneeded dimensions that equal 1. If we only have # one subplot, just return it instead of a 1-element array. if nplots==1: ret = fig, axarr[0,0] else: ret = fig, axarr.squeeze() else: # returned axis array will be always 2-d, even if nrows=ncols=1 ret = fig, axarr.reshape(nrows, ncols) return ret def subplot2grid(shape, loc, rowspan=1, colspan=1, **kwargs): """ Create a subplot in a grid. The grid is specified by *shape*, at location of *loc*, spanning *rowspan*, *colspan* cells in each direction. The index for loc is 0-based. :: subplot2grid(shape, loc, rowspan=1, colspan=1) is identical to :: gridspec=GridSpec(shape[0], shape[2]) subplotspec=gridspec.new_subplotspec(loc, rowspan, colspan) subplot(subplotspec) """ fig = gcf() s1, s2 = shape subplotspec = GridSpec(s1, s2).new_subplotspec(loc, rowspan=rowspan, colspan=colspan) a = fig.add_subplot(subplotspec, **kwargs) bbox = a.bbox byebye = [] for other in fig.axes: if other==a: continue if bbox.fully_overlaps(other.bbox): byebye.append(other) for ax in byebye: delaxes(ax) draw_if_interactive() return a def twinx(ax=None): """ Make a second axes that shares the *x*-axis. The new axes will overlay *ax* (or the current axes if *ax* is *None*). The ticks for *ax2* will be placed on the right, and the *ax2* instance is returned. .. seealso:: :file:`examples/api_examples/two_scales.py` For an example """ if ax is None: ax=gca() ax1 = ax.twinx() draw_if_interactive() return ax1 def twiny(ax=None): """ Make a second axes that shares the *y*-axis. The new axis will overlay *ax* (or the current axes if *ax* is *None*). The ticks for *ax2* will be placed on the top, and the *ax2* instance is returned. """ if ax is None: ax=gca() ax1 = ax.twiny() draw_if_interactive() return ax1 def subplots_adjust(*args, **kwargs): """ Tune the subplot layout. call signature:: subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=None, hspace=None) The parameter meanings (and suggested defaults) are:: left = 0.125 # the left side of the subplots of the figure right = 0.9 # the right side of the subplots of the figure bottom = 0.1 # the bottom of the subplots of the figure top = 0.9 # the top of the subplots of the figure wspace = 0.2 # the amount of width reserved for blank space between subplots hspace = 0.2 # the amount of height reserved for white space between subplots The actual defaults are controlled by the rc file """ fig = gcf() fig.subplots_adjust(*args, **kwargs) draw_if_interactive() def subplot_tool(targetfig=None): """ Launch a subplot tool window for a figure. A :class:`matplotlib.widgets.SubplotTool` instance is returned. """ tbar = rcParams['toolbar'] # turn off the navigation toolbar for the toolfig rcParams['toolbar'] = 'None' if targetfig is None: manager = get_current_fig_manager() targetfig = manager.canvas.figure else: # find the manager for this figure for manager in _pylab_helpers.Gcf._activeQue: if manager.canvas.figure==targetfig: break else: raise RuntimeError('Could not find manager for targetfig') toolfig = figure(figsize=(6,3)) toolfig.subplots_adjust(top=0.9) ret = SubplotTool(targetfig, toolfig) rcParams['toolbar'] = tbar _pylab_helpers.Gcf.set_active(manager) # restore the current figure return ret def tight_layout(pad=1.08, h_pad=None, w_pad=None, rect=None): """ Automatically adjust subplot parameters to give specified padding. Parameters: pad : float padding between the figure edge and the edges of subplots, as a fraction of the font-size. h_pad, w_pad : float padding (height/width) between edges of adjacent subplots. Defaults to `pad_inches`. rect : if rect is given, it is interpreted as a rectangle (left, bottom, right, top) in the normalized figure coordinate that the whole subplots area (including labels) will fit into. Default is (0, 0, 1, 1). """ fig = gcf() fig.tight_layout(pad=pad, h_pad=h_pad, w_pad=w_pad, rect=rect) draw_if_interactive() def box(on=None): """ Turn the axes box on or off. *on* may be a boolean or a string, 'on' or 'off'. If *on* is *None*, toggle state. """ ax = gca() on = _string_to_bool(on) if on is None: on = not ax.get_frame_on() ax.set_frame_on(on) draw_if_interactive() def title(s, *args, **kwargs): """ Set a title of the current axes. Set one of the three available axes titles. The available titles are positioned above the axes in the center, flush with the left edge, and flush with the right edge. Parameters ---------- label : str Text to use for the title fontdict : dict A dictionary controlling the appearance of the title text, the default `fontdict` is: {'fontsize': rcParams['axes.titlesize'], 'verticalalignment': 'baseline', 'horizontalalignment': loc} loc : {'center', 'left', 'right'}, str, optional Which title to set, defaults to 'center' Returns ------- text : :class:`~matplotlib.text.Text` The matplotlib text instance representing the title Other parameters ---------------- Other keyword arguments are text properties, see :class:`~matplotlib.text.Text` for a list of valid text properties. See also -------- See :func:`~matplotlib.pyplot.text` for adding text to the current axes """ l = gca().set_title(s, *args, **kwargs) draw_if_interactive() return l ## Axis ## def axis(*v, **kwargs): """ Convenience method to get or set axis properties. Calling with no arguments:: >>> axis() returns the current axes limits ``[xmin, xmax, ymin, ymax]``.:: >>> axis(v) sets the min and max of the x and y axes, with ``v = [xmin, xmax, ymin, ymax]``.:: >>> axis('off') turns off the axis lines and labels.:: >>> axis('equal') changes limits of *x* or *y* axis so that equal increments of *x* and *y* have the same length; a circle is circular.:: >>> axis('scaled') achieves the same result by changing the dimensions of the plot box instead of the axis data limits.:: >>> axis('tight') changes *x* and *y* axis limits such that all data is shown. If all data is already shown, it will move it to the center of the figure without modifying (*xmax* - *xmin*) or (*ymax* - *ymin*). Note this is slightly different than in MATLAB.:: >>> axis('image') is 'scaled' with the axis limits equal to the data limits.:: >>> axis('auto') and:: >>> axis('normal') are deprecated. They restore default behavior; axis limits are automatically scaled to make the data fit comfortably within the plot box. if ``len(*v)==0``, you can pass in *xmin*, *xmax*, *ymin*, *ymax* as kwargs selectively to alter just those limits without changing the others. The xmin, xmax, ymin, ymax tuple is returned .. seealso:: :func:`xlim`, :func:`ylim` For setting the x- and y-limits individually. """ ax = gca() v = ax.axis(*v, **kwargs) draw_if_interactive() return v def xlabel(s, *args, **kwargs): """ Set the *x* axis label of the current axis. Default override is:: override = { 'fontsize' : 'small', 'verticalalignment' : 'top', 'horizontalalignment' : 'center' } .. seealso:: :func:`~matplotlib.pyplot.text` For information on how override and the optional args work """ l = gca().set_xlabel(s, *args, **kwargs) draw_if_interactive() return l def ylabel(s, *args, **kwargs): """ Set the *y* axis label of the current axis. Defaults override is:: override = { 'fontsize' : 'small', 'verticalalignment' : 'center', 'horizontalalignment' : 'right', 'rotation'='vertical' : } .. seealso:: :func:`~matplotlib.pyplot.text` For information on how override and the optional args work. """ l = gca().set_ylabel(s, *args, **kwargs) draw_if_interactive() return l def xlim(*args, **kwargs): """ Get or set the *x* limits of the current axes. :: xmin, xmax = xlim() # return the current xlim xlim( (xmin, xmax) ) # set the xlim to xmin, xmax xlim( xmin, xmax ) # set the xlim to xmin, xmax If you do not specify args, you can pass the xmin and xmax as kwargs, e.g.:: xlim(xmax=3) # adjust the max leaving min unchanged xlim(xmin=1) # adjust the min leaving max unchanged Setting limits turns autoscaling off for the x-axis. The new axis limits are returned as a length 2 tuple. """ ax = gca() if not args and not kwargs: return ax.get_xlim() ret = ax.set_xlim(*args, **kwargs) draw_if_interactive() return ret def ylim(*args, **kwargs): """ Get or set the *y*-limits of the current axes. :: ymin, ymax = ylim() # return the current ylim ylim( (ymin, ymax) ) # set the ylim to ymin, ymax ylim( ymin, ymax ) # set the ylim to ymin, ymax If you do not specify args, you can pass the *ymin* and *ymax* as kwargs, e.g.:: ylim(ymax=3) # adjust the max leaving min unchanged ylim(ymin=1) # adjust the min leaving max unchanged Setting limits turns autoscaling off for the y-axis. The new axis limits are returned as a length 2 tuple. """ ax = gca() if not args and not kwargs: return ax.get_ylim() ret = ax.set_ylim(*args, **kwargs) draw_if_interactive() return ret @docstring.dedent_interpd def xscale(*args, **kwargs): """ Set the scaling of the *x*-axis. call signature:: xscale(scale, **kwargs) The available scales are: %(scale)s Different keywords may be accepted, depending on the scale: %(scale_docs)s """ ax = gca() ax.set_xscale(*args, **kwargs) draw_if_interactive() @docstring.dedent_interpd def yscale(*args, **kwargs): """ Set the scaling of the *y*-axis. call signature:: yscale(scale, **kwargs) The available scales are: %(scale)s Different keywords may be accepted, depending on the scale: %(scale_docs)s """ ax = gca() ax.set_yscale(*args, **kwargs) draw_if_interactive() def xticks(*args, **kwargs): """ Get or set the *x*-limits of the current tick locations and labels. :: # return locs, labels where locs is an array of tick locations and # labels is an array of tick labels. locs, labels = xticks() # set the locations of the xticks xticks( arange(6) ) # set the locations and labels of the xticks xticks( arange(5), ('Tom', 'Dick', 'Harry', 'Sally', 'Sue') ) The keyword args, if any, are :class:`~matplotlib.text.Text` properties. For example, to rotate long labels:: xticks( arange(12), calendar.month_name[1:13], rotation=17 ) """ ax = gca() if len(args)==0: locs = ax.get_xticks() labels = ax.get_xticklabels() elif len(args)==1: locs = ax.set_xticks(args[0]) labels = ax.get_xticklabels() elif len(args)==2: locs = ax.set_xticks(args[0]) labels = ax.set_xticklabels(args[1], **kwargs) else: raise TypeError('Illegal number of arguments to xticks') if len(kwargs): for l in labels: l.update(kwargs) draw_if_interactive() return locs, silent_list('Text xticklabel', labels) def yticks(*args, **kwargs): """ Get or set the *y*-limits of the current tick locations and labels. :: # return locs, labels where locs is an array of tick locations and # labels is an array of tick labels. locs, labels = yticks() # set the locations of the yticks yticks( arange(6) ) # set the locations and labels of the yticks yticks( arange(5), ('Tom', 'Dick', 'Harry', 'Sally', 'Sue') ) The keyword args, if any, are :class:`~matplotlib.text.Text` properties. For example, to rotate long labels:: yticks( arange(12), calendar.month_name[1:13], rotation=45 ) """ ax = gca() if len(args)==0: locs = ax.get_yticks() labels = ax.get_yticklabels() elif len(args)==1: locs = ax.set_yticks(args[0]) labels = ax.get_yticklabels() elif len(args)==2: locs = ax.set_yticks(args[0]) labels = ax.set_yticklabels(args[1], **kwargs) else: raise TypeError('Illegal number of arguments to yticks') if len(kwargs): for l in labels: l.update(kwargs) draw_if_interactive() return ( locs, silent_list('Text yticklabel', labels) ) def minorticks_on(): """ Display minor ticks on the current plot. Displaying minor ticks reduces performance; turn them off using minorticks_off() if drawing speed is a problem. """ gca().minorticks_on() draw_if_interactive() def minorticks_off(): """ Remove minor ticks from the current plot. """ gca().minorticks_off() draw_if_interactive() def rgrids(*args, **kwargs): """ Get or set the radial gridlines on a polar plot. call signatures:: lines, labels = rgrids() lines, labels = rgrids(radii, labels=None, angle=22.5, **kwargs) When called with no arguments, :func:`rgrid` simply returns the tuple (*lines*, *labels*), where *lines* is an array of radial gridlines (:class:`~matplotlib.lines.Line2D` instances) and *labels* is an array of tick labels (:class:`~matplotlib.text.Text` instances). When called with arguments, the labels will appear at the specified radial distances and angles. *labels*, if not *None*, is a len(*radii*) list of strings of the labels to use at each angle. If *labels* is None, the rformatter will be used Examples:: # set the locations of the radial gridlines and labels lines, labels = rgrids( (0.25, 0.5, 1.0) ) # set the locations and labels of the radial gridlines and labels lines, labels = rgrids( (0.25, 0.5, 1.0), ('Tom', 'Dick', 'Harry' ) """ ax = gca() if not isinstance(ax, PolarAxes): raise RuntimeError('rgrids only defined for polar axes') if len(args)==0: lines = ax.yaxis.get_gridlines() labels = ax.yaxis.get_ticklabels() else: lines, labels = ax.set_rgrids(*args, **kwargs) draw_if_interactive() return ( silent_list('Line2D rgridline', lines), silent_list('Text rgridlabel', labels) ) def thetagrids(*args, **kwargs): """ Get or set the theta locations of the gridlines in a polar plot. If no arguments are passed, return a tuple (*lines*, *labels*) where *lines* is an array of radial gridlines (:class:`~matplotlib.lines.Line2D` instances) and *labels* is an array of tick labels (:class:`~matplotlib.text.Text` instances):: lines, labels = thetagrids() Otherwise the syntax is:: lines, labels = thetagrids(angles, labels=None, fmt='%d', frac = 1.1) set the angles at which to place the theta grids (these gridlines are equal along the theta dimension). *angles* is in degrees. *labels*, if not *None*, is a len(angles) list of strings of the labels to use at each angle. If *labels* is *None*, the labels will be ``fmt%angle``. *frac* is the fraction of the polar axes radius at which to place the label (1 is the edge). e.g., 1.05 is outside the axes and 0.95 is inside the axes. Return value is a list of tuples (*lines*, *labels*): - *lines* are :class:`~matplotlib.lines.Line2D` instances - *labels* are :class:`~matplotlib.text.Text` instances. Note that on input, the *labels* argument is a list of strings, and on output it is a list of :class:`~matplotlib.text.Text` instances. Examples:: # set the locations of the radial gridlines and labels lines, labels = thetagrids( range(45,360,90) ) # set the locations and labels of the radial gridlines and labels lines, labels = thetagrids( range(45,360,90), ('NE', 'NW', 'SW','SE') ) """ ax = gca() if not isinstance(ax, PolarAxes): raise RuntimeError('rgrids only defined for polar axes') if len(args)==0: lines = ax.xaxis.get_ticklines() labels = ax.xaxis.get_ticklabels() else: lines, labels = ax.set_thetagrids(*args, **kwargs) draw_if_interactive() return (silent_list('Line2D thetagridline', lines), silent_list('Text thetagridlabel', labels) ) ## Plotting Info ## def plotting(): pass def get_plot_commands(): """ Get a sorted list of all of the plotting commands. """ # This works by searching for all functions in this module and # removing a few hard-coded exclusions, as well as all of the # colormap-setting functions, and anything marked as private with # a preceding underscore. import inspect exclude = set(['colormaps', 'colors', 'connect', 'disconnect', 'get_plot_commands', 'get_current_fig_manager', 'ginput', 'plotting', 'waitforbuttonpress']) exclude |= set(colormaps()) this_module = inspect.getmodule(get_plot_commands) commands = set() for name, obj in globals().items(): if name.startswith('_') or name in exclude: continue if inspect.isfunction(obj) and inspect.getmodule(obj) is this_module: commands.add(name) commands = list(commands) commands.sort() return commands def colors(): """ This is a do-nothing function to provide you with help on how matplotlib handles colors. Commands which take color arguments can use several formats to specify the colors. For the basic built-in colors, you can use a single letter ===== ======= Alias Color ===== ======= 'b' blue 'g' green 'r' red 'c' cyan 'm' magenta 'y' yellow 'k' black 'w' white ===== ======= For a greater range of colors, you have two options. You can specify the color using an html hex string, as in:: color = '#eeefff' or you can pass an R,G,B tuple, where each of R,G,B are in the range [0,1]. You can also use any legal html name for a color, for example:: color = 'red' color = 'burlywood' color = 'chartreuse' The example below creates a subplot with a dark slate gray background:: subplot(111, axisbg=(0.1843, 0.3098, 0.3098)) Here is an example that creates a pale turquoise title:: title('Is this the best color?', color='#afeeee') """ pass def colormaps(): """ Matplotlib provides a number of colormaps, and others can be added using :func:`~matplotlib.cm.register_cmap`. This function documents the built-in colormaps, and will also return a list of all registered colormaps if called. You can set the colormap for an image, pcolor, scatter, etc, using a keyword argument:: imshow(X, cmap=cm.hot) or using the :func:`set_cmap` function:: imshow(X) pyplot.set_cmap('hot') pyplot.set_cmap('jet') In interactive mode, :func:`set_cmap` will update the colormap post-hoc, allowing you to see which one works best for your data. All built-in colormaps can be reversed by appending ``_r``: For instance, ``gray_r`` is the reverse of ``gray``. There are several common color schemes used in visualization: Sequential schemes for unipolar data that progresses from low to high Diverging schemes for bipolar data that emphasizes positive or negative deviations from a central value Cyclic schemes meant for plotting values that wrap around at the endpoints, such as phase angle, wind direction, or time of day Qualitative schemes for nominal data that has no inherent ordering, where color is used only to distinguish categories The base colormaps are derived from those of the same name provided with Matlab: ========= ======================================================= Colormap Description ========= ======================================================= autumn sequential linearly-increasing shades of red-orange-yellow bone sequential increasing black-white color map with a tinge of blue, to emulate X-ray film cool linearly-decreasing shades of cyan-magenta copper sequential increasing shades of black-copper flag repetitive red-white-blue-black pattern (not cyclic at endpoints) gray sequential linearly-increasing black-to-white grayscale hot sequential black-red-yellow-white, to emulate blackbody radiation from an object at increasing temperatures hsv cyclic red-yellow-green-cyan-blue-magenta-red, formed by changing the hue component in the HSV color space jet a spectral map with dark endpoints, blue-cyan-yellow-red; based on a fluid-jet simulation by NCSA [#]_ pink sequential increasing pastel black-pink-white, meant for sepia tone colorization of photographs prism repetitive red-yellow-green-blue-purple-...-green pattern (not cyclic at endpoints) spring linearly-increasing shades of magenta-yellow summer sequential linearly-increasing shades of green-yellow winter linearly-increasing shades of blue-green ========= ======================================================= For the above list only, you can also set the colormap using the corresponding pylab shortcut interface function, similar to Matlab:: imshow(X) hot() jet() The next set of palettes are from the `Yorick scientific visualisation package <http://yorick.sourceforge.net/index.php>`_, an evolution of the GIST package, both by David H. Munro: ============ ======================================================= Colormap Description ============ ======================================================= gist_earth mapmaker's colors from dark blue deep ocean to green lowlands to brown highlands to white mountains gist_heat sequential increasing black-red-orange-white, to emulate blackbody radiation from an iron bar as it grows hotter gist_ncar pseudo-spectral black-blue-green-yellow-red-purple-white colormap from National Center for Atmospheric Research [#]_ gist_rainbow runs through the colors in spectral order from red to violet at full saturation (like *hsv* but not cyclic) gist_stern "Stern special" color table from Interactive Data Language software ============ ======================================================= The following colormaps are based on the `ColorBrewer <http://colorbrewer.org>`_ color specifications and designs developed by Cynthia Brewer: ColorBrewer Diverging (luminance is highest at the midpoint, and decreases towards differently-colored endpoints): ======== =================================== Colormap Description ======== =================================== BrBG brown, white, blue-green PiYG pink, white, yellow-green PRGn purple, white, green PuOr orange, white, purple RdBu red, white, blue RdGy red, white, gray RdYlBu red, yellow, blue RdYlGn red, yellow, green Spectral red, orange, yellow, green, blue ======== =================================== ColorBrewer Sequential (luminance decreases monotonically): ======== ==================================== Colormap Description ======== ==================================== Blues white to dark blue BuGn white, light blue, dark green BuPu white, light blue, dark purple GnBu white, light green, dark blue Greens white to dark green Greys white to black (not linear) Oranges white, orange, dark brown OrRd white, orange, dark red PuBu white, light purple, dark blue PuBuGn white, light purple, dark green PuRd white, light purple, dark red Purples white to dark purple RdPu white, pink, dark purple Reds white to dark red YlGn light yellow, dark green YlGnBu light yellow, light green, dark blue YlOrBr light yellow, orange, dark brown YlOrRd light yellow, orange, dark red ======== ==================================== ColorBrewer Qualitative: (For plotting nominal data, :class:`ListedColormap` should be used, not :class:`LinearSegmentedColormap`. Different sets of colors are recommended for different numbers of categories. These continuous versions of the qualitative schemes may be removed or converted in the future.) * Accent * Dark2 * Paired * Pastel1 * Pastel2 * Set1 * Set2 * Set3 Other miscellaneous schemes: ============= ======================================================= Colormap Description ============= ======================================================= afmhot sequential black-orange-yellow-white blackbody spectrum, commonly used in atomic force microscopy brg blue-red-green bwr diverging blue-white-red coolwarm diverging blue-gray-red, meant to avoid issues with 3D shading, color blindness, and ordering of colors [#]_ CMRmap "Default colormaps on color images often reproduce to confusing grayscale images. The proposed colormap maintains an aesthetically pleasing color image that automatically reproduces to a monotonic grayscale with discrete, quantifiable saturation levels." [#]_ cubehelix Unlike most other color schemes cubehelix was designed by D.A. Green to be monotonically increasing in terms of perceived brightness. Also, when printed on a black and white postscript printer, the scheme results in a greyscale with monotonically increasing brightness. This color scheme is named cubehelix because the r,g,b values produced can be visualised as a squashed helix around the diagonal in the r,g,b color cube. gnuplot gnuplot's traditional pm3d scheme (black-blue-red-yellow) gnuplot2 sequential color printable as gray (black-blue-violet-yellow-white) ocean green-blue-white rainbow spectral purple-blue-green-yellow-orange-red colormap with diverging luminance seismic diverging blue-white-red nipy_spectral black-purple-blue-green-yellow-red-white spectrum, originally from the Neuroimaging in Python project terrain mapmaker's colors, blue-green-yellow-brown-white, originally from IGOR Pro ============= ======================================================= The following colormaps are redundant and may be removed in future versions. It's recommended to use the names in the descriptions instead, which produce identical output: ========= ======================================================= Colormap Description ========= ======================================================= gist_gray identical to *gray* gist_yarg identical to *gray_r* binary identical to *gray_r* spectral identical to *nipy_spectral* [#]_ ========= ======================================================= .. rubric:: Footnotes .. [#] Rainbow colormaps, ``jet`` in particular, are considered a poor choice for scientific visualization by many researchers: `Rainbow Color Map (Still) Considered Harmful <http://www.jwave.vt.edu/%7Erkriz/Projects/create_color_table/color_07.pdf>`_ .. [#] Resembles "BkBlAqGrYeOrReViWh200" from NCAR Command Language. See `Color Table Gallery <http://www.ncl.ucar.edu/Document/Graphics/color_table_gallery.shtml>`_ .. [#] See `Diverging Color Maps for Scientific Visualization <http://www.cs.unm.edu/~kmorel/documents/ColorMaps/>`_ by Kenneth Moreland. .. [#] See `A Color Map for Effective Black-and-White Rendering of Color-Scale Images <http://www.mathworks.com/matlabcentral/fileexchange/2662-cmrmap-m>`_ by Carey Rappaport .. [#] Changed to distinguish from ColorBrewer's *Spectral* map. :func:`spectral` still works, but ``set_cmap('nipy_spectral')`` is recommended for clarity. """ return sorted(cm.cmap_d.keys()) def _setup_pyplot_info_docstrings(): """ Generates the plotting and docstring. These must be done after the entire module is imported, so it is called from the end of this module, which is generated by boilerplate.py. """ # Generate the plotting docstring import re def pad(s, l): """Pad string *s* to length *l*.""" if l < len(s): return s[:l] return s + ' ' * (l - len(s)) commands = get_plot_commands() first_sentence = re.compile("(?:\s*).+?\.(?:\s+|$)", flags=re.DOTALL) # Collect the first sentence of the docstring for all of the # plotting commands. rows = [] max_name = 0 max_summary = 0 for name in commands: doc = globals()[name].__doc__ summary = '' if doc is not None: match = first_sentence.match(doc) if match is not None: summary = match.group(0).strip().replace('\n', ' ') name = '`%s`' % name rows.append([name, summary]) max_name = max(max_name, len(name)) max_summary = max(max_summary, len(summary)) lines = [] sep = '=' * max_name + ' ' + '=' * max_summary lines.append(sep) lines.append(' '.join([pad("Function", max_name), pad("Description", max_summary)])) lines.append(sep) for name, summary in rows: lines.append(' '.join([pad(name, max_name), pad(summary, max_summary)])) lines.append(sep) plotting.__doc__ = '\n'.join(lines) ## Plotting part 1: manually generated functions and wrappers ## def colorbar(mappable=None, cax=None, ax=None, **kw): if mappable is None: mappable = gci() if mappable is None: raise RuntimeError('No mappable was found to use for colorbar ' 'creation. First define a mappable such as ' 'an image (with imshow) or a contour set (' 'with contourf).') if ax is None: ax = gca() ret = gcf().colorbar(mappable, cax = cax, ax=ax, **kw) draw_if_interactive() return ret colorbar.__doc__ = matplotlib.colorbar.colorbar_doc def clim(vmin=None, vmax=None): """ Set the color limits of the current image. To apply clim to all axes images do:: clim(0, 0.5) If either *vmin* or *vmax* is None, the image min/max respectively will be used for color scaling. If you want to set the clim of multiple images, use, for example:: for im in gca().get_images(): im.set_clim(0, 0.05) """ im = gci() if im is None: raise RuntimeError('You must first define an image, eg with imshow') im.set_clim(vmin, vmax) draw_if_interactive() def set_cmap(cmap): """ Set the default colormap. Applies to the current image if any. See help(colormaps) for more information. *cmap* must be a :class:`~matplotlib.colors.Colormap` instance, or the name of a registered colormap. See :func:`matplotlib.cm.register_cmap` and :func:`matplotlib.cm.get_cmap`. """ cmap = cm.get_cmap(cmap) rc('image', cmap=cmap.name) im = gci() if im is not None: im.set_cmap(cmap) draw_if_interactive() @docstring.copy_dedent(_imread) def imread(*args, **kwargs): return _imread(*args, **kwargs) @docstring.copy_dedent(_imsave) def imsave(*args, **kwargs): return _imsave(*args, **kwargs) def matshow(A, fignum=None, **kw): """ Display an array as a matrix in a new figure window. The origin is set at the upper left hand corner and rows (first dimension of the array) are displayed horizontally. The aspect ratio of the figure window is that of the array, unless this would make an excessively short or narrow figure. Tick labels for the xaxis are placed on top. With the exception of *fignum*, keyword arguments are passed to :func:`~matplotlib.pyplot.imshow`. You may set the *origin* kwarg to "lower" if you want the first row in the array to be at the bottom instead of the top. *fignum*: [ None | integer | False ] By default, :func:`matshow` creates a new figure window with automatic numbering. If *fignum* is given as an integer, the created figure will use this figure number. Because of how :func:`matshow` tries to set the figure aspect ratio to be the one of the array, if you provide the number of an already existing figure, strange things may happen. If *fignum* is *False* or 0, a new figure window will **NOT** be created. """ A = np.asanyarray(A) if fignum is False or fignum is 0: ax = gca() else: # Extract actual aspect ratio of array and make appropriately sized figure fig = figure(fignum, figsize=figaspect(A)) ax = fig.add_axes([0.15, 0.09, 0.775, 0.775]) im = ax.matshow(A, **kw) sci(im) draw_if_interactive() return im def polar(*args, **kwargs): """ Make a polar plot. call signature:: polar(theta, r, **kwargs) Multiple *theta*, *r* arguments are supported, with format strings, as in :func:`~matplotlib.pyplot.plot`. """ ax = gca(polar=True) ret = ax.plot(*args, **kwargs) draw_if_interactive() return ret def plotfile(fname, cols=(0,), plotfuncs=None, comments='#', skiprows=0, checkrows=5, delimiter=',', names=None, subplots=True, newfig=True, **kwargs): """ Plot the data in in a file. *cols* is a sequence of column identifiers to plot. An identifier is either an int or a string. If it is an int, it indicates the column number. If it is a string, it indicates the column header. matplotlib will make column headers lower case, replace spaces with underscores, and remove all illegal characters; so ``'Adj Close*'`` will have name ``'adj_close'``. - If len(*cols*) == 1, only that column will be plotted on the *y* axis. - If len(*cols*) > 1, the first element will be an identifier for data for the *x* axis and the remaining elements will be the column indexes for multiple subplots if *subplots* is *True* (the default), or for lines in a single subplot if *subplots* is *False*. *plotfuncs*, if not *None*, is a dictionary mapping identifier to an :class:`~matplotlib.axes.Axes` plotting function as a string. Default is 'plot', other choices are 'semilogy', 'fill', 'bar', etc. You must use the same type of identifier in the *cols* vector as you use in the *plotfuncs* dictionary, e.g., integer column numbers in both or column names in both. If *subplots* is *False*, then including any function such as 'semilogy' that changes the axis scaling will set the scaling for all columns. *comments*, *skiprows*, *checkrows*, *delimiter*, and *names* are all passed on to :func:`matplotlib.pylab.csv2rec` to load the data into a record array. If *newfig* is *True*, the plot always will be made in a new figure; if *False*, it will be made in the current figure if one exists, else in a new figure. kwargs are passed on to plotting functions. Example usage:: # plot the 2nd and 4th column against the 1st in two subplots plotfile(fname, (0,1,3)) # plot using column names; specify an alternate plot type for volume plotfile(fname, ('date', 'volume', 'adj_close'), plotfuncs={'volume': 'semilogy'}) Note: plotfile is intended as a convenience for quickly plotting data from flat files; it is not intended as an alternative interface to general plotting with pyplot or matplotlib. """ if newfig: fig = figure() else: fig = gcf() if len(cols)<1: raise ValueError('must have at least one column of data') if plotfuncs is None: plotfuncs = dict() r = mlab.csv2rec(fname, comments=comments, skiprows=skiprows, checkrows=checkrows, delimiter=delimiter, names=names) def getname_val(identifier): 'return the name and column data for identifier' if is_string_like(identifier): return identifier, r[identifier] elif is_numlike(identifier): name = r.dtype.names[int(identifier)] return name, r[name] else: raise TypeError('identifier must be a string or integer') xname, x = getname_val(cols[0]) ynamelist = [] if len(cols)==1: ax1 = fig.add_subplot(1,1,1) funcname = plotfuncs.get(cols[0], 'plot') func = getattr(ax1, funcname) func(x, **kwargs) ax1.set_ylabel(xname) else: N = len(cols) for i in range(1,N): if subplots: if i==1: ax = ax1 = fig.add_subplot(N-1,1,i) else: ax = fig.add_subplot(N-1,1,i, sharex=ax1) elif i==1: ax = fig.add_subplot(1,1,1) yname, y = getname_val(cols[i]) ynamelist.append(yname) funcname = plotfuncs.get(cols[i], 'plot') func = getattr(ax, funcname) func(x, y, **kwargs) if subplots: ax.set_ylabel(yname) if ax.is_last_row(): ax.set_xlabel(xname) else: ax.set_xlabel('') if not subplots: ax.legend(ynamelist, loc='best') if xname=='date': fig.autofmt_xdate() draw_if_interactive() def _autogen_docstring(base): """Autogenerated wrappers will get their docstring from a base function with an addendum.""" msg = "\n\nAdditional kwargs: hold = [True|False] overrides default hold state" addendum = docstring.Appender(msg, '\n\n') return lambda func: addendum(docstring.copy_dedent(base)(func)) # This function cannot be generated by boilerplate.py because it may # return an image or a line. @_autogen_docstring(Axes.spy) def spy(Z, precision=0, marker=None, markersize=None, aspect='equal', hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.spy(Z, precision, marker, markersize, aspect, **kwargs) draw_if_interactive() finally: ax.hold(washold) if isinstance(ret, cm.ScalarMappable): sci(ret) return ret ################# REMAINING CONTENT GENERATED BY boilerplate.py ############## # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.acorr) def acorr(x, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.acorr(x, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.arrow) def arrow(x, y, dx, dy, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.arrow(x, y, dx, dy, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.axhline) def axhline(y=0, xmin=0, xmax=1, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.axhline(y=y, xmin=xmin, xmax=xmax, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.axhspan) def axhspan(ymin, ymax, xmin=0, xmax=1, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.axhspan(ymin, ymax, xmin=xmin, xmax=xmax, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.axvline) def axvline(x=0, ymin=0, ymax=1, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.axvline(x=x, ymin=ymin, ymax=ymax, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.axvspan) def axvspan(xmin, xmax, ymin=0, ymax=1, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.axvspan(xmin, xmax, ymin=ymin, ymax=ymax, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.bar) def bar(left, height, width=0.8, bottom=None, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.bar(left, height, width=width, bottom=bottom, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.barh) def barh(bottom, width, height=0.8, left=None, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.barh(bottom, width, height=height, left=left, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.broken_barh) def broken_barh(xranges, yrange, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.broken_barh(xranges, yrange, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.boxplot) def boxplot(x, notch=False, sym='b+', vert=True, whis=1.5, positions=None, widths=None, patch_artist=False, bootstrap=None, usermedians=None, conf_intervals=None, hold=None): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.boxplot(x, notch=notch, sym=sym, vert=vert, whis=whis, positions=positions, widths=widths, patch_artist=patch_artist, bootstrap=bootstrap, usermedians=usermedians, conf_intervals=conf_intervals) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.cohere) def cohere(x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.cohere(x, y, NFFT=NFFT, Fs=Fs, Fc=Fc, detrend=detrend, window=window, noverlap=noverlap, pad_to=pad_to, sides=sides, scale_by_freq=scale_by_freq, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.clabel) def clabel(CS, *args, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kwargs.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.clabel(CS, *args, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.contour) def contour(*args, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kwargs.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.contour(*args, **kwargs) draw_if_interactive() finally: ax.hold(washold) if ret._A is not None: sci(ret) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.contourf) def contourf(*args, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kwargs.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.contourf(*args, **kwargs) draw_if_interactive() finally: ax.hold(washold) if ret._A is not None: sci(ret) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.csd) def csd(x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.csd(x, y, NFFT=NFFT, Fs=Fs, Fc=Fc, detrend=detrend, window=window, noverlap=noverlap, pad_to=pad_to, sides=sides, scale_by_freq=scale_by_freq, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.errorbar) def errorbar(x, y, yerr=None, xerr=None, fmt='-', ecolor=None, elinewidth=None, capsize=3, barsabove=False, lolims=False, uplims=False, xlolims=False, xuplims=False, errorevery=1, capthick=None, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.errorbar(x, y, yerr=yerr, xerr=xerr, fmt=fmt, ecolor=ecolor, elinewidth=elinewidth, capsize=capsize, barsabove=barsabove, lolims=lolims, uplims=uplims, xlolims=xlolims, xuplims=xuplims, errorevery=errorevery, capthick=capthick, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.eventplot) def eventplot(positions, orientation='horizontal', lineoffsets=1, linelengths=1, linewidths=None, colors=None, linestyles='solid', hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.eventplot(positions, orientation=orientation, lineoffsets=lineoffsets, linelengths=linelengths, linewidths=linewidths, colors=colors, linestyles=linestyles, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.fill) def fill(*args, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kwargs.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.fill(*args, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.fill_between) def fill_between(x, y1, y2=0, where=None, interpolate=False, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.fill_between(x, y1, y2=y2, where=where, interpolate=interpolate, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.fill_betweenx) def fill_betweenx(y, x1, x2=0, where=None, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.fill_betweenx(y, x1, x2=x2, where=where, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.hexbin) def hexbin(x, y, C=None, gridsize=100, bins=None, xscale='linear', yscale='linear', extent=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, edgecolors='none', reduce_C_function=np.mean, mincnt=None, marginals=False, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.hexbin(x, y, C=C, gridsize=gridsize, bins=bins, xscale=xscale, yscale=yscale, extent=extent, cmap=cmap, norm=norm, vmin=vmin, vmax=vmax, alpha=alpha, linewidths=linewidths, edgecolors=edgecolors, reduce_C_function=reduce_C_function, mincnt=mincnt, marginals=marginals, **kwargs) draw_if_interactive() finally: ax.hold(washold) sci(ret) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.hist) def hist(x, bins=10, range=None, normed=False, weights=None, cumulative=False, bottom=None, histtype='bar', align='mid', orientation='vertical', rwidth=None, log=False, color=None, label=None, stacked=False, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.hist(x, bins=bins, range=range, normed=normed, weights=weights, cumulative=cumulative, bottom=bottom, histtype=histtype, align=align, orientation=orientation, rwidth=rwidth, log=log, color=color, label=label, stacked=stacked, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.hist2d) def hist2d(x, y, bins=10, range=None, normed=False, weights=None, cmin=None, cmax=None, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.hist2d(x, y, bins=bins, range=range, normed=normed, weights=weights, cmin=cmin, cmax=cmax, **kwargs) draw_if_interactive() finally: ax.hold(washold) sci(ret[-1]) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.hlines) def hlines(y, xmin, xmax, colors='k', linestyles='solid', label='', hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.hlines(y, xmin, xmax, colors=colors, linestyles=linestyles, label=label, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.imshow) def imshow(X, cmap=None, norm=None, aspect=None, interpolation=None, alpha=None, vmin=None, vmax=None, origin=None, extent=None, shape=None, filternorm=1, filterrad=4.0, imlim=None, resample=None, url=None, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.imshow(X, cmap=cmap, norm=norm, aspect=aspect, interpolation=interpolation, alpha=alpha, vmin=vmin, vmax=vmax, origin=origin, extent=extent, shape=shape, filternorm=filternorm, filterrad=filterrad, imlim=imlim, resample=resample, url=url, **kwargs) draw_if_interactive() finally: ax.hold(washold) sci(ret) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.loglog) def loglog(*args, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kwargs.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.loglog(*args, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.pcolor) def pcolor(*args, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kwargs.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.pcolor(*args, **kwargs) draw_if_interactive() finally: ax.hold(washold) sci(ret) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.pcolormesh) def pcolormesh(*args, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kwargs.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.pcolormesh(*args, **kwargs) draw_if_interactive() finally: ax.hold(washold) sci(ret) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.pie) def pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=None, radius=None, hold=None): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.pie(x, explode=explode, labels=labels, colors=colors, autopct=autopct, pctdistance=pctdistance, shadow=shadow, labeldistance=labeldistance, startangle=startangle, radius=radius) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.plot) def plot(*args, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kwargs.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.plot(*args, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.plot_date) def plot_date(x, y, fmt='bo', tz=None, xdate=True, ydate=False, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.plot_date(x, y, fmt=fmt, tz=tz, xdate=xdate, ydate=ydate, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.psd) def psd(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.psd(x, NFFT=NFFT, Fs=Fs, Fc=Fc, detrend=detrend, window=window, noverlap=noverlap, pad_to=pad_to, sides=sides, scale_by_freq=scale_by_freq, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.quiver) def quiver(*args, **kw): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kw.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.quiver(*args, **kw) draw_if_interactive() finally: ax.hold(washold) sci(ret) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.quiverkey) def quiverkey(*args, **kw): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kw.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.quiverkey(*args, **kw) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.scatter) def scatter(x, y, s=20, c='b', marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.scatter(x, y, s=s, c=c, marker=marker, cmap=cmap, norm=norm, vmin=vmin, vmax=vmax, alpha=alpha, linewidths=linewidths, verts=verts, **kwargs) draw_if_interactive() finally: ax.hold(washold) sci(ret) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.semilogx) def semilogx(*args, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kwargs.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.semilogx(*args, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.semilogy) def semilogy(*args, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kwargs.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.semilogy(*args, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.specgram) def specgram(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=128, cmap=None, xextent=None, pad_to=None, sides='default', scale_by_freq=None, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.specgram(x, NFFT=NFFT, Fs=Fs, Fc=Fc, detrend=detrend, window=window, noverlap=noverlap, cmap=cmap, xextent=xextent, pad_to=pad_to, sides=sides, scale_by_freq=scale_by_freq, **kwargs) draw_if_interactive() finally: ax.hold(washold) sci(ret[-1]) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.stackplot) def stackplot(x, *args, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kwargs.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.stackplot(x, *args, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.stem) def stem(*args, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kwargs.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.stem(*args, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.step) def step(x, y, *args, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kwargs.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.step(x, y, *args, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.streamplot) def streamplot(x, y, u, v, density=1, linewidth=None, color=None, cmap=None, norm=None, arrowsize=1, arrowstyle='-|>', minlength=0.1, transform=None, hold=None): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.streamplot(x, y, u, v, density=density, linewidth=linewidth, color=color, cmap=cmap, norm=norm, arrowsize=arrowsize, arrowstyle=arrowstyle, minlength=minlength, transform=transform) draw_if_interactive() finally: ax.hold(washold) sci(ret.lines) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.tricontour) def tricontour(*args, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kwargs.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.tricontour(*args, **kwargs) draw_if_interactive() finally: ax.hold(washold) if ret._A is not None: sci(ret) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.tricontourf) def tricontourf(*args, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kwargs.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.tricontourf(*args, **kwargs) draw_if_interactive() finally: ax.hold(washold) if ret._A is not None: sci(ret) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.tripcolor) def tripcolor(*args, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kwargs.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.tripcolor(*args, **kwargs) draw_if_interactive() finally: ax.hold(washold) sci(ret) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.triplot) def triplot(*args, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kwargs.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.triplot(*args, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.vlines) def vlines(x, ymin, ymax, colors='k', linestyles='solid', label='', hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.vlines(x, ymin, ymax, colors=colors, linestyles=linestyles, label=label, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.xcorr) def xcorr(x, y, normed=True, detrend=mlab.detrend_none, usevlines=True, maxlags=10, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.xcorr(x, y, normed=normed, detrend=detrend, usevlines=usevlines, maxlags=maxlags, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @_autogen_docstring(Axes.barbs) def barbs(*args, **kw): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kw.pop('hold', None) if hold is not None: ax.hold(hold) try: ret = ax.barbs(*args, **kw) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @docstring.copy_dedent(Axes.cla) def cla(): ret = gca().cla() draw_if_interactive() return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @docstring.copy_dedent(Axes.grid) def grid(b=None, which='major', axis='both', **kwargs): ret = gca().grid(b=b, which=which, axis=axis, **kwargs) draw_if_interactive() return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @docstring.copy_dedent(Axes.legend) def legend(*args, **kwargs): ret = gca().legend(*args, **kwargs) draw_if_interactive() return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @docstring.copy_dedent(Axes.table) def table(**kwargs): ret = gca().table(**kwargs) draw_if_interactive() return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @docstring.copy_dedent(Axes.text) def text(x, y, s, fontdict=None, withdash=False, **kwargs): ret = gca().text(x, y, s, fontdict=fontdict, withdash=withdash, **kwargs) draw_if_interactive() return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @docstring.copy_dedent(Axes.annotate) def annotate(*args, **kwargs): ret = gca().annotate(*args, **kwargs) draw_if_interactive() return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @docstring.copy_dedent(Axes.ticklabel_format) def ticklabel_format(**kwargs): ret = gca().ticklabel_format(**kwargs) draw_if_interactive() return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @docstring.copy_dedent(Axes.locator_params) def locator_params(axis='both', tight=None, **kwargs): ret = gca().locator_params(axis=axis, tight=tight, **kwargs) draw_if_interactive() return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @docstring.copy_dedent(Axes.tick_params) def tick_params(axis='both', **kwargs): ret = gca().tick_params(axis=axis, **kwargs) draw_if_interactive() return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @docstring.copy_dedent(Axes.margins) def margins(*args, **kw): ret = gca().margins(*args, **kw) draw_if_interactive() return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost @docstring.copy_dedent(Axes.autoscale) def autoscale(enable=True, axis='both', tight=None): ret = gca().autoscale(enable=enable, axis=axis, tight=tight) draw_if_interactive() return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def autumn(): ''' set the default colormap to autumn and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='autumn') im = gci() if im is not None: im.set_cmap(cm.autumn) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def bone(): ''' set the default colormap to bone and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='bone') im = gci() if im is not None: im.set_cmap(cm.bone) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def cool(): ''' set the default colormap to cool and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='cool') im = gci() if im is not None: im.set_cmap(cm.cool) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def copper(): ''' set the default colormap to copper and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='copper') im = gci() if im is not None: im.set_cmap(cm.copper) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def flag(): ''' set the default colormap to flag and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='flag') im = gci() if im is not None: im.set_cmap(cm.flag) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def gray(): ''' set the default colormap to gray and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='gray') im = gci() if im is not None: im.set_cmap(cm.gray) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def hot(): ''' set the default colormap to hot and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='hot') im = gci() if im is not None: im.set_cmap(cm.hot) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def hsv(): ''' set the default colormap to hsv and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='hsv') im = gci() if im is not None: im.set_cmap(cm.hsv) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def jet(): ''' set the default colormap to jet and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='jet') im = gci() if im is not None: im.set_cmap(cm.jet) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def pink(): ''' set the default colormap to pink and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='pink') im = gci() if im is not None: im.set_cmap(cm.pink) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def prism(): ''' set the default colormap to prism and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='prism') im = gci() if im is not None: im.set_cmap(cm.prism) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def spring(): ''' set the default colormap to spring and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='spring') im = gci() if im is not None: im.set_cmap(cm.spring) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def summer(): ''' set the default colormap to summer and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='summer') im = gci() if im is not None: im.set_cmap(cm.summer) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def winter(): ''' set the default colormap to winter and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='winter') im = gci() if im is not None: im.set_cmap(cm.winter) draw_if_interactive() # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost def spectral(): ''' set the default colormap to spectral and apply to current image if any. See help(colormaps) for more information ''' rc('image', cmap='spectral') im = gci() if im is not None: im.set_cmap(cm.spectral) draw_if_interactive() _setup_pyplot_info_docstrings()
unlicense
ebolyen/qiime2
qiime2/metadata.py
1
11345
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2017, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import itertools import os.path import sqlite3 import uuid import pandas as pd class Metadata: def __init__(self, dataframe): # Not using DataFrame.empty because empty columns are allowed. if dataframe.index.empty: raise ValueError("Metadata is empty, there must be at least one " "ID associated with it.") # `/` and `\0` aren't permitted because they are invalid filename # characters on *nix filesystems. The remaining values aren't permitted # because they *could* be misinterpreted by a shell (e.g. `*`, `|`). illegal_chars = ['/', '\0', '\\', '*', '<', '>', '?', '|', '$'] chars_for_msg = ", ".join("%r" % i for i in illegal_chars) illegal_chars = set(illegal_chars) for (axis, label) in [(dataframe.columns, 'category label'), (dataframe.index, 'index')]: # First check the axis dtype if axis.dtype_str not in ['object', 'str']: msg = "Non-string Metadata %s values detected" % label raise ValueError(invalid_metadata_template % msg) # Then check for invalid characters along axis for value in axis: if illegal_chars & set(value): msg = "Invalid characters (e.g. %s) detected in " \ "metadata %s: %r" % (chars_for_msg, label, value) raise ValueError(invalid_metadata_template % msg) # Finally, ensure unique values along axis if len(axis) != len(set(axis)): msg = "Duplicate Metadata %s values detected" % label raise ValueError(invalid_metadata_template % msg) self._dataframe = dataframe self._artifacts = [] def __repr__(self): return repr(self._dataframe) def _repr_html_(self): return self._dataframe._repr_html_() def __eq__(self, other): return ( isinstance(other, self.__class__) and self._artifacts == other._artifacts and self._dataframe.equals(other._dataframe) ) def __ne__(self, other): return not (self == other) @property def artifacts(self): return self._artifacts @classmethod def from_artifact(cls, artifact): """ Parameters ---------- artifact: qiime2.Artifact Loaded artifact object. Returns ------- qiime2.Metadata """ if not artifact.has_metadata(): raise ValueError('Artifact has no metadata.') md = artifact.view(cls) md._artifacts.append(artifact) return md @classmethod def load(cls, path): if not os.path.exists(path): raise OSError( "Metadata file %s doesn't exist or isn't accessible (e.g., " "due to incompatible file permissions)." % path) read_csv_kwargs = {} with open(path, 'r') as fh: peek = fh.readline().rstrip('\n') if peek.startswith('#SampleID'): header = peek.split('\t') read_csv_kwargs = {'header': None, 'names': header} try: df = pd.read_csv(path, sep='\t', dtype=object, comment='#', skip_blank_lines=True, **read_csv_kwargs) df.set_index(df.columns[0], drop=True, append=False, inplace=True) except (pd.io.common.CParserError, KeyError): msg = 'Metadata file format is invalid for file %s' % path raise ValueError(invalid_metadata_template % msg) return cls(df) def merge(self, *others): """Merge this ``Metadata`` object with other ``Metadata`` objects. Returns a new ``Metadata`` object containing the merged contents of this ``Metadata`` object and `others`. The merge is not in-place and will always return a **new** merged ``Metadata`` object. The merge will include only those IDs that are shared across **all** ``Metadata`` objects being merged (i.e. the merge is an *inner join*). Each metadata category (i.e. column) being merged must be unique; merging metadata with overlapping categories will result in an error. Parameters ---------- others : tuple Zero or more ``Metadata`` objects to merge with this ``Metadata`` object. Returns ------- Metadata New object containing merged metadata. The merged IDs will be in the same relative order as the IDs in this ``Metadata`` object after performing the inner join. The merged category order (i.e. column order) will match the category order of ``Metadata`` objects being merged from left to right. Notes ----- The merged metadata object tracks all source artifacts that it was built from to preserve provenance (i.e. the ``.artifacts`` property on all ``Metadata`` objects is merged). """ dfs = [] columns = [] artifacts = [] for md in itertools.chain([self], others): df = md._dataframe dfs.append(df) columns.extend(df.columns.tolist()) artifacts.extend(md.artifacts) columns = pd.Index(columns) if columns.has_duplicates: raise ValueError( "Cannot merge metadata with overlapping categories " "(i.e. overlapping columns). The following categories " "overlap: %s" % ', '.join([repr(e) for e in columns.get_duplicates()])) merged_df = dfs[0].join(dfs[1:], how='inner') # Not using DataFrame.empty because empty columns are allowed. if merged_df.index.empty: raise ValueError( "Cannot merge because there are no IDs shared across metadata " "objects.") merged_md = self.__class__(merged_df) merged_md._artifacts = artifacts return merged_md def get_category(self, *names): if len(names) != 1: # TODO: Make this work with multiple columns as a single series raise NotImplementedError("Extracting multiple columns is not yet" " supported.") try: result = MetadataCategory(self._dataframe[names[0]]) except KeyError: raise KeyError( '%s is not a category in metadata file. Available ' 'categories are %s.' % (names[0], ', '.join(self._dataframe.columns))) else: result._artifacts.extend(self.artifacts) return result def to_dataframe(self): return self._dataframe.copy() def ids(self, where=None): """Retrieve IDs matching search criteria. Parameters ---------- where : str, optional SQLite WHERE clause specifying criteria IDs must meet to be included in the results. All IDs are included by default. Returns ------- set IDs matching search criteria specified in `where`. """ if where is None: return set(self._dataframe.index) conn = sqlite3.connect(':memory:') conn.row_factory = lambda cursor, row: row[0] # If the index isn't named, generate a unique random column name to # store it under in the SQL table. If we don't supply a column name for # the unnamed index, pandas will choose the name 'index', and if that # name conflicts with existing columns, the name will be 'level_0', # 'level_1', etc. Instead of trying to guess what pandas named the # index column (since this isn't documented behavior), explicitly # generate an index column name. index_column = self._dataframe.index.name if index_column is None: index_column = self._generate_column_name() self._dataframe.to_sql('metadata', conn, index=True, index_label=index_column) c = conn.cursor() # In general we wouldn't want to format our query in this way because # it leaves us open to sql injection, but it seems acceptable here for # a few reasons: # 1) This is a throw-away database which we're just creating to have # access to the query language, so any malicious behavior wouldn't # impact any data that isn't temporary # 2) The substitution syntax recommended in the docs doesn't allow # us to specify complex `where` statements, which is what we need to # do here. For example, we need to specify things like: # WHERE Subject='subject-1' AND SampleType='gut' # but their qmark/named-style syntaxes only supports substition of # variables, such as: # WHERE Subject=? # 3) sqlite3.Cursor.execute will only execute a single statement so # inserting multiple statements # (e.g., "Subject='subject-1'; DROP...") will result in an # OperationalError being raised. query = ('SELECT "{0}" FROM metadata WHERE {1} GROUP BY "{0}" ' 'ORDER BY "{0}";'.format(index_column, where)) try: c.execute(query) except sqlite3.OperationalError: conn.close() raise ValueError("Selection of IDs failed with query:\n %s" % query) ids = set(c.fetchall()) conn.close() return ids def _generate_column_name(self): """Generate column name that doesn't clash with current columns.""" while True: name = str(uuid.uuid4()) if name not in self._dataframe.columns: return name class MetadataCategory: def __init__(self, series): self._series = series self._artifacts = [] def __repr__(self): return repr(self._series) @classmethod def load(cls, path, category): return Metadata.load(path).get_category(category) def to_series(self): return self._series.copy() @property def artifacts(self): return self._artifacts @classmethod def from_artifact(cls, artifact, category): """ Parameters ---------- artifact: qiime2.Artifact Loaded artifact object. Returns ------- qiime.Metadata """ return Metadata.from_artifact(artifact).get_category(category) invalid_metadata_template = "%s. There may be more errors present in this " \ "metadata. Currently only QIIME 1 sample/feature metadata mapping files " \ "are officially supported. Sample metadata files can be validated using " \ "Keemei: http://keemei.qiime.org."
bsd-3-clause
SalemAmeen/bayespy
bayespy/demos/stochastic_inference.py
5
5013
################################################################################ # Copyright (C) 2015 Jaakko Luttinen # # This file is licensed under the MIT License. ################################################################################ """ Stochastic variational inference on mixture of Gaussians Stochastic variational inference is a scalable variational Bayesian learning method which utilizes stochastic gradient. For details, see :cite:`Hoffman:2013`. """ import numpy as np import scipy import matplotlib.pyplot as plt import bayespy.plot as myplt from bayespy.utils import misc from bayespy.utils import random from bayespy.nodes import Gaussian, Categorical, Mixture, Dirichlet from bayespy.inference.vmp.vmp import VB from bayespy.inference.vmp import transformations import bayespy.plot as bpplt from bayespy.demos import pca def run(N=100000, N_batch=50, seed=42, maxiter=100, plot=True): """ Run deterministic annealing demo for 1-D Gaussian mixture. """ if seed is not None: np.random.seed(seed) # Number of clusters in the model K = 20 # Dimensionality of the data D = 5 # Generate data K_true = 10 spread = 5 means = spread * np.random.randn(K_true, D) z = random.categorical(np.ones(K_true), size=N) data = np.empty((N,D)) for n in range(N): data[n] = means[z[n]] + np.random.randn(D) # # Standard VB-EM algorithm # # Full model mu = Gaussian(np.zeros(D), np.identity(D), plates=(K,), name='means') alpha = Dirichlet(np.ones(K), name='class probabilities') Z = Categorical(alpha, plates=(N,), name='classes') Y = Mixture(Z, Gaussian, mu, np.identity(D), name='observations') # Break symmetry with random initialization of the means mu.initialize_from_random() # Put the data in Y.observe(data) # Run inference Q = VB(Y, Z, mu, alpha) Q.save(mu) Q.update(repeat=maxiter) if plot: bpplt.pyplot.plot(np.cumsum(Q.cputime), Q.L, 'k-') max_cputime = np.sum(Q.cputime[~np.isnan(Q.cputime)]) # # Stochastic variational inference # # Construct smaller model (size of the mini-batch) mu = Gaussian(np.zeros(D), np.identity(D), plates=(K,), name='means') alpha = Dirichlet(np.ones(K), name='class probabilities') Z = Categorical(alpha, plates=(N_batch,), plates_multiplier=(N/N_batch,), name='classes') Y = Mixture(Z, Gaussian, mu, np.identity(D), name='observations') # Break symmetry with random initialization of the means mu.initialize_from_random() # Inference engine Q = VB(Y, Z, mu, alpha, autosave_filename=Q.autosave_filename) Q.load(mu) # Because using mini-batches, messages need to be multiplied appropriately print("Stochastic variational inference...") Q.ignore_bound_checks = True maxiter *= int(N/N_batch) delay = 1 forgetting_rate = 0.7 for n in range(maxiter): # Observe a mini-batch subset = np.random.choice(N, N_batch) Y.observe(data[subset,:]) # Learn intermediate variables Q.update(Z) # Set step length step = (n + delay) ** (-forgetting_rate) # Stochastic gradient for the global variables Q.gradient_step(mu, alpha, scale=step) if np.sum(Q.cputime[:n]) > max_cputime: break if plot: bpplt.pyplot.plot(np.cumsum(Q.cputime), Q.L, 'r:') bpplt.pyplot.xlabel('CPU time (in seconds)') bpplt.pyplot.ylabel('VB lower bound') bpplt.pyplot.legend(['VB-EM', 'Stochastic inference'], loc='lower right') bpplt.pyplot.title('VB for Gaussian mixture model') return if __name__ == '__main__': import sys, getopt, os try: opts, args = getopt.getopt(sys.argv[1:], "", ["n=", "batch=", "seed=", "maxiter="]) except getopt.GetoptError: print('python stochastic_inference.py <options>') print('--n=<INT> Number of data points') print('--batch=<INT> Mini-batch size') print('--maxiter=<INT> Maximum number of VB iterations') print('--seed=<INT> Seed (integer) for the random number generator') sys.exit(2) kwargs = {} for opt, arg in opts: if opt == "--maxiter": kwargs["maxiter"] = int(arg) elif opt == "--seed": kwargs["seed"] = int(arg) elif opt in ("--n",): kwargs["N"] = int(arg) elif opt in ("--batch",): kwargs["N_batch"] = int(arg) run(**kwargs) plt.show()
mit
EtienneCmb/tensorpac
examples/pac/plot_compare_surrogates.py
1
3213
""" ==================================================== Compare methods to correct PAC for spurious coupling ==================================================== This example illustrates the different implemented methods in order to generate the distribution of surrogates and then to correct the PAC for spurious couplings. This includes : * Swapping phase / amplitude trials (Tort et al. 2010, :cite:`tort2010measuring`) * Swapping amplitudes time blocks [RECOMMENDED] (Bahramisharif et al. 2013, :cite:`bahramisharif2013propagating`, Aru et al. 2015, :cite:`aru2015untangling`) * Introducing a time lag on phase series (Canolty et al. 2006, :cite:`canolty2006high`) """ import matplotlib.pyplot as plt from tensorpac import Pac from tensorpac.signals import pac_signals_wavelet ############################################################################### # Simulate artificial coupling ############################################################################### # first, we generate several trials that contains a coupling between a 6z phase # and a 90hz amplitude. By default, the returned dataset is organized as # (n_epochs, n_times) where n_times is the number of time points and n_epochs # is the number of trials f_pha = 6 # frequency phase for the coupling f_amp = 70 # frequency amplitude for the coupling n_epochs = 20 # number of trials n_times = 4000 # number of time points sf = 512. # sampling frequency data, time = pac_signals_wavelet(sf=sf, f_pha=f_pha, f_amp=f_amp, noise=3., n_epochs=n_epochs, n_times=n_times) ############################################################################### # Extract phases and amplitudes ############################################################################### # now, we are going to extract all the phases and amplitudes. This is going to # be useful then because it avoid to do it each time we're going to compute the # PAC. # define a :class:`tensorpac.Pac` object and use the MVL as the main method # for measuring PAC p = Pac(idpac=(1, 0, 0), f_pha=(3, 10, 1, .2), f_amp=(50, 90, 5, 1), dcomplex='wavelet', width=12) # Now, extract all of the phases and amplitudes phases = p.filter(sf, data, ftype='phase') amplitudes = p.filter(sf, data, ftype='amplitude') ############################################################################### # Compute PAC and surrogates ############################################################################### # now the phases and amplitudes are extracted, we can compute the true PAC such # as the surrogates. Then the true value of PAC is going to be normalized using # a z-score normalization and using the distribution of surrogates plt.figure(figsize=(16, 12)) for i, k in enumerate(range(4)): # change the pac method p.idpac = (5, k, 1) # compute only the pac without filtering xpac = p.fit(phases, amplitudes, n_perm=20) # plot title = p.str_surro.replace(' (', '\n(') plt.subplot(2, 2, k + 1) p.comodulogram(xpac.mean(-1), title=title, cmap='Reds', vmin=0, fz_labels=18, fz_title=20, fz_cblabel=18) plt.tight_layout() plt.show()
bsd-3-clause
jordancheah/zipline
zipline/assets/futures.py
15
5311
from pandas import Timestamp, Timedelta from pandas.tseries.tools import normalize_date class FutureChain(object): """ Allows users to look up future contracts. Parameters ---------- asset_finder : AssetFinder An AssetFinder for future contract lookups, in particular the AssetFinder of the TradingAlgorithm instance. get_datetime : function A function that returns the simulation datetime, in particular the get_datetime method of the TradingAlgorithm instance. root_symbol : str The root symbol of a future chain. as_of_date : pandas.Timestamp, optional Date at which the chain determination is rooted. I.e. the existing contract whose notice date is first after this date is the primary contract, etc. If not provided, the current simulation date is used as the as_of_date. Attributes ---------- root_symbol : str The root symbol of the future chain. as_of_date The current as-of date of this future chain. Methods ------- as_of(dt) offset(time_delta) Raises ------ RootSymbolNotFound Raised when the FutureChain is initialized with a root symbol for which a future chain could not be found. """ def __init__(self, asset_finder, get_datetime, root_symbol, as_of_date=None): self.root_symbol = root_symbol # Reference to the algo's AssetFinder for contract lookups self._asset_finder = asset_finder # Reference to the algo's get_datetime to know the current dt self._algorithm_get_datetime = get_datetime # If an as_of_date is provided, self._as_of_date uses that # value, otherwise None. This attribute backs the as_of_date property. if as_of_date: self._as_of_date = normalize_date(Timestamp(as_of_date, tz='UTC')) else: self._as_of_date = None # Attribute to cache the most up-to-date chain, and the dt when it was # last updated. self._current_chain = [] self._last_updated = None # Get the initial chain, since self._last_updated is None. self._maybe_update_current_chain() def __repr__(self): # NOTE: The string returned cannot be used to instantiate this # exact FutureChain, since we don't want to display the asset # finder and get_datetime function to the user. if self._as_of_date: return "FutureChain(root_symbol='%s', as_of_date='%s')" % ( self.root_symbol, self.as_of_date) else: return "FutureChain(root_symbol='%s')" % self.root_symbol def _get_datetime(self): """ Returns the normalized simulation datetime. Returns ------- pandas.Timestamp The normalized datetime of FutureChain's TradingAlgorithm. """ return normalize_date( Timestamp(self._algorithm_get_datetime(), tz='UTC') ) @property def as_of_date(self): """ The current as-of date of this future chain. Returns ------- pandas.Timestamp The user-provided as_of_date if given, otherwise the current datetime of the simulation. """ if self._as_of_date is not None: return self._as_of_date else: return self._get_datetime() def _maybe_update_current_chain(self): """ Updates the current chain if it's out of date, then returns it. Returns ------- list The up-to-date current chain, a list of Future objects. """ dt = self._get_datetime() if (self._last_updated is None) or (self._last_updated != dt): self._current_chain = self._asset_finder.lookup_future_chain( self.root_symbol, self.as_of_date, dt ) self._last_updated = dt return self._current_chain def __getitem__(self, key): return self._maybe_update_current_chain()[key] def __len__(self): return len(self._maybe_update_current_chain()) def __iter__(self): return iter(self._maybe_update_current_chain()) def as_of(self, dt): """ Get the future chain for this root symbol as of a specific date. Parameters ---------- dt : datetime.datetime or pandas.Timestamp or str, optional The as_of_date for the new chain. Returns ------- FutureChain """ return FutureChain( asset_finder=self._asset_finder, get_datetime=self._algorithm_get_datetime, root_symbol=self.root_symbol, as_of_date=dt ) def offset(self, time_delta): """ Get the future chain for this root symbol with a given offset from the current as_of_date. Parameters ---------- time_delta : datetime.timedelta or pandas.Timedelta or str The offset from the current as_of_date for the new chain. Returns ------- FutureChain """ return self.as_of(self.as_of_date + Timedelta(time_delta))
apache-2.0
SpatialMetabolomics/ims-simulator
ims_simulator/collectStats.py
1
2783
#!/usr/bin/env python from pyimzml.ImzMLParser import ImzMLParser import numpy as np def statistics(imzml): """ Returns a dictionary: 1) 'sparsity': Histogram of m/z differences between neighboring centroids in each spectrum. 2) 'intensity': Histogram of centroid intensities 3) 'min_intensity' Array of minimum centroid intensities for each spectrum """ sparsity_hist_bins = np.linspace(-4, 1, 250) sparsity_hist = np.zeros(sparsity_hist_bins.shape[0] - 1, dtype=int) intensity_hist_bins = np.linspace(0, 10, 250) intensity_hist = np.zeros(intensity_hist_bins.shape[0] - 1, dtype=int) min_intensities = [] for i, coords in enumerate(imzml.coordinates): mzs, intensities = imzml.getspectrum(i) sparsity_hist += np.histogram(np.log10(np.diff(mzs)), sparsity_hist_bins)[0] intensity_hist += np.histogram(np.log10(intensities), intensity_hist_bins)[0] min_intensities.append(min(intensities)) return { 'sparsity': [sparsity_hist, sparsity_hist_bins], 'intensity': [intensity_hist, intensity_hist_bins], 'min_intensity': min_intensities } def plotHistograms(stats_real, stats_sim, key, colors=['b', 'g']): """ Plot statistic distribution for real and simulated data on the same plot. Key must be one of 'sparsityHist', 'intensityHist'. First two arguments are the script-produced stats loaded via np.load """ xlabels = { 'sparsityHist': "log10(m/z difference between neighboring peaks)", 'intensityHist': 'log10(centroid intensity)' } import matplotlib.pyplot as plt h0 = stats_real[key] h1 = stats_sim[key] plt.figure(figsize=(12, 6)) mzs = h0[1][:-1] plt.fill_between(mzs, h0[0], color=colors[0], alpha=0.5, label='Real') plt.fill_between(mzs, h1[0], color=colors[1], alpha=0.5, label='Simulated') plt.xlabel(xlabels[key]) plt.ylabel("Peak counts") plt.legend() if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description="collect statistics about IMS data") parser.add_argument('input', type=str, help="input file in .imzML format") parser.add_argument('output', type=str, help="output file (numpy-readable)") args = parser.parse_args() imzml = ImzMLParser(args.input) stats = statistics(imzml) sparsityHist = stats['sparsity'] intensityHist = stats['intensity'] with open(args.output, "w+") as f: np.savez_compressed(f, sparsityHist=sparsityHist, intensityHist=intensityHist, minIntensities=stats['min_intensity'])
apache-2.0
gfyoung/pandas
pandas/tests/indexes/base_class/test_constructors.py
2
1495
import numpy as np import pytest from pandas import Index, MultiIndex import pandas._testing as tm class TestIndexConstructor: # Tests for the Index constructor, specifically for cases that do # not return a subclass @pytest.mark.parametrize("value", [1, np.int64(1)]) def test_constructor_corner(self, value): # corner case msg = ( r"Index\(\.\.\.\) must be called with a collection of some " f"kind, {value} was passed" ) with pytest.raises(TypeError, match=msg): Index(value) @pytest.mark.parametrize("index_vals", [[("A", 1), "B"], ["B", ("A", 1)]]) def test_construction_list_mixed_tuples(self, index_vals): # see gh-10697: if we are constructing from a mixed list of tuples, # make sure that we are independent of the sorting order. index = Index(index_vals) assert isinstance(index, Index) assert not isinstance(index, MultiIndex) def test_constructor_wrong_kwargs(self): # GH #19348 with pytest.raises(TypeError, match="Unexpected keyword arguments {'foo'}"): with tm.assert_produces_warning(FutureWarning): Index([], foo="bar") @pytest.mark.xfail(reason="see GH#21311: Index doesn't enforce dtype argument") def test_constructor_cast(self): msg = "could not convert string to float" with pytest.raises(ValueError, match=msg): Index(["a", "b", "c"], dtype=float)
bsd-3-clause
jobovy/tact
aa/genfunc/binney_tremaine.py
1
4925
import numpy as np import matplotlib.pyplot as plt from scipy.integrate import odeint from matplotlib.ticker import MaxNLocator import matplotlib.cm as cm from genfunc_3d import find_actions, check_angle_solution import test_potentials as pot class logarithmic(object): def __init__(self): self.qz2 = 0.7**2 self.qy2 = 0.9**2 def pot(self,x): return 0.5*np.log(x[0]**2+x[1]**2/self.qy2+x[2]**2/self.qz2+0.1) def H(self,x): return 0.5*(x[3]**2+x[4]**2+x[5]**2)+self.pot(x[:3]) def tot_force(self,x,y,z): p = (x**2+y**2/self.qy2+z**2/self.qz2+0.1) return -np.array([x,y/self.qy2,z/self.qz2])/p def find_x(self,y,z): return np.sqrt(np.exp(1.)-(y**2/self.qy2+z**2/self.qz2+0.1)) from numpy.fft import fft def second_diff(x): sd = np.ones(len(x)-1,dtype=complex) sd[1:] = x[2:]+x[:-2]-2.*x[1:-1] sd[0] = 2.*(x[1]-x[0]) return sd def find_freqs(timeseries,results): freq = np.ones(3) n = len(timeseries) frq = np.arange(n)/timeseries[-1] frq = frq[range(n/2)] for i in range(3): X = fft(results.T[i])[range(n/2)] X[0] = np.real(X[0]) X[-1] = np.real(X[-1]) sd = second_diff(X) peak = np.argmax(np.abs(X)) while(peak==0): print "H" X[0]+=sd[0]*np.pi/n sd = second_diff(X) peak = np.argmax(np.abs(X)) sm,s,sp = sd[peak-1:peak+2] xm = -np.real((s+2.*sm)/(s-sm)) xp = np.real((s+2.*sp)/(s-sp)) x = .5*(xp+xm) freq[i]=(peak-x)*2.*np.pi/timeseries[-1] return freq def plot_spectrum(timeseries,x,axis=None,xlabel="",ylabel=""): n = len(timeseries) # length of the signal k = np.arange(n) T = timeseries[-1] frq = k/T # two sides frequency range frq = frq[range(n/2)] # one side frequency range X = fft(x)/n # fft computing and normalization X = X[range(n/2)] print(np.fft.fftfreq(timeseries.shape[-1])) print(frq[1]) if(axis==None): plt.plot(frq,np.abs(X)) plt.show() else: axis.plot(frq,np.abs(X),'k') axis.set_xlabel(xlabel) axis.set_ylabel(ylabel) def plots(timeseries,results): fig,axi = plt.subplots(2,3,figsize=[6.64,6.64/1.6]) plt.subplots_adjust(wspace=0.4,hspace=0.25) axi[0][0].plot(results.T[0],results.T[1],'k') axi[0][0].set_xlabel(r'$x$') axi[0][0].set_ylabel(r'$y$') axi[0][1].plot(results.T[0],results.T[2],'k') axi[0][1].set_xlabel(r'$x$') axi[0][1].set_ylabel(r'$z$') axi[0][2].plot(results.T[1],results.T[2],'k') axi[0][2].set_xlabel(r'$y$') axi[0][2].set_ylabel(r'$z$') plot_spectrum(timeseries,results.T[0],axi[1][0],xlabel=r'Freq/$2\pi$',ylabel=r'$|$FT($x$)$|$') for i in range(3): axi[1][i].set_xlim(0.,0.4) axi[1][i].xaxis.set_major_locator(MaxNLocator(5)) axi[0][i].xaxis.set_major_locator(MaxNLocator(5)) plot_spectrum(timeseries,results.T[1],axi[1][1],xlabel=r'Freq/$2\pi$',ylabel=r'$|$FT($y$)$|$') plot_spectrum(timeseries,results.T[2],axi[1][2],xlabel=r'Freq/$2\pi$',ylabel=r'$|$FT($z$)$|$') plt.savefig("../../Documents/thesis/genfunc_aa/nonchaotic_spectrum.pdf",bbox_inches='tight') plt.clf() from genfunc_3d import eval_mean_error_functions, check_angle_solution as ctas def print_freqs(): log = logarithmic() timeseries = np.linspace(0.,500.,2048) ntheta,nphi = 30,30 for i in np.arange(4.,ntheta+1)/(ntheta+1): for j in .5*np.pi*np.arange(15.,nphi+1)/(nphi+1): # if(i>0.9 and j>np.pi*0.45): # if(j>np.pi/4.): # if(i>0.59 and j>np.pi/2.*0.9): print np.arccos(i),j st,ct = np.sin(np.arccos(i)),i sp,cp = np.sin(j),np.cos(j) combo = cp*cp*st*st+sp*sp*st*st/log.qy2+ct*ct/log.qz2 r = np.sqrt((np.exp(1.)-0.1)/combo) initial = np.array([r*cp*st,r*sp*st,r*ct,0.0001,0.0001,0.0001]) # initial = np.array([0.111937987197,0.0104758765442,1.12993449025,0.0001,0.0001,0.0001]) results = odeint(pot.orbit_derivs2,initial,timeseries,args=(log,),rtol=1e-5,atol=1e-5) # print(log.H(initial),log.H(results[-1])) plots(timeseries,results) # freq = find_freqs(timeseries,results) L = find_actions(results, timeseries, N_matrix = 4, ifloop=True,ifprint = False) # if(L==None): # break (act,ang,n_vec,toy_aa,para),loop = L E = eval_mean_error_functions(act,ang,n_vec,toy_aa,timeseries,withplot=False)/np.std(timeseries) # ctas(ang,n_vec,toy_aa,timeseries) # print freq[0],freq[1],freq[2] print ang[3],ang[4],ang[5],initial[0],initial[1],initial[2],act[0],act[1],act[2] #,E[0],E[1],E[2],E[3],E[4],E[5] #,freq[0],freq[1],freq[2] exit() def plot_freqs(): plt.figure(figsize=[3.32,3.6]) g = np.genfromtxt("with_fft") omega21 = map(lambda i,j: np.abs(j)/i*2. if i>1.2 else j/i,g.T[0],g.T[1]) omega31 = map(lambda i,j: j/i*2. if i>1.2 else j/i,g.T[0],g.T[2]) # G = np.sqrt(g.T[12]**2) #+g.T[13]**2+g.T[14]**2) # C = G/np.max(G) plt.scatter(omega21,omega31,c='k',marker ='.',s=1.,edgecolors="none") plt.xlabel(r'$\Omega_2/\Omega_1$') plt.ylabel(r'$\Omega_3/\Omega_1$') plt.ylim(1.1,2.1) plt.savefig('binney_tremaine_fig345.pdf') print_freqs() # plot_freqs()
gpl-3.0
olologin/scikit-learn
sklearn/neighbors/graph.py
14
6609
"""Nearest Neighbors graph functions""" # Author: Jake Vanderplas <[email protected]> # # License: BSD 3 clause (C) INRIA, University of Amsterdam import warnings from .base import KNeighborsMixin, RadiusNeighborsMixin from .unsupervised import NearestNeighbors def _check_params(X, metric, p, metric_params): """Check the validity of the input parameters""" params = zip(['metric', 'p', 'metric_params'], [metric, p, metric_params]) est_params = X.get_params() for param_name, func_param in params: if func_param != est_params[param_name]: raise ValueError( "Got %s for %s, while the estimator has %s for " "the same parameter." % ( func_param, param_name, est_params[param_name])) def _query_include_self(X, include_self): """Return the query based on include_self param""" if include_self: query = X._fit_X else: query = None return query def kneighbors_graph(X, n_neighbors, mode='connectivity', metric='minkowski', p=2, metric_params=None, include_self=False, n_jobs=1): """Computes the (weighted) graph of k-Neighbors for points in X Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- X : array-like or BallTree, shape = [n_samples, n_features] Sample data, in the form of a numpy array or a precomputed :class:`BallTree`. n_neighbors : int Number of neighbors for each sample. mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. metric : string, default 'minkowski' The distance metric used to calculate the k-Neighbors for each sample point. The DistanceMetric class gives a list of available metrics. The default distance is 'euclidean' ('minkowski' metric with the p param equal to 2.) include_self: bool, default=False. Whether or not to mark each sample as the first nearest neighbor to itself. If `None`, then True is used for mode='connectivity' and False for mode='distance' as this will preserve backwards compatibilty. p : int, default 2 Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params: dict, optional additional keyword arguments for the metric function. n_jobs : int, optional (default = 1) The number of parallel jobs to run for neighbors search. If ``-1``, then the number of jobs is set to the number of CPU cores. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import kneighbors_graph >>> A = kneighbors_graph(X, 2, mode='connectivity', include_self=True) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 1.], [ 1., 0., 1.]]) See also -------- radius_neighbors_graph """ if not isinstance(X, KNeighborsMixin): X = NearestNeighbors(n_neighbors, metric=metric, p=p, metric_params=metric_params, n_jobs=n_jobs).fit(X) else: _check_params(X, metric, p, metric_params) query = _query_include_self(X, include_self) return X.kneighbors_graph(X=query, n_neighbors=n_neighbors, mode=mode) def radius_neighbors_graph(X, radius, mode='connectivity', metric='minkowski', p=2, metric_params=None, include_self=False, n_jobs=1): """Computes the (weighted) graph of Neighbors for points in X Neighborhoods are restricted the points at a distance lower than radius. Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- X : array-like or BallTree, shape = [n_samples, n_features] Sample data, in the form of a numpy array or a precomputed :class:`BallTree`. radius : float Radius of neighborhoods. mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. metric : string, default 'minkowski' The distance metric used to calculate the neighbors within a given radius for each sample point. The DistanceMetric class gives a list of available metrics. The default distance is 'euclidean' ('minkowski' metric with the param equal to 2.) include_self: bool, default=False Whether or not to mark each sample as the first nearest neighbor to itself. If `None`, then True is used for mode='connectivity' and False for mode='distance' as this will preserve backwards compatibilty. p : int, default 2 Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params: dict, optional additional keyword arguments for the metric function. n_jobs : int, optional (default = 1) The number of parallel jobs to run for neighbors search. If ``-1``, then the number of jobs is set to the number of CPU cores. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import radius_neighbors_graph >>> A = radius_neighbors_graph(X, 1.5, mode='connectivity', include_self=True) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 0.], [ 1., 0., 1.]]) See also -------- kneighbors_graph """ if not isinstance(X, RadiusNeighborsMixin): X = NearestNeighbors(radius=radius, metric=metric, p=p, metric_params=metric_params, n_jobs=n_jobs).fit(X) else: _check_params(X, metric, p, metric_params) query = _query_include_self(X, include_self) return X.radius_neighbors_graph(query, radius, mode)
bsd-3-clause
HarllanAndrye/nilmtk
nilmtk/results.py
6
7403
import abc import pandas as pd import copy from .timeframe import TimeFrame from nilmtk.utils import get_tz, tz_localize_naive class Results(object): """Stats results from each node need to be assigned to a specific class so we know how to combine results from multiple chunks. For example, Energy can be simply summed; while dropout rate should be averaged, and gaps need to be merged across chunk boundaries. Results objects contain a DataFrame, the index of which is the start timestamp for which the results are valid; the first column ('end') is the end timestamp for which the results are valid. Other columns are accumulators for the results. Attributes ---------- _data : DataFrame Index is period start. Columns are: `end` and any columns for internal storage of stats. Static Attributes ----------------- name : str The string used to cache this results object. """ __metaclass__ = abc.ABCMeta def __init__(self): self._data = pd.DataFrame(columns=['end']) def combined(self): """Return all results from each chunk combined. Either return single float for all periods or a dict where necessary, e.g. if calculating Energy for a meter which records both apparent power and active power then get active power with energyresults.combined['active'] """ return self._data[self._columns_with_end_removed()].sum() def per_period(self): """return a DataFrame. Index is period start. Columns are: end and <stat name> """ return copy.deepcopy(self._data) def simple(self): """Returns the simplest representation of the results.""" return self.combined() def append(self, timeframe, new_results): """Append a single result. Parameters ---------- timeframe : nilmtk.TimeFrame new_results : dict """ if not isinstance(timeframe, TimeFrame): raise TypeError("`timeframe` must be of type 'nilmtk.TimeFrame'," " not '{}' type.".format(type(timeframe))) if not isinstance(new_results, dict): raise TypeError("`new_results` must of a dict, not '{}' type." .format(type(new_results))) # check that there is no overlap for index, series in self._data.iterrows(): tf = TimeFrame(index, series['end']) tf.check_for_overlap(timeframe) row = pd.DataFrame(index=[timeframe.start], columns=['end'] + new_results.keys()) row['end'] = timeframe.end for key, val in new_results.iteritems(): row[key] = val self._data = self._data.append(row, verify_integrity=True) self._data.sort_index(inplace=True) def check_for_overlap(self): # TODO this could be made much faster n = len(self._data) index = self._data.index for i in range(n): row1 = self._data.iloc[i] tf1 = TimeFrame(index[i], row1['end']) for j in range(i+1, n): row2 = self._data.iloc[j] tf2 = TimeFrame(index[j], row2['end']) tf1.check_for_overlap(tf2) def update(self, new_result): """Add results from a new chunk. Parameters ---------- new_result : Results subclass (same class as self) from new chunk of data. """ if not isinstance(new_result, self.__class__): raise TypeError("new_results must be of type '{}'" .format(self.__class__)) if new_result._data.empty: return self._data = self._data.append(new_result._data) self._data.sort_index(inplace=True) self.check_for_overlap() def unify(self, other): """Take results from another table of data (another physical meter) and merge those results into self. For example, if we have a dual-split mains supply then we want to merge the results from each physical meter. The two sets of results must be for exactly the same timeframes. Parameters ---------- other : Results subclass (same class as self). Results calculated from another table of data. """ assert isinstance(other, self.__class__) for i, row in self._data.iterrows(): if (other._data['end'].loc[i] != row['end'] or i not in other._data.index): raise RuntimeError("The sections we are trying to merge" " do not have the same end times so we" " cannot merge them.") def import_from_cache(self, cached_stat, sections): """ Parameters ---------- cached_stat : DataFrame of cached data sections : list of nilmtk.TimeFrame objects describing the sections we want to load stats for. """ if cached_stat.empty: return tz = get_tz(cached_stat) usable_sections_from_cache = [] def append_row(row, section): row = row.astype(object) # We stripped off the timezone when exporting to cache # so now we must put the timezone back. row['end'] = tz_localize_naive(row['end'], tz) if row['end'] == section.end: usable_sections_from_cache.append(row) for section in sections: if not section: continue try: rows_matching_start = cached_stat.loc[section.start] except KeyError: pass else: if isinstance(rows_matching_start, pd.Series): append_row(rows_matching_start, section) else: for row_i in range(rows_matching_start.shape[0]): row = rows_matching_start.iloc[row_i] append_row(row, section) self._data = pd.DataFrame(usable_sections_from_cache) self._data.sort_index(inplace=True) def export_to_cache(self): """ Returns ------- pd.DataFrame Notes ----- Objects are converted using `DataFrame.convert_objects()`. The reason for doing this is to strip out the timezone information from data columns. We have to do this otherwise Pandas complains if we try to put a column with multiple timezones (e.g. Europe/London across a daylight saving boundary). """ return self._data.convert_objects() def timeframes(self): """Returns a list of timeframes covered by this Result.""" # For some reason, using `iterrows()` messes with the # timezone of the index, hence we need to 'manually' iterate # over the rows. return [TimeFrame(self._data.index[i], self._data.iloc[i]['end']) for i in range(len(self._data))] def _columns_with_end_removed(self): cols = set(self._data.columns) if len(cols) > 0: cols.remove('end') cols = list(cols) return cols def __repr__(self): return str(self._data)
apache-2.0
alexeyum/scikit-learn
sklearn/datasets/tests/test_lfw.py
55
7877
"""This test for the LFW require medium-size data downloading and processing If the data has not been already downloaded by running the examples, the tests won't run (skipped). If the test are run, the first execution will be long (typically a bit more than a couple of minutes) but as the dataset loader is leveraging joblib, successive runs will be fast (less than 200ms). """ import random import os import shutil import tempfile import numpy as np from sklearn.externals import six try: try: from scipy.misc import imsave except ImportError: from scipy.misc.pilutil import imsave except ImportError: imsave = None from sklearn.datasets import load_lfw_pairs from sklearn.datasets import load_lfw_people from sklearn.datasets import fetch_lfw_pairs from sklearn.datasets import fetch_lfw_people from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import SkipTest from sklearn.utils.testing import raises SCIKIT_LEARN_DATA = tempfile.mkdtemp(prefix="scikit_learn_lfw_test_") SCIKIT_LEARN_EMPTY_DATA = tempfile.mkdtemp(prefix="scikit_learn_empty_test_") LFW_HOME = os.path.join(SCIKIT_LEARN_DATA, 'lfw_home') FAKE_NAMES = [ 'Abdelatif_Smith', 'Abhati_Kepler', 'Camara_Alvaro', 'Chen_Dupont', 'John_Lee', 'Lin_Bauman', 'Onur_Lopez', ] def setup_module(): """Test fixture run once and common to all tests of this module""" if imsave is None: raise SkipTest("PIL not installed.") if not os.path.exists(LFW_HOME): os.makedirs(LFW_HOME) random_state = random.Random(42) np_rng = np.random.RandomState(42) # generate some random jpeg files for each person counts = {} for name in FAKE_NAMES: folder_name = os.path.join(LFW_HOME, 'lfw_funneled', name) if not os.path.exists(folder_name): os.makedirs(folder_name) n_faces = np_rng.randint(1, 5) counts[name] = n_faces for i in range(n_faces): file_path = os.path.join(folder_name, name + '_%04d.jpg' % i) uniface = np_rng.randint(0, 255, size=(250, 250, 3)) try: imsave(file_path, uniface) except ImportError: raise SkipTest("PIL not installed") # add some random file pollution to test robustness with open(os.path.join(LFW_HOME, 'lfw_funneled', '.test.swp'), 'wb') as f: f.write(six.b('Text file to be ignored by the dataset loader.')) # generate some pairing metadata files using the same format as LFW with open(os.path.join(LFW_HOME, 'pairsDevTrain.txt'), 'wb') as f: f.write(six.b("10\n")) more_than_two = [name for name, count in six.iteritems(counts) if count >= 2] for i in range(5): name = random_state.choice(more_than_two) first, second = random_state.sample(range(counts[name]), 2) f.write(six.b('%s\t%d\t%d\n' % (name, first, second))) for i in range(5): first_name, second_name = random_state.sample(FAKE_NAMES, 2) first_index = random_state.choice(np.arange(counts[first_name])) second_index = random_state.choice(np.arange(counts[second_name])) f.write(six.b('%s\t%d\t%s\t%d\n' % (first_name, first_index, second_name, second_index))) with open(os.path.join(LFW_HOME, 'pairsDevTest.txt'), 'wb') as f: f.write(six.b("Fake place holder that won't be tested")) with open(os.path.join(LFW_HOME, 'pairs.txt'), 'wb') as f: f.write(six.b("Fake place holder that won't be tested")) def teardown_module(): """Test fixture (clean up) run once after all tests of this module""" if os.path.isdir(SCIKIT_LEARN_DATA): shutil.rmtree(SCIKIT_LEARN_DATA) if os.path.isdir(SCIKIT_LEARN_EMPTY_DATA): shutil.rmtree(SCIKIT_LEARN_EMPTY_DATA) @raises(IOError) def test_load_empty_lfw_people(): fetch_lfw_people(data_home=SCIKIT_LEARN_EMPTY_DATA, download_if_missing=False) def test_load_lfw_people_deprecation(): msg = ("Function 'load_lfw_people' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_people(download_if_missing=False) instead.") assert_warns_message(DeprecationWarning, msg, load_lfw_people, data_home=SCIKIT_LEARN_DATA) def test_load_fake_lfw_people(): lfw_people = fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, min_faces_per_person=3, download_if_missing=False) # The data is croped around the center as a rectangular bounding box # around the face. Colors are converted to gray levels: assert_equal(lfw_people.images.shape, (10, 62, 47)) assert_equal(lfw_people.data.shape, (10, 2914)) # the target is array of person integer ids assert_array_equal(lfw_people.target, [2, 0, 1, 0, 2, 0, 2, 1, 1, 2]) # names of the persons can be found using the target_names array expected_classes = ['Abdelatif Smith', 'Abhati Kepler', 'Onur Lopez'] assert_array_equal(lfw_people.target_names, expected_classes) # It is possible to ask for the original data without any croping or color # conversion and not limit on the number of picture per person lfw_people = fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, resize=None, slice_=None, color=True, download_if_missing=False) assert_equal(lfw_people.images.shape, (17, 250, 250, 3)) # the ids and class names are the same as previously assert_array_equal(lfw_people.target, [0, 0, 1, 6, 5, 6, 3, 6, 0, 3, 6, 1, 2, 4, 5, 1, 2]) assert_array_equal(lfw_people.target_names, ['Abdelatif Smith', 'Abhati Kepler', 'Camara Alvaro', 'Chen Dupont', 'John Lee', 'Lin Bauman', 'Onur Lopez']) @raises(ValueError) def test_load_fake_lfw_people_too_restrictive(): fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, min_faces_per_person=100, download_if_missing=False) @raises(IOError) def test_load_empty_lfw_pairs(): fetch_lfw_pairs(data_home=SCIKIT_LEARN_EMPTY_DATA, download_if_missing=False) def test_load_lfw_pairs_deprecation(): msg = ("Function 'load_lfw_pairs' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_pairs(download_if_missing=False) instead.") assert_warns_message(DeprecationWarning, msg, load_lfw_pairs, data_home=SCIKIT_LEARN_DATA) def test_load_fake_lfw_pairs(): lfw_pairs_train = fetch_lfw_pairs(data_home=SCIKIT_LEARN_DATA, download_if_missing=False) # The data is croped around the center as a rectangular bounding box # around the face. Colors are converted to gray levels: assert_equal(lfw_pairs_train.pairs.shape, (10, 2, 62, 47)) # the target is whether the person is the same or not assert_array_equal(lfw_pairs_train.target, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) # names of the persons can be found using the target_names array expected_classes = ['Different persons', 'Same person'] assert_array_equal(lfw_pairs_train.target_names, expected_classes) # It is possible to ask for the original data without any croping or color # conversion lfw_pairs_train = fetch_lfw_pairs(data_home=SCIKIT_LEARN_DATA, resize=None, slice_=None, color=True, download_if_missing=False) assert_equal(lfw_pairs_train.pairs.shape, (10, 2, 250, 250, 3)) # the ids and class names are the same as previously assert_array_equal(lfw_pairs_train.target, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) assert_array_equal(lfw_pairs_train.target_names, expected_classes)
bsd-3-clause
ltiao/scikit-learn
sklearn/linear_model/tests/test_theil_sen.py
6
9933
""" Testing for Theil-Sen module (sklearn.linear_model.theil_sen) """ # Author: Florian Wilhelm <[email protected]> # License: BSD 3 clause from __future__ import division, print_function, absolute_import import os import sys from contextlib import contextmanager import numpy as np from numpy.testing import assert_array_equal, assert_array_less from numpy.testing import assert_array_almost_equal, assert_warns from scipy.linalg import norm from scipy.optimize import fmin_bfgs from nose.tools import raises, assert_almost_equal from sklearn.exceptions import ConvergenceWarning from sklearn.linear_model import LinearRegression, TheilSenRegressor from sklearn.linear_model.theil_sen import _spatial_median, _breakdown_point from sklearn.linear_model.theil_sen import _modified_weiszfeld_step from sklearn.utils.testing import assert_greater, assert_less @contextmanager def no_stdout_stderr(): old_stdout = sys.stdout old_stderr = sys.stderr sys.stdout = open(os.devnull, 'w') sys.stderr = open(os.devnull, 'w') yield sys.stdout.flush() sys.stderr.flush() sys.stdout = old_stdout sys.stderr = old_stderr def gen_toy_problem_1d(intercept=True): random_state = np.random.RandomState(0) # Linear model y = 3*x + N(2, 0.1**2) w = 3. if intercept: c = 2. n_samples = 50 else: c = 0.1 n_samples = 100 x = random_state.normal(size=n_samples) noise = 0.1 * random_state.normal(size=n_samples) y = w * x + c + noise # Add some outliers if intercept: x[42], y[42] = (-2, 4) x[43], y[43] = (-2.5, 8) x[33], y[33] = (2.5, 1) x[49], y[49] = (2.1, 2) else: x[42], y[42] = (-2, 4) x[43], y[43] = (-2.5, 8) x[53], y[53] = (2.5, 1) x[60], y[60] = (2.1, 2) x[72], y[72] = (1.8, -7) return x[:, np.newaxis], y, w, c def gen_toy_problem_2d(): random_state = np.random.RandomState(0) n_samples = 100 # Linear model y = 5*x_1 + 10*x_2 + N(1, 0.1**2) X = random_state.normal(size=(n_samples, 2)) w = np.array([5., 10.]) c = 1. noise = 0.1 * random_state.normal(size=n_samples) y = np.dot(X, w) + c + noise # Add some outliers n_outliers = n_samples // 10 ix = random_state.randint(0, n_samples, size=n_outliers) y[ix] = 50 * random_state.normal(size=n_outliers) return X, y, w, c def gen_toy_problem_4d(): random_state = np.random.RandomState(0) n_samples = 10000 # Linear model y = 5*x_1 + 10*x_2 + 42*x_3 + 7*x_4 + N(1, 0.1**2) X = random_state.normal(size=(n_samples, 4)) w = np.array([5., 10., 42., 7.]) c = 1. noise = 0.1 * random_state.normal(size=n_samples) y = np.dot(X, w) + c + noise # Add some outliers n_outliers = n_samples // 10 ix = random_state.randint(0, n_samples, size=n_outliers) y[ix] = 50 * random_state.normal(size=n_outliers) return X, y, w, c def test_modweiszfeld_step_1d(): X = np.array([1., 2., 3.]).reshape(3, 1) # Check startvalue is element of X and solution median = 2. new_y = _modified_weiszfeld_step(X, median) assert_array_almost_equal(new_y, median) # Check startvalue is not the solution y = 2.5 new_y = _modified_weiszfeld_step(X, y) assert_array_less(median, new_y) assert_array_less(new_y, y) # Check startvalue is not the solution but element of X y = 3. new_y = _modified_weiszfeld_step(X, y) assert_array_less(median, new_y) assert_array_less(new_y, y) # Check that a single vector is identity X = np.array([1., 2., 3.]).reshape(1, 3) y = X[0, ] new_y = _modified_weiszfeld_step(X, y) assert_array_equal(y, new_y) def test_modweiszfeld_step_2d(): X = np.array([0., 0., 1., 1., 0., 1.]).reshape(3, 2) y = np.array([0.5, 0.5]) # Check first two iterations new_y = _modified_weiszfeld_step(X, y) assert_array_almost_equal(new_y, np.array([1 / 3, 2 / 3])) new_y = _modified_weiszfeld_step(X, new_y) assert_array_almost_equal(new_y, np.array([0.2792408, 0.7207592])) # Check fix point y = np.array([0.21132505, 0.78867497]) new_y = _modified_weiszfeld_step(X, y) assert_array_almost_equal(new_y, y) def test_spatial_median_1d(): X = np.array([1., 2., 3.]).reshape(3, 1) true_median = 2. _, median = _spatial_median(X) assert_array_almost_equal(median, true_median) # Test larger problem and for exact solution in 1d case random_state = np.random.RandomState(0) X = random_state.randint(100, size=(1000, 1)) true_median = np.median(X.ravel()) _, median = _spatial_median(X) assert_array_equal(median, true_median) def test_spatial_median_2d(): X = np.array([0., 0., 1., 1., 0., 1.]).reshape(3, 2) _, median = _spatial_median(X, max_iter=100, tol=1.e-6) def cost_func(y): dists = np.array([norm(x - y) for x in X]) return np.sum(dists) # Check if median is solution of the Fermat-Weber location problem fermat_weber = fmin_bfgs(cost_func, median, disp=False) assert_array_almost_equal(median, fermat_weber) # Check when maximum iteration is exceeded a warning is emitted assert_warns(ConvergenceWarning, _spatial_median, X, max_iter=30, tol=0.) def test_theil_sen_1d(): X, y, w, c = gen_toy_problem_1d() # Check that Least Squares fails lstq = LinearRegression().fit(X, y) assert_greater(np.abs(lstq.coef_ - w), 0.9) # Check that Theil-Sen works theil_sen = TheilSenRegressor(random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_theil_sen_1d_no_intercept(): X, y, w, c = gen_toy_problem_1d(intercept=False) # Check that Least Squares fails lstq = LinearRegression(fit_intercept=False).fit(X, y) assert_greater(np.abs(lstq.coef_ - w - c), 0.5) # Check that Theil-Sen works theil_sen = TheilSenRegressor(fit_intercept=False, random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w + c, 1) assert_almost_equal(theil_sen.intercept_, 0.) def test_theil_sen_2d(): X, y, w, c = gen_toy_problem_2d() # Check that Least Squares fails lstq = LinearRegression().fit(X, y) assert_greater(norm(lstq.coef_ - w), 1.0) # Check that Theil-Sen works theil_sen = TheilSenRegressor(max_subpopulation=1e3, random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_calc_breakdown_point(): bp = _breakdown_point(1e10, 2) assert_less(np.abs(bp - 1 + 1/(np.sqrt(2))), 1.e-6) @raises(ValueError) def test_checksubparams_negative_subpopulation(): X, y, w, c = gen_toy_problem_1d() TheilSenRegressor(max_subpopulation=-1, random_state=0).fit(X, y) @raises(ValueError) def test_checksubparams_too_few_subsamples(): X, y, w, c = gen_toy_problem_1d() TheilSenRegressor(n_subsamples=1, random_state=0).fit(X, y) @raises(ValueError) def test_checksubparams_too_many_subsamples(): X, y, w, c = gen_toy_problem_1d() TheilSenRegressor(n_subsamples=101, random_state=0).fit(X, y) @raises(ValueError) def test_checksubparams_n_subsamples_if_less_samples_than_features(): random_state = np.random.RandomState(0) n_samples, n_features = 10, 20 X = random_state.normal(size=(n_samples, n_features)) y = random_state.normal(size=n_samples) TheilSenRegressor(n_subsamples=9, random_state=0).fit(X, y) def test_subpopulation(): X, y, w, c = gen_toy_problem_4d() theil_sen = TheilSenRegressor(max_subpopulation=250, random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_subsamples(): X, y, w, c = gen_toy_problem_4d() theil_sen = TheilSenRegressor(n_subsamples=X.shape[0], random_state=0).fit(X, y) lstq = LinearRegression().fit(X, y) # Check for exact the same results as Least Squares assert_array_almost_equal(theil_sen.coef_, lstq.coef_, 9) def test_verbosity(): X, y, w, c = gen_toy_problem_1d() # Check that Theil-Sen can be verbose with no_stdout_stderr(): TheilSenRegressor(verbose=True, random_state=0).fit(X, y) TheilSenRegressor(verbose=True, max_subpopulation=10, random_state=0).fit(X, y) def test_theil_sen_parallel(): X, y, w, c = gen_toy_problem_2d() # Check that Least Squares fails lstq = LinearRegression().fit(X, y) assert_greater(norm(lstq.coef_ - w), 1.0) # Check that Theil-Sen works theil_sen = TheilSenRegressor(n_jobs=-1, random_state=0, max_subpopulation=2e3).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_less_samples_than_features(): random_state = np.random.RandomState(0) n_samples, n_features = 10, 20 X = random_state.normal(size=(n_samples, n_features)) y = random_state.normal(size=n_samples) # Check that Theil-Sen falls back to Least Squares if fit_intercept=False theil_sen = TheilSenRegressor(fit_intercept=False, random_state=0).fit(X, y) lstq = LinearRegression(fit_intercept=False).fit(X, y) assert_array_almost_equal(theil_sen.coef_, lstq.coef_, 12) # Check fit_intercept=True case. This will not be equal to the Least # Squares solution since the intercept is calculated differently. theil_sen = TheilSenRegressor(fit_intercept=True, random_state=0).fit(X, y) y_pred = theil_sen.predict(X) assert_array_almost_equal(y_pred, y, 12)
bsd-3-clause
GuessWhoSamFoo/pandas
pandas/tests/io/json/test_ujson.py
2
38511
# -*- coding: utf-8 -*- try: import json except ImportError: import simplejson as json import calendar import datetime import decimal from functools import partial import locale import math import re import time import dateutil import numpy as np import pytest import pytz import pandas._libs.json as ujson from pandas._libs.tslib import Timestamp import pandas.compat as compat from pandas.compat import StringIO, range, u from pandas import DataFrame, DatetimeIndex, Index, NaT, Series, date_range import pandas.util.testing as tm json_unicode = (json.dumps if compat.PY3 else partial(json.dumps, encoding="utf-8")) def _clean_dict(d): """ Sanitize dictionary for JSON by converting all keys to strings. Parameters ---------- d : dict The dictionary to convert. Returns ------- cleaned_dict : dict """ return {str(k): v for k, v in compat.iteritems(d)} @pytest.fixture(params=[ None, # Column indexed by default. "split", "records", "values", "index"]) def orient(request): return request.param @pytest.fixture(params=[None, True]) def numpy(request): return request.param class TestUltraJSONTests(object): @pytest.mark.skipif(compat.is_platform_32bit(), reason="not compliant on 32-bit, xref #15865") def test_encode_decimal(self): sut = decimal.Decimal("1337.1337") encoded = ujson.encode(sut, double_precision=15) decoded = ujson.decode(encoded) assert decoded == 1337.1337 sut = decimal.Decimal("0.95") encoded = ujson.encode(sut, double_precision=1) assert encoded == "1.0" decoded = ujson.decode(encoded) assert decoded == 1.0 sut = decimal.Decimal("0.94") encoded = ujson.encode(sut, double_precision=1) assert encoded == "0.9" decoded = ujson.decode(encoded) assert decoded == 0.9 sut = decimal.Decimal("1.95") encoded = ujson.encode(sut, double_precision=1) assert encoded == "2.0" decoded = ujson.decode(encoded) assert decoded == 2.0 sut = decimal.Decimal("-1.95") encoded = ujson.encode(sut, double_precision=1) assert encoded == "-2.0" decoded = ujson.decode(encoded) assert decoded == -2.0 sut = decimal.Decimal("0.995") encoded = ujson.encode(sut, double_precision=2) assert encoded == "1.0" decoded = ujson.decode(encoded) assert decoded == 1.0 sut = decimal.Decimal("0.9995") encoded = ujson.encode(sut, double_precision=3) assert encoded == "1.0" decoded = ujson.decode(encoded) assert decoded == 1.0 sut = decimal.Decimal("0.99999999999999944") encoded = ujson.encode(sut, double_precision=15) assert encoded == "1.0" decoded = ujson.decode(encoded) assert decoded == 1.0 @pytest.mark.parametrize("ensure_ascii", [True, False]) def test_encode_string_conversion(self, ensure_ascii): string_input = "A string \\ / \b \f \n \r \t </script> &" not_html_encoded = ('"A string \\\\ \\/ \\b \\f \\n ' '\\r \\t <\\/script> &"') html_encoded = ('"A string \\\\ \\/ \\b \\f \\n \\r \\t ' '\\u003c\\/script\\u003e \\u0026"') def helper(expected_output, **encode_kwargs): output = ujson.encode(string_input, ensure_ascii=ensure_ascii, **encode_kwargs) assert output == expected_output assert string_input == json.loads(output) assert string_input == ujson.decode(output) # Default behavior assumes encode_html_chars=False. helper(not_html_encoded) # Make sure explicit encode_html_chars=False works. helper(not_html_encoded, encode_html_chars=False) # Make sure explicit encode_html_chars=True does the encoding. helper(html_encoded, encode_html_chars=True) @pytest.mark.parametrize("long_number", [ -4342969734183514, -12345678901234.56789012, -528656961.4399388 ]) def test_double_long_numbers(self, long_number): sut = {u("a"): long_number} encoded = ujson.encode(sut, double_precision=15) decoded = ujson.decode(encoded) assert sut == decoded def test_encode_non_c_locale(self): lc_category = locale.LC_NUMERIC # We just need one of these locales to work. for new_locale in ("it_IT.UTF-8", "Italian_Italy"): if tm.can_set_locale(new_locale, lc_category): with tm.set_locale(new_locale, lc_category): assert ujson.loads(ujson.dumps(4.78e60)) == 4.78e60 assert ujson.loads("4.78", precise_float=True) == 4.78 break def test_decimal_decode_test_precise(self): sut = {u("a"): 4.56} encoded = ujson.encode(sut) decoded = ujson.decode(encoded, precise_float=True) assert sut == decoded @pytest.mark.skipif(compat.is_platform_windows() and not compat.PY3, reason="buggy on win-64 for py2") def test_encode_double_tiny_exponential(self): num = 1e-40 assert num == ujson.decode(ujson.encode(num)) num = 1e-100 assert num == ujson.decode(ujson.encode(num)) num = -1e-45 assert num == ujson.decode(ujson.encode(num)) num = -1e-145 assert np.allclose(num, ujson.decode(ujson.encode(num))) @pytest.mark.parametrize("unicode_key", [ u("key1"), u("بن") ]) def test_encode_dict_with_unicode_keys(self, unicode_key): unicode_dict = {unicode_key: u("value1")} assert unicode_dict == ujson.decode(ujson.encode(unicode_dict)) @pytest.mark.parametrize("double_input", [ math.pi, -math.pi # Should work with negatives too. ]) def test_encode_double_conversion(self, double_input): output = ujson.encode(double_input) assert round(double_input, 5) == round(json.loads(output), 5) assert round(double_input, 5) == round(ujson.decode(output), 5) def test_encode_with_decimal(self): decimal_input = 1.0 output = ujson.encode(decimal_input) assert output == "1.0" def test_encode_array_of_nested_arrays(self): nested_input = [[[[]]]] * 20 output = ujson.encode(nested_input) assert nested_input == json.loads(output) assert nested_input == ujson.decode(output) nested_input = np.array(nested_input) tm.assert_numpy_array_equal(nested_input, ujson.decode( output, numpy=True, dtype=nested_input.dtype)) def test_encode_array_of_doubles(self): doubles_input = [31337.31337, 31337.31337, 31337.31337, 31337.31337] * 10 output = ujson.encode(doubles_input) assert doubles_input == json.loads(output) assert doubles_input == ujson.decode(output) tm.assert_numpy_array_equal(np.array(doubles_input), ujson.decode(output, numpy=True)) def test_double_precision(self): double_input = 30.012345678901234 output = ujson.encode(double_input, double_precision=15) assert double_input == json.loads(output) assert double_input == ujson.decode(output) for double_precision in (3, 9): output = ujson.encode(double_input, double_precision=double_precision) rounded_input = round(double_input, double_precision) assert rounded_input == json.loads(output) assert rounded_input == ujson.decode(output) @pytest.mark.parametrize("invalid_val", [ 20, -1, "9", None ]) def test_invalid_double_precision(self, invalid_val): double_input = 30.12345678901234567890 expected_exception = (ValueError if isinstance(invalid_val, int) else TypeError) with pytest.raises(expected_exception): ujson.encode(double_input, double_precision=invalid_val) def test_encode_string_conversion2(self): string_input = "A string \\ / \b \f \n \r \t" output = ujson.encode(string_input) assert string_input == json.loads(output) assert string_input == ujson.decode(output) assert output == '"A string \\\\ \\/ \\b \\f \\n \\r \\t"' @pytest.mark.parametrize("unicode_input", [ "Räksmörgås اسامة بن محمد بن عوض بن لادن", "\xe6\x97\xa5\xd1\x88" ]) def test_encode_unicode_conversion(self, unicode_input): enc = ujson.encode(unicode_input) dec = ujson.decode(enc) assert enc == json_unicode(unicode_input) assert dec == json.loads(enc) def test_encode_control_escaping(self): escaped_input = "\x19" enc = ujson.encode(escaped_input) dec = ujson.decode(enc) assert escaped_input == dec assert enc == json_unicode(escaped_input) def test_encode_unicode_surrogate_pair(self): surrogate_input = "\xf0\x90\x8d\x86" enc = ujson.encode(surrogate_input) dec = ujson.decode(enc) assert enc == json_unicode(surrogate_input) assert dec == json.loads(enc) def test_encode_unicode_4bytes_utf8(self): four_bytes_input = "\xf0\x91\x80\xb0TRAILINGNORMAL" enc = ujson.encode(four_bytes_input) dec = ujson.decode(enc) assert enc == json_unicode(four_bytes_input) assert dec == json.loads(enc) def test_encode_unicode_4bytes_utf8highest(self): four_bytes_input = "\xf3\xbf\xbf\xbfTRAILINGNORMAL" enc = ujson.encode(four_bytes_input) dec = ujson.decode(enc) assert enc == json_unicode(four_bytes_input) assert dec == json.loads(enc) def test_encode_array_in_array(self): arr_in_arr_input = [[[[]]]] output = ujson.encode(arr_in_arr_input) assert arr_in_arr_input == json.loads(output) assert output == json.dumps(arr_in_arr_input) assert arr_in_arr_input == ujson.decode(output) tm.assert_numpy_array_equal(np.array(arr_in_arr_input), ujson.decode(output, numpy=True)) @pytest.mark.parametrize("num_input", [ 31337, -31337, # Negative number. -9223372036854775808 # Large negative number. ]) def test_encode_num_conversion(self, num_input): output = ujson.encode(num_input) assert num_input == json.loads(output) assert output == json.dumps(num_input) assert num_input == ujson.decode(output) def test_encode_list_conversion(self): list_input = [1, 2, 3, 4] output = ujson.encode(list_input) assert list_input == json.loads(output) assert list_input == ujson.decode(output) tm.assert_numpy_array_equal(np.array(list_input), ujson.decode(output, numpy=True)) def test_encode_dict_conversion(self): dict_input = {"k1": 1, "k2": 2, "k3": 3, "k4": 4} output = ujson.encode(dict_input) assert dict_input == json.loads(output) assert dict_input == ujson.decode(output) @pytest.mark.parametrize("builtin_value", [None, True, False]) def test_encode_builtin_values_conversion(self, builtin_value): output = ujson.encode(builtin_value) assert builtin_value == json.loads(output) assert output == json.dumps(builtin_value) assert builtin_value == ujson.decode(output) def test_encode_datetime_conversion(self): datetime_input = datetime.datetime.fromtimestamp(time.time()) output = ujson.encode(datetime_input, date_unit="s") expected = calendar.timegm(datetime_input.utctimetuple()) assert int(expected) == json.loads(output) assert int(expected) == ujson.decode(output) def test_encode_date_conversion(self): date_input = datetime.date.fromtimestamp(time.time()) output = ujson.encode(date_input, date_unit="s") tup = (date_input.year, date_input.month, date_input.day, 0, 0, 0) expected = calendar.timegm(tup) assert int(expected) == json.loads(output) assert int(expected) == ujson.decode(output) @pytest.mark.parametrize("test", [ datetime.time(), datetime.time(1, 2, 3), datetime.time(10, 12, 15, 343243), ]) def test_encode_time_conversion_basic(self, test): output = ujson.encode(test) expected = '"{iso}"'.format(iso=test.isoformat()) assert expected == output def test_encode_time_conversion_pytz(self): # see gh-11473: to_json segfaults with timezone-aware datetimes test = datetime.time(10, 12, 15, 343243, pytz.utc) output = ujson.encode(test) expected = '"{iso}"'.format(iso=test.isoformat()) assert expected == output def test_encode_time_conversion_dateutil(self): # see gh-11473: to_json segfaults with timezone-aware datetimes test = datetime.time(10, 12, 15, 343243, dateutil.tz.tzutc()) output = ujson.encode(test) expected = '"{iso}"'.format(iso=test.isoformat()) assert expected == output @pytest.mark.parametrize("decoded_input", [ NaT, np.datetime64("NaT"), np.nan, np.inf, -np.inf ]) def test_encode_as_null(self, decoded_input): assert ujson.encode(decoded_input) == "null", "Expected null" def test_datetime_units(self): val = datetime.datetime(2013, 8, 17, 21, 17, 12, 215504) stamp = Timestamp(val) roundtrip = ujson.decode(ujson.encode(val, date_unit='s')) assert roundtrip == stamp.value // 10**9 roundtrip = ujson.decode(ujson.encode(val, date_unit='ms')) assert roundtrip == stamp.value // 10**6 roundtrip = ujson.decode(ujson.encode(val, date_unit='us')) assert roundtrip == stamp.value // 10**3 roundtrip = ujson.decode(ujson.encode(val, date_unit='ns')) assert roundtrip == stamp.value msg = "Invalid value 'foo' for option 'date_unit'" with pytest.raises(ValueError, match=msg): ujson.encode(val, date_unit='foo') def test_encode_to_utf8(self): unencoded = "\xe6\x97\xa5\xd1\x88" enc = ujson.encode(unencoded, ensure_ascii=False) dec = ujson.decode(enc) assert enc == json_unicode(unencoded, ensure_ascii=False) assert dec == json.loads(enc) def test_decode_from_unicode(self): unicode_input = u("{\"obj\": 31337}") dec1 = ujson.decode(unicode_input) dec2 = ujson.decode(str(unicode_input)) assert dec1 == dec2 def test_encode_recursion_max(self): # 8 is the max recursion depth class O2(object): member = 0 pass class O1(object): member = 0 pass decoded_input = O1() decoded_input.member = O2() decoded_input.member.member = decoded_input with pytest.raises(OverflowError): ujson.encode(decoded_input) def test_decode_jibberish(self): jibberish = "fdsa sda v9sa fdsa" with pytest.raises(ValueError): ujson.decode(jibberish) @pytest.mark.parametrize("broken_json", [ "[", # Broken array start. "{", # Broken object start. "]", # Broken array end. "}", # Broken object end. ]) def test_decode_broken_json(self, broken_json): with pytest.raises(ValueError): ujson.decode(broken_json) @pytest.mark.parametrize("too_big_char", [ "[", "{", ]) def test_decode_depth_too_big(self, too_big_char): with pytest.raises(ValueError): ujson.decode(too_big_char * (1024 * 1024)) @pytest.mark.parametrize("bad_string", [ "\"TESTING", # Unterminated. "\"TESTING\\\"", # Unterminated escape. "tru", # Broken True. "fa", # Broken False. "n", # Broken None. ]) def test_decode_bad_string(self, bad_string): with pytest.raises(ValueError): ujson.decode(bad_string) @pytest.mark.parametrize("broken_json", [ '{{1337:""}}', '{{"key":"}', '[[[true', ]) def test_decode_broken_json_leak(self, broken_json): for _ in range(1000): with pytest.raises(ValueError): ujson.decode(broken_json) @pytest.mark.parametrize("invalid_dict", [ "{{{{31337}}}}", # No key. "{{{{\"key\":}}}}", # No value. "{{{{\"key\"}}}}", # No colon or value. ]) def test_decode_invalid_dict(self, invalid_dict): with pytest.raises(ValueError): ujson.decode(invalid_dict) @pytest.mark.parametrize("numeric_int_as_str", [ "31337", "-31337" # Should work with negatives. ]) def test_decode_numeric_int(self, numeric_int_as_str): assert int(numeric_int_as_str) == ujson.decode(numeric_int_as_str) @pytest.mark.skipif(compat.PY3, reason="only PY2") def test_encode_unicode_4bytes_utf8_fail(self): with pytest.raises(OverflowError): ujson.encode("\xfd\xbf\xbf\xbf\xbf\xbf") def test_encode_null_character(self): wrapped_input = "31337 \x00 1337" output = ujson.encode(wrapped_input) assert wrapped_input == json.loads(output) assert output == json.dumps(wrapped_input) assert wrapped_input == ujson.decode(output) alone_input = "\x00" output = ujson.encode(alone_input) assert alone_input == json.loads(output) assert output == json.dumps(alone_input) assert alone_input == ujson.decode(output) assert '" \\u0000\\r\\n "' == ujson.dumps(u(" \u0000\r\n ")) def test_decode_null_character(self): wrapped_input = "\"31337 \\u0000 31337\"" assert ujson.decode(wrapped_input) == json.loads(wrapped_input) def test_encode_list_long_conversion(self): long_input = [9223372036854775807, 9223372036854775807, 9223372036854775807, 9223372036854775807, 9223372036854775807, 9223372036854775807] output = ujson.encode(long_input) assert long_input == json.loads(output) assert long_input == ujson.decode(output) tm.assert_numpy_array_equal(np.array(long_input), ujson.decode(output, numpy=True, dtype=np.int64)) def test_encode_long_conversion(self): long_input = 9223372036854775807 output = ujson.encode(long_input) assert long_input == json.loads(output) assert output == json.dumps(long_input) assert long_input == ujson.decode(output) @pytest.mark.parametrize("int_exp", [ "1337E40", "1.337E40", "1337E+9", "1.337e+40", "1.337E-4" ]) def test_decode_numeric_int_exp(self, int_exp): assert ujson.decode(int_exp) == json.loads(int_exp) def test_dump_to_file(self): f = StringIO() ujson.dump([1, 2, 3], f) assert "[1,2,3]" == f.getvalue() def test_dump_to_file_like(self): class FileLike(object): def __init__(self): self.bytes = '' def write(self, data_bytes): self.bytes += data_bytes f = FileLike() ujson.dump([1, 2, 3], f) assert "[1,2,3]" == f.bytes def test_dump_file_args_error(self): with pytest.raises(TypeError): ujson.dump([], "") def test_load_file(self): data = "[1,2,3,4]" exp_data = [1, 2, 3, 4] f = StringIO(data) assert exp_data == ujson.load(f) f = StringIO(data) tm.assert_numpy_array_equal(np.array(exp_data), ujson.load(f, numpy=True)) def test_load_file_like(self): class FileLike(object): def read(self): try: self.end except AttributeError: self.end = True return "[1,2,3,4]" exp_data = [1, 2, 3, 4] f = FileLike() assert exp_data == ujson.load(f) f = FileLike() tm.assert_numpy_array_equal(np.array(exp_data), ujson.load(f, numpy=True)) def test_load_file_args_error(self): with pytest.raises(TypeError): ujson.load("[]") def test_version(self): assert re.match(r'^\d+\.\d+(\.\d+)?$', ujson.__version__), \ "ujson.__version__ must be a string like '1.4.0'" def test_encode_numeric_overflow(self): with pytest.raises(OverflowError): ujson.encode(12839128391289382193812939) def test_encode_numeric_overflow_nested(self): class Nested(object): x = 12839128391289382193812939 for _ in range(0, 100): with pytest.raises(OverflowError): ujson.encode(Nested()) @pytest.mark.parametrize("val", [ 3590016419, 2**31, 2**32, (2**32) - 1 ]) def test_decode_number_with_32bit_sign_bit(self, val): # Test that numbers that fit within 32 bits but would have the # sign bit set (2**31 <= x < 2**32) are decoded properly. doc = '{{"id": {val}}}'.format(val=val) assert ujson.decode(doc)["id"] == val def test_encode_big_escape(self): # Make sure no Exception is raised. for _ in range(10): base = '\u00e5'.encode("utf-8") if compat.PY3 else "\xc3\xa5" escape_input = base * 1024 * 1024 * 2 ujson.encode(escape_input) def test_decode_big_escape(self): # Make sure no Exception is raised. for _ in range(10): base = '\u00e5'.encode("utf-8") if compat.PY3 else "\xc3\xa5" quote = compat.str_to_bytes("\"") escape_input = quote + (base * 1024 * 1024 * 2) + quote ujson.decode(escape_input) def test_to_dict(self): d = {u("key"): 31337} class DictTest(object): def toDict(self): return d o = DictTest() output = ujson.encode(o) dec = ujson.decode(output) assert dec == d def test_default_handler(self): class _TestObject(object): def __init__(self, val): self.val = val @property def recursive_attr(self): return _TestObject("recursive_attr") def __str__(self): return str(self.val) msg = "Maximum recursion level reached" with pytest.raises(OverflowError, match=msg): ujson.encode(_TestObject("foo")) assert '"foo"' == ujson.encode(_TestObject("foo"), default_handler=str) def my_handler(_): return "foobar" assert '"foobar"' == ujson.encode(_TestObject("foo"), default_handler=my_handler) def my_handler_raises(_): raise TypeError("I raise for anything") with pytest.raises(TypeError, match="I raise for anything"): ujson.encode(_TestObject("foo"), default_handler=my_handler_raises) def my_int_handler(_): return 42 assert ujson.decode(ujson.encode(_TestObject("foo"), default_handler=my_int_handler)) == 42 def my_obj_handler(_): return datetime.datetime(2013, 2, 3) assert (ujson.decode(ujson.encode(datetime.datetime(2013, 2, 3))) == ujson.decode(ujson.encode(_TestObject("foo"), default_handler=my_obj_handler))) obj_list = [_TestObject("foo"), _TestObject("bar")] assert (json.loads(json.dumps(obj_list, default=str)) == ujson.decode(ujson.encode(obj_list, default_handler=str))) class TestNumpyJSONTests(object): @pytest.mark.parametrize("bool_input", [True, False]) def test_bool(self, bool_input): b = np.bool(bool_input) assert ujson.decode(ujson.encode(b)) == b def test_bool_array(self): bool_array = np.array([ True, False, True, True, False, True, False, False], dtype=np.bool) output = np.array(ujson.decode( ujson.encode(bool_array)), dtype=np.bool) tm.assert_numpy_array_equal(bool_array, output) def test_int(self, any_int_dtype): klass = np.dtype(any_int_dtype).type num = klass(1) assert klass(ujson.decode(ujson.encode(num))) == num def test_int_array(self, any_int_dtype): arr = np.arange(100, dtype=np.int) arr_input = arr.astype(any_int_dtype) arr_output = np.array(ujson.decode(ujson.encode(arr_input)), dtype=any_int_dtype) tm.assert_numpy_array_equal(arr_input, arr_output) def test_int_max(self, any_int_dtype): if any_int_dtype in ("int64", "uint64") and compat.is_platform_32bit(): pytest.skip("Cannot test 64-bit integer on 32-bit platform") klass = np.dtype(any_int_dtype).type # uint64 max will always overflow, # as it's encoded to signed. if any_int_dtype == "uint64": num = np.iinfo("int64").max else: num = np.iinfo(any_int_dtype).max assert klass(ujson.decode(ujson.encode(num))) == num def test_float(self, float_dtype): klass = np.dtype(float_dtype).type num = klass(256.2013) assert klass(ujson.decode(ujson.encode(num))) == num def test_float_array(self, float_dtype): arr = np.arange(12.5, 185.72, 1.7322, dtype=np.float) float_input = arr.astype(float_dtype) float_output = np.array(ujson.decode( ujson.encode(float_input, double_precision=15)), dtype=float_dtype) tm.assert_almost_equal(float_input, float_output) def test_float_max(self, float_dtype): klass = np.dtype(float_dtype).type num = klass(np.finfo(float_dtype).max / 10) tm.assert_almost_equal(klass(ujson.decode( ujson.encode(num, double_precision=15))), num) def test_array_basic(self): arr = np.arange(96) arr = arr.reshape((2, 2, 2, 2, 3, 2)) tm.assert_numpy_array_equal( np.array(ujson.decode(ujson.encode(arr))), arr) tm.assert_numpy_array_equal(ujson.decode( ujson.encode(arr), numpy=True), arr) @pytest.mark.parametrize("shape", [ (10, 10), (5, 5, 4), (100, 1), ]) def test_array_reshaped(self, shape): arr = np.arange(100) arr = arr.reshape(shape) tm.assert_numpy_array_equal( np.array(ujson.decode(ujson.encode(arr))), arr) tm.assert_numpy_array_equal(ujson.decode( ujson.encode(arr), numpy=True), arr) def test_array_list(self): arr_list = ["a", list(), dict(), dict(), list(), 42, 97.8, ["a", "b"], {"key": "val"}] arr = np.array(arr_list) tm.assert_numpy_array_equal( np.array(ujson.decode(ujson.encode(arr))), arr) def test_array_float(self): dtype = np.float32 arr = np.arange(100.202, 200.202, 1, dtype=dtype) arr = arr.reshape((5, 5, 4)) arr_out = np.array(ujson.decode(ujson.encode(arr)), dtype=dtype) tm.assert_almost_equal(arr, arr_out) arr_out = ujson.decode(ujson.encode(arr), numpy=True, dtype=dtype) tm.assert_almost_equal(arr, arr_out) def test_0d_array(self): with pytest.raises(TypeError): ujson.encode(np.array(1)) @pytest.mark.parametrize("bad_input,exc_type,kwargs", [ ([{}, []], ValueError, {}), ([42, None], TypeError, {}), ([["a"], 42], ValueError, {}), ([42, {}, "a"], TypeError, {}), ([42, ["a"], 42], ValueError, {}), (["a", "b", [], "c"], ValueError, {}), ([{"a": "b"}], ValueError, dict(labelled=True)), ({"a": {"b": {"c": 42}}}, ValueError, dict(labelled=True)), ([{"a": 42, "b": 23}, {"c": 17}], ValueError, dict(labelled=True)) ]) def test_array_numpy_except(self, bad_input, exc_type, kwargs): with pytest.raises(exc_type): ujson.decode(ujson.dumps(bad_input), numpy=True, **kwargs) def test_array_numpy_labelled(self): labelled_input = {"a": []} output = ujson.loads(ujson.dumps(labelled_input), numpy=True, labelled=True) assert (np.empty((1, 0)) == output[0]).all() assert (np.array(["a"]) == output[1]).all() assert output[2] is None labelled_input = [{"a": 42}] output = ujson.loads(ujson.dumps(labelled_input), numpy=True, labelled=True) assert (np.array([u("a")]) == output[2]).all() assert (np.array([42]) == output[0]).all() assert output[1] is None # see gh-10837: write out the dump explicitly # so there is no dependency on iteration order input_dumps = ('[{"a": 42, "b":31}, {"a": 24, "c": 99}, ' '{"a": 2.4, "b": 78}]') output = ujson.loads(input_dumps, numpy=True, labelled=True) expected_vals = np.array( [42, 31, 24, 99, 2.4, 78], dtype=int).reshape((3, 2)) assert (expected_vals == output[0]).all() assert output[1] is None assert (np.array([u("a"), "b"]) == output[2]).all() input_dumps = ('{"1": {"a": 42, "b":31}, "2": {"a": 24, "c": 99}, ' '"3": {"a": 2.4, "b": 78}}') output = ujson.loads(input_dumps, numpy=True, labelled=True) expected_vals = np.array( [42, 31, 24, 99, 2.4, 78], dtype=int).reshape((3, 2)) assert (expected_vals == output[0]).all() assert (np.array(["1", "2", "3"]) == output[1]).all() assert (np.array(["a", "b"]) == output[2]).all() class TestPandasJSONTests(object): def test_dataframe(self, orient, numpy): if orient == "records" and numpy: pytest.skip("Not idiomatic pandas") df = DataFrame([[1, 2, 3], [4, 5, 6]], index=[ "a", "b"], columns=["x", "y", "z"]) encode_kwargs = {} if orient is None else dict(orient=orient) decode_kwargs = {} if numpy is None else dict(numpy=numpy) output = ujson.decode(ujson.encode(df, **encode_kwargs), **decode_kwargs) # Ensure proper DataFrame initialization. if orient == "split": dec = _clean_dict(output) output = DataFrame(**dec) else: output = DataFrame(output) # Corrections to enable DataFrame comparison. if orient == "values": df.columns = [0, 1, 2] df.index = [0, 1] elif orient == "records": df.index = [0, 1] elif orient == "index": df = df.transpose() tm.assert_frame_equal(output, df, check_dtype=False) def test_dataframe_nested(self, orient): df = DataFrame([[1, 2, 3], [4, 5, 6]], index=[ "a", "b"], columns=["x", "y", "z"]) nested = {"df1": df, "df2": df.copy()} kwargs = {} if orient is None else dict(orient=orient) exp = {"df1": ujson.decode(ujson.encode(df, **kwargs)), "df2": ujson.decode(ujson.encode(df, **kwargs))} assert ujson.decode(ujson.encode(nested, **kwargs)) == exp def test_dataframe_numpy_labelled(self, orient): if orient in ("split", "values"): pytest.skip("Incompatible with labelled=True") df = DataFrame([[1, 2, 3], [4, 5, 6]], index=[ "a", "b"], columns=["x", "y", "z"], dtype=np.int) kwargs = {} if orient is None else dict(orient=orient) output = DataFrame(*ujson.decode(ujson.encode(df, **kwargs), numpy=True, labelled=True)) if orient is None: df = df.T elif orient == "records": df.index = [0, 1] tm.assert_frame_equal(output, df) def test_series(self, orient, numpy): s = Series([10, 20, 30, 40, 50, 60], name="series", index=[6, 7, 8, 9, 10, 15]).sort_values() encode_kwargs = {} if orient is None else dict(orient=orient) decode_kwargs = {} if numpy is None else dict(numpy=numpy) output = ujson.decode(ujson.encode(s, **encode_kwargs), **decode_kwargs) if orient == "split": dec = _clean_dict(output) output = Series(**dec) else: output = Series(output) if orient in (None, "index"): s.name = None output = output.sort_values() s.index = ["6", "7", "8", "9", "10", "15"] elif orient in ("records", "values"): s.name = None s.index = [0, 1, 2, 3, 4, 5] tm.assert_series_equal(output, s, check_dtype=False) def test_series_nested(self, orient): s = Series([10, 20, 30, 40, 50, 60], name="series", index=[6, 7, 8, 9, 10, 15]).sort_values() nested = {"s1": s, "s2": s.copy()} kwargs = {} if orient is None else dict(orient=orient) exp = {"s1": ujson.decode(ujson.encode(s, **kwargs)), "s2": ujson.decode(ujson.encode(s, **kwargs))} assert ujson.decode(ujson.encode(nested, **kwargs)) == exp def test_index(self): i = Index([23, 45, 18, 98, 43, 11], name="index") # Column indexed. output = Index(ujson.decode(ujson.encode(i)), name="index") tm.assert_index_equal(i, output) output = Index(ujson.decode(ujson.encode(i), numpy=True), name="index") tm.assert_index_equal(i, output) dec = _clean_dict(ujson.decode(ujson.encode(i, orient="split"))) output = Index(**dec) tm.assert_index_equal(i, output) assert i.name == output.name dec = _clean_dict(ujson.decode(ujson.encode(i, orient="split"), numpy=True)) output = Index(**dec) tm.assert_index_equal(i, output) assert i.name == output.name output = Index(ujson.decode(ujson.encode(i, orient="values")), name="index") tm.assert_index_equal(i, output) output = Index(ujson.decode(ujson.encode(i, orient="values"), numpy=True), name="index") tm.assert_index_equal(i, output) output = Index(ujson.decode(ujson.encode(i, orient="records")), name="index") tm.assert_index_equal(i, output) output = Index(ujson.decode(ujson.encode(i, orient="records"), numpy=True), name="index") tm.assert_index_equal(i, output) output = Index(ujson.decode(ujson.encode(i, orient="index")), name="index") tm.assert_index_equal(i, output) output = Index(ujson.decode(ujson.encode(i, orient="index"), numpy=True), name="index") tm.assert_index_equal(i, output) def test_datetime_index(self): date_unit = "ns" rng = date_range("1/1/2000", periods=20) encoded = ujson.encode(rng, date_unit=date_unit) decoded = DatetimeIndex(np.array(ujson.decode(encoded))) tm.assert_index_equal(rng, decoded) ts = Series(np.random.randn(len(rng)), index=rng) decoded = Series(ujson.decode(ujson.encode(ts, date_unit=date_unit))) idx_values = decoded.index.values.astype(np.int64) decoded.index = DatetimeIndex(idx_values) tm.assert_series_equal(ts, decoded) @pytest.mark.parametrize("invalid_arr", [ "[31337,]", # Trailing comma. "[,31337]", # Leading comma. "[]]", # Unmatched bracket. "[,]", # Only comma. ]) def test_decode_invalid_array(self, invalid_arr): with pytest.raises(ValueError): ujson.decode(invalid_arr) @pytest.mark.parametrize("arr", [ [], [31337] ]) def test_decode_array(self, arr): assert arr == ujson.decode(str(arr)) @pytest.mark.parametrize("extreme_num", [ 9223372036854775807, -9223372036854775808 ]) def test_decode_extreme_numbers(self, extreme_num): assert extreme_num == ujson.decode(str(extreme_num)) @pytest.mark.parametrize("too_extreme_num", [ "9223372036854775808", "-90223372036854775809" ]) def test_decode_too_extreme_numbers(self, too_extreme_num): with pytest.raises(ValueError): ujson.decode(too_extreme_num) def test_decode_with_trailing_whitespaces(self): assert {} == ujson.decode("{}\n\t ") def test_decode_with_trailing_non_whitespaces(self): with pytest.raises(ValueError): ujson.decode("{}\n\t a") def test_decode_array_with_big_int(self): with pytest.raises(ValueError): ujson.loads("[18446098363113800555]") @pytest.mark.parametrize("float_number", [ 1.1234567893, 1.234567893, 1.34567893, 1.4567893, 1.567893, 1.67893, 1.7893, 1.893, 1.3, ]) @pytest.mark.parametrize("sign", [-1, 1]) def test_decode_floating_point(self, sign, float_number): float_number *= sign tm.assert_almost_equal(float_number, ujson.loads(str(float_number)), check_less_precise=15) def test_encode_big_set(self): s = set() for x in range(0, 100000): s.add(x) # Make sure no Exception is raised. ujson.encode(s) def test_encode_empty_set(self): assert "[]" == ujson.encode(set()) def test_encode_set(self): s = {1, 2, 3, 4, 5, 6, 7, 8, 9} enc = ujson.encode(s) dec = ujson.decode(enc) for v in dec: assert v in s
bsd-3-clause
pratapvardhan/scikit-learn
sklearn/utils/tests/test_extmath.py
12
23419
# Authors: Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Denis Engemann <[email protected]> # # License: BSD 3 clause import numpy as np from scipy import sparse from scipy import linalg from scipy import stats from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import skip_if_32bit from sklearn.utils.extmath import density from sklearn.utils.extmath import logsumexp from sklearn.utils.extmath import norm, squared_norm from sklearn.utils.extmath import randomized_svd from sklearn.utils.extmath import row_norms from sklearn.utils.extmath import weighted_mode from sklearn.utils.extmath import cartesian from sklearn.utils.extmath import log_logistic from sklearn.utils.extmath import fast_dot, _fast_dot from sklearn.utils.extmath import svd_flip from sklearn.utils.extmath import _incremental_mean_and_var from sklearn.utils.extmath import _deterministic_vector_sign_flip from sklearn.utils.extmath import softmax from sklearn.datasets.samples_generator import make_low_rank_matrix def test_density(): rng = np.random.RandomState(0) X = rng.randint(10, size=(10, 5)) X[1, 2] = 0 X[5, 3] = 0 X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) X_coo = sparse.coo_matrix(X) X_lil = sparse.lil_matrix(X) for X_ in (X_csr, X_csc, X_coo, X_lil): assert_equal(density(X_), density(X)) def test_uniform_weights(): # with uniform weights, results should be identical to stats.mode rng = np.random.RandomState(0) x = rng.randint(10, size=(10, 5)) weights = np.ones(x.shape) for axis in (None, 0, 1): mode, score = stats.mode(x, axis) mode2, score2 = weighted_mode(x, weights, axis) assert_true(np.all(mode == mode2)) assert_true(np.all(score == score2)) def test_random_weights(): # set this up so that each row should have a weighted mode of 6, # with a score that is easily reproduced mode_result = 6 rng = np.random.RandomState(0) x = rng.randint(mode_result, size=(100, 10)) w = rng.random_sample(x.shape) x[:, :5] = mode_result w[:, :5] += 1 mode, score = weighted_mode(x, w, axis=1) assert_array_equal(mode, mode_result) assert_array_almost_equal(score.ravel(), w[:, :5].sum(1)) def test_logsumexp(): # Try to add some smallish numbers in logspace x = np.array([1e-40] * 1000000) logx = np.log(x) assert_almost_equal(np.exp(logsumexp(logx)), x.sum()) X = np.vstack([x, x]) logX = np.vstack([logx, logx]) assert_array_almost_equal(np.exp(logsumexp(logX, axis=0)), X.sum(axis=0)) assert_array_almost_equal(np.exp(logsumexp(logX, axis=1)), X.sum(axis=1)) def test_randomized_svd_low_rank(): # Check that extmath.randomized_svd is consistent with linalg.svd n_samples = 100 n_features = 500 rank = 5 k = 10 # generate a matrix X of approximate effective rank `rank` and no noise # component (very structured signal): X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=rank, tail_strength=0.0, random_state=0) assert_equal(X.shape, (n_samples, n_features)) # compute the singular values of X using the slow exact method U, s, V = linalg.svd(X, full_matrices=False) for normalizer in ['auto', 'LU', 'QR']: # 'none' would not be stable # compute the singular values of X using the fast approximate method Ua, sa, Va = \ randomized_svd(X, k, power_iteration_normalizer=normalizer, random_state=0) assert_equal(Ua.shape, (n_samples, k)) assert_equal(sa.shape, (k,)) assert_equal(Va.shape, (k, n_features)) # ensure that the singular values of both methods are equal up to the # real rank of the matrix assert_almost_equal(s[:k], sa) # check the singular vectors too (while not checking the sign) assert_almost_equal(np.dot(U[:, :k], V[:k, :]), np.dot(Ua, Va)) # check the sparse matrix representation X = sparse.csr_matrix(X) # compute the singular values of X using the fast approximate method Ua, sa, Va = \ randomized_svd(X, k, power_iteration_normalizer=normalizer, random_state=0) assert_almost_equal(s[:rank], sa[:rank]) def test_norm_squared_norm(): X = np.random.RandomState(42).randn(50, 63) X *= 100 # check stability X += 200 assert_almost_equal(np.linalg.norm(X.ravel()), norm(X)) assert_almost_equal(norm(X) ** 2, squared_norm(X), decimal=6) assert_almost_equal(np.linalg.norm(X), np.sqrt(squared_norm(X)), decimal=6) def test_row_norms(): X = np.random.RandomState(42).randn(100, 100) sq_norm = (X ** 2).sum(axis=1) assert_array_almost_equal(sq_norm, row_norms(X, squared=True), 5) assert_array_almost_equal(np.sqrt(sq_norm), row_norms(X)) Xcsr = sparse.csr_matrix(X, dtype=np.float32) assert_array_almost_equal(sq_norm, row_norms(Xcsr, squared=True), 5) assert_array_almost_equal(np.sqrt(sq_norm), row_norms(Xcsr)) def test_randomized_svd_low_rank_with_noise(): # Check that extmath.randomized_svd can handle noisy matrices n_samples = 100 n_features = 500 rank = 5 k = 10 # generate a matrix X wity structure approximate rank `rank` and an # important noisy component X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=rank, tail_strength=0.1, random_state=0) assert_equal(X.shape, (n_samples, n_features)) # compute the singular values of X using the slow exact method _, s, _ = linalg.svd(X, full_matrices=False) for normalizer in ['auto', 'none', 'LU', 'QR']: # compute the singular values of X using the fast approximate # method without the iterated power method _, sa, _ = randomized_svd(X, k, n_iter=0, power_iteration_normalizer=normalizer, random_state=0) # the approximation does not tolerate the noise: assert_greater(np.abs(s[:k] - sa).max(), 0.01) # compute the singular values of X using the fast approximate # method with iterated power method _, sap, _ = randomized_svd(X, k, power_iteration_normalizer=normalizer, random_state=0) # the iterated power method is helping getting rid of the noise: assert_almost_equal(s[:k], sap, decimal=3) def test_randomized_svd_infinite_rank(): # Check that extmath.randomized_svd can handle noisy matrices n_samples = 100 n_features = 500 rank = 5 k = 10 # let us try again without 'low_rank component': just regularly but slowly # decreasing singular values: the rank of the data matrix is infinite X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=rank, tail_strength=1.0, random_state=0) assert_equal(X.shape, (n_samples, n_features)) # compute the singular values of X using the slow exact method _, s, _ = linalg.svd(X, full_matrices=False) for normalizer in ['auto', 'none', 'LU', 'QR']: # compute the singular values of X using the fast approximate method # without the iterated power method _, sa, _ = randomized_svd(X, k, n_iter=0, power_iteration_normalizer=normalizer) # the approximation does not tolerate the noise: assert_greater(np.abs(s[:k] - sa).max(), 0.1) # compute the singular values of X using the fast approximate method # with iterated power method _, sap, _ = randomized_svd(X, k, n_iter=5, power_iteration_normalizer=normalizer) # the iterated power method is still managing to get most of the # structure at the requested rank assert_almost_equal(s[:k], sap, decimal=3) def test_randomized_svd_transpose_consistency(): # Check that transposing the design matrix has limited impact n_samples = 100 n_features = 500 rank = 4 k = 10 X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=rank, tail_strength=0.5, random_state=0) assert_equal(X.shape, (n_samples, n_features)) U1, s1, V1 = randomized_svd(X, k, n_iter=3, transpose=False, random_state=0) U2, s2, V2 = randomized_svd(X, k, n_iter=3, transpose=True, random_state=0) U3, s3, V3 = randomized_svd(X, k, n_iter=3, transpose='auto', random_state=0) U4, s4, V4 = linalg.svd(X, full_matrices=False) assert_almost_equal(s1, s4[:k], decimal=3) assert_almost_equal(s2, s4[:k], decimal=3) assert_almost_equal(s3, s4[:k], decimal=3) assert_almost_equal(np.dot(U1, V1), np.dot(U4[:, :k], V4[:k, :]), decimal=2) assert_almost_equal(np.dot(U2, V2), np.dot(U4[:, :k], V4[:k, :]), decimal=2) # in this case 'auto' is equivalent to transpose assert_almost_equal(s2, s3) def test_randomized_svd_power_iteration_normalizer(): # randomized_svd with power_iteration_normalized='none' diverges for # large number of power iterations on this dataset rng = np.random.RandomState(42) X = make_low_rank_matrix(100, 500, effective_rank=50, random_state=rng) X += 3 * rng.randint(0, 2, size=X.shape) n_components = 50 # Check that it diverges with many (non-normalized) power iterations U, s, V = randomized_svd(X, n_components, n_iter=2, power_iteration_normalizer='none') A = X - U.dot(np.diag(s).dot(V)) error_2 = linalg.norm(A, ord='fro') U, s, V = randomized_svd(X, n_components, n_iter=20, power_iteration_normalizer='none') A = X - U.dot(np.diag(s).dot(V)) error_20 = linalg.norm(A, ord='fro') assert_greater(np.abs(error_2 - error_20), 100) for normalizer in ['LU', 'QR', 'auto']: U, s, V = randomized_svd(X, n_components, n_iter=2, power_iteration_normalizer=normalizer, random_state=0) A = X - U.dot(np.diag(s).dot(V)) error_2 = linalg.norm(A, ord='fro') for i in [5, 10, 50]: U, s, V = randomized_svd(X, n_components, n_iter=i, power_iteration_normalizer=normalizer, random_state=0) A = X - U.dot(np.diag(s).dot(V)) error = linalg.norm(A, ord='fro') assert_greater(15, np.abs(error_2 - error)) def test_svd_flip(): # Check that svd_flip works in both situations, and reconstructs input. rs = np.random.RandomState(1999) n_samples = 20 n_features = 10 X = rs.randn(n_samples, n_features) # Check matrix reconstruction U, S, V = linalg.svd(X, full_matrices=False) U1, V1 = svd_flip(U, V, u_based_decision=False) assert_almost_equal(np.dot(U1 * S, V1), X, decimal=6) # Check transposed matrix reconstruction XT = X.T U, S, V = linalg.svd(XT, full_matrices=False) U2, V2 = svd_flip(U, V, u_based_decision=True) assert_almost_equal(np.dot(U2 * S, V2), XT, decimal=6) # Check that different flip methods are equivalent under reconstruction U_flip1, V_flip1 = svd_flip(U, V, u_based_decision=True) assert_almost_equal(np.dot(U_flip1 * S, V_flip1), XT, decimal=6) U_flip2, V_flip2 = svd_flip(U, V, u_based_decision=False) assert_almost_equal(np.dot(U_flip2 * S, V_flip2), XT, decimal=6) def test_randomized_svd_sign_flip(): a = np.array([[2.0, 0.0], [0.0, 1.0]]) u1, s1, v1 = randomized_svd(a, 2, flip_sign=True, random_state=41) for seed in range(10): u2, s2, v2 = randomized_svd(a, 2, flip_sign=True, random_state=seed) assert_almost_equal(u1, u2) assert_almost_equal(v1, v2) assert_almost_equal(np.dot(u2 * s2, v2), a) assert_almost_equal(np.dot(u2.T, u2), np.eye(2)) assert_almost_equal(np.dot(v2.T, v2), np.eye(2)) def test_randomized_svd_sign_flip_with_transpose(): # Check if the randomized_svd sign flipping is always done based on u # irrespective of transpose. # See https://github.com/scikit-learn/scikit-learn/issues/5608 # for more details. def max_loading_is_positive(u, v): """ returns bool tuple indicating if the values maximising np.abs are positive across all rows for u and across all columns for v. """ u_based = (np.abs(u).max(axis=0) == u.max(axis=0)).all() v_based = (np.abs(v).max(axis=1) == v.max(axis=1)).all() return u_based, v_based mat = np.arange(10 * 8).reshape(10, -1) # Without transpose u_flipped, _, v_flipped = randomized_svd(mat, 3, flip_sign=True) u_based, v_based = max_loading_is_positive(u_flipped, v_flipped) assert_true(u_based) assert_false(v_based) # With transpose u_flipped_with_transpose, _, v_flipped_with_transpose = randomized_svd( mat, 3, flip_sign=True, transpose=True) u_based, v_based = max_loading_is_positive( u_flipped_with_transpose, v_flipped_with_transpose) assert_true(u_based) assert_false(v_based) def test_cartesian(): # Check if cartesian product delivers the right results axes = (np.array([1, 2, 3]), np.array([4, 5]), np.array([6, 7])) true_out = np.array([[1, 4, 6], [1, 4, 7], [1, 5, 6], [1, 5, 7], [2, 4, 6], [2, 4, 7], [2, 5, 6], [2, 5, 7], [3, 4, 6], [3, 4, 7], [3, 5, 6], [3, 5, 7]]) out = cartesian(axes) assert_array_equal(true_out, out) # check single axis x = np.arange(3) assert_array_equal(x[:, np.newaxis], cartesian((x,))) def test_logistic_sigmoid(): # Check correctness and robustness of logistic sigmoid implementation def naive_log_logistic(x): return np.log(1 / (1 + np.exp(-x))) x = np.linspace(-2, 2, 50) assert_array_almost_equal(log_logistic(x), naive_log_logistic(x)) extreme_x = np.array([-100., 100.]) assert_array_almost_equal(log_logistic(extreme_x), [-100, 0]) def test_fast_dot(): # Check fast dot blas wrapper function if fast_dot is np.dot: return rng = np.random.RandomState(42) A = rng.random_sample([2, 10]) B = rng.random_sample([2, 10]) try: linalg.get_blas_funcs(['gemm'])[0] has_blas = True except (AttributeError, ValueError): has_blas = False if has_blas: # Test _fast_dot for invalid input. # Maltyped data. for dt1, dt2 in [['f8', 'f4'], ['i4', 'i4']]: assert_raises(ValueError, _fast_dot, A.astype(dt1), B.astype(dt2).T) # Malformed data. # ndim == 0 E = np.empty(0) assert_raises(ValueError, _fast_dot, E, E) # ndim == 1 assert_raises(ValueError, _fast_dot, A, A[0]) # ndim > 2 assert_raises(ValueError, _fast_dot, A.T, np.array([A, A])) # min(shape) == 1 assert_raises(ValueError, _fast_dot, A, A[0, :][None, :]) # test for matrix mismatch error assert_raises(ValueError, _fast_dot, A, A) # Test cov-like use case + dtypes. for dtype in ['f8', 'f4']: A = A.astype(dtype) B = B.astype(dtype) # col < row C = np.dot(A.T, A) C_ = fast_dot(A.T, A) assert_almost_equal(C, C_, decimal=5) C = np.dot(A.T, B) C_ = fast_dot(A.T, B) assert_almost_equal(C, C_, decimal=5) C = np.dot(A, B.T) C_ = fast_dot(A, B.T) assert_almost_equal(C, C_, decimal=5) # Test square matrix * rectangular use case. A = rng.random_sample([2, 2]) for dtype in ['f8', 'f4']: A = A.astype(dtype) B = B.astype(dtype) C = np.dot(A, B) C_ = fast_dot(A, B) assert_almost_equal(C, C_, decimal=5) C = np.dot(A.T, B) C_ = fast_dot(A.T, B) assert_almost_equal(C, C_, decimal=5) if has_blas: for x in [np.array([[d] * 10] * 2) for d in [np.inf, np.nan]]: assert_raises(ValueError, _fast_dot, x, x.T) def test_incremental_variance_update_formulas(): # Test Youngs and Cramer incremental variance formulas. # Doggie data from http://www.mathsisfun.com/data/standard-deviation.html A = np.array([[600, 470, 170, 430, 300], [600, 470, 170, 430, 300], [600, 470, 170, 430, 300], [600, 470, 170, 430, 300]]).T idx = 2 X1 = A[:idx, :] X2 = A[idx:, :] old_means = X1.mean(axis=0) old_variances = X1.var(axis=0) old_sample_count = X1.shape[0] final_means, final_variances, final_count = \ _incremental_mean_and_var(X2, old_means, old_variances, old_sample_count) assert_almost_equal(final_means, A.mean(axis=0), 6) assert_almost_equal(final_variances, A.var(axis=0), 6) assert_almost_equal(final_count, A.shape[0]) @skip_if_32bit def test_incremental_variance_numerical_stability(): # Test Youngs and Cramer incremental variance formulas. def np_var(A): return A.var(axis=0) # Naive one pass variance computation - not numerically stable # https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance def one_pass_var(X): n = X.shape[0] exp_x2 = (X ** 2).sum(axis=0) / n expx_2 = (X.sum(axis=0) / n) ** 2 return exp_x2 - expx_2 # Two-pass algorithm, stable. # We use it as a benchmark. It is not an online algorithm # https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Two-pass_algorithm def two_pass_var(X): mean = X.mean(axis=0) Y = X.copy() return np.mean((Y - mean)**2, axis=0) # Naive online implementation # https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Online_algorithm # This works only for chunks for size 1 def naive_mean_variance_update(x, last_mean, last_variance, last_sample_count): updated_sample_count = (last_sample_count + 1) samples_ratio = last_sample_count / float(updated_sample_count) updated_mean = x / updated_sample_count + last_mean * samples_ratio updated_variance = last_variance * samples_ratio + \ (x - last_mean) * (x - updated_mean) / updated_sample_count return updated_mean, updated_variance, updated_sample_count # We want to show a case when one_pass_var has error > 1e-3 while # _batch_mean_variance_update has less. tol = 200 n_features = 2 n_samples = 10000 x1 = np.array(1e8, dtype=np.float64) x2 = np.log(1e-5, dtype=np.float64) A0 = x1 * np.ones((n_samples // 2, n_features), dtype=np.float64) A1 = x2 * np.ones((n_samples // 2, n_features), dtype=np.float64) A = np.vstack((A0, A1)) # Older versions of numpy have different precision # In some old version, np.var is not stable if np.abs(np_var(A) - two_pass_var(A)).max() < 1e-6: stable_var = np_var else: stable_var = two_pass_var # Naive one pass var: >tol (=1063) assert_greater(np.abs(stable_var(A) - one_pass_var(A)).max(), tol) # Starting point for online algorithms: after A0 # Naive implementation: >tol (436) mean, var, n = A0[0, :], np.zeros(n_features), n_samples // 2 for i in range(A1.shape[0]): mean, var, n = \ naive_mean_variance_update(A1[i, :], mean, var, n) assert_equal(n, A.shape[0]) # the mean is also slightly unstable assert_greater(np.abs(A.mean(axis=0) - mean).max(), 1e-6) assert_greater(np.abs(stable_var(A) - var).max(), tol) # Robust implementation: <tol (177) mean, var, n = A0[0, :], np.zeros(n_features), n_samples // 2 for i in range(A1.shape[0]): mean, var, n = \ _incremental_mean_and_var(A1[i, :].reshape((1, A1.shape[1])), mean, var, n) assert_equal(n, A.shape[0]) assert_array_almost_equal(A.mean(axis=0), mean) assert_greater(tol, np.abs(stable_var(A) - var).max()) def test_incremental_variance_ddof(): # Test that degrees of freedom parameter for calculations are correct. rng = np.random.RandomState(1999) X = rng.randn(50, 10) n_samples, n_features = X.shape for batch_size in [11, 20, 37]: steps = np.arange(0, X.shape[0], batch_size) if steps[-1] != X.shape[0]: steps = np.hstack([steps, n_samples]) for i, j in zip(steps[:-1], steps[1:]): batch = X[i:j, :] if i == 0: incremental_means = batch.mean(axis=0) incremental_variances = batch.var(axis=0) # Assign this twice so that the test logic is consistent incremental_count = batch.shape[0] sample_count = batch.shape[0] else: result = _incremental_mean_and_var( batch, incremental_means, incremental_variances, sample_count) (incremental_means, incremental_variances, incremental_count) = result sample_count += batch.shape[0] calculated_means = np.mean(X[:j], axis=0) calculated_variances = np.var(X[:j], axis=0) assert_almost_equal(incremental_means, calculated_means, 6) assert_almost_equal(incremental_variances, calculated_variances, 6) assert_equal(incremental_count, sample_count) def test_vector_sign_flip(): # Testing that sign flip is working & largest value has positive sign data = np.random.RandomState(36).randn(5, 5) max_abs_rows = np.argmax(np.abs(data), axis=1) data_flipped = _deterministic_vector_sign_flip(data) max_rows = np.argmax(data_flipped, axis=1) assert_array_equal(max_abs_rows, max_rows) signs = np.sign(data[range(data.shape[0]), max_abs_rows]) assert_array_equal(data, data_flipped * signs[:, np.newaxis]) def test_softmax(): rng = np.random.RandomState(0) X = rng.randn(3, 5) exp_X = np.exp(X) sum_exp_X = np.sum(exp_X, axis=1).reshape((-1, 1)) assert_array_almost_equal(softmax(X), exp_X / sum_exp_X)
bsd-3-clause
kambysese/mne-python
mne/viz/tests/test_circle.py
14
5024
# Authors: Alexandre Gramfort <[email protected]> # Denis Engemann <[email protected]> # Martin Luessi <[email protected]> # # License: Simplified BSD import numpy as np import pytest import matplotlib.pyplot as plt from mne.viz import plot_connectivity_circle, circular_layout def test_plot_connectivity_circle(): """Test plotting connectivity circle.""" node_order = ['frontalpole-lh', 'parsorbitalis-lh', 'lateralorbitofrontal-lh', 'rostralmiddlefrontal-lh', 'medialorbitofrontal-lh', 'parstriangularis-lh', 'rostralanteriorcingulate-lh', 'temporalpole-lh', 'parsopercularis-lh', 'caudalanteriorcingulate-lh', 'entorhinal-lh', 'superiorfrontal-lh', 'insula-lh', 'caudalmiddlefrontal-lh', 'superiortemporal-lh', 'parahippocampal-lh', 'middletemporal-lh', 'inferiortemporal-lh', 'precentral-lh', 'transversetemporal-lh', 'posteriorcingulate-lh', 'fusiform-lh', 'postcentral-lh', 'bankssts-lh', 'supramarginal-lh', 'isthmuscingulate-lh', 'paracentral-lh', 'lingual-lh', 'precuneus-lh', 'inferiorparietal-lh', 'superiorparietal-lh', 'pericalcarine-lh', 'lateraloccipital-lh', 'cuneus-lh', 'cuneus-rh', 'lateraloccipital-rh', 'pericalcarine-rh', 'superiorparietal-rh', 'inferiorparietal-rh', 'precuneus-rh', 'lingual-rh', 'paracentral-rh', 'isthmuscingulate-rh', 'supramarginal-rh', 'bankssts-rh', 'postcentral-rh', 'fusiform-rh', 'posteriorcingulate-rh', 'transversetemporal-rh', 'precentral-rh', 'inferiortemporal-rh', 'middletemporal-rh', 'parahippocampal-rh', 'superiortemporal-rh', 'caudalmiddlefrontal-rh', 'insula-rh', 'superiorfrontal-rh', 'entorhinal-rh', 'caudalanteriorcingulate-rh', 'parsopercularis-rh', 'temporalpole-rh', 'rostralanteriorcingulate-rh', 'parstriangularis-rh', 'medialorbitofrontal-rh', 'rostralmiddlefrontal-rh', 'lateralorbitofrontal-rh', 'parsorbitalis-rh', 'frontalpole-rh'] label_names = ['bankssts-lh', 'bankssts-rh', 'caudalanteriorcingulate-lh', 'caudalanteriorcingulate-rh', 'caudalmiddlefrontal-lh', 'caudalmiddlefrontal-rh', 'cuneus-lh', 'cuneus-rh', 'entorhinal-lh', 'entorhinal-rh', 'frontalpole-lh', 'frontalpole-rh', 'fusiform-lh', 'fusiform-rh', 'inferiorparietal-lh', 'inferiorparietal-rh', 'inferiortemporal-lh', 'inferiortemporal-rh', 'insula-lh', 'insula-rh', 'isthmuscingulate-lh', 'isthmuscingulate-rh', 'lateraloccipital-lh', 'lateraloccipital-rh', 'lateralorbitofrontal-lh', 'lateralorbitofrontal-rh', 'lingual-lh', 'lingual-rh', 'medialorbitofrontal-lh', 'medialorbitofrontal-rh', 'middletemporal-lh', 'middletemporal-rh', 'paracentral-lh', 'paracentral-rh', 'parahippocampal-lh', 'parahippocampal-rh', 'parsopercularis-lh', 'parsopercularis-rh', 'parsorbitalis-lh', 'parsorbitalis-rh', 'parstriangularis-lh', 'parstriangularis-rh', 'pericalcarine-lh', 'pericalcarine-rh', 'postcentral-lh', 'postcentral-rh', 'posteriorcingulate-lh', 'posteriorcingulate-rh', 'precentral-lh', 'precentral-rh', 'precuneus-lh', 'precuneus-rh', 'rostralanteriorcingulate-lh', 'rostralanteriorcingulate-rh', 'rostralmiddlefrontal-lh', 'rostralmiddlefrontal-rh', 'superiorfrontal-lh', 'superiorfrontal-rh', 'superiorparietal-lh', 'superiorparietal-rh', 'superiortemporal-lh', 'superiortemporal-rh', 'supramarginal-lh', 'supramarginal-rh', 'temporalpole-lh', 'temporalpole-rh', 'transversetemporal-lh', 'transversetemporal-rh'] group_boundaries = [0, len(label_names) / 2] node_angles = circular_layout(label_names, node_order, start_pos=90, group_boundaries=group_boundaries) con = np.random.RandomState(0).randn(68, 68) plot_connectivity_circle(con, label_names, n_lines=300, node_angles=node_angles, title='test', ) pytest.raises(ValueError, circular_layout, label_names, node_order, group_boundaries=[-1]) pytest.raises(ValueError, circular_layout, label_names, node_order, group_boundaries=[20, 0]) plt.close('all')
bsd-3-clause
xunyou/vincent
examples/stacked_area_examples.py
11
2281
# -*- coding: utf-8 -*- """ Vincent Stacked Area Examples """ #Build a Stacked Area Chart from scratch from vincent import * import pandas as pd import pandas.io.data as web all_data = {} for ticker in ['AAPL', 'GOOG', 'IBM', 'YHOO', 'MSFT']: all_data[ticker] = web.get_data_yahoo(ticker, '1/1/2010', '1/1/2013') price = pd.DataFrame({tic: data['Adj Close'] for tic, data in all_data.items()}) vis = Visualization(width=500, height=300) vis.padding = {'top': 10, 'left': 50, 'bottom': 50, 'right': 100} data = Data.from_pandas(price) vis.data['table'] = data facets = Transform(type='facet', keys=['data.idx']) stats = Transform(type='stats', value='data.val') stat_dat = Data(name='stats', source='table', transform=[facets, stats]) vis.data['stats'] = stat_dat vis.scales['x'] = Scale(name='x', type='time', range='width', domain=DataRef(data='table', field="data.idx")) vis.scales['y'] = Scale(name='y', range='height', type='linear', nice=True, domain=DataRef(data='stats', field="sum")) vis.scales['color'] = Scale(name='color', type='ordinal', domain=DataRef(data='table', field='data.col'), range='category20') vis.axes.extend([Axis(type='x', scale='x'), Axis(type='y', scale='y')]) facet = Transform(type='facet', keys=['data.col']) stack = Transform(type='stack', point='data.idx', height='data.val') transform = MarkRef(data='table',transform=[facet, stack]) enter_props = PropertySet(x=ValueRef(scale='x', field="data.idx"), y=ValueRef(scale='y', field="y"), interpolate=ValueRef(value='monotone'), y2=ValueRef(field='y2', scale='y'), fill=ValueRef(scale='color', field='data.col')) mark = Mark(type='group', from_=transform, marks=[Mark(type='area', properties=MarkProperties(enter=enter_props))]) vis.marks.append(mark) vis.axis_titles(x='Date', y='Price') vis.legend(title='Tech Stocks') vis.to_json('vega.json') #Convenience method vis = StackedArea(price) vis.axis_titles(x='Date', y='Price') vis.legend(title='Tech Stocks') vis.colors(brew='Paired') vis.to_json('vega.json')
mit
shahankhatch/scikit-learn
sklearn/metrics/cluster/tests/test_bicluster.py
394
1770
"""Testing for bicluster metrics module""" import numpy as np from sklearn.utils.testing import assert_equal, assert_almost_equal from sklearn.metrics.cluster.bicluster import _jaccard from sklearn.metrics import consensus_score def test_jaccard(): a1 = np.array([True, True, False, False]) a2 = np.array([True, True, True, True]) a3 = np.array([False, True, True, False]) a4 = np.array([False, False, True, True]) assert_equal(_jaccard(a1, a1, a1, a1), 1) assert_equal(_jaccard(a1, a1, a2, a2), 0.25) assert_equal(_jaccard(a1, a1, a3, a3), 1.0 / 7) assert_equal(_jaccard(a1, a1, a4, a4), 0) def test_consensus_score(): a = [[True, True, False, False], [False, False, True, True]] b = a[::-1] assert_equal(consensus_score((a, a), (a, a)), 1) assert_equal(consensus_score((a, a), (b, b)), 1) assert_equal(consensus_score((a, b), (a, b)), 1) assert_equal(consensus_score((a, b), (b, a)), 1) assert_equal(consensus_score((a, a), (b, a)), 0) assert_equal(consensus_score((a, a), (a, b)), 0) assert_equal(consensus_score((b, b), (a, b)), 0) assert_equal(consensus_score((b, b), (b, a)), 0) def test_consensus_score_issue2445(): ''' Different number of biclusters in A and B''' a_rows = np.array([[True, True, False, False], [False, False, True, True], [False, False, False, True]]) a_cols = np.array([[True, True, False, False], [False, False, True, True], [False, False, False, True]]) idx = [0, 2] s = consensus_score((a_rows, a_cols), (a_rows[idx], a_cols[idx])) # B contains 2 of the 3 biclusters in A, so score should be 2/3 assert_almost_equal(s, 2.0/3.0)
bsd-3-clause
kevin-intel/scikit-learn
examples/model_selection/plot_nested_cross_validation_iris.py
5
4483
""" ========================================= Nested versus non-nested cross-validation ========================================= This example compares non-nested and nested cross-validation strategies on a classifier of the iris data set. Nested cross-validation (CV) is often used to train a model in which hyperparameters also need to be optimized. Nested CV estimates the generalization error of the underlying model and its (hyper)parameter search. Choosing the parameters that maximize non-nested CV biases the model to the dataset, yielding an overly-optimistic score. Model selection without nested CV uses the same data to tune model parameters and evaluate model performance. Information may thus "leak" into the model and overfit the data. The magnitude of this effect is primarily dependent on the size of the dataset and the stability of the model. See Cawley and Talbot [1]_ for an analysis of these issues. To avoid this problem, nested CV effectively uses a series of train/validation/test set splits. In the inner loop (here executed by :class:`GridSearchCV <sklearn.model_selection.GridSearchCV>`), the score is approximately maximized by fitting a model to each training set, and then directly maximized in selecting (hyper)parameters over the validation set. In the outer loop (here in :func:`cross_val_score <sklearn.model_selection.cross_val_score>`), generalization error is estimated by averaging test set scores over several dataset splits. The example below uses a support vector classifier with a non-linear kernel to build a model with optimized hyperparameters by grid search. We compare the performance of non-nested and nested CV strategies by taking the difference between their scores. .. topic:: See Also: - :ref:`cross_validation` - :ref:`grid_search` .. topic:: References: .. [1] `Cawley, G.C.; Talbot, N.L.C. On over-fitting in model selection and subsequent selection bias in performance evaluation. J. Mach. Learn. Res 2010,11, 2079-2107. <http://jmlr.csail.mit.edu/papers/volume11/cawley10a/cawley10a.pdf>`_ """ from sklearn.datasets import load_iris from matplotlib import pyplot as plt from sklearn.svm import SVC from sklearn.model_selection import GridSearchCV, cross_val_score, KFold import numpy as np print(__doc__) # Number of random trials NUM_TRIALS = 30 # Load the dataset iris = load_iris() X_iris = iris.data y_iris = iris.target # Set up possible values of parameters to optimize over p_grid = {"C": [1, 10, 100], "gamma": [.01, .1]} # We will use a Support Vector Classifier with "rbf" kernel svm = SVC(kernel="rbf") # Arrays to store scores non_nested_scores = np.zeros(NUM_TRIALS) nested_scores = np.zeros(NUM_TRIALS) # Loop for each trial for i in range(NUM_TRIALS): # Choose cross-validation techniques for the inner and outer loops, # independently of the dataset. # E.g "GroupKFold", "LeaveOneOut", "LeaveOneGroupOut", etc. inner_cv = KFold(n_splits=4, shuffle=True, random_state=i) outer_cv = KFold(n_splits=4, shuffle=True, random_state=i) # Non_nested parameter search and scoring clf = GridSearchCV(estimator=svm, param_grid=p_grid, cv=outer_cv) clf.fit(X_iris, y_iris) non_nested_scores[i] = clf.best_score_ # Nested CV with parameter optimization clf = GridSearchCV(estimator=svm, param_grid=p_grid, cv=inner_cv) nested_score = cross_val_score(clf, X=X_iris, y=y_iris, cv=outer_cv) nested_scores[i] = nested_score.mean() score_difference = non_nested_scores - nested_scores print("Average difference of {:6f} with std. dev. of {:6f}." .format(score_difference.mean(), score_difference.std())) # Plot scores on each trial for nested and non-nested CV plt.figure() plt.subplot(211) non_nested_scores_line, = plt.plot(non_nested_scores, color='r') nested_line, = plt.plot(nested_scores, color='b') plt.ylabel("score", fontsize="14") plt.legend([non_nested_scores_line, nested_line], ["Non-Nested CV", "Nested CV"], bbox_to_anchor=(0, .4, .5, 0)) plt.title("Non-Nested and Nested Cross Validation on Iris Dataset", x=.5, y=1.1, fontsize="15") # Plot bar chart of the difference. plt.subplot(212) difference_plot = plt.bar(range(NUM_TRIALS), score_difference) plt.xlabel("Individual Trial #") plt.legend([difference_plot], ["Non-Nested CV - Nested CV Score"], bbox_to_anchor=(0, 1, .8, 0)) plt.ylabel("score difference", fontsize="14") plt.show()
bsd-3-clause
peterdougstuart/PCWG
pcwg/core/status.py
2
1838
import pandas as pd class Status: Instance = None @classmethod def set_verbosity(cls, verbosity): cls.get().verbosity = verbosity @classmethod def add(cls, message, red = False, orange=False, verbosity = 1): cls.get().add_message(message, red, orange, verbosity) @classmethod def set_portfolio_status(cls, completed, total, finished): cls.get().set_portfolio_status_method(completed, total, finished) @classmethod def initialize_status(cls, status_method, set_portfolio_status_method=None, verbosity = 1): # Note: verbosity must be passed (amd not read directly form preferencecs) # in to avoid circulate reference status = cls.get() status.status_method = status_method status.verbosity = verbosity if set_portfolio_status_method is not None: status.set_portfolio_status_method = set_portfolio_status_method @classmethod def get(cls): if cls.Instance == None: cls.Instance = Status() return cls.Instance def __init__(self): self.verbosity = 1 def add_message(self, message, red, orange, verbosity): if verbosity <= self.verbosity: if isinstance(message, pd.DataFrame) or isinstance(message, pd.core.frame.DataFrame): text = str(message.head()) else: text = str(message) lines = text.split("\n") for line in lines: self.status_method(line, red, orange, self.verbosity) def status_method(self, message, red, orange, verbosity): print message def set_portfolio_status_method(self, completed, total, finished): print "{0}/{1} Complete".format(completed, total)
mit
jmmease/pandas
pandas/tests/io/sas/test_xport.py
16
4831
import pandas as pd import pandas.util.testing as tm from pandas.io.sas.sasreader import read_sas import numpy as np import os # CSV versions of test xpt files were obtained using the R foreign library # Numbers in a SAS xport file are always float64, so need to convert # before making comparisons. def numeric_as_float(data): for v in data.columns: if data[v].dtype is np.dtype('int64'): data[v] = data[v].astype(np.float64) class TestXport(object): def setup_method(self, method): self.dirpath = tm.get_data_path() self.file01 = os.path.join(self.dirpath, "DEMO_G.xpt") self.file02 = os.path.join(self.dirpath, "SSHSV1_A.xpt") self.file03 = os.path.join(self.dirpath, "DRXFCD_G.xpt") self.file04 = os.path.join(self.dirpath, "paxraw_d_short.xpt") def test1_basic(self): # Tests with DEMO_G.xpt (all numeric file) # Compare to this data_csv = pd.read_csv(self.file01.replace(".xpt", ".csv")) numeric_as_float(data_csv) # Read full file data = read_sas(self.file01, format="xport") tm.assert_frame_equal(data, data_csv) num_rows = data.shape[0] # Test reading beyond end of file reader = read_sas(self.file01, format="xport", iterator=True) data = reader.read(num_rows + 100) assert data.shape[0] == num_rows reader.close() # Test incremental read with `read` method. reader = read_sas(self.file01, format="xport", iterator=True) data = reader.read(10) reader.close() tm.assert_frame_equal(data, data_csv.iloc[0:10, :]) # Test incremental read with `get_chunk` method. reader = read_sas(self.file01, format="xport", chunksize=10) data = reader.get_chunk() reader.close() tm.assert_frame_equal(data, data_csv.iloc[0:10, :]) # Test read in loop m = 0 reader = read_sas(self.file01, format="xport", chunksize=100) for x in reader: m += x.shape[0] reader.close() assert m == num_rows # Read full file with `read_sas` method data = read_sas(self.file01) tm.assert_frame_equal(data, data_csv) def test1_index(self): # Tests with DEMO_G.xpt using index (all numeric file) # Compare to this data_csv = pd.read_csv(self.file01.replace(".xpt", ".csv")) data_csv = data_csv.set_index("SEQN") numeric_as_float(data_csv) # Read full file data = read_sas(self.file01, index="SEQN", format="xport") tm.assert_frame_equal(data, data_csv, check_index_type=False) # Test incremental read with `read` method. reader = read_sas(self.file01, index="SEQN", format="xport", iterator=True) data = reader.read(10) reader.close() tm.assert_frame_equal(data, data_csv.iloc[0:10, :], check_index_type=False) # Test incremental read with `get_chunk` method. reader = read_sas(self.file01, index="SEQN", format="xport", chunksize=10) data = reader.get_chunk() reader.close() tm.assert_frame_equal(data, data_csv.iloc[0:10, :], check_index_type=False) def test1_incremental(self): # Test with DEMO_G.xpt, reading full file incrementally data_csv = pd.read_csv(self.file01.replace(".xpt", ".csv")) data_csv = data_csv.set_index("SEQN") numeric_as_float(data_csv) reader = read_sas(self.file01, index="SEQN", chunksize=1000) all_data = [x for x in reader] data = pd.concat(all_data, axis=0) tm.assert_frame_equal(data, data_csv, check_index_type=False) def test2(self): # Test with SSHSV1_A.xpt # Compare to this data_csv = pd.read_csv(self.file02.replace(".xpt", ".csv")) numeric_as_float(data_csv) data = read_sas(self.file02) tm.assert_frame_equal(data, data_csv) def test_multiple_types(self): # Test with DRXFCD_G.xpt (contains text and numeric variables) # Compare to this data_csv = pd.read_csv(self.file03.replace(".xpt", ".csv")) data = read_sas(self.file03, encoding="utf-8") tm.assert_frame_equal(data, data_csv) def test_truncated_float_support(self): # Test with paxraw_d_short.xpt, a shortened version of: # http://wwwn.cdc.gov/Nchs/Nhanes/2005-2006/PAXRAW_D.ZIP # This file has truncated floats (5 bytes in this case). # GH 11713 data_csv = pd.read_csv(self.file04.replace(".xpt", ".csv")) data = read_sas(self.file04, format="xport") tm.assert_frame_equal(data.astype('int64'), data_csv)
bsd-3-clause
tuxite/pharmaship
pharmaship/gui/plots/dispatch.py
1
3707
# -*- coding: utf-8 -*- from django.utils.translation import gettext as _ import numpy as np from pharmaship.core.utils import log from pharmaship.gui.plots import utils try: from matplotlib.backends.backend_gtk3agg import ( FigureCanvasGTK3Agg as FigureCanvas) except Exception: # To avoid errors when testing in Docker container from matplotlib.backend_bases import FigureCanvasBase as FigureCanvas from matplotlib.figure import Figure KEYS = [ "missing", "perished", "warning", "nc" ] def get_values(key, data): """Return a Dict of values from `data[key]`.""" if key not in data: return { "values": [0, 0, 0, 0, 0], "total": 0 } result = { "values": [], "total": data[key]["total"] } for item in KEYS: result["values"].append(len(data[key][item])) result["values"].append(data[key]["in_range"]) return result def figure(data, params): """Create a graph showing situation of elements per category.""" category_names = [ { "name": _('Missing'), "color": "#2e3436", }, { "name": _('Perished'), "color": "#a40000", }, { "name": _('Near expiry'), "color": "#f57900", }, { "name": _('Non-conform'), "color": "#3465a4", }, { "name": _('In range'), "color": "#069a17", }, ] results = { "molecules": { "label": _("Medicines"), }, "equipment": { "label": _("Equipment"), }, "rescue_bag": { "label": _("Rescue bags"), }, "first_aid_kit": { "label": _("First Aid Kits"), } } if params.has_telemedical: results["telemedical"] = { "label": _("Telemedical"), } if params.has_laboratory: results["laboratory"] = { "label": _("Laboratory"), } for item in results: results[item].update(get_values(item, data)) fig = Figure(figsize=(5, 2), dpi=100, facecolor="#00000000") ax = fig.add_subplot() labels = [] values = [] totals = [] for item in results: labels.append(results[item]["label"]) values.append(results[item]["values"]) totals.append(results[item]["total"]) totals = np.array(totals) data = np.array(values) data_cum = data.cumsum(axis=1) ax.invert_yaxis() ax.xaxis.set_visible(False) ax.set_xlim(0, 1) for i in range(len(category_names)): _values = data[:, i] _values_cum = data_cum[:, i] widths = np.divide(_values, totals, out=np.zeros(_values.shape, dtype=float), where=totals!=0) starts = np.divide(_values_cum, totals, out=np.zeros(_values_cum.shape, dtype=float), where=totals!=0) - widths ax.barh( labels, widths, left=starts, height=0.5, label=category_names[i]["name"], color=category_names[i]["color"] ) xcenters = starts + widths / 2 text_color = utils.fg_color(category_names[i]["color"]) for y, (x, c) in enumerate(zip(xcenters, _values)): if c == 0: continue ax.text(x, y, str(int(c)), ha='center', va='center', color=text_color) ax.legend(ncol=len(category_names), bbox_to_anchor=(0, 1), loc='lower left', fontsize='small') canvas = FigureCanvas(fig) # a Gtk.DrawingArea canvas.set_size_request(800, 300) return canvas
agpl-3.0
elkeschaper/hts
hts/data_tasks/qc_matplotlib.py
1
7838
# (C) 2015, 2016 Elke Schaper @ Vital-IT.ch """ :synopsis: ``qc_matplotlib`` implements common plots to visualise HTS data available on the fly. .. moduleauthor:: Elke Schaper <[email protected]> """ import itertools import logging import math import matplotlib #matplotlib.use('pdf') from matplotlib.backends.backend_pdf import PdfPages import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import AxesGrid import numpy as np import GPy LOG = logging.getLogger(__name__) def create_report(*args, **kwargs): """ This methods is expected by run.Run . Todo: Needs implementation if Matplotlib reports are required. """ return None ################ Readout wise methods #################### def heat_map_single(run, data_tag, plate_tag, **kwargs): """ Create a heat_map for a single plate Create a heat_map for a single plate """ plate = run.plates[plate_tag] data = plate.filter(value_data_type="readout", value_data_tag=data_tag, return_list=False, **kwargs) # Invert all columns (to comply with naming standards in HTS). # Unfortunately, simply inverting the y-axis did not seem to work. #data = data[::-1] if not type(data) == np.ndarray: data = np.array(data) data = np.ma.array(data, mask=np.isnan(data)) fig = plt.figure() plt.pcolor(data) plt.colorbar() ax = plt.gca() ax.set_ylim(ax.get_ylim()[::-1]) ax.set_aspect('equal') #fig.set_size_inches(5, 4, forward=True) plt.show() def heat_map_single_gaussian_process_model(run, data_tag_readout, sample_tag, plate_tag, magnification=5, *args, **kwargs): """ Create a heat_map for multiple readouts Create a heat_map for multiple readouts model_as_gaussian_process(self, data_tag_readout, sample_key, kernel_type='m32', n_max_iterations=1000, plot_kwargs=False, """ wells_high_resolution = list(itertools.product(np.arange(0,run.width,1/magnification), np.arange(0,run.height,1/magnification))) x_wells = np.array(wells_high_resolution) plate = run.plates[plate_tag] m, y_mean, y_std = plate.model_as_gaussian_process(data_tag_readout=data_tag_readout, sample_tag=sample_tag, **kwargs) y_predicted_mean, y_predicted_var = m.predict(x_wells) y_predicted_as_matrix = y_predicted_mean.reshape(magnification*run.width,magnification*run.height).transpose() fig = plt.figure() # im is of type matplotlib.image.AxesImage plt.imshow(y_predicted_as_matrix) plt.colorbar() plt.gca().invert_yaxis() fig.set_size_inches(5, 4, forward=True) plt.show() def slice_single_gaussian_process_model(run, data_tag_readout, sample_tag, plate_tag, slice=5, **kwargs): """ Create a heat_map for multiple readouts Create a heat_map for multiple readouts # Currently: using Plotly. # Perhaps, matplotlib.axes._subplots.AxesSubplot can be integrated with Matplotlib's AxesGrid as above. """ plate = run.plates[plate_tag] m, y_mean, y_std = plate.model_as_gaussian_process(data_tag_readout=data_tag_readout, sample_tag=sample_tag, **kwargs) m.plot(fixed_inputs=[(1,slice)], plot_data=False) ################ Batch wise methods #################### def heat_map_multiple(run, data_tag, result_file=None, n_plates_max=10, *args, **kwargs): """ Create a heat_map for multiple readouts Create a heat_map for multiple readouts """ data = run.filter(value_data_type="readout", value_data_tag=data_tag, return_list=False, **kwargs) # Invert all columns (to comply with naming standards in HTS). # Unfortunately, simply inverting the y-axis did not seem to work. data = [plate[::-1] for plate in data] data = np.array(data) plate_tags = run.plates.keys() if len(plate_tags) > n_plates_max: plate_tags = plate_tags[::round(len(plate_tags)/n_plates_max)] a = math.ceil(len(plate_tags)/2) b = 2 fig = plt.figure() grid = AxesGrid(fig, 111, nrows_ncols=(b, a), axes_pad=0.05, share_all=True, label_mode="L", cbar_location="right", cbar_mode="single", ) for val, ax in zip(data,grid): im = ax.imshow(val) grid.cbar_axes[0].colorbar(im) for cax in grid.cbar_axes: cax.toggle_label(False) if result_file: pp = PdfPages(result_file) pp.savefig(fig, dpi=20, bbox_inches='tight') pp.close() fig.set_size_inches(30, 14, forward=True) plt.show() # Do we need this line? #fig.clear() def heat_map_multiple_gaussian_process_model(run, kernel_tag, result_file=None, magnification=5, n_plates_max=10, *args, **kwargs): """ Create a heat_map for multiple readouts Create a heat_map for multiple readouts """ wells_high_resolution = list(itertools.product(np.arange(0,run.width,1/magnification), np.arange(0,run.height,1/magnification))) x_wells = np.array(wells_high_resolution) plate_tags = run.plates.keys() if len(plate_tags) > n_plates_max: plate_tags = plate_tags[::round(len(plate_tags)/n_plates_max)] a = math.ceil(len(plate_tags)/2) b = 2 data = [] for plate_tag in plate_tags: gp = run.gp_models gp_model = list(gp.filter(plate_tag=plate_tag, kernel_tag=kernel_tag))[0] y_predicted_mean_normalized, y_predicted_var_normalized, y_predicted_mean, y_predicted_sd = gp_model.predict(x_wells) y_predicted_as_matrix = y_predicted_mean.reshape(magnification*run.width,magnification*run.height).transpose() data.append(y_predicted_as_matrix) fig = plt.figure() grid = AxesGrid(fig, 111, nrows_ncols=(b, a), axes_pad=0.05, share_all=True, label_mode="L", cbar_location="right", cbar_mode="single", ) for val, ax in zip(data,grid): im = ax.imshow(val) # im is of type matplotlib.image.AxesImage grid.cbar_axes[0].colorbar(im) for cax in grid.cbar_axes: cax.toggle_label(False) if result_file: pp = PdfPages(result_file) pp.savefig(fig, dpi=20, bbox_inches='tight') pp.close() fig.set_size_inches(30, 14, forward=True) plt.show() def slice_multiple_gaussian_process_model(run, data_tag_readout, sample_tag, result_file=None, slice=5, n_plates_max=10, *args, **kwargs): """ Create a heat_map for multiple readouts Create a heat_map for multiple readouts # Currently: using Plotly. # Perhaps, matplotlib.axes._subplots.AxesSubplot can be integrated with Matplotlib's AxesGrid as above. """ plate_tags = run.plates.keys() if len(plate_tags) > n_plates_max: plate_tags = plate_tags[::round(len(plate_tags)/n_plates_max)] a = math.ceil(len(plate_tags)/2) b = 2 models = [] for plate_tag in plate_tags: plate = run.plates[plate_tag] m, y_mean, y_std = plate.model_as_gaussian_process(data_tag_readout=data_tag_readout, sample_tag=sample_tag, **kwargs) models.append(m) GPy.plotting.change_plotting_library('plotly') figure = GPy.plotting.plotting_library().figure(len(models), 1, shared_xaxes=True,) for i,m in enumerate(models): canvas = m.plot(figure=figure, fixed_inputs=[(1,slice)], row=(i+1), plot_data=False) # canvas is of type matplotlib.axes._subplots.AxesSubplot #grid.cbar_axes[0].colorbar(im) GPy.plotting.show(canvas, filename='basic_gp_regression_notebook_slicing') GPy.plotting.change_plotting_library('matplotlib')
gpl-2.0
tbrockman/artificial-synethesia-network
predict.py
1
5377
from keras.models import load_model from osc_handler import OSCHandler import numpy as np import sys, cv2, scipy.misc, time, os, PIL import matplotlib.pyplot as plt sys.path.append(os.path.dirname(os.path.realpath(__file__)) + "/../WarpPerspective") import warpperspective tempo = 120 default_threshold = 0.1 last_prediction = np.array([]) saved_predictions = [] notes = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B'] def load_model_and_osc(model_path, osc_params): model = load_model(model_path) osc = OSCHandler(osc_params[0], osc_params[1]) return model, osc def convert_midi_values_to_notes(midi_array): converted = [] for midi in midi_array: converted.append(convert_midi_to_note(midi)) return converted def convert_midi_to_note(midi): index = midi % 12 return notes[index] def predict_image_and_send_osc(model, image, osc, threshold=0.035): highest_midi, predictions = predict_image(model, image) close_midi = threshold_predictions(predictions, highest_midi, threshold) #saved_predictions.append(convert_midi_values_to_notes(close_midi)) #saved_predictions.append(close_midi) if (osc): send_midi_on_osc(osc, close_midi) return close_midi.tolist() def threshold_predictions(predictions, highest, threshold): value = predictions[0][highest] indices = (-predictions[0]).argsort()[:5] # print predictions[0][indices] close_midi = np.where(predictions > (value - threshold)) return close_midi[1] def send_midi_on_osc(osc, midi, performance=True): #global last_prediction #if not np.array_equal(last_prediction, midi): # last_prediction = midi if performance: send_off = [1] * 8 for track in midi: # TODO: send osc on for present tracks # send osc off for not present tracks osc.sendMessage('/noteon', track) send_off[track] = 0 for i in range(len(send_off)): if send_off[i]: osc.sendMessage('/noteoff', i) else: osc.sendMessage('/cnn_midi', midi.tolist()) def predict_image(model, img): predictions = model.predict(img, batch_size=1) highest_midi = np.argmax(predictions[0]) return highest_midi, predictions def preprocess_frame_for_prediction(frame): img = scipy.misc.imresize(frame, [299, 299]) img = img[np.newaxis, ...] # turn into batch of size 1 return img def capture_and_preprocess_webcam_image(warper=None): cap = cv2.VideoCapture(0) ret, frame = cap.read() if (warper): frame = warper.warp(frame) img = preprocess_frame_for_prediction(frame) return img, frame def show_image_with_overlayed_midi(img, midi): notes = convert_midi_values_to_notes(midi) cv2.putText(img,str(notes),(10,50), cv2.FONT_HERSHEY_SIMPLEX, 1,(255,255,255),2) cv2.imshow('frame',img) if cv2.waitKey(100) & 0xFF == ord('q'): return 1 else: return 0 def start_video_capture(model, osc, video_path): vidcap = cv2.VideoCapture(video_path) count = 0 while(vidcap.isOpened()): success, frame = vidcap.read() count += 1 if success and count % 10 == 0: img = preprocess_frame_for_prediction(frame) midi = predict_image_and_send_osc(model, img, osc) exit = show_image_with_overlayed_midi(frame, midi) if (exit): break vidcap.release() cv2.destroyAllWindows() def batch_predict_folder(model, osc=None, folder_path="labeled", save=False, overlay=False): filenames = os.listdir(folder_path) if (save): saved_predictions = [] for i in range(len(filenames)): if filenames[i].endswith(".jpg"): image_path = os.path.join(folder_path, filenames[i]) raw = np.asarray(PIL.Image.open(image_path)) img = preprocess_frame_for_prediction(raw) midi = predict_image_and_send_osc(model, img, osc) if (save): saved_predictions.append(midi) if overlay: exit = show_image_with_overlayed_midi(raw, midi) if (exit): cv2.destroyAllWindows() break return saved_predictions if __name__ == '__main__': if len(sys.argv) < 2: print 'Need model path for predictions.' sys.exit(0) model_path = sys.argv[1] model, osc = load_model_and_osc(model_path, ('127.0.0.1', 57120)) print osc if len(sys.argv) > 2: path = sys.argv[2] if (os.path.isfile(path)): start_video_capture(model, osc, path) elif (os.path.isdir(path)): batch_predict_folder(model, osc, path, False, True, default_threshold) else: print 'Second argument must be a path to a file or a folder.' sys.exit(0) else: img, frame = capture_and_preprocess_webcam_image() warped = None wc = warpperspective.WarpCalibrator() warper = wc.calibrate(frame) while(1): img, frame = capture_and_preprocess_webcam_image(warper) midi = predict_image_and_send_osc(model, img, osc, default_threshold) exit = show_image_with_overlayed_midi(frame, midi) if (exit): cv2.destroyAllWindows() break
apache-2.0
lituan/tools
ancestor_sequence/mega_ancestor_msa_parallel.py
1
4329
#!/usr/bin/env python # -*- coding: utf-8 -*- """ pipeline construct phylogenetic tree and estimate ancestors using msa """ import os import sys import subprocess import numpy as np import seaborn as sns import pandas as pd import matplotlib.pyplot as plt from multiprocessing import Pool from collections import OrderedDict from scipy.stats import ttest_ind def read_mega(mega_f): with open(mega_f) as o_f: lines = o_f.readlines() lines = [line.rstrip('\r\n') for line in lines] pro_line_num = [i for i, line in enumerate( lines) if '>' in line] + [len(lines)] seqs = [lines[n:pro_line_num[i + 1]] for i, n in enumerate(pro_line_num[:-1])] seqs = [(seq[0][1:], ''.join(seq[1:])) for seq in seqs] seq_num = len(seqs) sequences = [] i = 0 for name,seq in seqs: if i < (seq_num + 1)/2: sequences.append(('current',name,seq)) else: sequences.append(('ancestor',name,seq)) i += 1 return sequences def get_similarity(seqs): # seqs format, [['ancestor',pro,'ATR...']...] def get_sim(r1,r2): return len([1 for i,r1i in enumerate(r1) if r1i == r2[i]])*1.0/len(r1) similarity = [] for state,pro,seq in seqs: repeats = [seq[i:i+18] for i in range(0,len(seq),18)] sims = [] for i in range(8): for j in range(8): if j > i: sims.append(get_sim(repeats[i],repeats[j])) similarity.append((state,pro,sims)) return similarity def strip_plot(similarity,fname): # similarity format [['ancestor',pro,[0.3,04...]]...] p_label = [] for i in range(28): anc = [si[i] for s,name,si in similarity if s == 'ancestor'] now = [si[i] for s,name,si in similarity if s == 'current'] pvalue = ttest_ind(anc,now,equal_var=False) if pvalue[-1] < 0.0001: p_label.append('****') elif pvalue[-1] < 0.001: p_label.append('***') elif pvalue[-1] < 0.01: p_label.append('**') elif pvalue[-1] < 0.05: p_label.append('*') else: p_label.append('') state = [ ] repeat_pair = [] repeat_pair_similarity = [] keys = [str(i)+'_'+str(j) for i in range(8) for j in range(8) if j > i] for s,name,sims in similarity: state += [s] * 28 repeat_pair += keys repeat_pair_similarity += sims df = pd.DataFrame({'state':state,'repeat_pair':repeat_pair,'repeat_pair_similarity':repeat_pair_similarity}) sns.set(style='whitegrid', color_codes=True) f,ax = plt.subplots(figsize=(12,8)) # sns.stripplot(x='repeat_pair',y='repeat_pair_similarity',hue='state',palette='Set2',data=df,jitter=True) # sns.violinplot(x='repeat_pair',y='repeat_pair_similarity',hue='state',palette='Set2',data=df,split=True) sns.violinplot(x='repeat_pair',y='repeat_pair_similarity',hue='state',palette='muted',data=df,split=True) # add pvalue label anno_y = [max([si[i] for _,_,si in similarity])+0.10 for i in range(28) ] for i in range(28): ax.annotate(p_label[i],(i,anno_y[i])) # remove duplicated legends handles,labels = ax.get_legend_handles_labels() plt.legend(handles[:2],labels[:2]) plt.savefig(fname+'_repeats_similarity.png',dpi=300) return p_label.count('*') + p_label.count('**') + p_label.count('***') + p_label.count('****') def single_fun(mega_f): fpath,fname = os.path.split(mega_f) fname = os.path.splitext(fname)[0] seqs = read_mega(mega_f) similarity = get_similarity(seqs) f_name = os.path.join(fpath,fname) significant = strip_plot(similarity,f_name) return fname,significant def main(): parameters = [] for root,dirs,files in os.walk(sys.argv[-1]): for f in files: if f[-17:] == 'most_probable.fas': f = os.path.join(root,f) parameters.append(f) # single_fun(parameters[0]) p = Pool(6) result = p.map(single_fun,parameters) p.close() with open('significant.txt','w') as w_f: for r in result: print >> w_f,r[0],'\t',r[1] print [r for r in result if r[1] > 14] if __name__ == "__main__": main()
cc0-1.0
COMBINE-lab/QuantAnalysis
analysis_utils/AnalysisUtils.py
1
2151
def filterValues(colname, DF, val): DF.loc[DF[colname] < val, colname] = 0.0 def relError(c1, c2, DF, cutoff=0.00999999, verbose=False): import pandas as pd import numpy as np nz = DF[DF[c1] > cutoff] re = (nz[c1] - nz[c2]) / nz[c1] return re def proportionalityCorrelation(c1, c2, DF, offset=0.01): import numpy as np return (2.0 * np.log(DF[c1] + offset).cov(np.log(DF[c2] + offset))) / (np.log(DF[c1] + offset).var() + np.log(DF[c2] + offset).var()) def relDiffTP(c1, c2, DF, cutoff=0.1): import pandas as pd import numpy as np tpindex = DF[DF[c1] > cutoff] rd = (tpindex[c2] - tpindex[c1]) / tpindex[c1] return rd def getMedian(df): return df.median() def getMean(df): return df.mean() def relDiff(c1, c2, DF, cutoff=0.01, verbose=False): import pandas as pd """ Computes the relative difference between the values in columns c1 and c2 of DF. c1 and c2 are column names and DF is a Pandas data frame. Values less than cutoff will be treated as 0. The relative difference is defined as d(x_i, y_i) = 0.0 if x_i and y_i are 0 (x_i - y_i) / (0.5 * |x_i - y_i|) otherwise This function returns two values. rd is a DataFrame where the "relDiff" column contains all of the computed relative differences. nz is a set of indexes into rd for data points where x_i and y_i were not *both* zero. """ import numpy as np rd = pd.DataFrame(data = {"Name" : DF.index, "relDiff" : np.zeros(len(DF.index))*np.nan}) rd.set_index("Name", inplace=True) bothZero = DF.loc[(DF[c1] < cutoff) & (DF[c2] < cutoff)].index nonZero = DF.index.difference(bothZero) if (verbose): print("Zero occurs in both columns {} times".format(len(rd.loc[bothZero]))) print("Nonzero occurs in at least 1 column {} times".format(len(rd.loc[nonZero]))) allRD = 2.0 * ((DF[c1] - DF[c2]) / (DF[c1] + DF[c2]).abs()) assert(len(rd.loc[nonZero]["relDiff"]) == len(allRD[nonZero])) rd["relDiff"][nonZero] = allRD[nonZero] if len(bothZero) > 0: rd["relDiff"][bothZero] = 0.0 return rd, nonZero
mit
annayqho/TheCannon
code/lamost/mass_age/no_reddening/run.py
1
3440
""" Run the test step on all the LAMOST DR2 objects. """ import numpy as np import glob import matplotlib.pyplot as plt import sys sys.path.insert(0, '/home/annaho') #from lamost import load_spectra #import dataset #import model from TheCannon import dataset from TheCannon import model #from astropy.table import Table from matplotlib.colors import LogNorm from matplotlib import rc rc('font', family='serif') rc('text', usetex=True) import os def test_step_iteration(ds, m, starting_guess): errs, chisq = m.infer_labels(ds, starting_guess) return ds.test_label_vals, chisq, errs def test_step(date): direc = "../xcalib_4labels" wl = np.load("%s/wl.npz" %direc)['arr_0'] test_ID = np.load("%s/output/%s_ids.npz" %(direc, date))['arr_0'] print(str(len(test_ID)) + " objects") test_flux = np.load("%s/output/%s_norm.npz" %(direc,date))['arr_0'] test_ivar = np.load("%s/output/%s_norm.npz" %(direc,date))['arr_1'] lamost_label = np.load("%s/output/%s_tr_label.npz" %(direc,date))['arr_0'] apogee_label = np.load("./tr_label.npz")['arr_0'] ds = dataset.Dataset(wl, test_ID, test_flux[0:2,:], test_ivar[0:2,:], lamost_label, test_ID, test_flux, test_ivar) ds.set_label_names( ['T_{eff}', '\log g', '[Fe/H]', '[\\alpha/Fe]', 'logM', 'A_k']) m = model.CannonModel(2) m.coeffs = np.load("./coeffs.npz")['arr_0'] m.scatters = np.load("./scatters.npz")['arr_0'] m.chisqs = np.load("./chisqs.npz")['arr_0'] m.pivots = np.load("./pivots.npz")['arr_0'] nlabels = len(m.pivots) nobj = len(test_ID) nguesses = 7 choose = np.random.randint(0,nobj,size=nguesses) starting_guesses = apogee_label[choose]-m.pivots labels = np.zeros((nguesses, nobj, nlabels)) chisq = np.zeros((nguesses, nobj)) errs = np.zeros(labels.shape) for ii,guess in enumerate(starting_guesses): a,b,c = test_step_iteration(ds,m,starting_guesses[ii]) labels[ii,:] = a chisq[ii,:] = b errs[ii,:] = c np.savez("output/%s_cannon_label_guesses.npz" %date, labels) np.savez("output/%s_cannon_chisq_guesses.npz" %date, labels) choose = np.argmin(chisq, axis=0) best_chisq = np.min(chisq, axis=0) best_labels = np.zeros((nobj, nlabels)) best_errs = np.zeros(best_labels.shape) for jj,val in enumerate(choose): best_labels[jj,:] = labels[:,jj,:][val] best_errs[jj,:] = errs[:,jj,:][val] np.savez("output/%s_all_cannon_labels.npz" %date, best_labels) np.savez("output/%s_cannon_label_chisq.npz" %date, best_chisq) np.savez("output/%s_cannon_label_errs.npz" %date, best_errs) ds.test_label_vals = best_labels #ds.diagnostics_survey_labels(figname="%s_survey_labels_triangle.png" %date) ds.test_label_vals = best_labels[:,0:3] ds.set_label_names(['T_{eff}', '\log g', '[M/H]']) ds.diagnostics_1to1(figname = "%s_1to1_test_label" %date) if __name__=="__main__": dates = os.listdir("/home/share/LAMOST/DR2/DR2_release") dates = np.array(dates) dates = np.delete(dates, np.where(dates=='.directory')[0][0]) dates = np.delete(dates, np.where(dates=='all_folders.list')[0][0]) dates = np.delete(dates, np.where(dates=='dr2.lis')[0][0]) for date in dates: print("running %s" %date) if glob.glob("output/%s_all_cannon_labels.npz" %date): print("already done") else: test_step(date)
mit
ilo10/scikit-learn
sklearn/tests/test_isotonic.py
230
11087
import numpy as np import pickle from sklearn.isotonic import (check_increasing, isotonic_regression, IsotonicRegression) from sklearn.utils.testing import (assert_raises, assert_array_equal, assert_true, assert_false, assert_equal, assert_array_almost_equal, assert_warns_message, assert_no_warnings) from sklearn.utils import shuffle def test_permutation_invariance(): # check that fit is permuation invariant. # regression test of missing sorting of sample-weights ir = IsotonicRegression() x = [1, 2, 3, 4, 5, 6, 7] y = [1, 41, 51, 1, 2, 5, 24] sample_weight = [1, 2, 3, 4, 5, 6, 7] x_s, y_s, sample_weight_s = shuffle(x, y, sample_weight, random_state=0) y_transformed = ir.fit_transform(x, y, sample_weight=sample_weight) y_transformed_s = ir.fit(x_s, y_s, sample_weight=sample_weight_s).transform(x) assert_array_equal(y_transformed, y_transformed_s) def test_check_increasing_up(): x = [0, 1, 2, 3, 4, 5] y = [0, 1.5, 2.77, 8.99, 8.99, 50] # Check that we got increasing=True and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_true(is_increasing) def test_check_increasing_up_extreme(): x = [0, 1, 2, 3, 4, 5] y = [0, 1, 2, 3, 4, 5] # Check that we got increasing=True and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_true(is_increasing) def test_check_increasing_down(): x = [0, 1, 2, 3, 4, 5] y = [0, -1.5, -2.77, -8.99, -8.99, -50] # Check that we got increasing=False and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_false(is_increasing) def test_check_increasing_down_extreme(): x = [0, 1, 2, 3, 4, 5] y = [0, -1, -2, -3, -4, -5] # Check that we got increasing=False and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_false(is_increasing) def test_check_ci_warn(): x = [0, 1, 2, 3, 4, 5] y = [0, -1, 2, -3, 4, -5] # Check that we got increasing=False and CI interval warning is_increasing = assert_warns_message(UserWarning, "interval", check_increasing, x, y) assert_false(is_increasing) def test_isotonic_regression(): y = np.array([3, 7, 5, 9, 8, 7, 10]) y_ = np.array([3, 6, 6, 8, 8, 8, 10]) assert_array_equal(y_, isotonic_regression(y)) x = np.arange(len(y)) ir = IsotonicRegression(y_min=0., y_max=1.) ir.fit(x, y) assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y)) assert_array_equal(ir.transform(x), ir.predict(x)) # check that it is immune to permutation perm = np.random.permutation(len(y)) ir = IsotonicRegression(y_min=0., y_max=1.) assert_array_equal(ir.fit_transform(x[perm], y[perm]), ir.fit_transform(x, y)[perm]) assert_array_equal(ir.transform(x[perm]), ir.transform(x)[perm]) # check we don't crash when all x are equal: ir = IsotonicRegression() assert_array_equal(ir.fit_transform(np.ones(len(x)), y), np.mean(y)) def test_isotonic_regression_ties_min(): # Setup examples with ties on minimum x = [0, 1, 1, 2, 3, 4, 5] y = [0, 1, 2, 3, 4, 5, 6] y_true = [0, 1.5, 1.5, 3, 4, 5, 6] # Check that we get identical results for fit/transform and fit_transform ir = IsotonicRegression() ir.fit(x, y) assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y)) assert_array_equal(y_true, ir.fit_transform(x, y)) def test_isotonic_regression_ties_max(): # Setup examples with ties on maximum x = [1, 2, 3, 4, 5, 5] y = [1, 2, 3, 4, 5, 6] y_true = [1, 2, 3, 4, 5.5, 5.5] # Check that we get identical results for fit/transform and fit_transform ir = IsotonicRegression() ir.fit(x, y) assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y)) assert_array_equal(y_true, ir.fit_transform(x, y)) def test_isotonic_regression_ties_secondary_(): """ Test isotonic regression fit, transform and fit_transform against the "secondary" ties method and "pituitary" data from R "isotone" package, as detailed in: J. d. Leeuw, K. Hornik, P. Mair, Isotone Optimization in R: Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods Set values based on pituitary example and the following R command detailed in the paper above: > library("isotone") > data("pituitary") > res1 <- gpava(pituitary$age, pituitary$size, ties="secondary") > res1$x `isotone` version: 1.0-2, 2014-09-07 R version: R version 3.1.1 (2014-07-10) """ x = [8, 8, 8, 10, 10, 10, 12, 12, 12, 14, 14] y = [21, 23.5, 23, 24, 21, 25, 21.5, 22, 19, 23.5, 25] y_true = [22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 24.25, 24.25] # Check fit, transform and fit_transform ir = IsotonicRegression() ir.fit(x, y) assert_array_almost_equal(ir.transform(x), y_true, 4) assert_array_almost_equal(ir.fit_transform(x, y), y_true, 4) def test_isotonic_regression_reversed(): y = np.array([10, 9, 10, 7, 6, 6.1, 5]) y_ = IsotonicRegression(increasing=False).fit_transform( np.arange(len(y)), y) assert_array_equal(np.ones(y_[:-1].shape), ((y_[:-1] - y_[1:]) >= 0)) def test_isotonic_regression_auto_decreasing(): # Set y and x for decreasing y = np.array([10, 9, 10, 7, 6, 6.1, 5]) x = np.arange(len(y)) # Create model and fit_transform ir = IsotonicRegression(increasing='auto') y_ = assert_no_warnings(ir.fit_transform, x, y) # Check that relationship decreases is_increasing = y_[0] < y_[-1] assert_false(is_increasing) def test_isotonic_regression_auto_increasing(): # Set y and x for decreasing y = np.array([5, 6.1, 6, 7, 10, 9, 10]) x = np.arange(len(y)) # Create model and fit_transform ir = IsotonicRegression(increasing='auto') y_ = assert_no_warnings(ir.fit_transform, x, y) # Check that relationship increases is_increasing = y_[0] < y_[-1] assert_true(is_increasing) def test_assert_raises_exceptions(): ir = IsotonicRegression() rng = np.random.RandomState(42) assert_raises(ValueError, ir.fit, [0, 1, 2], [5, 7, 3], [0.1, 0.6]) assert_raises(ValueError, ir.fit, [0, 1, 2], [5, 7]) assert_raises(ValueError, ir.fit, rng.randn(3, 10), [0, 1, 2]) assert_raises(ValueError, ir.transform, rng.randn(3, 10)) def test_isotonic_sample_weight_parameter_default_value(): # check if default value of sample_weight parameter is one ir = IsotonicRegression() # random test data rng = np.random.RandomState(42) n = 100 x = np.arange(n) y = rng.randint(-50, 50, size=(n,)) + 50. * np.log(1 + np.arange(n)) # check if value is correctly used weights = np.ones(n) y_set_value = ir.fit_transform(x, y, sample_weight=weights) y_default_value = ir.fit_transform(x, y) assert_array_equal(y_set_value, y_default_value) def test_isotonic_min_max_boundaries(): # check if min value is used correctly ir = IsotonicRegression(y_min=2, y_max=4) n = 6 x = np.arange(n) y = np.arange(n) y_test = [2, 2, 2, 3, 4, 4] y_result = np.round(ir.fit_transform(x, y)) assert_array_equal(y_result, y_test) def test_isotonic_sample_weight(): ir = IsotonicRegression() x = [1, 2, 3, 4, 5, 6, 7] y = [1, 41, 51, 1, 2, 5, 24] sample_weight = [1, 2, 3, 4, 5, 6, 7] expected_y = [1, 13.95, 13.95, 13.95, 13.95, 13.95, 24] received_y = ir.fit_transform(x, y, sample_weight=sample_weight) assert_array_equal(expected_y, received_y) def test_isotonic_regression_oob_raise(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="raise") ir.fit(x, y) # Check that an exception is thrown assert_raises(ValueError, ir.predict, [min(x) - 10, max(x) + 10]) def test_isotonic_regression_oob_clip(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="clip") ir.fit(x, y) # Predict from training and test x and check that min/max match. y1 = ir.predict([min(x) - 10, max(x) + 10]) y2 = ir.predict(x) assert_equal(max(y1), max(y2)) assert_equal(min(y1), min(y2)) def test_isotonic_regression_oob_nan(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="nan") ir.fit(x, y) # Predict from training and test x and check that we have two NaNs. y1 = ir.predict([min(x) - 10, max(x) + 10]) assert_equal(sum(np.isnan(y1)), 2) def test_isotonic_regression_oob_bad(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="xyz") # Make sure that we throw an error for bad out_of_bounds value assert_raises(ValueError, ir.fit, x, y) def test_isotonic_regression_oob_bad_after(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="raise") # Make sure that we throw an error for bad out_of_bounds value in transform ir.fit(x, y) ir.out_of_bounds = "xyz" assert_raises(ValueError, ir.transform, x) def test_isotonic_regression_pickle(): y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="clip") ir.fit(x, y) ir_ser = pickle.dumps(ir, pickle.HIGHEST_PROTOCOL) ir2 = pickle.loads(ir_ser) np.testing.assert_array_equal(ir.predict(x), ir2.predict(x)) def test_isotonic_duplicate_min_entry(): x = [0, 0, 1] y = [0, 0, 1] ir = IsotonicRegression(increasing=True, out_of_bounds="clip") ir.fit(x, y) all_predictions_finite = np.all(np.isfinite(ir.predict(x))) assert_true(all_predictions_finite) def test_isotonic_zero_weight_loop(): # Test from @ogrisel's issue: # https://github.com/scikit-learn/scikit-learn/issues/4297 # Get deterministic RNG with seed rng = np.random.RandomState(42) # Create regression and samples regression = IsotonicRegression() n_samples = 50 x = np.linspace(-3, 3, n_samples) y = x + rng.uniform(size=n_samples) # Get some random weights and zero out w = rng.uniform(size=n_samples) w[5:8] = 0 regression.fit(x, y, sample_weight=w) # This will hang in failure case. regression.fit(x, y, sample_weight=w)
bsd-3-clause
kcompher/pygraphistry
graphistry/plotter.py
1
18526
from __future__ import print_function from __future__ import absolute_import from builtins import str from builtins import range from builtins import object import random import string import copy import types import pandas from . import pygraphistry from . import util class Plotter(object): """Graph plotting class. Created using ``Graphistry.bind()``. Chained calls successively add data and visual encodings, and end with a plot call. To streamline reuse and replayable notebooks, Plotter manipulations are immutable. Each chained call returns a new instance that derives from the previous one. The old plotter or the new one can then be used to create different graphs. The class supports convenience methods for mixing calls across Pandas, NetworkX, and IGraph. """ _defaultNodeId = '__nodeid__' def __init__(self): # Bindings self._edges = None self._nodes = None self._source = None self._destination = None self._node = None self._edge_title = None self._edge_label = None self._edge_color = None self._edge_weight = None self._point_title = None self._point_label = None self._point_color = None self._point_size = None # Settings self._height = 500 self._url_params = {'info': 'true'} def __repr__(self): bnds = ['edges', 'nodes', 'source', 'destination', 'node', 'edge_title', 'edge_label', 'edge_color', 'edge_weight', 'point_title', 'point_label', 'point_color', 'point_size'] stgs = ['height', 'url_params'] rep = {'bindings': dict([(f, getattr(self, '_' + f)) for f in bnds]), 'settings': dict([(f, getattr(self, '_' + f)) for f in stgs])} if util.in_ipython(): from IPython.lib.pretty import pretty return pretty(rep) else: return str(rep) def bind(self, source=None, destination=None, node=None, edge_title=None, edge_label=None, edge_color=None, edge_weight=None, point_title=None, point_label=None, point_color=None, point_size=None): """Relate data attributes to graph structure and visual representation. To facilitate reuse and replayable notebooks, the binding call is chainable. Invocation does not effect the old binding: it instead returns a new Plotter instance with the new bindings added to the existing ones. Both the old and new bindings can then be used for different graphs. :param source: Attribute containing an edge's source ID :type source: String. :param destination: Attribute containing an edge's destination ID :type destination: String. :param node: Attribute containing a node's ID :type node: String. :param edge_title: Attribute overriding edge's minimized label text. By default, the edge source and destination is used. :type edge_title: HtmlString. :param edge_label: Attribute overriding edge's expanded label text. By default, scrollable list of attribute/value mappings. :type edge_label: HtmlString. :param edge_color: Attribute overriding edge's color. `See palette definitions <https://github.com/graphistry/pygraphistry/blob/master/graphistry.com/palette.html>`_ for values. Based on Color Brewer. :type edge_color: String. :param edge_weight: Attribute overriding edge weight. Default is 1. Advanced layout controls will relayout edges based on this value. :type edge_weight: String. :param point_title: Attribute overriding node's minimized label text. By default, the node ID is used. :type point_title: HtmlString. :param point_label: Attribute overriding node's expanded label text. By default, scrollable list of attribute/value mappings. :type point_label: HtmlString. :param point_color: Attribute overriding node's color. `See palette definitions <https://github.com/graphistry/pygraphistry/blob/master/graphistry.com/palette.html>`_ for values. Based on Color Brewer. :type point_color: Integer. :param point_size: Attribute overriding node's size. By default, uses the node degree. The visualization will normalize point sizes and adjust dynamically using semantic zoom. :type point_size: HtmlString. :returns: Plotter. :rtype: Plotter. **Example: Minimal** :: import graphistry g = graphistry.bind() g = g.bind(source='src', destination='dst') **Example: Node colors** :: import graphistry g = graphistry.bind() g = g.bind(source='src', destination='dst', node='id', point_color='color') **Example: Chaining** :: import graphistry g = graphistry.bind(source='src', destination='dst', node='id') g1 = g.bind(point_color='color1', point_size='size1') g.bind(point_color='color1b') g2a = g1.bind(point_color='color2a') g2b = g1.bind(point_color='color2b', point_size='size2b') g3a = g2a.bind(point_size='size3a') g3b = g2b.bind(point_size='size3b') In the above **Chaining** example, all bindings use src/dst/id. Colors and sizes bind to: :: g: default/default g1: color1/size1 g2a: color2a/size1 g2b: color2b/size2b g3a: color2a/size3a g3b: color2b/size3b """ res = copy.copy(self) res._source = source or self._source res._destination = destination or self._destination res._node = node or self._node res._edge_title = edge_title or self._edge_title res._edge_label = edge_label or self._edge_label res._edge_color = edge_color or self._edge_color res._edge_weight = edge_weight or self._edge_weight res._point_title = point_title or self._point_title res._point_label = point_label or self._point_label res._point_color = point_color or self._point_color res._point_size = point_size or self._point_size return res def nodes(self, nodes): """Specify the set of nodes and associated data. Must include any nodes referenced in the edge list. :param nodes: Nodes and their attributes. :type point_size: Pandas dataframe :returns: Plotter. :rtype: Plotter. **Example** :: import graphistry es = pandas.DataFrame({'src': [0,1,2], 'dst': [1,2,0]}) g = graphistry .bind(source='src', destination='dst') .edges(es) vs = pandas.DataFrame({'v': [0,1,2], 'lbl': ['a', 'b', 'c']}) g = g.bind(node='v').nodes(vs) g.plot() """ res = copy.copy(self) res._nodes = nodes return res def edges(self, edges): """Specify edge list data and associated edge attribute values. :param edges: Edges and their attributes. :type point_size: Pandas dataframe, NetworkX graph, or IGraph graph. :returns: Plotter. :rtype: Plotter. **Example** :: import graphistry df = pandas.DataFrame({'src': [0,1,2], 'dst': [1,2,0]}) graphistry .bind(source='src', destination='dst') .edges(df) .plot() """ res = copy.copy(self) res._edges = edges return res def graph(self, ig): """Specify the node and edge data. :param ig: Graph with node and edge attributes. :type ig: NetworkX graph or an IGraph graph. :returns: Plotter. :rtype: Plotter. """ res = copy.copy(self) res._edges = ig res._nodes = None return res def settings(self, height=None, url_params={}): """Specify iframe height and add URL parameter dictionary. The library takes care of URI component encoding for the dictionary. :param height: Height in pixels. :type height: Integer. :param url_params: Dictionary of querystring parameters to append to the URL. :type url_params: Dictionary """ res = copy.copy(self) res._height = height or self._height res._url_params = dict(self._url_params, **url_params) return res def plot(self, graph=None, nodes=None): """Upload data to the Graphistry server and show as an iframe of it. Uses the currently bound schema structure and visual encodings. Optional parameters override the current bindings. When used in a notebook environment, will also show an iframe of the visualization. :param graph: Edge table or graph. :type graph: Pandas dataframe, NetworkX graph, or IGraph graph. :param nodes: Nodes table. :type nodes: Pandas dataframe. **Example: Simple** :: import graphistry es = pandas.DataFrame({'src': [0,1,2], 'dst': [1,2,0]}) graphistry .bind(source='src', destination='dst') .edges(es) .plot() **Example: Shorthand** :: import graphistry es = pandas.DataFrame({'src': [0,1,2], 'dst': [1,2,0]}) graphistry .bind(source='src', destination='dst') .plot(es) """ if graph is None: if self._edges is None: util.error('Graph/edges must be specified.') g = self._edges else: g = graph n = self._nodes if nodes is None else nodes self._check_mandatory_bindings(not isinstance(n, type(None))) dataset = self._plot_dispatch(g, n) if dataset is None: util.error('Expected Pandas dataframe(s) or Igraph/NetworkX graph.') dataset_name = pygraphistry.PyGraphistry._etl(dataset) viz_url = pygraphistry.PyGraphistry._viz_url(dataset_name, self._url_params) if util.in_ipython() is True: from IPython.core.display import HTML return HTML(self._iframe(viz_url)) else: print('Url: ', viz_url) import webbrowser webbrowser.open(viz_url) return self def pandas2igraph(self, edges, directed=True): """Convert a pandas edge dataframe to an IGraph graph. Uses current bindings. Defaults to treating edges as directed. **Example** :: import graphistry g = graphistry.bind() es = pandas.DataFrame({'src': [0,1,2], 'dst': [1,2,0]}) g = g.bind(source='src', destination='dst') ig = g.pandas2igraph(es) ig.vs['community'] = ig.community_infomap().membership g.bind(point_color='community').plot(ig) """ import igraph self._check_mandatory_bindings(False) self._check_bound_attribs(edges, ['source', 'destination'], 'Edge') if self._node is None: util.warn('"node" is unbound, automatically binding it to "%s".' % Plotter._defaultNodeId) self._node = self._node or Plotter._defaultNodeId eattribs = edges.columns.values.tolist() eattribs.remove(self._source) eattribs.remove(self._destination) cols = [self._source, self._destination] + eattribs etuples = [tuple(x) for x in edges[cols].values] return igraph.Graph.TupleList(etuples, directed=directed, edge_attrs=eattribs, vertex_name_attr=self._node) def igraph2pandas(self, ig): """Under current bindings, transform an IGraph into a pandas edges dataframe and a nodes dataframe. **Example** :: import graphistry g = graphistry.bind() es = pandas.DataFrame({'src': [0,1,2], 'dst': [1,2,0]}) g = g.bind(source='src', destination='dst').edges(es) ig = g.pandas2igraph(es) ig.vs['community'] = ig.community_infomap().membership (es2, vs2) = g.igraph2pandas(ig) g.nodes(vs2).bind(point_color='community').plot() """ def get_edgelist(ig): idmap = dict(enumerate(ig.vs[self._node])) for e in ig.es: t = e.tuple yield dict({self._source: idmap[t[0]], self._destination: idmap[t[1]]}, **e.attributes()) self._check_mandatory_bindings(False) if self._node is None: util.warn('"node" is unbound, automatically binding it to "%s".' % Plotter._defaultNodeId) ig.vs[Plotter._defaultNodeId] = [v.index for v in ig.vs] self._node = Plotter._defaultNodeId elif self._node not in ig.vs.attributes(): util.error('Vertex attribute "%s" bound to "node" does not exist.' % self._node) edata = get_edgelist(ig) ndata = [v.attributes() for v in ig.vs] nodes = pandas.DataFrame(ndata, columns=ig.vs.attributes()) cols = [self._source, self._destination] + ig.es.attributes() edges = pandas.DataFrame(edata, columns=cols) return (edges, nodes) def networkx2pandas(self, g): def get_nodelist(g): for n in g.nodes(data=True): yield dict({self._node: n[0]}, **n[1]) def get_edgelist(g): for e in g.edges(data=True): yield dict({self._source: e[0], self._destination: e[1]}, **e[2]) self._check_mandatory_bindings(False) vattribs = g.nodes(data=True)[0][1] if g.number_of_nodes() > 0 else [] if self._node is None: util.warn('"node" is unbound, automatically binding it to "%s".' % Plotter._defaultNodeId) elif self._node in vattribs: util.error('Vertex attribute "%s" already exists.' % self._node) self._node = self._node or Plotter._defaultNodeId nodes = pandas.DataFrame(get_nodelist(g)) edges = pandas.DataFrame(get_edgelist(g)) return (edges, nodes) def _check_mandatory_bindings(self, node_required): if self._source is None or self._destination is None: util.error('Both "source" and "destination" must be bound before plotting.') if node_required and self._node is None: util.error('Node identifier must be bound when using node dataframe.') def _check_bound_attribs(self, df, attribs, typ): cols = df.columns.values.tolist() for a in attribs: b = getattr(self, '_' + a) if b not in cols: util.error('%s attribute "%s" bound to "%s" does not exist.' % (typ, a, b)) def _plot_dispatch(self, graph, nodes): if isinstance(graph, pandas.core.frame.DataFrame): return self._pandas2dataset(graph, nodes) try: import igraph if isinstance(graph, igraph.Graph): (e, n) = self.igraph2pandas(graph) return self._pandas2dataset(e, n) except ImportError: pass try: import networkx if isinstance(graph, networkx.classes.graph.Graph) or \ isinstance(graph, networkx.classes.digraph.DiGraph) or \ isinstance(graph, networkx.classes.multigraph.MultiGraph) or \ isinstance(graph, networkx.classes.multidigraph.MultiDiGraph): (e, n) = self.networkx2pandas(graph) return self._pandas2dataset(e, n) except ImportError: pass return None def _pandas2dataset(self, edges, nodes): def bind(df, pbname, attrib, default=None): bound = getattr(self, attrib) if bound: if bound in df.columns.tolist(): df[pbname] = df[bound] else: util.warn('Attribute "%s" bound to %s does not exist.' % (bound, attrib)) elif default: df[pbname] = df[default] self._check_bound_attribs(edges, ['source', 'destination'], 'Edge') nodeid = self._node or Plotter._defaultNodeId elist = edges.reset_index(drop=True) bind(elist, 'edgeColor', '_edge_color') bind(elist, 'edgeLabel', '_edge_label') bind(elist, 'edgeTitle', '_edge_title') bind(elist, 'edgeWeight', '_edge_weight') if nodes is None: nodes = pandas.DataFrame() nodes[nodeid] = pandas.concat([edges[self._source], edges[self._destination]], ignore_index=True).drop_duplicates() else: self._check_bound_attribs(nodes, ['node'], 'Vertex') nlist = nodes.reset_index(drop=True) bind(nlist, 'pointColor', '_point_color') bind(nlist, 'pointLabel', '_point_label') bind(nlist, 'pointTitle', '_point_title', nodeid) bind(nlist, 'pointSize', '_point_size') return self._make_dataset(elist, nlist) def _make_dataset(self, elist, nlist=None): edict = elist.where((pandas.notnull(elist)), None).to_dict(orient='records') name = ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(10)) bindings = {'idField': self._node or Plotter._defaultNodeId, 'destinationField': self._destination, 'sourceField': self._source} dataset = {'name': pygraphistry.PyGraphistry._dataset_prefix + name, 'bindings': bindings, 'type': 'edgelist', 'graph': edict} if nlist is not None: ndict = nlist.where((pandas.notnull(nlist)), None).to_dict(orient='records') dataset['labels'] = ndict return dataset def _iframe(self, url): tag = '<iframe src="%s" style="width:100%%; height:%dpx; border: 1px solid #DDD"></iframe>' return tag % (url, self._height)
bsd-3-clause
kpei/cs-rating
wl_model/spcl_case.py
1
1599
import pandas as pd import pymc3 as pm import numpy as np def fix_teams(h_teams): h_teams.loc[7723, 'Name'] = 'Morior Invictus' h_teams.loc[8241, 'Name'] = 'ex-Nitrious' h_teams.loc[8349, 'Name'] = 'Good People' h_teams.loc[8008, 'Name'] = 'Grayhound' h_teams.loc[5293, 'Name'] = 'AVANT' h_teams.loc[8030, 'Name'] = 'Not Academy' return h_teams def prep_pymc_model(n_teams, n_maps): with pm.Model() as rating_model: omega = pm.HalfCauchy('omega', 0.5) tau = pm.HalfCauchy('tau', 0.5) rating = pm.Normal('rating', 0, omega, shape=n_teams) theta_tilde = pm.Normal('rate_t', mu=0, sd=1, shape=(n_maps, n_teams)) rating_map = pm.Deterministic('rating | map', rating + tau * theta_tilde) alpha = pm.Normal('alpha', 1., 0.2) beta = pm.Normal('beta', 0.5, 0.2) sigma = pm.HalfCauchy('sigma', 0.5) return rating_model def prep_pymc_time_model(n_teams, n_maps, n_periods): with pm.Model() as rating_model: rho = pm.Uniform('rho', -1, 1) omega = pm.HalfNormal('omega', 0.5) sigma = pm.HalfNormal('sigma', 0.5) time_rating = [pm.Normal('rating_0', 0, omega, shape=n_teams)] theta_tilde = pm.Normal('rate_t', mu=0, sd=1, shape=(n_maps, n_teams)) tau = pm.HalfCauchy('tau', 0.5) time_rating_map = [pm.Deterministic('rating_0 | map', time_rating[0] + tau * theta_tilde)] gamma = pm.HalfNormal('gamma', 1.5) for i in np.arange(1, n_periods): time_rating.append(pm.Normal('rating_'+str(i), rho*time_rating[i-1], sigma, shape=n_teams)) time_rating_map.append(pm.Deterministic('rating_'+str(i)+' | map', time_rating[i] + tau * theta_tilde)) return rating_model
gpl-3.0
cjqian/incubator-airflow
airflow/contrib/hooks/salesforce_hook.py
10
12120
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ This module contains a Salesforce Hook which allows you to connect to your Salesforce instance, retrieve data from it, and write that data to a file for other uses. NOTE: this hook also relies on the simple_salesforce package: https://github.com/simple-salesforce/simple-salesforce """ from simple_salesforce import Salesforce from airflow.hooks.base_hook import BaseHook import json import pandas as pd import time from airflow.utils.log.logging_mixin import LoggingMixin class SalesforceHook(BaseHook, LoggingMixin): def __init__( self, conn_id, *args, **kwargs ): """ Create new connection to Salesforce and allows you to pull data out of SFDC and save it to a file. You can then use that file with other Airflow operators to move the data into another data source :param conn_id: the name of the connection that has the parameters we need to connect to Salesforce. The conenction shoud be type `http` and include a user's security token in the `Extras` field. .. note:: For the HTTP connection type, you can include a JSON structure in the `Extras` field. We need a user's security token to connect to Salesforce. So we define it in the `Extras` field as: `{"security_token":"YOUR_SECRUITY_TOKEN"}` """ self.conn_id = conn_id self._args = args self._kwargs = kwargs # get the connection parameters self.connection = self.get_connection(conn_id) self.extras = self.connection.extra_dejson def sign_in(self): """ Sign into Salesforce. If we have already signed it, this will just return the original object """ if hasattr(self, 'sf'): return self.sf # connect to Salesforce sf = Salesforce( username=self.connection.login, password=self.connection.password, security_token=self.extras['security_token'], instance_url=self.connection.host ) self.sf = sf return sf def make_query(self, query): """ Make a query to Salesforce. Returns result in dictionary :param query: The query to make to Salesforce """ self.sign_in() self.log.info("Querying for all objects") query = self.sf.query_all(query) self.log.info( "Received results: Total size: %s; Done: %s", query['totalSize'], query['done'] ) query = json.loads(json.dumps(query)) return query def describe_object(self, obj): """ Get the description of an object from Salesforce. This description is the object's schema and some extra metadata that Salesforce stores for each object :param obj: Name of the Salesforce object that we are getting a description of. """ self.sign_in() return json.loads(json.dumps(self.sf.__getattr__(obj).describe())) def get_available_fields(self, obj): """ Get a list of all available fields for an object. This only returns the names of the fields. """ self.sign_in() desc = self.describe_object(obj) return [f['name'] for f in desc['fields']] def _build_field_list(self, fields): # join all of the fields in a comma separated list return ",".join(fields) def get_object_from_salesforce(self, obj, fields): """ Get all instances of the `object` from Salesforce. For each model, only get the fields specified in fields. All we really do underneath the hood is run: SELECT <fields> FROM <obj>; """ field_string = self._build_field_list(fields) query = "SELECT {0} FROM {1}".format(field_string, obj) self.log.info( "Making query to Salesforce: %s", query if len(query) < 30 else " ... ".join([query[:15], query[-15:]]) ) return self.make_query(query) @classmethod def _to_timestamp(cls, col): """ Convert a column of a dataframe to UNIX timestamps if applicable :param col: A Series object representing a column of a dataframe. """ # try and convert the column to datetimes # the column MUST have a four digit year somewhere in the string # there should be a better way to do this, # but just letting pandas try and convert every column without a format # caused it to convert floats as well # For example, a column of integers # between 0 and 10 are turned into timestamps # if the column cannot be converted, # just return the original column untouched try: col = pd.to_datetime(col) except ValueError: log = LoggingMixin().log log.warning( "Could not convert field to timestamps: %s", col.name ) return col # now convert the newly created datetimes into timestamps # we have to be careful here # because NaT cannot be converted to a timestamp # so we have to return NaN converted = [] for i in col: try: converted.append(i.timestamp()) except ValueError: converted.append(pd.np.NaN) except AttributeError: converted.append(pd.np.NaN) # return a new series that maintains the same index as the original return pd.Series(converted, index=col.index) def write_object_to_file( self, query_results, filename, fmt="csv", coerce_to_timestamp=False, record_time_added=False ): """ Write query results to file. Acceptable formats are: - csv: comma-separated-values file. This is the default format. - json: JSON array. Each element in the array is a different row. - ndjson: JSON array but each element is new-line deliminated instead of comman deliminated like in `json` This requires a significant amount of cleanup. Pandas doesn't handle output to CSV and json in a uniform way. This is especially painful for datetime types. Pandas wants to write them as strings in CSV, but as milisecond Unix timestamps. By default, this function will try and leave all values as they are represented in Salesforce. You use the `coerce_to_timestamp` flag to force all datetimes to become Unix timestamps (UTC). This is can be greatly beneficial as it will make all of your datetime fields look the same, and makes it easier to work with in other database environments :param query_results: the results from a SQL query :param filename: the name of the file where the data should be dumped to :param fmt: the format you want the output in. *Default:* csv. :param coerce_to_timestamp: True if you want all datetime fields to be converted into Unix timestamps. False if you want them to be left in the same format as they were in Salesforce. Leaving the value as False will result in datetimes being strings. *Defaults to False* :param record_time_added: *(optional)* True if you want to add a Unix timestamp field to the resulting data that marks when the data was fetched from Salesforce. *Default: False*. """ fmt = fmt.lower() if fmt not in ['csv', 'json', 'ndjson']: raise ValueError("Format value is not recognized: {0}".format(fmt)) # this line right here will convert all integers to floats if there are # any None/np.nan values in the column # that's because None/np.nan cannot exist in an integer column # we should write all of our timestamps as FLOATS in our final schema df = pd.DataFrame.from_records(query_results, exclude=["attributes"]) df.columns = [c.lower() for c in df.columns] # convert columns with datetime strings to datetimes # not all strings will be datetimes, so we ignore any errors that occur # we get the object's definition at this point and only consider # features that are DATE or DATETIME if coerce_to_timestamp and df.shape[0] > 0: # get the object name out of the query results # it's stored in the "attributes" dictionary # for each returned record object_name = query_results[0]['attributes']['type'] self.log.info("Coercing timestamps for: %s", object_name) schema = self.describe_object(object_name) # possible columns that can be convereted to timestamps # are the ones that are either date or datetime types # strings are too general and we risk unintentional conversion possible_timestamp_cols = [ i['name'].lower() for i in schema['fields'] if i['type'] in ["date", "datetime"] and i['name'].lower() in df.columns ] df[possible_timestamp_cols] = df[possible_timestamp_cols].apply( lambda x: self._to_timestamp(x) ) if record_time_added: fetched_time = time.time() df["time_fetched_from_salesforce"] = fetched_time # write the CSV or JSON file depending on the option # NOTE: # datetimes here are an issue. # There is no good way to manage the difference # for to_json, the options are an epoch or a ISO string # but for to_csv, it will be a string output by datetime # For JSON we decided to output the epoch timestamp in seconds # (as is fairly standard for JavaScript) # And for csv, we do a string if fmt == "csv": # there are also a ton of newline objects # that mess up our ability to write to csv # we remove these newlines so that the output is a valid CSV format self.log.info("Cleaning data and writing to CSV") possible_strings = df.columns[df.dtypes == "object"] df[possible_strings] = df[possible_strings].apply( lambda x: x.str.replace("\r\n", "") ) df[possible_strings] = df[possible_strings].apply( lambda x: x.str.replace("\n", "") ) # write the dataframe df.to_csv(filename, index=False) elif fmt == "json": df.to_json(filename, "records", date_unit="s") elif fmt == "ndjson": df.to_json(filename, "records", lines=True, date_unit="s") return df
apache-2.0
iamshang1/Projects
Advanced_ML/Text_Classification/feature_extraction.py
1
4544
import sys import ast import re from itertools import groupby import numpy as np import collections from gensim.models import Word2Vec from matplotlib import pyplot as plt from sklearn.manifold import TSNE import logging import pickle #get json filepath args = (sys.argv) if len(args) != 2: raise Exception("Usage: python feature_extraction.py <path to Yelp json file>") json_path = args[1] #logging setup logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) #store records labels = [] tokens = [] maxsentlen = 0 maxdoclen = 0 #process json one line at a time with open(json_path,'r') as f: lineno = 0 for line in f: lineno += 1 sys.stdout.write("processing line %i of aprox 4.15 million \r" \ % lineno) sys.stdout.flush() dic = ast.literal_eval(line) #only keep records from 2013 (to reduce dataset size) if dic['date'][:4]!='2013': continue text = dic['text'] #process text text = text.lower() text = re.sub("'", '', text) text = re.sub("\.{2,}", '.', text) text = re.sub('[^\w_|\.|\?|!]+', ' ', text) text = re.sub('\.', ' . ', text) text = re.sub('\?', ' ? ', text) text = re.sub('!', ' ! ', text) #tokenize text = text.split() #drop empty reviews if len(text) == 0: continue #split into sentences sentences = [] sentence = [] for t in text: if t not in ['.','!','?']: sentence.append(t) else: sentence.append(t) sentences.append(sentence) if len(sentence) > maxsentlen: maxsentlen = len(sentence) sentence = [] if len(sentence) > 0: sentences.append(sentence) #add split sentences to tokens tokens.append(sentences) if len(sentences) > maxdoclen: maxdoclen = len(sentences) #add label labels.append(dic['stars']) print '\nsaved %i records' % len(tokens) #generate Word2Vec embeddings print "generating word2vec embeddings" #used all processed raw text to train word2vec allsents = [sent for doc in tokens for sent in doc] embedding_size = 200 model = Word2Vec(allsents, min_count=5, size=embedding_size, workers=4, iter=5) model.init_sims(replace=True) ''' #get most common words print "getting common words" allwords = [word for sent in allsents for word in sent] counts = collections.Counter(allwords).most_common(500) #reduce embeddings to 2d using tsne print "reducing embeddings to 2D" embeddings = np.empty((500,embedding_size)) for i in range(500): embeddings[i,:] = model[counts[i][0]] tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=7500) embeddings = tsne.fit_transform(embeddings) #plot embeddings print "plotting most common words" fig, ax = plt.subplots(figsize=(30, 30)) for i in range(500): ax.scatter(embeddings[i,0],embeddings[i,1]) ax.annotate(counts[i][0], (embeddings[i,0],embeddings[i,1])) plt.show() ''' #save all word embeddings to matrix print "saving word vectors to matrix" vocab = np.zeros((len(model.wv.vocab)+1,embedding_size)) word2id = {} #first row of embedding matrix isn't used so that 0 can be masked for key,val in model.wv.vocab.iteritems(): idx = val.__dict__['index'] + 1 vocab[idx,:] = model[key] word2id[key] = idx #normalize embeddings vocab -= vocab.mean() vocab /= (vocab.std()*2) #reset first row to 0 vocab[0,:] = np.zeros((embedding_size)) #add additional word embedding for unknown words vocab = np.concatenate((vocab, np.random.rand(1,embedding_size))) #index for unknown words unk = len(vocab)-1 #convert words to word indicies print "converting words to indices" data = {} for idx,doc in enumerate(tokens): sys.stdout.write('processing %i of %i records \r' % (idx+1,len(tokens))) sys.stdout.flush() dic = {} dic['label'] = labels[idx] dic['text'] = doc indicies = [] for sent in doc: indicies.append([word2id[word] if word in word2id else unk for word in sent]) dic['idx'] = indicies data[idx] = dic #save preprocessed data and embeddings to disk print "\nsaving data to disk" np.save('embeddings',vocab) with open('data.pkl', 'wb') as f: pickle.dump(data, f, pickle.HIGHEST_PROTOCOL)
mit
prheenan/Research
Perkins/Projects/WetLab/Demos/Dilutions/2016-9-31-SolutionProtocols/2016-9-4PrepGel/main_prep-gel.py
1
1658
# force floating point division. Can still use integer with // from __future__ import division # This file is used for importing the common utilities classes. import numpy as np import matplotlib.pyplot as plt import sys sys.path.append("../../../..") from Util import DilutionUtil def run(): """ For aliquotting things... """ # TCEP is already present (25uL at 4mM), # assume effectively that we want the full aliquot # Stats list is formattd like <name,Concentraiton string, stock, desired, # already present> s TotalDNADesiredNanograms = 10e3 Volume = 136 # units of vol_units Stats = [ ["DNA","ng",88.2,TotalDNADesiredNanograms/Volume,0], ["loading buffer","x",6,1,0]] # get the stocks, desired concntrations, and already-present concentraitons Stocks = [s[2] for s in Stats] Desired = [s[3] for s in Stats] Already = [s[4] for s in Stats] vol_units = "uL" Volumes = DilutionUtil.\ GetVolumesNeededByConcentration(Stocks,Desired,Volume, AlreadyHaveMass=Already) BufferVolume = Volume - sum(Volumes) print("In a total solution of {:.1f}uL...".format(Volume)) for (name,conc_units,conc_stock,desired_conc,_),vol_stock in\ zip(Stats,Volumes): print("\t{:.3g}{:s} of {:.3g}{:s} {:s} for {:.3g}{:s} in solution".\ format(vol_stock,vol_units,conc_stock,conc_units,name, desired_conc,conc_units)) print("\tRemainder is ({:.3g}{:s}) of buffer".\ format(BufferVolume,vol_units)) if __name__ == "__main__": run()
gpl-3.0
websterkgd/PeasantMath
Roots/code/ErrorComparison.py
2
4158
from __future__ import division import sys import os import matplotlib.pyplot as plt import scipy from scipy import special mydir = os.path.expanduser("~/") sys.path.append(mydir + "/GitHub/PeasantMath/Roots/code") import functions as fxn ks = [2, 3, 4, 5, 6, 7, 8, 9, 10, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5] ks = [3] for i, k in enumerate(ks): fs = 12 fig = plt.figure() ax = fig.add_subplot(2,2,1) x = 2.0 xs = [] rts = [] WLs = [] guesses = [] for j in range(100): xs.append(x) y = x**(1.0/k) rts.append(y) a = fxn.WHL_kth(x, k) a = abs(y - a)/y WLs.append(a) b = fxn.Guess(x, k) b = abs(y - b)/y guesses.append(b) x += 1 #plt.scatter(xs, rts, s=50, color='m', facecolors='none', label='root'+str(k)) plt.scatter(xs, WLs, color='c', alpha=0.9, label='WHL rule') plt.scatter(xs, guesses, color='grey', alpha=0.9, label='Random guesses \nfor the remainder') #plt.scatter(xs, guesses, color='grey', alpha=0.9, label='Assuming the remainder\nis 1/2') #plt.yscale('log') #plt.xscale('log') plt.xlabel('x', fontsize=fs) plt.ylabel('Percent error', fontsize=fs) plt.xlim(min(xs), max(xs)) #plt.ylim(min(WLs), max(rts)) plt.legend(bbox_to_anchor=(-0.04, 1.1, 2.59, .3), loc=10, ncol=2, mode="expand",prop={'size':16}) #leg = plt.legend(loc=4,prop={'size':12}) #leg.draw_frame(False) #plt.text(-50, 14, "How well does the WHL Rule approximate square roots?", fontsize=16) ax = fig.add_subplot(2,2,2) x = 2.0 xs = [] rts = [] WLs = [] guesses = [] for j in range(100): xs.append(x) y = x**(1.0/k) rts.append(y) a = fxn.WHL_kth(x, k) a = abs(y - a)/y WLs.append(a) b = fxn.Guess(x, k) b = abs(y - b)/y guesses.append(b) x += 10 #plt.scatter(xs, rts, s=50, color='m', facecolors='none', label='root'+str(k)) plt.scatter(xs, WLs, color='c', alpha=0.9) plt.scatter(xs, guesses, color='grey', alpha=0.9) #plt.yscale('log') #plt.xscale('log') plt.xlabel('x', fontsize=fs) plt.ylabel('Percent error', fontsize=fs) plt.xlim(min(xs)*0.5, max(xs)) #plt.ylim(min(WLs)*0.5, max(rts)*1.5) ax = fig.add_subplot(2,2,3) x = 2.0 xs = [] rts = [] WLs = [] guesses = [] for j in range(30): xs.append(x) y = x**(1.0/k) rts.append(y) a = fxn.WHL_kth(x, k) a = abs(y - a)/y WLs.append(a) b = fxn.Guess(x, k) b = abs(y - b)/y guesses.append(b) x = x*1.5 #plt.scatter(xs, rts, s=50, color='m', facecolors='none', label='root'+str(k)) plt.scatter(xs, WLs, color='c', alpha=0.9) plt.scatter(xs, guesses, color='grey', alpha=0.9) #plt.yscale('log') plt.xscale('log') plt.xlabel('x', fontsize=fs) plt.ylabel('Percent error', fontsize=fs) plt.xlim(min(xs)*0.5, max(xs)*1.5) #plt.ylim(min(WLs)*0.5, max(rts)*1.5) ax = fig.add_subplot(2,2,4) x = 2.0 xs = [] rts = [] WLs = [] guesses = [] for j in range(30): xs.append(x) y = x**(1.0/k) rts.append(y) a = fxn.WHL_kth(x, k) a = abs(y - a)/y WLs.append(a) b = fxn.Guess(x, k) b = abs(y - b)/y guesses.append(b) x = x*2 #plt.scatter(xs, rts, s=50, color='m', facecolors='none', label='root'+str(k)) plt.scatter(xs, WLs, color='c', alpha=0.9) plt.scatter(xs, guesses, color='grey', alpha=0.9) #plt.yscale('log') plt.xscale('log') plt.xlabel('x', fontsize=fs) plt.ylabel('Percent error', fontsize=fs) plt.xlim(min(xs)*0.5, max(xs)*1.5) #plt.ylim(min(WLs)*0.5, max(rts)*1.5) plt.tick_params(axis='both', which='major', labelsize=8) plt.subplots_adjust(wspace=0.5, hspace=0.3) plt.savefig(mydir+'/GitHub/PeasantMath/Roots/figs/ErrorAnalysis/error_and_random_remainder-Root_'+str(k)+'.png', dpi=600, bbox_inches = 'tight')#, pad_inches=0) print 'finished root',k #plt.show()
cc0-1.0
mjudsp/Tsallis
examples/gaussian_process/plot_gpr_prior_posterior.py
104
2878
""" ========================================================================== Illustration of prior and posterior Gaussian process for different kernels ========================================================================== This example illustrates the prior and posterior of a GPR with different kernels. Mean, standard deviation, and 10 samples are shown for both prior and posterior. """ print(__doc__) # Authors: Jan Hendrik Metzen <[email protected]> # # License: BSD 3 clause import numpy as np from matplotlib import pyplot as plt from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import (RBF, Matern, RationalQuadratic, ExpSineSquared, DotProduct, ConstantKernel) kernels = [1.0 * RBF(length_scale=1.0, length_scale_bounds=(1e-1, 10.0)), 1.0 * RationalQuadratic(length_scale=1.0, alpha=0.1), 1.0 * ExpSineSquared(length_scale=1.0, periodicity=3.0, length_scale_bounds=(0.1, 10.0), periodicity_bounds=(1.0, 10.0)), ConstantKernel(0.1, (0.01, 10.0)) * (DotProduct(sigma_0=1.0, sigma_0_bounds=(0.0, 10.0)) ** 2), 1.0 * Matern(length_scale=1.0, length_scale_bounds=(1e-1, 10.0), nu=1.5)] for fig_index, kernel in enumerate(kernels): # Specify Gaussian Process gp = GaussianProcessRegressor(kernel=kernel) # Plot prior plt.figure(fig_index, figsize=(8, 8)) plt.subplot(2, 1, 1) X_ = np.linspace(0, 5, 100) y_mean, y_std = gp.predict(X_[:, np.newaxis], return_std=True) plt.plot(X_, y_mean, 'k', lw=3, zorder=9) plt.fill_between(X_, y_mean - y_std, y_mean + y_std, alpha=0.5, color='k') y_samples = gp.sample_y(X_[:, np.newaxis], 10) plt.plot(X_, y_samples, lw=1) plt.xlim(0, 5) plt.ylim(-3, 3) plt.title("Prior (kernel: %s)" % kernel, fontsize=12) # Generate data and fit GP rng = np.random.RandomState(4) X = rng.uniform(0, 5, 10)[:, np.newaxis] y = np.sin((X[:, 0] - 2.5) ** 2) gp.fit(X, y) # Plot posterior plt.subplot(2, 1, 2) X_ = np.linspace(0, 5, 100) y_mean, y_std = gp.predict(X_[:, np.newaxis], return_std=True) plt.plot(X_, y_mean, 'k', lw=3, zorder=9) plt.fill_between(X_, y_mean - y_std, y_mean + y_std, alpha=0.5, color='k') y_samples = gp.sample_y(X_[:, np.newaxis], 10) plt.plot(X_, y_samples, lw=1) plt.scatter(X[:, 0], y, c='r', s=50, zorder=10) plt.xlim(0, 5) plt.ylim(-3, 3) plt.title("Posterior (kernel: %s)\n Log-Likelihood: %.3f" % (gp.kernel_, gp.log_marginal_likelihood(gp.kernel_.theta)), fontsize=12) plt.tight_layout() plt.show()
bsd-3-clause
Innixma/kaggle2017
scripts/common/__init__.py
1
2112
import matplotlib.pyplot as plt from skimage import measure, morphology from mpl_toolkits.mplot3d.art3d import Poly3DCollection import numpy as np import pandas as pd def plot_slice(img, slice=80): # Show some slice in the middle plt.imshow(img[slice]) plt.show() def plot_3d(image, threshold=-100): # Position the scan upright, # so the head of the patient would be at the top facing the camera # p = image.transpose(2,1,0) p = image results = measure.marching_cubes(p, threshold) verts = results[0] faces = results[1] fig = plt.figure(figsize=(10, 10)) ax = fig.add_subplot(111, projection='3d') # Fancy indexing: `verts[faces]` to generate a collection of triangles mesh = Poly3DCollection(verts[faces], alpha=0.70) face_color = [0.45, 0.45, 0.75] mesh.set_facecolor(face_color) ax.add_collection3d(mesh) ax.set_xlim(0, p.shape[0]) ax.set_ylim(0, p.shape[1]) ax.set_zlim(0, p.shape[2]) plt.savefig('plot3d.png') def save(arr, pth): with open(pth, 'wb+') as fh: np.savez_compressed(fh, data=arr) def load(pth): return np.load(pth)['data'] def read_mapping_file(pth): return pd.read_csv(pth) def shuffle_weights(model, weights=None): """Randomly permute the weights in `model`, or the given `weights`. This is a fast approximation of re-initializing the weights of a model. Assumes weights are distributed independently of the dimensions of the weight tensors (i.e., the weights have the same distribution along each dimension). :param Model model: Modify the weights of the given model. :param list(ndarray) weights: The model's weights will be replaced by a random permutation of these weights. If `None`, permute the model's current weights. """ if weights is None: weights = model.get_weights() weights = [np.random.permutation(w.flat).reshape(w.shape) for w in weights] # Faster, but less random: only permutes along the first dimension # weights = [np.random.permutation(w) for w in weights] model.set_weights(weights)
mit
ch3ll0v3k/scikit-learn
sklearn/feature_selection/variance_threshold.py
238
2594
# Author: Lars Buitinck <[email protected]> # License: 3-clause BSD import numpy as np from ..base import BaseEstimator from .base import SelectorMixin from ..utils import check_array from ..utils.sparsefuncs import mean_variance_axis from ..utils.validation import check_is_fitted class VarianceThreshold(BaseEstimator, SelectorMixin): """Feature selector that removes all low-variance features. This feature selection algorithm looks only at the features (X), not the desired outputs (y), and can thus be used for unsupervised learning. Read more in the :ref:`User Guide <variance_threshold>`. Parameters ---------- threshold : float, optional Features with a training-set variance lower than this threshold will be removed. The default is to keep all features with non-zero variance, i.e. remove the features that have the same value in all samples. Attributes ---------- variances_ : array, shape (n_features,) Variances of individual features. Examples -------- The following dataset has integer features, two of which are the same in every sample. These are removed with the default setting for threshold:: >>> X = [[0, 2, 0, 3], [0, 1, 4, 3], [0, 1, 1, 3]] >>> selector = VarianceThreshold() >>> selector.fit_transform(X) array([[2, 0], [1, 4], [1, 1]]) """ def __init__(self, threshold=0.): self.threshold = threshold def fit(self, X, y=None): """Learn empirical variances from X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Sample vectors from which to compute variances. y : any Ignored. This parameter exists only for compatibility with sklearn.pipeline.Pipeline. Returns ------- self """ X = check_array(X, ('csr', 'csc'), dtype=np.float64) if hasattr(X, "toarray"): # sparse matrix _, self.variances_ = mean_variance_axis(X, axis=0) else: self.variances_ = np.var(X, axis=0) if np.all(self.variances_ <= self.threshold): msg = "No feature in X meets the variance threshold {0:.5f}" if X.shape[0] == 1: msg += " (X contains only one sample)" raise ValueError(msg.format(self.threshold)) return self def _get_support_mask(self): check_is_fitted(self, 'variances_') return self.variances_ > self.threshold
bsd-3-clause
mattjj/pylds
examples/diagonal_meanfield.py
1
2372
from __future__ import division import numpy as np import numpy.random as npr import matplotlib.pyplot as plt from pybasicbayes.distributions import Regression, DiagonalRegression from pybasicbayes.util.text import progprint_xrange from pylds.models import LDS, DefaultLDS npr.seed(0) # Parameters D_obs = 1 D_latent = 2 D_input = 0 T = 2000 # Simulate from an LDS truemodel = DefaultLDS(D_obs, D_latent, D_input) inputs = np.random.randn(T, D_input) data, stateseq = truemodel.generate(T, inputs=inputs) # Fit with an LDS with diagonal observation noise model = LDS( dynamics_distn=Regression(nu_0=D_latent + 2, S_0=D_latent * np.eye(D_latent), M_0=np.zeros((D_latent, D_latent + D_input)), K_0=(D_latent + D_input) * np.eye(D_latent + D_input)), emission_distn=DiagonalRegression(D_obs, D_latent+D_input)) model.add_data(data, inputs=inputs) # Fit with mean field def update(model): return model.meanfield_coordinate_descent_step() for _ in progprint_xrange(100): model.resample_model() N_steps = 100 vlbs = [update(model) for _ in progprint_xrange(N_steps)] plt.figure(figsize=(3,4)) plt.plot([0, N_steps], truemodel.log_likelihood() * np.ones(2), '--k') plt.plot(vlbs) plt.xlabel('iteration') plt.ylabel('variational lower bound') # Predict forward in time T_given = 1800 T_predict = 200 given_data= data[:T_given] given_inputs = inputs[:T_given] preds = \ model.sample_predictions( given_data, inputs=given_inputs, Tpred=T_predict, inputs_pred=inputs[T_given:T_given + T_predict]) # Plot the predictions plt.figure() plt.plot(np.arange(T), data, 'b-', label="true") plt.plot(T_given + np.arange(T_predict), preds, 'r--', label="prediction") ylim = plt.ylim() plt.plot([T_given, T_given], ylim, '-k') plt.xlabel('time index') plt.xlim(max(0, T_given - 200), T) plt.ylabel('prediction') plt.ylim(ylim) plt.legend() # Smooth the data (TODO: Clean this up) E_CD,_,_,_ = model.emission_distn.mf_expectations E_C, E_D = E_CD[:,:D_latent], E_CD[:,D_latent:] ys = model.states_list[0].smoothed_mus.dot(E_C.T) + inputs.dot(E_D.T) plt.figure() plt.plot(data, 'b-', label="true") plt.plot(ys, 'r-', lw=2, label="smoothed") plt.xlabel("Time") plt.xlim(max(0, T_given-200), T) plt.ylabel("Smoothed Data") plt.legend() plt.show()
mit
ShyamSS-95/Bolt
example_problems/nonrelativistic_boltzmann/linear_modes/linear_modes_euler/2D/entropy_mode/check_convergence.py
1
5449
import numpy as np import h5py import matplotlib as mpl mpl.use('agg') import pylab as pl import input_files.domain as domain import input_files.params as params # Optimized plot parameters to make beautiful plots: pl.rcParams['figure.figsize'] = 12, 7.5 pl.rcParams['figure.dpi'] = 300 pl.rcParams['image.cmap'] = 'jet' pl.rcParams['lines.linewidth'] = 1.5 pl.rcParams['font.family'] = 'serif' pl.rcParams['font.weight'] = 'bold' pl.rcParams['font.size'] = 20 pl.rcParams['font.sans-serif'] = 'serif' pl.rcParams['text.usetex'] = True pl.rcParams['axes.linewidth'] = 1.5 pl.rcParams['axes.titlesize'] = 'medium' pl.rcParams['axes.labelsize'] = 'medium' pl.rcParams['xtick.major.size'] = 8 pl.rcParams['xtick.minor.size'] = 4 pl.rcParams['xtick.major.pad'] = 8 pl.rcParams['xtick.minor.pad'] = 8 pl.rcParams['xtick.color'] = 'k' pl.rcParams['xtick.labelsize'] = 'medium' pl.rcParams['xtick.direction'] = 'in' pl.rcParams['ytick.major.size'] = 8 pl.rcParams['ytick.minor.size'] = 4 pl.rcParams['ytick.major.pad'] = 8 pl.rcParams['ytick.minor.pad'] = 8 pl.rcParams['ytick.color'] = 'k' pl.rcParams['ytick.labelsize'] = 'medium' pl.rcParams['ytick.direction'] = 'in' omega = 0 # Defining the functions for the analytical solution: def n_ana(q1, q2, t): n_b = params.density_background pert_real_n = 1 pert_imag_n = 0 pert_n = pert_real_n + 1j * pert_imag_n n_ana = n_b + params.amplitude * pert_n * \ np.exp( 1j * (params.k_q1 * q1 + params.k_q2 * q2) + omega * t ).real return(n_ana) def v1_ana(q1, q2, t): v1_b = params.v1_bulk_background n_b = params.density_background pert_real_v1 = 0 pert_imag_v1 = 0 pert_v1 = pert_real_v1 + 1j * pert_imag_v1 v1_ana = v1_b + params.amplitude * pert_v1 * \ np.exp( 1j * (params.k_q1 * q1 + params.k_q2 * q2) + omega * t ).real return(v1_ana) def v2_ana(q1, q2, t): v2_b = params.v2_bulk_background n_b = params.density_background pert_real_v2 = 0 pert_imag_v2 = 0 pert_v2 = pert_real_v2 + 1j * pert_imag_v2 v2_ana = v2_b + params.amplitude * pert_v2 * \ np.exp( 1j * (params.k_q1 * q1 + params.k_q2 * q2) + omega * t ).real return(v2_ana) def T_ana(q1, q2, t): T_b = params.temperature_background n_b = params.density_background pert_real_T = -T_b / n_b pert_imag_T = 0 pert_T = pert_real_T + 1j * pert_imag_T T_ana = T_b + params.amplitude * pert_T * \ np.exp( 1j * (params.k_q1 * q1 + params.k_q2 * q2) + omega * t ).real return(T_ana) N_g_q = domain.N_ghost_q N = np.array([32, 48, 64, 96, 128]) error_n = np.zeros(N.size) error_v1 = np.zeros(N.size) error_v2 = np.zeros(N.size) error_T = np.zeros(N.size) for i in range(N.size): dq1 = (domain.q1_end - domain.q1_start) / int(N[i]) dq2 = (domain.q2_end - domain.q2_start) / int(N[i]) q1 = domain.q1_start + (0.5 + np.arange(int(N[i]))) * dq1 q2 = domain.q2_start + (0.5 + np.arange(int(N[i]))) * dq2 q2, q1 = np.meshgrid(q2, q1) h5f = h5py.File('dump/N_%04d'%(int(N[i])) + '.h5') mom = h5f['moments'][:] h5f.close() n_nls = np.transpose(mom[:, :, 0], (1, 0)) v1_nls = np.transpose(mom[:, :, 2], (1, 0)) / n_nls v2_nls = np.transpose(mom[:, :, 3], (1, 0)) / n_nls v3_nls = np.transpose(mom[:, :, 4], (1, 0)) / n_nls T_nls = (1 / params.p_dim) * ( 2 * np.transpose(mom[:, :, 1], (1, 0)) - n_nls * v1_nls**2 - n_nls * v2_nls**2 - n_nls * v3_nls**2 ) / n_nls n_analytic = n_ana(q1, q2, params.t_final) v1_analytic = v1_ana(q1, q2, params.t_final) v2_analytic = v2_ana(q1, q2, params.t_final) T_analytic = T_ana(q1, q2, params.t_final) error_n[i] = np.mean(abs(n_nls - n_analytic)) error_v1[i] = np.mean(abs(v1_nls - v1_analytic)) error_v2[i] = np.mean(abs(v2_nls - v2_analytic)) error_T[i] = np.mean(abs(T_nls - T_analytic)) print('Errors Obtained:') print('L1 norm of error for density:', error_n) print('L1 norm of error for velocity-1:', error_v1) print('L1 norm of error for velocity-2:', error_v2) print('L1 norm of error for temperature:', error_T) print('\nConvergence Rates:') print('Order of convergence for density:', np.polyfit(np.log10(N), np.log10(error_n), 1)[0]) print('Order of convergence for velocity-1:', np.polyfit(np.log10(N), np.log10(error_v1), 1)[0]) print('Order of convergence for velocity-2:', np.polyfit(np.log10(N), np.log10(error_v2), 1)[0]) print('Order of convergence for temperature:', np.polyfit(np.log10(N), np.log10(error_T), 1)[0]) pl.loglog(N, error_n, '-o', label = 'Density') pl.loglog(N, error_v1, '-o', label = 'Velocity-1') pl.loglog(N, error_v2, '-o', label = 'Velocity-2') pl.loglog(N, error_T, '-o', label = 'Temperature') pl.loglog(N, error_n[0]*32**2/N**2, '--', color = 'black', label = r'$O(N^{-2})$') pl.xlabel(r'$N$') pl.ylabel('Error') pl.legend() pl.savefig('convergenceplot.png')
gpl-3.0
palful/yambopy
yambopy/dbs/electronsdb.py
1
9254
# Copyright (c) 2016, Henrique Miranda # All rights reserved. # # This file is part of the yambopy project # from netCDF4 import Dataset import numpy as np from itertools import product import collections ha2ev = 27.211396132 max_exp = 50 min_exp =-100. def abs2(x): return x.real**2 + x.imag**2 def fermi(e): """ fermi dirac function """ if e > max_exp: return 0 elif e < -max_exp: return 1 return 1/(np.exp(e)+1) def fermi_array(e_array,ef,invsmear): """ Fermi dirac function for an array """ e_array = (e_array-ef)/invsmear return [ fermi(e) for e in e_array] def histogram_eiv(eiv,weights,emin=-5.0,emax=5.0,step=0.01,sigma=0.05,ctype='lorentzian'): """ Histogram of eigenvalues """ eiv = np.array(eiv) #sigma = 0.005 x = np.arange(emin,emax,step,dtype=np.float32) y = np.zeros([len(x)],dtype=np.float32) if ctype == 'gaussian': c = 1.0/(sigma*sqrt(2)) a = -1.0/(2*sigma) else: #lorentzian stuff s2 = (.5*sigma)**2 c = (.5*sigma) eiv = eiv.flatten() weights = weights.flatten() weights = weights[emin < eiv] eiv = eiv[emin < eiv] weights = weights[eiv < emax] eiv = eiv[eiv < emax] if ctype == 'gaussian': for e,w in zip(eiv,weights): x1 = (x-e)**2 #add gaussian y += c*np.exp(a*x1) else: #lorentzian stuff for e,w in zip(eiv,weights): x1 = (x-e)**2 #add lorentzian y += w*c/(x1+s2) return x, y class YamboElectronsDB(): """ Class to read information about the electrons from the ``ns.db1`` produced by yambo Arguments: ``lattice``: instance of YamboLatticeDB or YamboSaveDB ``filename``: netcdf database to read from (default:ns.db1) """ def __init__(self,lattice,save='SAVE',filename='ns.db1'): self.lattice = lattice self.filename = '%s/%s'%(save,filename) self.efermi = None self.readDB() if self.nkpoints != self.lattice.nkpoints: #sanity check raise ValueError("The number of k-points in the lattice database and electrons database is different.") self.expandEigenvalues() def readDB(self): try: database = Dataset(self.filename) except: raise IOError("Error opening file %s in YamboElectronsDB"%self.filename) self.eigenvalues_ibz = database.variables['EIGENVALUES'][0,:]*ha2ev self.iku_kpoints = database.variables['K-POINTS'][:].T dimensions = database.variables['DIMENSIONS'][:] self.nbands = dimensions[5] self.temperature = dimensions[13] self.nelectrons = int(dimensions[14]) self.nkpoints = int(dimensions[6]) self.nbands = int(dimensions[5]) self.spin = int(dimensions[11]) self.time_rev = dimensions[9] database.close() #spin degeneracy if 2 components degen 1 else degen 2 self.spin_degen = [0,2,1][int(self.spin)] #number of occupied bands self.nbandsv = self.nelectrons / self.spin_degen self.nbandsc = self.nbands-self.nbandsv def expandEigenvalues(self): """ Expand eigenvalues to the full brillouin zone """ self.eigenvalues = self.eigenvalues_ibz[self.lattice.kpoints_indexes] self.nkpoints_ibz = len(self.eigenvalues_ibz) self.weights_ibz = np.zeros([self.nkpoints_ibz],dtype=np.float32) self.nkpoints = len(self.eigenvalues) #counter counts the number of occurences of element in a list for nk_ibz,inv_weight in collections.Counter(self.lattice.kpoints_indexes).items(): self.weights_ibz[nk_ibz] = float(inv_weight)/self.nkpoints #kpoints weights self.weights = np.full((self.nkpoints), 1.0/self.nkpoints,dtype=np.float32) def getDOS(self,broad=0.1,emin=-10,emax=10,step=0.01): """ Calculate the density of states. Should work for metals as well but untested for that case """ eigenvalues = self.eigenvalues_ibz weights = self.weights_ibz nkpoints = self.nkpoints_ibz na = np.newaxis weights_bands = np.ones(eigenvalues.shape,dtype=np.float32)*weights[:,na] energies, self.dos = histogram_eiv(eigenvalues,weights_bands,emin=emin,emax=emax,step=step,sigma=broad) return energies, self.dos def setLifetimes(self,broad=0.1): """ Add electronic lifetimes using the DOS """ self.lifetimes_ibz = np.ones(self.eigenvalues_ibz.shape,dtype=np.float32)*broad self.lifetimes = np.ones(self.eigenvalues.shape,dtype=np.float32)*broad def setLifetimesDOS(self,broad=0.1,debug=False): """ Approximate the electronic lifetimes using the DOS """ eigenvalues = self.eigenvalues_ibz weights = self.weights_ibz nkpoints = self.nkpoints_ibz #get dos emin = np.min(eigenvalues)-broad emax = np.max(eigenvalues)+broad energies, dos = self.getDOS(emin=emin, emax=emax, step=0.1, broad=broad) #normalize dos to broad dos = dos/np.max(dos)*broad #create a interpolation function to get the lifetimes for all the values from scipy.interpolate import interp1d f = interp1d(energies, dos, kind='cubic') if debug: """ plot the calculated values for the DOS and the interpolated values """ import matplotlib.pyplot as plt x = np.arange(emin+d,emax-d,0.001) plt.plot(energies,dos,'o') plt.plot(x,f(x)) plt.show() exit() #add imaginary part to the energies proportional to the DOS self.lifetimes_ibz = np.array([ [f(eig) for eig in eigk] for eigk in self.eigenvalues_ibz],dtype=np.float32) self.lifetimes = np.array([ [f(eig) for eig in eigk] for eigk in self.eigenvalues],dtype=np.float32) def setFermi(self,fermi,invsmear): """ Set the fermi energy of the system """ self.invsmear = invsmear self.efermi = fermi #full brillouin zone self.eigenvalues -= self.efermi self.occupations = np.zeros([self.nkpoints,self.nbands],dtype=np.float32) for nk in xrange(self.nkpoints): self.occupations[nk] = fermi_array(self.eigenvalues[nk,:],0,self.invsmear) #for the ibz self.eigenvalues_ibz -= self.efermi self.occupations_ibz = np.zeros([self.nkpoints_ibz,self.nbands],dtype=np.float32) for nk in xrange(self.nkpoints_ibz): self.occupations_ibz[nk] = fermi_array(self.eigenvalues_ibz[nk,:],0,self.invsmear) return self.efermi def setFermiFixed(self,broad=1e-5): """ Get fermi level using fixed occupations method Useful for semi-conductors """ eigenvalues = self.eigenvalues_ibz weights = self.weights_ibz nkpoints = self.nkpoints_ibz nbands = self.nelectrons/self.spin_degen #top of valence top = np.max(eigenvalues[:,nbands]) #bottom of conduction bot = np.max(eigenvalues[:,nbands-1]) self.efermi = (top+bot)/2 self.setFermi(self.efermi,broad) def energy_gaps(self,GWshift=0.): """ Calculate the enegy of the gap (by Fulvio Paleari) """ eiv = self.eigenvalues nv = self.nbandsv nc = self.nbandsc homo = np.max(eiv[:,nv-1]) lumo = np.min(eiv[:,nv]) Egap = lumo-homo for k in eiv: if k[nv-1]==homo: lumo_dir=k[nv] Edir = lumo_dir-homo eiv[:,nv:]+=GWshift print('DFT Energy gap: %s eV'%Egap) print('DFT Direct gap: %s eV'%Edir) print('GW shift: %s eV'%GWshift) return np.copy(eiv) def getFermi(self,invsmear,setfermi=True): """ Determine the fermi energy """ if self.efermi: return self.efermi from scipy.optimize import bisect eigenvalues = self.eigenvalues_ibz weights = self.weights_ibz nkpoints = self.nkpoints_ibz min_eival, max_eival = np.min(eigenvalues), np.max(eigenvalues) self.invsmear = invsmear def occupation_minus_ne(ef): """ The total occupation minus the total number of electrons """ return sum([sum(self.spin_degen*fermi_array(eigenvalues[nk],ef,self.invsmear))*weights[nk] for nk in xrange(nkpoints)])-self.nelectrons fermi = bisect(occupation_minus_ne,min_eival,max_eival) if setfermi: self.setFermi(fermi,invsmear) return self.efermi def __str__(self): s = "" s += "spin_degen: %d\n"%self.spin_degen s += "nelectrons: %d\n"%self.nelectrons s += "nbands: %d\n"%self.nbands s += "nkpoints: %d"%self.nkpoints return s
bsd-3-clause