metadata
license: gpl-3.0
language:
- en
tags:
- emotion-cause-analysis
Emotion-Cause-in-Friends (ECF)
For the task named Multimodal Emotion-Cause Pair Extraction in Conversation, we accordingly construct a multimodal conversational emotion cause dataset ECF, which contains 9,794 multimodal emotion-cause pairs among 13,619 utterances in the Friends sitcom.
For more details, please refer to our GitHub:
Dataset Statistics
Item | Train | Dev | Test | Total |
---|---|---|---|---|
Conversations | 1001 | 112 | 261 | 1,374 |
Utterances | 9,966 | 1,087 | 2,566 | 13,619 |
Emotion (utterances) | 5,577 | 668 | 1,445 | 7,690 |
Emotion-cause (utterance) pairs | 7,055 | 866 | 1,873 | 9,794 |
Citation
If you find ECF useful for your research, please cite our paper using the following BibTeX entries:
@ARTICLE{wang2023multimodal,
author={Wang, Fanfan and Ding, Zixiang and Xia, Rui and Li, Zhaoyu and Yu, Jianfei},
journal={IEEE Transactions on Affective Computing},
title={Multimodal Emotion-Cause Pair Extraction in Conversations},
year={2023},
volume={14},
number={3},
pages={1832-1844},
doi = {10.1109/TAFFC.2022.3226559}
}
@InProceedings{wang2024SemEval,
author={Wang, Fanfan and Ma, Heqing and Xia, Rui and Yu, Jianfei and Cambria, Erik},
title={SemEval-2024 Task 3: Multimodal Emotion Cause Analysis in Conversations},
booktitle={Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)},
month={June},
year={2024},
address={Mexico City, Mexico},
publisher={Association for Computational Linguistics},
pages={2022--2033},
url = {https://aclanthology.org/2024.semeval2024-1.273}
}