license: apache-2.0
task_categories:
- question-answering
- text-generation
language:
- en
tags:
- vector search
- semantic search
- retrieval augmented generation
pretty_name: hackernoon_tech_news_with_embeddings
size_categories:
- 100K<n<1M
Overview
HackerNoon curated the internet's most cited 7M+ tech company news articles and blog posts about the 3k+ most valuable tech companies in 2022 and 2023.
To further enhance the dataset's utility, a new embedding field and vector embedding for every datapoint have been added using the OpenAI EMBEDDING_MODEL = "text-embedding-3-small", with an EMBEDDING_DIMENSION of 256.
Notably, this extension with vector embeddings only contains a portion of the original dataset, 1576528 data points, focusing on enriching a selected subset with advanced analytical capabilities.
Dataset Structure
Each record in the dataset represents a news article about technology companies and includes the following fields:
- _id: A unique identifier for the news article.
- companyName: The name of the company the news article is about.
- companyUrl: A URL to the HackerNoon company profile page for the company.
- published_at: The date and time when the news article was published.
- url: A URL to the original news article.
- title: The title of the news article.
- main_image: A URL to the main image of the news article.
- description: A brief summary of the news article's content.
- embedding: An array of numerical values representing the vector embedding for the article, generated using the OpenAI EMBEDDING_MODEL.
Data Ingestion (Partioned)
Create a free MongoDB Atlas Account
import os
import requests
import pandas as pd
from io import BytesIO
from pymongo import MongoClient
# MongoDB Atlas URI and client setup
uri = os.environ.get('MONGODB_ATLAS_URI')
client = MongoClient(uri)
# Change to the appropriate database and collection names for the tech news embeddings
db_name = 'your_database_name' # Change this to your actual database name
collection_name = 'tech_news_embeddings' # Change this to your actual collection name
tech_news_embeddings_collection = client[db_name][collection_name]
hf_token = os.environ.get('HF_TOKEN')
headers = {
"Authorization": f"Bearer {hf_token}"
}
# Downloads 228012 data points
parquet_files = [
"https://huggingface.co/api/datasets/AIatMongoDB/tech-news-embeddings/parquet/default/train/0000.parquet",
"https://huggingface.co/api/datasets/AIatMongoDB/tech-news-embeddings/parquet/default/train/0001.parquet",
"https://huggingface.co/api/datasets/AIatMongoDB/tech-news-embeddings/parquet/default/train/0002.parquet",
"https://huggingface.co/api/datasets/AIatMongoDB/tech-news-embeddings/parquet/default/train/0003.parquet",
"https://huggingface.co/api/datasets/AIatMongoDB/tech-news-embeddings/parquet/default/train/0004.parquet",
"https://huggingface.co/api/datasets/AIatMongoDB/tech-news-embeddings/parquet/default/train/0005.parquet",
]
all_dataframes = []
combined_df = None
for parquet_file_url in parquet_files:
response = requests.get(parquet_file_url, headers=headers)
if response.status_code == 200:
parquet_bytes = BytesIO(response.content)
df = pd.read_parquet(parquet_bytes)
all_dataframes.append(df)
else:
print(f"Failed to download Parquet file from {parquet_file_url}: {response.status_code}")
if all_dataframes:
combined_df = pd.concat(all_dataframes, ignore_index=True)
else:
print("No dataframes to concatenate.")
# Ingest to database
dataset_records = combined_df.to_dict('records')
tech_news_embeddings_collection.insert_many(dataset_records)
Data Ingestion (All Records)
Create a free MongoDB Atlas Account
import os
from pymongo import MongoClient
import datasets
from datasets import load_dataset
from bson import json_util
# MongoDB Atlas URI and client setup
uri = os.environ.get('MONGODB_ATLAS_URI')
client = MongoClient(uri)
# Change to the appropriate database and collection names for the tech news embeddings
db_name = 'your_database_name' # Change this to your actual database name
collection_name = 'tech_news_embeddings' # Change this to your actual collection name
tech_news_embeddings_collection = client[db_name][collection_name]
# Load the "tech-news-embeddings" dataset from Hugging Face
dataset = load_dataset("AIatMongoDB/tech-news-embeddings")
insert_data = []
# Iterate through the dataset and prepare the documents for insertion
# The script below ingests 1000 records into the database at a time
for item in dataset['train']:
# Convert the dataset item to MongoDB document format
doc_item = json_util.loads(json_util.dumps(item))
insert_data.append(doc_item)
# Insert in batches of 1000 documents
if len(insert_data) == 1000:
tech_news_embeddings_collection.insert_many(insert_data)
print("1000 records ingested")
insert_data = []
# Insert any remaining documents
if len(insert_data) > 0:
tech_news_embeddings_collection.insert_many(insert_data)
print("Data Ingested")
Usage
The dataset is suited for a range of applications, including:
- Tracking and analyzing trends in the tech industry.
- Enhancing search and recommendation systems for tech news content with the use of vector embeddings.
- Conducting sentiment analysis and other natural language processing tasks to gauge public perception and impact of news on specific tech companies.
- Educational purposes in data science, journalism, and technology studies courses.
Notes
Sample Document
{
"_id": {
"$oid": "65c63ea1f187c085a866f680"
},
"companyName": "01Synergy",
"companyUrl": "https://hackernoon.com/company/01synergy",
"published_at": "2023-05-16 02:09:00",
"url": "https://www.businesswire.com/news/home/20230515005855/en/onsemi-and-Sineng-Electric-Spearhead-the-Development-of-Sustainable-Energy-Applications/",
"title": "onsemi and Sineng Electric Spearhead the Development of Sustainable Energy Applications",
"main_image": "https://firebasestorage.googleapis.com/v0/b/hackernoon-app.appspot.com/o/images%2Fimageedit_25_7084755369.gif?alt=media&token=ca7527b0-a214-46d4-af72-1062b3df1458",
"description": "(Nasdaq: ON) a leader in intelligent power and sensing technologies today announced that Sineng Electric will integrate onsemi EliteSiC silic",
"embedding": [
{
"$numberDouble": "0.05243798345327377"
},
{
"$numberDouble": "-0.10347484797239304"
},
{
"$numberDouble": "-0.018149614334106445"
}
]
}