|
--- |
|
license: apache-2.0 |
|
task_categories: |
|
- question-answering |
|
- multiple-choice |
|
language: |
|
- en |
|
size_categories: |
|
- n<1K |
|
configs: |
|
- config_name: benchmark |
|
data_files: |
|
- split: test |
|
path: dataset.json |
|
paperswithcode_id: mapeval-api |
|
tags: |
|
- geospatial |
|
--- |
|
|
|
# MapEval-API |
|
|
|
[MapEval](https://arxiv.org/abs/2501.00316)-API is created using [MapQaTor](https://arxiv.org/abs/2412.21015). |
|
|
|
# Usage |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
# Load dataset |
|
ds = load_dataset("MapEval/MapEval-API", name="benchmark") |
|
|
|
# Generate better prompts |
|
for item in ds["test"]: |
|
# Start with a clear task description |
|
prompt = ( |
|
"You are a highly intelligent assistant. " |
|
"Answer the multiple-choice question by selecting the correct option.\n\n" |
|
"Question:\n" + item["question"] + "\n\n" |
|
"Options:\n" |
|
) |
|
|
|
# List the options more clearly |
|
for i, option in enumerate(item["options"], start=1): |
|
prompt += f"{i}. {option}\n" |
|
|
|
# Add a concluding sentence to encourage selection of the answer |
|
prompt += "\nSelect the best option by choosing its number." |
|
|
|
# Use the prompt as needed |
|
print(prompt) # Replace with your processing logic |
|
``` |
|
|
|
## Citation |
|
|
|
If you use this dataset, please cite the original paper: |
|
|
|
``` |
|
@article{dihan2024mapeval, |
|
title={MapEval: A Map-Based Evaluation of Geo-Spatial Reasoning in Foundation Models}, |
|
author={Dihan, Mahir Labib and Hassan, Md Tanvir and Parvez, Md Tanvir and Hasan, Md Hasebul and Alam, Md Almash and Cheema, Muhammad Aamir and Ali, Mohammed Eunus and Parvez, Md Rizwan}, |
|
journal={arXiv preprint arXiv:2501.00316}, |
|
year={2024} |
|
} |
|
``` |