Datasets:
Tasks:
Image Classification
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
10K<n<100K
License:
Commit
•
f49b253
1
Parent(s):
7aeabc7
Create MapReader_Data_SIGSPATIAL_2022.py
Browse files
MapReader_Data_SIGSPATIAL_2022.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""TODO"""
|
15 |
+
|
16 |
+
import csv
|
17 |
+
import os
|
18 |
+
|
19 |
+
import datasets
|
20 |
+
from PIL import Image
|
21 |
+
|
22 |
+
_CITATION = """\
|
23 |
+
@dataset{kasra_hosseini_2022_7147906,
|
24 |
+
author = {Kasra Hosseini and
|
25 |
+
Daniel C.S. Wilson and
|
26 |
+
Kaspar Beelen and
|
27 |
+
Katherine McDonough},
|
28 |
+
title = {MapReader_Data_SIGSPATIAL_2022},
|
29 |
+
month = oct,
|
30 |
+
year = 2022,
|
31 |
+
publisher = {Zenodo},
|
32 |
+
version = {v0.3.3},
|
33 |
+
doi = {10.5281/zenodo.7147906},
|
34 |
+
url = {https://doi.org/10.5281/zenodo.7147906}
|
35 |
+
}
|
36 |
+
"""
|
37 |
+
|
38 |
+
_DESCRIPTION = """\
|
39 |
+
TODO"""
|
40 |
+
|
41 |
+
_HOMEPAGE = "https://doi.org/10.5281/zenodo.3366686"
|
42 |
+
_LICENSE = "Creative Commons Attribution Non Commercial Share Alike 4.0 International"
|
43 |
+
|
44 |
+
_URL = "https://zenodo.org/record/7147906/files/MapReader_Data_SIGSPATIAL_2022.zip?download=1"
|
45 |
+
|
46 |
+
|
47 |
+
class RailspaceData(datasets.GeneratorBasedBuilder):
|
48 |
+
"""National Library of Scotland Railspace dataset."""
|
49 |
+
|
50 |
+
VERSION = datasets.Version("1.1.0")
|
51 |
+
|
52 |
+
def _info(self):
|
53 |
+
features = datasets.Features(
|
54 |
+
{
|
55 |
+
"image": datasets.Image(),
|
56 |
+
"label": datasets.ClassLabel(
|
57 |
+
names=[
|
58 |
+
"no building or railspace",
|
59 |
+
"railspace",
|
60 |
+
"building",
|
61 |
+
"railspace and non railspace building",
|
62 |
+
]
|
63 |
+
), # Labels: 0: no [building or railspace]; 1: railspace; 2: building; and 3: railspace and [non railspace] building.
|
64 |
+
"map_sheet": datasets.Value("string"),
|
65 |
+
}
|
66 |
+
)
|
67 |
+
|
68 |
+
return datasets.DatasetInfo(
|
69 |
+
description=_DESCRIPTION,
|
70 |
+
features=features,
|
71 |
+
homepage=_HOMEPAGE,
|
72 |
+
license=_LICENSE,
|
73 |
+
citation=_CITATION,
|
74 |
+
)
|
75 |
+
|
76 |
+
def _split_generators(self, dl_manager):
|
77 |
+
data = dl_manager.download_and_extract(_URL)
|
78 |
+
|
79 |
+
return [
|
80 |
+
datasets.SplitGenerator(
|
81 |
+
name=datasets.Split.TRAIN,
|
82 |
+
gen_kwargs={"data": data, "split": "train"},
|
83 |
+
),
|
84 |
+
datasets.SplitGenerator(
|
85 |
+
name=datasets.Split.VALIDATION,
|
86 |
+
gen_kwargs={"data": data, "split": "valid"},
|
87 |
+
),
|
88 |
+
datasets.SplitGenerator(
|
89 |
+
name=datasets.Split.TEST,
|
90 |
+
gen_kwargs={"data": data, "split": "test"},
|
91 |
+
),
|
92 |
+
]
|
93 |
+
|
94 |
+
def _generate_examples(self, data, split):
|
95 |
+
with open(
|
96 |
+
os.path.join(
|
97 |
+
data, f"MapReader_Data_SIGSPATIAL_2022/annotations/{split}.csv"
|
98 |
+
),
|
99 |
+
"r",
|
100 |
+
) as f:
|
101 |
+
reader = csv.DictReader(f)
|
102 |
+
for id_, row in enumerate(reader):
|
103 |
+
label = row["label"]
|
104 |
+
map_sheet = row["image_id"].split("#")[1]
|
105 |
+
image_file = os.path.join(
|
106 |
+
data,
|
107 |
+
f"MapReader_Data_SIGSPATIAL_2022/annotations/{row['image_id']}",
|
108 |
+
)
|
109 |
+
image = Image.open(image_file)
|
110 |
+
yield id_, {"image": image, "label": label, "map_sheet": map_sheet}
|