Datasets:
metadata
license: mit
task_categories:
- image-classification
language:
- en
tags:
- medical-imaging
- chest-xray
- healthcare
pretty_name: NIH Chest X-ray14
size_categories:
- 10K<n<100K
NIH Chest X-ray14 Dataset
Dataset Description
This dataset contains 112120 chest X-ray images with multiple disease labels per image.
Labels
Atelectasis, Cardiomegaly, Consolidation, Edema, Effusion, Emphysema, Fibrosis, Hernia, Infiltration, Mass, No Finding, Nodule, Pleural_Thickening, Pneumonia, Pneumothorax
Dataset Structure
- Train split: 78484 images
- Validation split: 16818 images
- Test split: 16818 images
Data Format
This dataset is optimized for streaming. Instead of containing the actual images, it contains:
image_path
: Path to the image filelabels
: List of disease labels for the image
Loading Images
To load images during training, use a loading function:
from datasets import load_dataset
import torchvision.transforms as T
# Define image loading and transforms
def load_and_transform_image(example):
image = Image.open(example['image_path']).convert('RGB')
transform = T.Compose([
T.Resize((224, 224)),
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
example['image'] = transform(image)
return example
# Load dataset with streaming
dataset = load_dataset("path/to/dataset")
# Set up data loading
dataset = dataset.map(
load_and_transform_image,
remove_columns=['image_path']
)
Memory Usage
This dataset uses a streaming approach where images are loaded on-the-fly during training, making it memory efficient and suitable for large-scale training.