metadata
dataset_info:
features:
- name: Text
dtype: string
- name: Label
dtype: string
- name: Encoding
dtype: int64
- name: Classification Score
list:
- name: label
dtype: string
- name: score
dtype: float64
splits:
- name: train
num_bytes: 3916705
num_examples: 24746
- name: validation
num_bytes: 1295577
num_examples: 8249
- name: test
num_bytes: 1299961
num_examples: 8249
download_size: 2594115
dataset_size: 6512243
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
Label is used to give a context to the related text using the following map :
- 0 --> "PATIENT"
- 1 --> "DOCTOR"
- 2 --> "NEUTRAL"
The "Classification Score" field reports the predicted outcomes of the patient-doctor-classifier.