task_type
stringclasses
1 value
dataset
stringclasses
1 value
input
stringlengths
11
389
output
stringlengths
43
461
situation
stringclasses
1 value
label
stringclasses
1 value
extra
stringclasses
1 value
instruction
stringclasses
1 value
generation
absa-quad
["Do n't dine at Tamarind for the vegetarian dishes , they are simply not up to par with the non-veg selections ."]
[['vegetarian dishes', 'food quality', 'negative', 'not up to par']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['And it all comes at a very reasonable price ( congee , noodles , and rice dishes are no more than $ 3-6 each ) .']
[['NULL', 'food prices', 'positive', 'reasonable'], ['congee', 'food prices', 'positive', 'no more than $ 3-6 each'], ['noodles', 'food prices', 'positive', 'no more than $ 3-6 each'], ['rice dishes', 'food prices', 'positive', 'no more than $ 3-6 each']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['The cold appetizer dishes taste like the way I remember them to taste when I was growing up in Taiwan .']
[['cold appetizer dishes', 'food quality', 'positive', 'like the way I remember them']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['The appetizers are also delicious !']
[['appetizers', 'food quality', 'positive', 'delicious']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['The wine list is extensive and can easily hike up an otherwise reasonably priced meal .']
[['wine list', 'drinks style_options', 'positive', 'extensive'], ['meal', 'food prices', 'positive', 'reasonably priced']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Please take my advice , go and try this place .']
[['place', 'restaurant general', 'positive', 'go and try']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Decor needs to be upgraded but the food is amazing !']
[['Decor', 'ambience general', 'negative', 'upgraded'], ['food', 'food quality', 'positive', 'amazing']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Single Worst Restaurant in Manhattan']
[['Restaurant', 'restaurant general', 'negative', 'Worst']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Place is open till late , no dress code .']
[['Place', 'restaurant miscellaneous', 'positive', 'open till late']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
["I had never had Edamame pureed before but I thought it was innovative and tasty ( could 've used a bit more salt ) ."]
[['Edamame pureed', 'food quality', 'positive', 'tasty'], ['Edamame pureed', 'food style_options', 'positive', 'innovative']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
["Open late ( well as late as I ever got there and I 'm a night person )"]
[['NULL', 'restaurant miscellaneous', 'positive', 'well']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['The only thing I moderately enjoyed was their Grilled Chicken special with Edamame Puree .']
[['Grilled Chicken special with Edamame Puree', 'food quality', 'positive', 'enjoyed']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
["I do n't appreciate places or people that try to drive up the bill without the patron 's knowledge so that was a huge turnoff ( more than the price ) ."]
[['NULL', 'service general', 'negative', 'drive up the bill'], ['NULL', 'restaurant prices', 'negative', 'huge turnoff']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Love their drink menu .']
[['drink menu', 'drinks style_options', 'positive', 'Love']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Bukhara is on my top 5 Indian places in NYC']
[['Bukhara', 'restaurant general', 'positive', 'top']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Its location is good and the fact that Hutner College is near and their prices are very reasonable , makes students go back to Suan again and again .']
[['location', 'location general', 'positive', 'good'], ['Suan', 'restaurant prices', 'positive', 'reasonable']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['This was , from start to finish , a mind-bogglingly uncomfortable experience .']
[['NULL', 'restaurant general', 'negative', 'mind-bogglingly uncomfortable']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Terrible , terrible management - deserves to be shut-down .']
[['management', 'service general', 'negative', 'Terrible'], ['management', 'service general', 'negative', 'terrible'], ['NULL', 'restaurant general', 'negative', 'deserves to be shut-down']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['I took one look at the chicken and I was appalled .']
[['chicken', 'food style_options', 'negative', 'appalled']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Downtown Dinner 2002 - Prixe fix : Appetizers were ok , waiter gave me poor suggestion ... try the potato stuff kanish best one .']
[['Appetizers', 'food quality', 'neutral', 'ok'], ['waiter', 'service general', 'negative', 'poor'], ['potato stuff kanish', 'food quality', 'positive', 'try'], ['potato stuff kanish', 'food quality', 'positive', 'best']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['The bagel was huge .']
[['bagel', 'food style_options', 'positive', 'huge']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['My husband and I have been sold on this from the first visit .']
[['NULL', 'restaurant general', 'positive', 'sold on']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Excellent food , although the interior could use some help .']
[['food', 'food quality', 'positive', 'Excellent'], ['interior', 'ambience general', 'negative', 'help']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['I look forward to eating here again']
[['NULL', 'restaurant general', 'positive', 'look forward']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['I went to Areo on a Sunday afternoon with four of my girlfriends , and spent three enjoyable hours there .']
[['Areo', 'restaurant general', 'positive', 'enjoyable']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Service was very prompt but slightly rushed .']
[['Service', 'service general', 'positive', 'prompt'], ['Service', 'service general', 'positive', 'rushed']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['bottles of wine are cheap and good .']
[['bottles of wine', 'drinks prices', 'positive', 'cheap'], ['bottles of wine', 'drinks quality', 'positive', 'good']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['The menu has so many fish items and oysters .']
[['menu', 'food style_options', 'positive', 'so many']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
["They 're rude at times , and not very friendly ."]
[['NULL', 'service general', 'negative', 'rude']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['The food was absolutely amazing ! !']
[['food', 'food quality', 'positive', 'amazing']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Terrible would be a compliment !']
[['NULL', 'restaurant general', 'negative', 'Terrible']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['The menu looked great , and the waiter was very nice , but when the food came , it was average .']
[['menu', 'food style_options', 'positive', 'great'], ['waiter', 'service general', 'positive', 'nice'], ['food', 'food quality', 'neutral', 'average']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['We were greeted promptly by the waiter who was very nice and cordial .']
[['waiter', 'service general', 'positive', 'nice'], ['waiter', 'service general', 'positive', 'cordial']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Appetizers took nearly an hour .']
[['NULL', 'service general', 'negative', 'nearly an hour']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Great find in the West Village !']
[['NULL', 'restaurant general', 'positive', 'Great']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
["I wo n't go back unless someone else is footing the bill ."]
[['NULL', 'restaurant prices', 'negative', "wo n't go back"]]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Wine list selection is good and wine-by-the-glass was generously filled to the top .']
[['Wine list selection', 'drinks style_options', 'positive', 'good'], ['wine-by-the-glass', 'drinks style_options', 'positive', 'generously filled']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['The people that work there are always so friendly you forget you are in New York sometimes .']
[['people', 'service general', 'positive', 'friendly']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Decent wine at reasonable prices .']
[['wine', 'drinks quality', 'positive', 'Decent'], ['wine', 'drinks prices', 'positive', 'reasonable']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['I love it .']
[['NULL', 'restaurant general', 'positive', 'love']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['I got the $ 10 10-piece dim sum combo , every bite of which was great .']
[['$ 10 10-piece dim sum combo', 'food quality', 'positive', 'great']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
["DO not try unless you 're just going there to hang out like the rest of the hipsters who apparently have no sense of taste ."]
[['NULL', 'restaurant miscellaneous', 'negative', 'Do not try']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Great food !']
[['food', 'food quality', 'positive', 'Great']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Their pad penang is delicious and everything else is fantastic .']
[['pad penang', 'food quality', 'positive', 'delicious'], ['NULL', 'food quality', 'positive', 'fantastic']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['I can not imagine a friendlier staff working in a restaurant .']
[['staff', 'service general', 'positive', 'friendlier']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Luckily we saved room for the BBQ Salmon , Sea Bass and Crispy Duck .']
[['BBQ Salmon', 'food quality', 'positive', 'Luckily'], ['Sea Bass', 'food quality', 'positive', 'Luckily'], ['Crispy Duck', 'food quality', 'positive', 'Luckily']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Dokebi gives Williamsburg the right one-two punch of classic Korean food and fusion twists like pork belly tacos .']
[['Korean food', 'food quality', 'positive', 'classic'], ['fusion twists', 'food quality', 'positive', 'classic'], ['pork belly tacos', 'food quality', 'positive', 'classic']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
["If you venture off the island of Manhattan and ca n't seem to find a great Italian restaurant , drive to Corona ."]
[['Corona', 'restaurant general', 'positive', 'great']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['We all felt it was worth it .']
[['NULL', 'restaurant general', 'positive', 'worth']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Lucky Strike is a great casual place to just grab a bite to eat .']
[['Lucky Strike', 'restaurant general', 'positive', 'great casual']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['I have been to Casimir over 5 times and I have always had a great time there .']
[['Casimir', 'restaurant general', 'positive', 'great time']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['great for a romantic evening , or a fun evening with friends ...']
[['NULL', 'ambience general', 'positive', 'romantic'], ['NULL', 'restaurant miscellaneous', 'positive', 'fun']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['But the best part about LS is the late night atmosphere , delightfully free of the BTs .']
[['late night atmosphere', 'ambience general', 'positive', 'best']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['The dining room is quietly elegant with no music to shout over -- how refreshing !']
[['dining room', 'ambience general', 'positive', 'elegant'], ['dining room', 'ambience general', 'positive', 'refreshing']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['This is such a lovely , peaceful place to eat outside .']
[['place', 'ambience general', 'positive', 'lovely'], ['place', 'ambience general', 'positive', 'peaceful']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
["Do n't be fooled by crowds of people ."]
[['NULL', 'restaurant miscellaneous', 'negative', 'fooled']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['As to my comment about the food , no apology or acknowledgment was made .']
[['NULL', 'service general', 'negative', 'no apology or acknowledgment']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Service is top notch .']
[['Service', 'service general', 'positive', 'top notch']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['oh speaking of bathroom , the mens bathroom was disgusting .']
[['mens bathroom', 'ambience general', 'negative', 'disgusting']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
["I 'll being with a couple of positives : cool decor , good pita and hummus , and grilled octopus that was actually pretty tasty ."]
[['decor', 'ambience general', 'positive', 'cool'], ['pita', 'food quality', 'positive', 'good'], ['hummus', 'food quality', 'positive', 'good'], ['grilled octopus', 'food quality', 'positive', 'tasty']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['It is nearly impossible to get a table , so if you ever have the chance to go here for dinner , DO NOT pass it up .']
[['NULL', 'restaurant general', 'positive', 'DO NOT pass it up']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Mine was a little burnt but still delicious with goat cheese and panchetta ( raddichio was kind of bitter though ) .']
[['raddichio', 'food quality', 'negative', 'bitter'], ['NULL', 'food quality', 'positive', 'delicious']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['If I could give 0 stars I would do so for this place .']
[['place', 'restaurant general', 'negative', '0 stars']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Amazing !']
[['NULL', 'food quality', 'positive', 'Amazing']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['The hostess is rude to the point of being offensive .']
[['hostess', 'service general', 'negative', 'rude'], ['hostess', 'service general', 'negative', 'offensive']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['The frizzy retro girl ( with winged/ Dame Edna glasses ) will yell at you if you try to order a drink .']
[['girl', 'service general', 'negative', 'frizzy']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['peppers , onions , relish , chilli , cheeses , you NAME it .']
[['NULL', 'food style_options', 'positive', 'you NAME it']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Great atmoshere and worth every bit .']
[['atmoshere', 'ambience general', 'positive', 'Great'], ['NULL', 'restaurant general', 'positive', 'worth']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Bison was quite excellent however .']
[['Bison', 'food quality', 'positive', 'excellent']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['The food is a diamond in rough -- the food is delicious and homemade with the perfect balance of herbs and tomatoes .']
[['food', 'food quality', 'positive', 'diamond'], ['balance of herbs and tomatoes', 'food quality', 'positive', 'perfect']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['It hits the spot every time']
[['NULL', 'restaurant general', 'positive', 'hits the spot']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Food was good and the view of the new york city skiline was terrific even on a foggy rainy day like that of when I went .']
[['Food', 'food quality', 'positive', 'good'], ['view of the new york city skiline', 'location general', 'positive', 'terrific']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['The lava cake dessert was incredible and I recommend it .']
[['lava cake dessert', 'food quality', 'positive', 'incredible'], ['lava cake dessert', 'food quality', 'positive', 'recommend']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['service is friendly , and never had a problem walking in and getting a table .']
[['service', 'service general', 'positive', 'friendly']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['I will be out with friends and all of a sudden I am hungry and I only crave one thing ... their Pizza .']
[['Pizza', 'food quality', 'positive', 'crave']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['I was here a few weeks back and we had the worst customer service experience at a restaurant ever .']
[['customer service', 'service general', 'negative', 'worst']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['The spicy tuna roll was unusually good and the rock shrimp tempura was awesome , great appetizer to share !']
[['spicy tuna roll', 'food quality', 'positive', 'good'], ['rock shrimp tempura', 'food quality', 'positive', 'awesome']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['The location and ambience is Ok but the food is what makes up for it .']
[['location', 'location general', 'neutral', 'Ok'], ['ambience', 'ambience general', 'neutral', 'Ok'], ['food', 'food quality', 'positive', 'makes up for it']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['I noticed alot of indian people eatting there which is a great sign for an indian place !']
[['indian place', 'restaurant miscellaneous', 'positive', 'great']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Always a nice crowd , but never loud .']
[['crowd', 'restaurant miscellaneous', 'positive', 'nice'], ['NULL', 'ambience general', 'positive', 'never loud']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['we love th pink pony .']
[['pink pony', 'restaurant general', 'positive', 'love']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
["Nevertheless , I finished my plate , and that 's when I found a maggot in mushroom sauce at the bottom ."]
[['mushroom sauce', 'food quality', 'negative', 'maggot']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['I started out with a Bombay beer which was big enough for two .']
[['Bombay beer', 'drinks style_options', 'positive', 'big']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['The view is spectacular , and the food is great .']
[['view', 'location general', 'positive', 'spectacular'], ['food', 'food quality', 'positive', 'great']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['What really makes it shine is the food , which is aggressively seasoned with Cyrpriot spices , and all made in-house ( even the gyro meat and sausages ) , and made of much higher quality ingredients that might otherwise be expected .']
[['food', 'food quality', 'positive', 'shine'], ['gyro meat', 'food quality', 'positive', 'in-house'], ['sausages', 'food quality', 'positive', 'in-house'], ['ingredients', 'food quality', 'positive', 'higher quality']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['What a great place .']
[['place', 'restaurant general', 'positive', 'great']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Which of course is not real Kobe but Wagyu beef .']
[['NULL', 'food quality', 'negative', 'not real']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
["Also , specify if you like your food spicy- its rather bland if you do n't ."]
[['food', 'food quality', 'negative', 'bland']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['They were served warm and had a soft fluffy interior .']
[['NULL', 'food quality', 'positive', 'warm'], ['NULL', 'food quality', 'positive', 'a soft fluffy interior']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['The svc can be a bit rude at times , esp if you have big group , but overall the restaurant is a must !']
[['svc', 'service general', 'negative', 'rude'], ['restaurant', 'restaurant general', 'positive', 'must']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['I had a great experience .']
[['NULL', 'restaurant general', 'positive', 'great']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['MMMMMMMMMmmmmmm so delicious']
[['NULL', 'food quality', 'positive', 'delicious']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['It is thick and slightly soggy .']
[['NULL', 'food quality', 'negative', 'thick'], ['NULL', 'food quality', 'negative', 'soggy']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['The first time the sushi was outstanding , the second time it was a little bland .']
[['sushi', 'food quality', 'positive', 'outstanding'], ['sushi', 'food quality', 'negative', 'bland']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Authentic Shanghai style and I can not recommend a better Shanghai place in New York .']
[['NULL', 'restaurant miscellaneous', 'positive', 'can not recommend a better']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['The food is flavorful , plentiful and reasonably priced .']
[['food', 'food quality', 'positive', 'flavorful'], ['food', 'food style_options', 'positive', 'plentiful'], ['food', 'food prices', 'positive', 'reasonably priced']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
["Have frequented 'ino for several years and the food remains excellent ."]
[['food', 'food quality', 'positive', 'excellent']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Gorgeous place ideal for a romantic dinner']
[['place', 'ambience general', 'positive', 'Gorgeous'], ['place', 'restaurant miscellaneous', 'positive', 'ideal']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['quacamole at pacifico is yummy , as are the wings with chimmichuri .']
[['quacamole', 'food quality', 'positive', 'yummy'], ['wings with chimmichuri', 'food quality', 'positive', 'yummy']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'
generation
absa-quad
['Cute and decorative .']
[['NULL', 'ambience general', 'positive', 'Cute'], ['NULL', 'ambience general', 'positive', 'decorative']]
none
Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. Input: A sentence. Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: "Null" means that there is no occurrence in the sentence. Example: Sentence: "The ambience was so fun , and the prices were great , on top of the fact that the food was really tasty" Output: [['ambience', 'ambience general', 'positive', 'fun'], ['NULL', 'restaurant prices', 'positive', 'great'], ['food', 'food quality', 'positive', 'tasty']]'