Datasets:

Modalities:
Text
Languages:
English
License:
ECF / README.md
ffwang's picture
Update README.md
80d2d84 verified
metadata
license: gpl-3.0
language:
  - en
tags:
  - emotion-cause-analysis

Emotion-Cause-in-Friends (ECF)

For the task named Multimodal Emotion-Cause Pair Extraction in Conversation, we accordingly construct a multimodal conversational emotion cause dataset ECF, which contains 9,794 multimodal emotion-cause pairs among 13,619 utterances in the Friends sitcom.

For more details, please refer to our GitHub:

Dataset Statistics

Item Train Dev Test Total
Conversations 1001 112 261 1,374
Utterances 9,966 1,087 2,566 13,619
Emotion (utterances) 5,577 668 1,445 7,690
Emotion-cause (utterance) pairs 7,055 866 1,873 9,794

Citation

If you find ECF useful for your research, please cite our paper using the following BibTeX entries:

@ARTICLE{wang2023multimodal,
  author={Wang, Fanfan and Ding, Zixiang and Xia, Rui and Li, Zhaoyu and Yu, Jianfei},
  journal={IEEE Transactions on Affective Computing}, 
  title={Multimodal Emotion-Cause Pair Extraction in Conversations}, 
  year={2023},
  volume={14},
  number={3},
  pages={1832-1844},
  doi = {10.1109/TAFFC.2022.3226559}
}

@InProceedings{wang2024SemEval,
  author={Wang, Fanfan  and  Ma, Heqing  and  Xia, Rui  and  Yu, Jianfei  and  Cambria, Erik},
  title={SemEval-2024 Task 3: Multimodal Emotion Cause Analysis in Conversations},
  booktitle={Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)},
  month={June},
  year={2024},
  address={Mexico City, Mexico},
  publisher={Association for Computational Linguistics},
  pages={2022--2033},
  url = {https://aclanthology.org/2024.semeval2024-1.273}
}