
The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider
removing the
loading script
and relying on
automated data support
(you can use
convert_to_parquet
from the datasets
library). If this is not possible, please
open a discussion
for direct help.
AstroM3Dataset
Description
AstroM3Dataset is a time-series astronomy dataset containing photometry, spectra, and metadata features for variable stars. The dataset was constructed by cross-matching publicly available astronomical datasets, primarily from the ASAS-SN (Shappee et al. 2014) variable star catalog (Jayasinghe et al. 2019) and LAMOST spectroscopic survey (Cui et al. 2012), along with data from WISE (Wright et al. 2010), GALEX (Morrissey et al. 2007), 2MASS (Skrutskie et al. 2006) and Gaia EDR3 (Gaia Collaboration et al. 2021).
The dataset includes multiple subsets (full
, sub10
, sub25
, sub50
) and supports different random seeds (42
, 66
, 0
, 12
, 123
).
Each sample consists of:
- Photometry: Light curve data of shape
(N, 3)
(time, flux, flux_error). - Spectra: Spectra observations of shape
(M, 3)
(wavelength, flux, flux_error). - Metadata:
meta_cols
: Dictionary of metadata feature names and values.photo_cols
: Dictionary of photometric feature names and values.
- Label: The class name as a string.
Corresponding paper and code
- Paper: AstroM3: A self-supervised multimodal model for astronomy
- Code Repository: GitHub: AstroM3
- Processed Data: MeriDK/AstroM3Processed
Note: The processed dataset AstroM3Processed
is created from the original dataset AstroM3Dataset
by using preprocess.py
Subsets and Seeds
AstroM3Dataset is available in different subset sizes:
full
: Entire datasetsub50
: 50% subsetsub25
: 25% subsetsub10
: 10% subset
Each subset is sampled from the respective train, validation, and test splits of the full dataset.
For reproducibility, each subset is provided with different random seeds:
42
,66
,0
,12
,123
Data Organization
The dataset is organized as follows:
AstroM3Dataset/
βββ photometry.zip # Contains all photometry light curves
βββ utils/
β βββ parallelzipfile.py # Zip file reader to open photometry.zip
βββ spectra/ # Spectra files organized by class
β βββ EA/
β β βββ file1.dat
β β βββ file2.dat
β β βββ ...
β βββ EW/
β βββ SR/
β βββ ...
βββ splits/ # Train/val/test splits for each subset and seed
β βββ full/
β β βββ 42/
β β β βββ train.csv
β β β βββ val.csv
β β β βββ test.csv
β β β βββ info.json # Contains feature descriptions and preprocessing info
β β βββ 66/
β β βββ 0/
β β βββ 12/
β β βββ 123/
β βββ sub10/
β βββ sub25/
β βββ sub50/
βββ AstroM3Dataset.py # Hugging Face dataset script
Usage
To load the dataset using the Hugging Face datasets
library:
from datasets import load_dataset
# Load the default full dataset with seed 42
dataset = load_dataset("MeriDK/AstroM3Dataset", trust_remote_code=True)
The default configuration is full_42 (entire dataset with seed 42). To load a specific subset and seed, use {subset}_{seed} as the name:
from datasets import load_dataset
# Load the 25% subset sampled using seed 123
dataset = load_dataset("MeriDK/AstroM3Dataset", name="sub25_123", trust_remote_code=True)
Citation
π€ If you find this dataset usefull, please cite our paper π€
@article{rizhko2024astrom,
title={AstroM $\^{} 3$: A self-supervised multimodal model for astronomy},
author={Rizhko, Mariia and Bloom, Joshua S},
journal={arXiv preprint arXiv:2411.08842},
year={2024}
}
References
- Shappee, B. J., Prieto, J. L., Grupe, D., et al. 2014, ApJ, 788, 48, doi: 10.1088/0004-637X/788/1/48
- Jayasinghe, T., Stanek, K. Z., Kochanek, C. S., et al. 2019, MNRAS, 486, 1907, doi: 10.1093/mnras/stz844
- Cui, X.-Q., Zhao, Y.-H., Chu, Y.-Q., et al. 2012, Research in Astronomy and Astrophysics, 12, 1197, doi: 10.1088/1674-4527/12/9/003
- Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868, doi: 10.1088/0004-6256/140/6/1868
- Morrissey, P., Conrow, T., Barlow, T. A., et al. 2007, ApJS, 173, 682, doi: 10.1086/520512
- Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163, doi: 10.1086/498708
- Gaia Collaboration, Brown, A. G. A., et al. 2021, AAP, 649, A1, doi: 10.1051/0004-6361/202039657
- Downloads last month
- 25,372