Core-S1RTC / README.md
mikonvergence's picture
Update README.md
1a34c19 verified
|
raw
history blame
2.67 kB
metadata
license: cc-by-sa-4.0
tags:
  - earth-observation
  - remote-sensing
  - sentinel-1
  - sar
  - synthethic-aperture-radar
  - satellite
size_categories:
  - 1M<n<10M
dataset_info:
  - config_name: default
    features:
      - name: product_id
        dtype: string
      - name: grid_cell
        dtype: string
      - name: product_datetime
        dtype: string
      - name: thumbnail
        dtype: image
      - name: vv
        dtype: binary
      - name: vh
        dtype: binary
configs:
  - config_name: default
    data_files: images/*.parquet
  - config_name: metadata
    data_files: metadata.parquet

Core-S1RTC

Contains a global coverage of Sentinel-1 (RTC) patches, each of size 1,068 x 1,068 pixels.

Source Sensing Type Number of Patches Patch Size Total Pixels
Sentinel-1 RTC Synthetic Aperture Radar 1,469,955 1,068 x 1,068 (10 m) > 1.676 Trillion

Content

Column Details Resolution
VV Received Linear Power in the VV Polarization 10m
VH Received Linear Power in the VV Polarization 10m
thumbnail RGB composite [B04, B03, B02] saved as png 10m

Spatial Coverage

This is a global monotemporal dataset. Nearly every piece of Earth captured by Sentinel-1 is contained at least once in this dataset (and only once, excluding some marginal overlaps). The coverage is about 35% lower than for Core Sentinel-2 dataset due to the sensor coverage limitations.

Example Use

Interface scripts are available at https://github.com/ESA-PhiLab/Major-TOM

Here's a sneak peek with a thumbnail image:

from fsspec.parquet import open_parquet_file
import pyarrow.parquet as pq
from io import BytesIO
from PIL import Image

PARQUET_FILE = 'part_03900' # parquet number
ROW_INDEX = 42 # row number (about 500 per parquet)

url = "https://huggingface.co/datasets/Major-TOM/Core-S1RTC/resolve/main/images/{}.parquet".format(PARQUET_FILE)
with open_parquet_file(url,columns = ["thumbnail"]) as f:
    with pq.ParquetFile(f) as pf:
        first_row_group = pf.read_row_group(ROW_INDEX, columns=['thumbnail'])

stream = BytesIO(first_row_group['thumbnail'][0].as_py())
image = Image.open(stream)

Cite

arxiv

@inproceedings{Major_TOM,
  title={Major TOM: Expandable Datasets for Earth Observation}, 
  author={Alistair Francis and Mikolaj Czerkawski},
  year={2024},
  eprint={2402.12095},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

Powered by Φ-lab, European Space Agency (ESA) 🛰️